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ABSTRACT

Gradient flows are differential equations that minimize an energy functional and
constitute the main descriptors of physical systems. We apply this formalism
to Graph Neural Networks (GNNs) to develop new frameworks for learning on
graphs as well as provide a better theoretical understanding of existing ones. We
derive GNNs as a gradient flow equation of a parametric energy that provides
a physics-inspired interpretation of GNNs as learning particle dynamics in the
feature space. In particular, we show that in graph convolutional models (GCN),
the positive/negative eigenvalues of the channel mixing matrix correspond to at-
tractive/repulsive forces between adjacent features. We rigorously prove how the
channel-mixing can learn to steer the dynamics towards low or high frequencies,
which allows to deal with heterophilic graphs. We show that the same class of
energies is decreasing along a larger family of GNNs; albeit not gradient flows, they
retain their inductive bias. We experimentally evaluate an instance of the gradient
flow framework that is principled, more efficient than GCN, and achieves com-
petitive performance on graph datasets of varying homophily often outperforming
recent baselines specifically designed to target heterophily.

1 INTRODUCTION

Graph neural networks (GNNs) (Sperduti, 1993; Goller & Kuchler, 1996; Gori et al., 2005; Scarselli
et al., 2008; Bruna et al., 2014; Defferrard et al., 2016; Kipf & Welling, 2017; Battaglia et al., 2016;
Gilmer et al., 2017) have become the standard ML tool for dealing with different types of relations
and interactions. Limitations of GNNs that have recently attracted attention in the literature are
over-smoothing (node features becoming increasingly similar with the depth of the model, see Nt &
Maehara (2019); Oono & Suzuki (2020); Cai & Wang (2020); Zhou et al. (2021)), over-squashing
(the difficulty of message passing to propagate information on the graph, see Alon & Yahav (2021);
Topping et al. (2022)), and poor performance on heterophilic data (i.e. where adjacent nodes tend to
have different labeles, see Pei et al. (2020); Zhu et al. (2020); Bo et al. (2021); Yan et al. (2021)).

time

Figure 1:Gradient flow dynam-
ics: attractive and repulsive
forces lead to a process able
to separate heterophilic labels.

General motivations and contributions. In the spirit of neural
ODEs (Haber & Ruthotto, 2018; Chen et al., 2018), we regard
(residual) GNNs as discrete dynamical systems. A fundamental idea
in physics is that particles evolve by minimizing an energy: one can
then study the dynamics through the functional expression of the
energy. The class of differential equations that minimize an energy
are called gradient flows and their extension and analysis in the
context of GNNs represent the main focus of this work. We study
two ways of understanding the dynamics induced by GNNs: starting
from the energy functional or from the evolution equations.

From energy to evolution equations: a new conceptual approach
to GNNs. We propose a general framework where one parame-
terises an energy functional and then takes the GNN equations to
follow the direction of steepest descent of such energy. We introduce
a class of energy functionals that extend those adopted for label

1



Under review as a conference paper at ICLR 2023

propagation (Zhou & Schölkopf, 2005) and whose gradient flow equations consist of generalized
graph convolutions (GCN-type architectures, (Kipf & Welling, 2017)) with symmetric weights. We
provide a physical interpretation for GNNs as multi-particle dynamics: this new framework sheds
light on the role of the ‘channel-mixing’ matrix used in graph convolutional models as an edge-wise
potential inducing attraction (repulsion) via its positive (negative) eigenvalues. We conduct theoretical
analysis of the dynamics including explicit expansions of the GNN learned features, showing that
differently from other continuous models, the gradient flow can learn to magnify either the low or
high frequencies. This also establishes new links to techniques like residual connections and negative
edge weights that have been previously used in heterophilic settings. We experimentally evaluate
our framework using gradient flow equations yielding a principled variant of GCNs that is also more
efficient due to weight symmetry and sharing across layers. Our experiments demonstrate competitive
performance on homophilic and heterophilic graphs of varying size.

From evolution equations to energy: understanding graph convolutions via multi-particle
dynamics. Recent works of Cai & Wang (2020); Bodnar et al. (2022) studied the behaviour of
the Dirichlet energy in graph convolutional models in order to determine if (over)smoothing of the
features is occurring. The key idea is that the monotonicity of an energy functional along a system of
equations conveys significant information about the dynamics, both in terms of its dominating effects
and limit points. However, these results are restricted to the classical Dirichlet energy and assume
(non-residual) graph convolutions activated by the ReLU nonlinearity. We extend this approach by
proving that a much more general multi-particle energy is in fact decreasing along residual graph-
convolutions with symmetric weights and with respect to a more general class of nonlinear activation
functions. Our result sheds light onto the dynamics of non-linear graph convolutions showing that the
‘channel-mixing’ matrix used in GCN-type models can be interpreted as a potential in feature space
that promotes alignment (repulsion) of adjacent node features depending on its spectrum.

Outline. In Section 2 we review non-parametric instances of gradient flows on graphs: the heat
equation and label propagation. In Section 3 we extend this approach to the parametric case by
introducing a class of energies that generalize the one used for label propagation and whose associated
gradient flows are continuous graph convolutions. We provide a physical interpretation for the energy
showing that it can induce attraction and repulsion along edges. In Section 4 we discretize the gradient
flow into GNN update equations and derive explicit expansions of the learned node representations
highlighting how the spectrum of the channel-mixing W controls whether the dynamics is dominated
by the low or high frequencies of the graph Laplacian. To our knowledge, ours is the first analysis that
studies the interplay of the spectral properties of the graph Laplacian and the channel mixing matrix.
In Section 5 we extend the theory by showing that the same multi-particle energy introduced in
Section 3 still decreases along more general graph convolutions with symmetric weights, meaning that
the physics interpretation is preserved. In Section 6 we evaluate the framework for node classification
on a broad range of datasets.

Related work. Our analysis is related to studying GNNs as filters (Defferrard et al., 2016; Hammond
et al., 2019; Balcilar et al., 2020; He et al., 2021) and adopts techniques similar to Oono & Suzuki
(2020); Cai & Wang (2020). Gradient flows were adapted from geometry (Eells & Sampson, 1964),
to image processing (Kimmel et al., 1997), label propagation (Zhou & Schölkopf, 2005) and recently
in ML (Sander et al., 2022) for the analysis of Transformers (Vaswani et al., 2017). Our work follows
the spirit of GNNs as continuous dynamical systems (Xhonneux et al., 2020; Zang & Wang, 2020;
Chamberlain et al., 2021a; Eliasof et al., 2021; Chamberlain et al., 2021b; Bodnar et al., 2022; Rusch
et al., 2022).

Notations. Let G = (V,E) be an undirected graph with n nodes. Its adjacency matrix A is defined
as aij = 1 if (i, j) ∈ E and zero otherwise. We let D = diag(di) be the degree matrix and define the
normalized adjacency Ā := D−1/2AD−1/2. We denote by F ∈ Rn×d the matrix of d-dimensional
node features, by fi ∈ Rd its i-th row (transposed), by fr ∈ Rn its r-th column, and by vec(F) ∈ Rnd

the vectorization of F obtained by stacking its columns. Given a symmetric matrix B, we let λB+, λ
B
−

denote its most positive and negative eigenvalues, respectively, and ρB be its spectral radius. ḟ(t)
denotes the temporal derivative, ⊗ is the Kronecker product and ‘a.e.’ means almost every w.r.t.
Lebesgue measure. Proofs and additional results appear in the Appendix.
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2 GRADIENT FLOWS ON GRAPHS: THE NON-PARAMETRIC CASE

In this Section we review important concepts on graphs and two examples of non-parametric gradient
flows that partly motivate our approach to the GNN framework.

What is a gradient flow? Consider an N -dimensional dynamical system governed by the evolution
equation Ḟ(t) = ODE(F(t)) that evolves some initial state F(0) for time t ≥ 0. In deep learning,
the discretisation of such differential equations using the Euler method allows to draw a parallel
between iterations of a numerical solver and the layers of a neural network (Haber & Ruthotto, 2018;
Chen et al., 2018). We say that the evolution equation is a gradient flow if there exists an energy
functional E : RN → R such that ODE(F(t)) = −∇E(F(t)). Since Ė(F(t)) = −||∇E(F(t))||2,
the energy E is decreasing along the solution F(t) of such equations. The existence of E and the
knowledge of its functional expression allow for a better understanding of the dynamical system.

A prototypical gradient flow: heat equation. Let F ∈ Rn×d be the matrix representation of
vector features assigned to each node in G. Its graph gradient is defined edge-wise as (∇F)ij :=

fj/
√
dj − fi/

√
di. We can then set the Laplacian as ∆ := −div∇/2 (the divergence div is the

adjoint of ∇), represented by ∆ = I− Ā ⪰ 0. We refer to the eigenvalues of ∆ as frequencies: the
lowest frequency is always 0 while the highest frequency is ρ∆ ≤ 2 (Chung & Graham, 1997). The
heat equation on each channel is the system ḟr(t) = −∆fr(t), for 1 ≤ r ≤ d. This is an example of
gradient flow: if we stack the columns of F into vec(F) ∈ Rnd, we can rewrite the heat equation as

vec(Ḟ(t)) = −∇EDir(vec(F(t))), (1)

where EDir : Rnd → R is the (graph) Dirichlet energy defined by (Zhou & Schölkopf, 2005)

EDir(F) :=
1

4

∑
(i,j)∈E

||(∇F)ij ||2 =
1

2
trace(F⊤∆F) =

1

2
⟨vec(F), (Id ⊗∆)vec(F)⟩. (2)

EDir measures the smoothness of the signal since it accounts for the variations of F (i.e., its gradient)
on the edges. The evolution of F(t) by the heat equation (1) decreases the Dirichlet energy EDir(F(t));
in the limit EDir(F(t→ ∞)) = 0, attained by the projection of the initial state F(0) onto ker(∆).

A more general gradient flow: label propagation. Assume we have a graph G, node-features
F0 and labels {yi} on Vtrain ⊂ V, and that we want to predict the labels on Vtest ⊂ V. Zhou &
Schölkopf (2005) proposed label propagation (LP) where they first extend the input labels Y(0)
outside the training set as yi(0) = 0 for each i ∈ V \ Vtrain and then solve the equation:

Ẏ(t) = −∆Y(t)− 2µ(Y(t)−Y(0)).

This is another example of gradient flow; in fact, Zhou & Schölkopf (2005) originally introduced the
following energy and then derived the aforementioned update formula in order to minimize it:

Ẏ(t) = −∇ELP(Y(t)), ELP(Y) := EDir(Y) + µ||Y −Y(0)||2. (3)

The prediction is then attained by the signal that minimizes both EDir – which enforces smoothness –
and the fitting term arising from the available labels (a form of soft boundary conditions).

Motivations and goals. In graph ML problems, we often also have node features that can be
leveraged for the label prediction. Our goal is to extend the gradient flow formalism from the
non-parametric case (heat equation and label propagation) to a deep learning setting, where we (i)
parameterise an energy functional and let the GNN equations be the associated gradient flow, and (ii)
investigate when existing GNNs admit an energy that is decreasing along their evolution equations.

3 GRADIENT FLOWS ON GRAPHS: THE PARAMETRIC CASE

We can think of a (residual) graph neural network as a parametric evolution equation Ḟ(t) =
GNNθ(t)(G,F(t)) discretized using the Euler method with fixed time step 0 < τ ≤ 1:

F(t+ τ) = F(t) + τGNNθ(t)(G,F(t)). (4)
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Each iteration corresponds to a GNN layer, which in general can have a different set of parameters
θ(t). We choose GNNθ to be the gradient flow of some parametric class of energies Eθ : Rn×d → R
generalizing EDir, resulting in feature evolution by Ḟ(t) = −∇Eθ(F(t)) starting from input features
F(0), with {θ} learned via backpropagation on the task loss function. This approach extends the
LP technique to a framework where the parameters we learn can be interpreted as ‘finding the right
notion of smoothness’ for our task. In fact, minimizing ELP as in Equation (3) works only if the
labels are smooth—an assumption known as homophily. We investigate how learning a more general
energy yields gradient flow GNNs that can also perform well on heterophilic data.

3.1 ENERGIES GIVING RISE TO GRAPH-CONVOLUTIONAL MODELS

Similarly to the LP approach in Equation (3), our first step consists in choosing a parametric class
of energy functionals {Eθ} giving rise to the GNN equations via gradient flow. GNNs of the
convolutional flavor (Bronstein et al., 2021) evolve the features via (4) using some parametric rule
GNNθ(G,F0) typically consisting of two operations: applying a shared linear transformation to the
features (‘channel mixing’) and propagating them along the edges (‘diffusion’). Accordingly, we
introduce the class of (generalized) graph convolutions:

F(t+ τ) = F(t) + τ σ
(
−F(t)Ωt + ĀF(t)Wt − F(0)W̃t

)
, (5)

where the learnable parameters {θ(t)} are the d × d weight matrices Ωt,Wt, and W̃t acting on
each node feature vector independently and performing channel mixing; the normalized adjacency Ā
performs the diffusion of features from adjacent nodes. The setting τ = 1, no residual connection,
and Ωt = W̃t = 0 corresponds to GCN (Kipf & Welling, 2017). The case of Ωt ̸= 0 results in an
anisotropic instance of GraphSAGE Hamilton et al. (2017), while by choosing Ωt = 0 and Wt and
W̃t as convex combinations with the identity we recover GCNII (Chen et al., 2020).
We consider a class of energies {Eθ} consisting of quadratic terms

Eθ(F) =
1

2

∑
i,j

⟨fi,Ωfi⟩︸ ︷︷ ︸
Eext
Ω

− 1

2

∑
i,j

Āij⟨fi,Wfj⟩︸ ︷︷ ︸
Epair
W

+
∑
i,j

φ0(F,F(0))︸ ︷︷ ︸
Esource
φ0

, (6)

parameterised by d × d weight matrices Ω,W. We motivate our choice by first recovering the
non-parametric cases of Section 2. If Ω = W = Id and φ0 = 0, then Eθ = EDir as per Equation (2);
choosing φ0 as an L2-penalty gives Eθ = ELP as per Equation (3). We can also recover manifold
harmonic energies applied to graphs (see Appendix B.5). More importantly, if φ0(F,F(0)) =∑

i⟨fi,W̃fi(0)⟩, for W̃ ∈ Rd×d, we can rewrite

Eθ(F) = ⟨vec(F), 12 (Ω⊗ In −W ⊗ Ā)vec(F) + (W̃ ⊗ In)vec(F(0))⟩ (7)

and then derive its gradient flow as:

Ḟ(t) = −∇FEθ(F(t)) = −F(t)

(
Ω+Ω⊤

2

)
+ ĀF(t)

(
W +W⊤

2

)
− F(0)W̃. (8)

Since Ω,W appear in Equation (8) in a symmetrized way, without loss of generality we can assume
Ω and W to be symmetric d× d channel mixing matrices. Therefore, Equation (8) simplifies as

Ḟ(t) = −F(t)Ω+ ĀF(t)W − F(0)W̃. (9)
Thus, a quadratic energy as in Equation (35) leads to continuous linear graph convolutions with
symmetric weights shared over time. Equivalently, for generalized graph convolutions to fit the
gradient flow formalism, the channel-mixing matrices must be symmetric. Importantly, while
reducing the number of parameters and offering a gradient flow interpretation of the GNN, this
symmetric constraint does not diminish its expressive power (Hu et al., 2019). Next, we show that Eθ
has a simple interpretation in terms of pairwise forces among adjacent features.

3.2 ATTRACTION AND REPULSION: A PHYSICS-INSPIRED FRAMEWORK

Why gradient flows? A multi-particle point of view. Consider the node features as particles
in Rd with energy Eθ. The first term Eext

Ω is independent of the pairwise interactions and hence
represents an ‘external’ energy in the feature space. The second term Epair

W instead accounts for
pairwise interactions along edges via the symmetric matrix W and hence represents an ‘internal’
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energy. We set the source term φ0 to zero and write W = Θ⊤
+Θ+ −Θ⊤

−Θ−, by decomposing it
into components with positive and negative eigenvalues. We can then rewrite Eθ in Equation (6) as

Eθ(F) =
1

2

∑
i,j

⟨fi, (Ω−W)fi⟩︸ ︷︷ ︸
dampening

+
1

4

∑
i,j

||Θ+(∇F)ij ||2︸ ︷︷ ︸
attraction

− 1

4

∑
i,j

||Θ−(∇F)ij ||2︸ ︷︷ ︸
repulsion

, (10)

which we have derived in Appendix B. To understand the dynamics induced by the minimization of
Eθ by the gradient flow (36), recall that the edge gradient (∇F)ij measures the difference between
features fi and fj . We note that: (i) if Ω commutes with W, then the projections of (∇F)ij
onto ker(W) remain invariant and are preserved along the gradient flow; (ii) The channel-mixing
W encodes attractive edge-wise interactions via its positive-definite component Θ+ since the
gradient terms ||Θ+(∇F)ij || decrease along the solution of Equation (36), hence resulting in a
smoothing effect where adjacent node features fi and fj are ‘aligned’; (iii) The channel-mixing W
encodes repulsive edge-wise interactions via its negative-definite component Θ− since the gradient
terms ||Θ−(∇F)ij || increase along the solution of Equation (36), hence resulting in a sharpening
effect which could be desirable on heterophilic graphs where we need to disentangle adjacent node
representations. Next, we formalize the smoothing vs sharpening effects by introducing a new quantity
to monitor along a GNN to assess whether the latter is magnifying the low or high frequencies.

Low vs high frequency enhancement. Attractive forces minimize the edge gradients and are
associated with smoothing effects which magnify low frequencies, while repulsive forces increase the
edge gradients and hence afford a sharpening action enhancing the high frequencies. Since we are
interested in finding which frequency is dominating the dynamics, we monitor the Dirichlet energy
along the normalized solution: EDir(F(t))/||F(t)||2. This is the Rayleigh quotient of Id ⊗∆ and
so it satisfies 0 ≤ EDir(F)/||F||2 ≤ ρ∆/2 (see Appendix A.2). If the normalized Dirichlet energy
is approaching its minimum, then the lowest frequency component is dominating, whereas if the
normalized Dirichlet energy is converging to its maximum, then the dynamics is dominated by the
highest frequencies. This allows us to introduce the following

Definition 3.1. Ḟ(t) = GNNθ(t)(G,F(t)) initialized at F(0) is Low/High-Frequency-Dominant
(L/HFD) if EDir(F(t))/||F(t)||2 → 0 (respectively, EDir(F(t))/||F(t)||2 → ρ∆/2) for t→ ∞.

In Appendix B.2 we provide justifications and explicit examples. If a graph is homophilic, we
expect a smoothing or LFD dynamics enhancing the low-frequency components to be successful for
node classification (Wu et al., 2019; Klicpera et al., 2019). In the opposite case of heterophily, the
high-frequency components might contain more relevant information for separating classes (Bo et al.,
2021) – the classical example being the eigenvector of ∆ with largest frequency ρ∆ separating a
bipartite graph. Accordingly, an ideal framework for learning on graphs must at least accommodate
both of these opposite scenarios by being able to induce either an LFD or a HFD dynamics.

We can now investigate the gradient flow equations of the energy in Equation (10).
Theorem 3.2 (Informal). The continuous gradient flow in Equation (36) can learn to be either LFD
(mostly edge-wise attractive) or HFD (mostly edge-wise repulsive) depending on the spectrum of W.

(A precise result, along with convergence rates, is stated as Theorem B.3 in the Appendix). Informally,
Theorem 3.2 shows that the gradient flow in Equation (36) is expressive enough to induce repulsion
along edges if needed — as expected based on the decomposition of Eθ in Equation (10). As argued
above, a dynamical system that can never be HFD might instead struggle on heterophilic graphs
where the feature signal needs to be sharpened rather than smoothed out. The property that the
gradient flow can be HFD is non-trivial and in fact some continuous-time GNNs — such as those
introduced in Xhonneux et al. (2020); Chamberlain et al. (2021a); Eliasof et al. (2021) — are never
HFD and as a result suffer on heterophilic datasets (as confirmed in our experiments in Table 1):
Theorem 3.3 (Informal). Models like CGNN, GRAND and PDE−GCND are never HFD.

We refer to Theorem B.4 for a statement including convergence rates and over-smoothing results.

Message of Section 3: We introduced an energy Eθ allowing to learn attractive/repulsive forces along
edges via the spectrum of the channel-mixing inducing an LFD/HFD dynamics as per Theorem 3.2.
We argue that energies rather than evolution equations should be the object to parameterise for
deriving more principled GNNs that are easier to interpret and analyse. This is studied next.
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4 FROM ENERGY TO EVOLUTION EQUATIONS: GNNS AS GRADIENT FLOWS

In order to connect our theory to practice, we discretize Equation (36) as in Equation (4), replacing
continuous time by fixed steps corresponding to GNN layers.

4.1 DISCRETE GRADIENT FLOWS AND SPECTRAL ANALYSIS

As in Equation (4), we use the Euler scheme with step size τ to solve Equation (36). In our framework
we parameterise the energy rather than the equations, which leads to symmetric channel-mixing
matrices Ω,W ∈ Rd×d. The use of the explicit Euler discretization yields a residual architecture:

F(t+ τ) = F(t) + τ
(
−F(t)Ω+ ĀF(t)W − F(0)W̃

)
, F(0) = ψEN(F0), (11)

where an encoder ψEN : Rn×p → Rn×d processes input features F0 and the prediction ψDE(F(T ))
is produced by a decoder ψDE : Rn×d → Rn×k. Here, k is the number of label classes, T = mτ is
the integration time, and m is the number of layers. We note that (i) non-linear activations can be
included in ψEN, ψDE making the entire model non-linear; (ii) since the framework is residual, even
if the message-passing is linear, this is not equivalent to collapsing the dynamics into a single layer
with diffusion matrix Ām as done in Wu et al. (2019) — see Equation (37) in the Appendix.

Interaction between the graph and channel-mixing spectra. We restrict our theoretical analysis
to the gradient flows in Equation (11) where we remove dampening and source term effects (i.e., Ω =
W̃ = 0, which corresponds to a residual GCN). Our technique consists in vectorizing the solution
F(t) 7→ vec(F(t)) and rewriting the update as vec(F(t+ τ)) = vec(F(t)) + τ

(
W ⊗ Ā

)
vec(F(t))

(see Appendix A.2 for details). In particular, once we choose bases {ϕW
r } and {ϕ∆

ℓ } of orthonormal
eigenvectors for W and ∆ respectively, we can write the solution after m layers explicitly:

vec(F(mτ)) =

d∑
r=1

n−1∑
ℓ=0

(
1 + τλWr (1− λ∆ℓ )

)m
cr,ℓ(0)ϕ

W
r ⊗ ϕ∆

ℓ , (12)

where cr,ℓ(0) := ⟨vec(F(0)),ϕW
r ⊗ϕ∆

ℓ ⟩. We see that the interaction of the spectra {λWr } and {λ∆ℓ }
is the ‘driving’ factor for the dynamics, with positive (negative) eigenvalues of W magnifying the
frequencies λ∆ℓ < 1 (> 1 respectively). In the following we let λW± denote the most positive/negative
eigenvalue of W with associated eigenvectors ϕW

± .1 Note that ϕ∆
n−1 is the Laplacian eigenvector

associated with largest frequency ρ∆. We now consider the following:

λW+ (ρ∆ − 1))−1 < |λW− | < 2(τ(2− ρ∆))−1. (13)
The first inequality means that the negative eigenvalues of W dominate the positive ones (once we
factor in the graph spectrum contribution), while the second is a constraint on the step-size since if τ
is too large, then we no longer approximate the gradient flow in Equation (36).
Theorem 4.1. Let m be the number of layers. Consider F(t + τ) = F(t) + τĀF(t)W, with
symmetric W. If Equation (13) holds, then there exists δ < 1 s.t. for all i ∈ V we have:

fi(mτ) =
(
1 + τ |λW− |(ρ∆ − 1)

)m (
c−,n−1(0)ϕ

∆
n−1(i) · ϕW

− +O (δm)
)
. (14)

Conversely, if λW+ (ρ∆ − 1))−1 > |λW− |, then

fi(mτ) =
(
1 + λW+

)m (
c+,0(0)

√
di · ϕW

+ +O (δm)
)
. (15)

We report the explicit value of δ in Equation (38) in Appendix C.1. We now comment on the
consequences of Theorem 4.1. Equation (14) implies that if the negative eigenvalues of W are
sufficiently larger than the positive ones (in absolute value, as per Equation (13)), then repulsive
forces and hence high frequencies dominate. Indeed for i ∈ V we have fi(mτ) ∼ ϕ∆

n−1(i) · ϕW
− at

the fastest scale, up to lower order terms in the number of layers. Thus as we increase the depth, any
feature representation fi(mτ) becomes dominated by a multiple of ϕW

− ∈ Rd only depending on the
value taken by the Laplacian eigenvector ϕ∆

n−1 at node i. On the other hand, if Equation (15) holds,
then at the largest scale we have fi(mτ) ∼

√
di · ϕW

+ ∈ Rd, meaning that the node representation
becomes dominated by a multiple of ϕW

+ only depending on the degree of i — which recovers the
over-smoothing phenomenon (Nt & Maehara, 2019; Oono & Suzuki, 2020).

1Our arguments extend trivially to the degenerate case.
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Corollary 4.2. If Equation (14) holds, then the system is HFD for a.e. F(0) and
F(mτ)/||F(mτ)|| → F∞ s.t. ∆fr∞ = ρ∆fr∞ for each r. Conversely, if Equation (15) holds,
then the system is LFD for a.e. F(0) and F(mτ)/||F(mτ)|| → F∞ s.t. ∆fr∞ = 0 for each r.

Remark. In general neither the highest nor the lowest frequency Laplacian eigenvectors constitute
ideal classifiers and in fact we always have a finite depth so that F(mτ) also depends on the lower-
order terms of the asymptotic expansion in Theorem 4.1. Whether the dynamics is LFD or HFD will
affect if the lower or higher frequencies have a larger contribution to the prediction; indeed, we can
compute the ‘impact’ of each graph frequency explicitly thanks to Equation (12).

4.2 CONNECTIONS TO EXISTING RESULTS

Residual connection. The following result shows that the residual connection is crucial:
Theorem 4.3. If G is not bipartite, and we remove the residual connection, i.e. F(t+τ) = τĀF(t)W,
with W symmetric, then the dynamics is LFD for a.e. F(0) independent of the spectrum of W.

Differently from previous over-smoothing results of Oono & Suzuki (2020); Cai & Wang (2020),
here we have no constraints on the spectral radius of W coming from the graph topology. In other
words, the residual connection fully enables the channel-mixing to steer the evolution towards low or
high frequencies depending on the task. If we drop the residual connection, W is less powerful; this
is also confirmed by our ablation studies (see Figure 3 in the Appendix).

Negative eigenvalues flip the edge signs. Let W = ΦWΛW(ΦW)⊤ be the eigendecomposition
of W yielding the Fourier coefficients Z(t) = F(t)ΦW. We rewrite the discretized gradient flow
F(t+ τ) = F(t) + τĀF(t)W in the Fourier domain of W as Z(t+ τ) = Z(t) + τĀZ(t)ΛW and
note that along the eigenvectors of W, if λWr < 0 then the dynamics is equivalent to flipping the sign
of the edges. This shows that negative edge weight mechanisms proposed in Li et al. (2020); Bo et al.
(2021); Yan et al. (2021) for heterophilic graphs can be achieved with a simple GCN model where
the channel-mixing matrix W has negative eigenvalues. We refer to Equation (39) in the appendix
for a thorough discussion and derivation.

The message of Section 4: Discrete gradient flows of Eθ are equivalent to linear graph convolutions
with symmetric weights shared across layers. This provides a ‘multi-particle’ interpretation for graph
convolutions and sheds light onto the dynamics they generate. We can derive simple expansions of
the learned features and show that the interaction between the eigenvectors and spectra of W and ∆
is what drives the dynamics and determines its dominating effects. Convolutional GNN models can
deal with heterophily if the channel mixing matrix has negative eigenvalues.

5 FROM EVOLUTION EQUATIONS TO ENERGY: INTERPRETING GNNS VIA Eθ

Analysing energies along GNNs is one approach to investigate their dynamics. Cai & Wang (2020);
Bodnar et al. (2022) showed that EDir is decreasing (exponentially) along some classes of graph
convolutions, implying over-smoothing – see also Rusch et al. (2022). In this Section, we start from
time-continuous graph convolutions as in Equation (5), with σ acting elementwise:

Ḟ(t) = σ
(
−F(t)Ω+ ĀF(t)W − F(0)W̃

)
(16)

Although this is no longer necessarily a gradient flow due to σ, we prove that if the weights are
symmetric, then Eθ in Equation (35) still decreases along Equation (16).
Theorem 5.1. Consider σ : R → R satisfying x 7→ xσ(x) ≥ 0. If F solves Equation (16) with Ω,W
symmetric, then t 7→ Eθ(F(t)) is decreasing. If we discretize the system using the Euler method with
step size τ and C+ denotes the most positive eigenvalue of Ω⊗ In −W ⊗ Ā, then

Eθ(F(t+ τ))− Eθ(F(t)) ≤ C+ · ||F(t+ τ)− F(t)||2.

An important consequence of Theorem 5.1 is that for non-linear graph convolutions with symmetric
weights, the physical interpretation is preserved since the same multi-particle energy Eθ in Equa-
tion (10) is decreasing along the solution. Note that in the discrete case the energy monotonicity
can be interpreted as a Lipschitz regularity result. Namely, the channel-mixing W still induces
attraction/repulsion along edges via its positive/negative eigenvalues (more explicitly, see Lemma
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D.1). We again emphasize that the requirement of symmetric weights is not restrictive thanks to the
universal approximation results of Hu et al. (2019). Theorem 5.1 differs from Cai & Wang (2020);
Bodnar et al. (2022) in two ways: (i) It asserts monotonicity of an energy Eθ more general than EDir,
since it is parametric and in fact also able to enhance the high frequencies; and (ii) it holds for an
infinite class of non-linear activations (beyond ReLU). So far we have considered time-independent
energies. We can generalize our discussion to energies of the form Eθ(·, t) whose potentials now vary
in time. The equations then take the form of Equation (5) with Ωt and Wt symmetric.

The message of Section 5: We show that graph convolutions with symmetric weights identify curves
along which the multi-particle energy Eθ decreases hence acting as ‘approximate’ gradient flows.
Despite the non-linear activation of σ we can still interpret the learning dynamics of convolution on
graphs as finding the ‘right’ edge-wise attractive/repulsive potentials through channel mixing.

6 EXPERIMENTS

In Theorem 4.1 we have shown that the subset of linear graph convolutions in Equation (5) with
shared, symmetric weights is characterized by the strong inductive bias that the multi-particle energy
Eθ in Equation (10) is being minimized along the equations. Although not a gradient flow, even
when we activate the equations with σ as in Theorem 5.1, we can preserve such inductive bias since
the same energy is decreasing. This means that both frameworks can provably induce attraction or
repulsion along edges thanks to the spectrum of the channel-mixing. We validate our theoretical
analysis by testing that these principled (and more efficient) classes of convolutional models along
which Eθ decreases can compete with baselines designed to target heterophilic graphs.

The model and the parameterisation. In the following we evaluate a subclass of gradient flows in
Equation (11) giving rise to a framework termed GRAFF (Gradient Flow Framework):

GRAFF : F(t+ τ) = F(t) + τ
(
−F(t)diag(ω) + ĀF(t)W − βF(0)

)
, (17)

where ω ∈ Rd and β ∈ R, W is a symmetric d × d-matrix shared across layers and (node-wise)
encoder and decoder are MLPs. We consider two possible implementations for W: (i) diagonally-
dominant (see Appendix E), where we learn an off-diagonal symmetric matrix and the diagonal
terms separately, and (ii) the case with W diagonal and we report best numbers over these two
configurations. We note that both these parameterisations allow the model to control the spectrum
of W more easily which we know to be essential from Theorem 4.1; we refer to the methodology
description in Appendix E for further details. By Theorem 5.1, if we ‘activate’ Equation (17) as

GRAFFNL : F(t+ τ) = F(t) + τσ
(
−F(t)diag(ω) + ĀF(t)W − βF(0)

)
, (18)

with σ s.t. xσ(x) ≥ 0, then Eθ in Equation (35) is decreasing, so that we can think of such equations
as more general ‘approximate’ gradient flows termed GRAFFNL (where NL stands for non-linear).

Complexity. GRAFF scales as O(|V|pd + m|E|d), where p and d are input feature and hidden
dimension respectively, with p ≥ d usually, and m is the number of layers. Note that GCN has
complexity O(m|E|(p + d)) and in fact our model is slightly faster than GCN mainly due to the
preliminary encoding performed node-wise rather than edge-wise; main baselines on heterophilic
graphs like GGCN and Sheaf learn edge-wise weights based on features which is slower (as confirmed
in Figure 5 in Appendix E). Moreover, for GRAFF the number of parameters scales as O(pd+ d2)
while for other baselines they scale with the number of layers at least as O(pd+md2).
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Figure 2: Synthetic experiments
with controlled homophily.

Synthetic experiments. To investigate our claims we first use
the synthetic Cora dataset of (Zhu et al., 2020, Appendix G)
where graphs are generated for target levels of homophily see
Appendix E.3. Figure 2 reports the test accuracy vs true label
homophily. For Neg-prod we set W = −W0W

⊤
0 so to only

have non-positive eigenvalues: we see that this is better than
the opposite case of prod (W = W0W

⊤
0 ) on low-homophily

(and viceversa on high-homophily). This confirms Theorem 4.1
where we have shown that the gradient flow can be HFD –
that is generally desirable with low-homophily – through the
negative eigenvalues of W. In practice ‘non-signed’ variants
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Texas Wisconsin Cornell Film Squirrel Chameleon Citeseer Pubmed Cora
Hom level 0.11 0.21 0.30 0.22 0.22 0.23 0.74 0.80 0.81
#Nodes 183 251 183 7,600 5,201 2,277 3,327 18,717 2,708
#Edges 295 466 280 26,752 198,493 31,421 4,676 44,327 5,278
#Classes 5 5 5 5 5 5 7 3 6

GGCN 84.86± 4.55 86.86± 3.29 85.68± 6.63 37.54± 1.56 55.17± 1.58 71.14± 1.84 77.14± 1.45 89.15± 0.37 87.95± 1.05
GPRGNN 78.38± 4.36 82.94± 4.21 80.27± 8.11 34.63± 1.22 31.61± 1.24 46.58± 1.71 77.13± 1.67 87.54± 0.38 87.95± 1.18
H2GCN 84.86± 7.23 87.65± 4.98 82.70± 5.28 35.70± 1.00 36.48± 1.86 60.11± 2.15 77.11± 1.57 89.49± 0.38 87.87± 1.20
GCNII 77.57± 3.83 80.39± 3.40 77.86± 3.79 37.44± 1.30 38.47± 1.58 63.86± 3.04 77.33± 1.48 90.15± 0.43 88.37± 1.25
Geom-GCN 66.76± 2.72 64.51± 3.66 60.54± 3.67 31.59± 1.15 38.15± 0.92 60.00± 2.81 78.02± 1.15 89.95± 0.47 85.35± 1.57
PairNorm 60.27± 4.34 48.43± 6.14 58.92± 3.15 27.40± 1.24 50.44± 2.04 62.74± 2.82 73.59± 1.47 87.53± 0.44 85.79± 1.01
GraphSAGE 82.43± 6.14 81.18± 5.56 75.95± 5.01 34.23± 0.99 41.61± 0.74 58.73± 1.68 76.04± 1.30 88.45± 0.50 86.90± 1.04
GCN 55.14± 5.16 51.76± 3.06 60.54± 5.30 27.32± 1.10 53.43± 2.01 64.82± 2.24 76.50± 1.36 88.42± 0.50 86.98± 1.27
GAT 52.16± 6.63 49.41± 4.09 61.89± 5.05 27.44± 0.89 40.72± 1.55 60.26± 2.50 76.55± 1.23 87.30± 1.10 86.33± 0.48
MLP 80.81± 4.75 85.29± 3.31 81.89± 6.40 36.53± 0.70 28.77± 1.56 46.21± 2.99 74.02± 1.90 75.69± 2.00 87.16± 0.37
CGNN 71.35± 4.05 74.31± 7.26 66.22± 7.69 35.95± 0.86 29.24± 1.09 46.89± 1.66 76.91± 1.81 87.70± 0.49 87.10± 1.35
GRAND 75.68± 7.25 79.41± 3.64 82.16± 7.09 35.62± 1.01 40.05± 1.50 54.67± 2.54 76.46± 1.77 89.02± 0.51 87.36± 0.96
Sheaf (max) 85.95± 5.51 89.41± 4.74 84.86± 4.71 37.81± 1.15 56.34± 1.32 68.04± 1.58 76.70± 1.57 89.49± 0.40 86.90± 1.13

GRAFF 88.38± 4.53 88.83± 3.29 84.05± 6.10 37.11± 1.08 58.72± 0.84 71.08± 1.75 77.30± 1.85 90.04± 0.41 88.01± 1.03
GRAFFNL 86.49± 4.84 87.26± 2.52 77.30± 3.24 35.96± 0.95 59.01± 1.31 71.38± 1.47 76.81± 1.12 89.81± 0.50 87.81± 1.13

Table 1: Node-classification results. Top three models are coloured by First, Second, Third

like GRAFF are more flexible and outperform GCN with low homophily, confirming Theorem 4.3
where we have shown that without a residual connection convolutional models are LFD irrespectively
of the spectrum of W – further results in Figure 4 in Appendix E.

Real world experiments. In Table 1 we test GRAFF and GRAFFNL on datasets with varying
homophily (Sen et al., 2008; Rozemberczki et al., 2021; Pei et al., 2020) (details in Appendix E.4). We
use results provided in (Yan et al., 2021, Table 1), which include GCNs models, GAT (Veličković et al.,
2018), PairNorm (Zhao & Akoglu, 2019) and models designed for heterophily (GGCN (Yan et al.,
2021), Geom-GCN (Pei et al., 2020), H2GCN (Zhu et al., 2020) and GPRGNN (Chien et al., 2021)).
For Sheaf (Bodnar et al., 2022), a recent strong baseline with heterophily, we took the best performing
variant (out of six) for each dataset. We include continuous baselines CGNN (Xhonneux et al., 2020)
and GRAND (Chamberlain et al., 2021a) to corroborate Theorem 3.3. Training, validation and test
splits are taken from Pei et al. (2020) for all datasets for comparison. We also evaluate GRAFF on
larger heterophilic datasets discussed in Lim et al. (2021) (see Appendix E.6) and we compare with
further recent baselines in Appendix E.7.

Results. GRAFF and GRAFFNL are both versions of graph convolutions with stronger ‘inductive
bias’ given by the energy Eθ decreasing along the solution; in fact, we can recover them from graph
convolutions by simply requiring that the channel-mixing is symmetric and shared across layers.
Nonetheless they achieve competitive results on all datasets often outperforming slower and more
complex models. They are extremely competitive on more homophilic datasets as well, in contrast
with the performance of models like Sheaf mainly designed to handle heterophily.

7 CONCLUSIONS

We argued that when studying and developing GNNs we should focus on energy functionals rather
than the evolution equations. We introduced a new framework for GNNs where the evolution is a
gradient flow of a multi-particle learnable energy. This gives rise to principled graph convolutions
where the channel-mixing is a symmetric matrix and induces attraction (repulsion) along edges via
its positive (negative) eigenvalues. We explored the theoretical implications by investigating the
dominating terms in the learned feature expansion and corroborated that this graph convolutional
framework can perform well in heterophilic settings. We proved that existing (generalized) graph
convolutions maintain the dynamics induced by the same class of multi-particle energies if the channel-
mixing is symmetric even when they are not strictly gradient flows due to non-linear activations;
this provides a deeper connection between energy functionals and GNNs and extends several recent
results that have monitored the classical Dirichlet energy along GCNs to shed light on their dynamics.

Limitations and future works. We limited our attention to a class of energy functionals whose
gradient flows give rise to evolution equations of the generalized graph convolution type. In future
work, we plan to study other families of energies that generalize different GNN architectures and
provide new models that are more ‘physics’-inspired. We will also investigate time-dependent energy
functionals and how to generalize our results to this setting. To the best of our knowledge, our
analysis is a first step into studying the interaction of the graph and ‘channel-mixing’ spectra. In
future work, we will explore other more general dynamics (i.e., that are neither LFD nor HFD).
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Bronstein. Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in
gnns. arXiv preprint arXiv:2202.04579, 2022.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
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OVERVIEW OF THE APPENDIX

To facilitate navigating the appendix, where we report several additional theoretical results, analysis
of different cases along with further experiments and ablation studies, we provide the following
detailed outline.

• In Appendix A.1 we review properties of the classical Dirichlet energy on manifolds that
inspired traditional PDE variational methods for image processing whose extension to graphs
and GNNs more specifically partly constitutes one of the main motivations of our work.
We also review important elementary properties of the Kronecker product of matrices that
are used throughout our proofs in Appendix A.2. We also comment on the choice of the
normalization (and symmetrization) of the graph Laplacian, briefly mentioning the impact
of different choices.

• In Appendix B.1 we derive the energy decomposition reported in Equation (10). In Ap-
pendix B.2 we derive additional rigorous results to justify our characterization of LFD and
HFD dynamics in Definition 3.1 along with explicit examples. We also formalize more
explicitly and quantitatively Theorem 3.2 in Theorem B.3. In Appendix B.3 we report a
more explicit statement with convergence rates and over-smoothing results which covers the
informal version in Theorem 3.3. In Appendix B.4 we explore the special case of Ω = W
which is equivalent to choosing ∆ rather than Ā as message-passing matrix providing new
arguments as to why propagating messages using Ā rather than the graph Laplacian is
actually ‘more robust’. Finally in Appendix B.5 we formally derive an analogy between the
continuous energy used for manifolds (images) and a subset of the parametric energies in
Equation (6).

• In Appendix C we prove the main results of Section 4, namely Theorem 4.1, Corollary 4.2,
and Theorem 4.3.

• In Appendix D we prove Theorem 5.1 and an extra result confirming that even in the non-
linear case the channel-mixing W still induces attraction and repulsion via its spectrum
hence magnifying the low or high frequencies respectively.

• In Appendix E we report additional details on hyperparameter tuning, datasets adopted,
further synthetic and ablation studies, along with extra experiments on larger heterophilic
datasets in Appendix E.6.

Additional notations and conventions used throughout the appendix. Any graph G is taken to
be connected. We order the eigenvalues of the graph Laplacian as 0 = λ∆0 ≤ λ∆1 ≤ . . . ≤ λ∆n−1 =

ρ∆ ≤ 2 with associated orthonormal basis of eigenvectors {ϕ∆
ℓ }n−1

ℓ=0 so that in particular we have
∆ϕ∆

0 = 0. Moreover, given a symmetric matrix B, we generally denote the spectrum of B by
spec(B) and if B ⪰ 0, then gap(B) denotes the positive smallest eigenvalue of B. Finally, if we
write F(t)/||F(t)|| we always take the norm to be the Frobenius one and tacitly assume that the
dynamics is s.t. the solution is not zero.

A PROOFS AND ADDITIONAL DETAILS OF SECTION 2

A.1 DISCUSSION ON CONTINUOUS DIRICHLET ENERGY AND HARMONIC MAPS

Starting point: a geometric parallelism. To motivate a gradient-flow approach for GNNs, we start
from the continuous case (see Appendix A.1 for details). Consider a smooth map f : Rn → (Rd, h)
with h a constant metric represented by H ⪰ 0. The Dirichlet energy of f is defined by

E(f, h) = 1

2

∫
Rn

∥∇f∥2h dx =
1

2

d∑
q,r=1

n∑
j=1

∫
Rn

hqr∂jf
q∂jf

r(x)dx (19)

and measures the ‘smoothness’ of f . A natural approach to find minimizers of E - called harmonic
maps - was introduced in Eells & Sampson (1964) and consists in studying the gradient flow of
E , wherein a given map f(0) = f0 is evolved according to ḟ(t) = −∇fE(f(t)). These type of
evolution equations have historically been the core of variational and PDE-based image processing;
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in particular, gradient flows of the Dirichlet energy were shown Kimmel et al. (1997) to recover the
Perona-Malik nonlinear diffusion Perona & Malik (1990).

In this subsection we briefly expand on the formulation of continuous Dirichlet energy in Section 2
to provide more context. Consider a smooth map f : (M, g) → (N,h), where N is usually a larger
manifold we embed M into, and g, h are Riemannian metrics on domain and codomain respectively.
The Dirichlet energy of f is defined by

E(f, g, h) := 1

2

∫
M

|df |2gdµ(g),

with |df |g the norm of the Jacobian of f measured with respect to g and h. If (M, g) is standard
Euclidean space Rn, N = Rd and h is a constant positive semi-definite matrix, then we can rewrite
the Dirichlet energy in a more familiar form as

E(f, h) = 1

2

∫
Rn

trace
(
Df⊤hDf

)
dµ =

1

2

d∑
q,r=1

n∑
j=1

∫
Rn

hqr∂jf
q∂jf

r(x)dx.

The Dirichlet energy measures the smoothness of the map f , and indeed if h is the identity in Rd,
then we recover the classical definition

E(f) = 1

2

d∑
r=1

∫
Rn

||∇fr||2(x)dx.

Gradient flow of Dirichlet energy. Minimizers of E - referred to as harmonic maps - are important
objects in geometry: to mention a few, geodesics, minimal isometric immersions and maps f :
M → Rd solving ∆gf = 0 are all instances of harmonic maps. To identify such critical points, one
computes the first variation of the energy E along an arbitrary direction ∂tf , which can be written as

dEf (∂tf) = −
∫
M

⟨τg(f), ∂tf⟩hdµ(g).

for some tensor field τ with explicit form

(τgM (f))α := ∆gM f
α + hNΓα

βγ∂if
β∂jf

γgijM ,

for 1 ≤ α ≤ dim(N), with {yα} local coordinates on N and Γα
βγ Christoffel symbols. It follows that

harmonic maps are identified by the condition τg(f)) = 0. In Eells & Sampson (1964), the pivotal
idea of harmonic map flow – which has shaped much of modern research in geometric analysis – was
introduced for the first time: in order to identify minimizers of E , an input map f0 is evolved along
the direction of (minus) the gradient of the energy E leading to the dynamics

∂tf = τg(f). (20)

As a special case, when the target space is the classical Euclidean space one recovers the heat equation
induced by the input Riemannian structure. We also note that when (M, g) is a surface representing
an image and f : (u1, u2) 7→ (u1, u2, ϕ(u1, u2)) with ϕ a color map, then Equation (20) becomes

∂tϕ = div(Cg∇ϕ), (21)

with Cg a constant depending on the metric on M . If we now let g to depend on ϕ, one can recover
the celebrated Perona-Malik flow Kimmel et al. (1997).

A.2 REVIEW OF KRONECKER PRODUCT AND PROPERTIES OF LAPLACIAN KERNEL

Kronecker product. In this subsection we summarize a few relevant notions pertaining the Kro-
necker product of matrices that are going to be applied throughout our spectral analysis of gradient
flow equations for GNNs in both the continuous and discrete time setting.

Given a matricial equation of the form

Y = AXB,
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we can vectorize X and Y by stacking columns into vec(X) and vec(Y) respectively, and rewrite
the previous system as

vec(Y) =
(
B⊤ ⊗A

)
vec(X). (22)

If A and B are symmetric with spectra spec(A) and spec(B) respectively, then the spectrum of
B⊗A is given by spec(A) · spec(B). Namely, if Ax = λAx and By = λBy, for x and y non-zero
vectors, then λBλA is an eigenvalue of B⊗A with eigenvector y ⊗ x:

(B⊗A)y ⊗ x = (λBλA)y ⊗ x. (23)

One can also define the Kronecker sum of matrices A ∈ Rn×n and B ∈ Rd×d as

A⊕B := A⊗ Id + In ⊗B, (24)

with spectrum spec(A⊕B) = {λA + λB : λA ∈ spec(A), λB ∈ spec(B)}.

Additional details on EDir and the choice of Laplacian. We recall that the classical graph Dirichlet
energy EDir is defined by

EDir(F) =
1

2
trace

(
F⊤∆F

)
,

where the (unusual) extra factor of 1
2 is to avoid rescaling the gradient flow by 2 – which is the more

common convention. We can use the Kronecker product to rewrite the Dirichlet energy as

EDir(F) =
1

2
vec(F)⊤(Id ⊗∆)vec(F), (25)

from which we immediately derive that ∇vec(F)EDir(F) = (Id ⊗∆)vec(F) – since ∆ is symmetric
– and hence recover the gradient flow in Equation (1) leading to the graph heat equation across each
channel.

Before we further comment on the characterizations of LFD and HFD dynamics, we review the main
choices of graph Laplacian and the associated harmonic signals (i.e. how we can characterize the
kernel spaces of the given Laplacian operator). Recall that throughout the appendix we always assume
that the underlying graph G is connected. The symmetrically normalized Laplacian ∆ = I− Ā is
symmetric, positive semi-definite with harmonic space of the form Chung & Graham (1997)

ker(∆) := span(D
1
21n : 1n = (1, . . . , 1)⊤). (26)

This confirms that if a given GNN evolution Ḟ(t) = GNNθ(F(t), t) with initial condition F(0)
over-smooths meaning that ∆fr(t) → 0 for t → ∞ for each column 1 ≤ r ≤ d, then the only
information persisting in the asymptotic regime is the degree and any dependence on the input features
is lost, as studied in Oono & Suzuki (2020); Cai & Wang (2020). A slightly different behaviour
occurs if instead of ∆, we consider the unnormalized Laplacian L = D−A with kernel span(1n),
meaning that if Lfr(t) → 0 as t → ∞ for each 1 ≤ r ≤ d, then any node would be embedded to
a single point, hence making any separation task impossible. The same consequence applies to the
random walk Laplacian ∆RW = I−D−1A. In particular, we note that generally a row-stochastic
matrix is not symmetric – if it was, then this would in fact be doubly-stochastic – and the same applies
to the random-walk Laplacian (a special exception is given by the class of regular graphs). In fact, in
general any dynamical system governed by ∆RW (or simply D−1A) is not the gradient flow of an
energy due to the lack of symmetry, as further confirmed below in Equation (27).

B PROOFS AND ADDITIONAL DETAILS OF SECTION 3

B.1 ATTRACTION VS REPULSION: A PHYSICS-INSPIRED FRAMEWORK

We first note that the system in Equation (36) can be written using the Kronecker product as

vec(Ḟ(t)) = −(Ω⊗ In)vec(F(t)) + (W ⊗ Ā)vec(F(t))− (W̃ ⊗ In)vec(F(0)).

If this is the gradient flow of F 7→ Eθ(F), then we would have

∇2
vec(F)Eθ(F) = Ω⊗ In −W ⊗ Ā, (27)
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which must be symmetric due to the Hessian of a function being symmetric. The latter means

(Ω⊤ −Ω)⊗ In = (W⊤ −W)⊗ Ā,

which is satisfied if and only if both Ω and W are symmetric. This shows that Equation (36) is the
gradient flow of Eθ if and only if Ω and W are symmetric.

We now rely on the spectral decomposition of W to rewrite Eθ explicitly in terms of attractive and
repulsive interactions. If we have a spectral decomposition W = ΦWΛW(ΦW)⊤, we can separate
the positive eigenvalues from the negative ones and write

W = ΦWΛ+(Φ
W)⊤ +ΦWΛ−(Φ

W)⊤ := W+ −W−.

Since W+ ⪰ 0,W− ⪰ 0, we can use the Choleski decomposition to write W+ = Θ⊤
+Θ+ and

W− = Θ⊤
−Θ− with Θ+,Θ− ∈ Rd×d. Equation (10) follows then by direct computation: namely

Eθ(F) =
1

2

∑
i

⟨fi,Ωfi⟩ −
1

2

∑
i,j

āij⟨fi,Wfj⟩

=
1

2

∑
i

⟨fi, (Ω−W)fi⟩+
1

2

∑
i

⟨fi,Wfi⟩ −
1

2

∑
i,j

āij⟨Θ+fi,Θ+fj⟩+
1

2

∑
i,j

āij⟨Θ−fi,Θ−fj⟩

=
1

2

∑
i

⟨fi, (Ω−W)fi⟩+
1

4

∑
i,j

||Θ+(∇F)ij ||2 −
1

4

∑
i,j

||Θ−(∇F)ij ||2,

where we have used that
∑

i,j
1
di
||Θ+fi||2 =

∑
i||Θ+fi||2.

B.2 ADDITIONAL DETAILS ON LFD AND HFD CHARACTERIZATIONS

In this subsection we provide further details and justifications for Definition 3.1. We first prove the
following simple properties.

Lemma B.1. Assume we have a (continuous) process t 7→ F(t) ∈ Rn×d, for t ≥ 0. The following
equivalent characterizations hold:

(i) EDir(F(t)) → 0 for t→ ∞ if and only if ∆fr(t) → 0, for 1 ≤ r ≤ d.

(ii) EDir(F(t)/||F(t)||) → ρ∆/2 for t → ∞ if and only if for any sequence tj → ∞ there
exist a subsequence tjk → ∞ and a unit limit F∞ – depending on the subsequence – such
that ∆fr∞ = ρ∆fr∞, for 1 ≤ r ≤ d.

Proof. (i) Given F(t) ∈ Rn×d, we can vectorize it and decompose it in the orthonormal basis
{er ⊗ ϕ∆

ℓ : 1 ≤ r ≤ d, 0 ≤ ℓ ≤ n− 1}, with {er}dr=1 canonical basis in Rd, and write

vec(F(t)) =
∑
r,ℓ

cr,ℓ(t)er ⊗ ϕ∆
ℓ , cr,ℓ(t) := ⟨vec(F(t)), er ⊗ ϕ∆

ℓ ⟩.

We can then use Equation (25) to compute the Dirichlet energy as

EDir(F(t)) =
1

2

d∑
r=1

n−1∑
ℓ=0

c2r,ℓ(t)λ
∆
ℓ ≡ 1

2

d∑
r=1

n−1∑
ℓ=1

c2r,ℓ(t)λ
∆
ℓ ≥ 1

2
gap(∆)

d∑
r=1

n−1∑
ℓ=1

c2r,ℓ(t),

where we have used the convention above that the eigenvector ϕ∆
0 is in the kernel of ∆. Therefore

EDir(F(t)) → 0 ⇐⇒
d∑

r=1

n−1∑
ℓ=1

c2r,ℓ(t) → 0, t→ ∞,

which occurs if and only if

(Id ⊗∆)vec(F(t)) =

d∑
r=1

n−1∑
ℓ=1

cr,ℓ(t)λ
∆
ℓ er ⊗ ϕ∆

ℓ → 0.
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(ii) The argument here is similar. Indeed we can write Q(t) = F(t)/||F(t)|| with Q(t) a unit-norm
signal. Namely, we can vectorize and write

vec(Q(t)) =
∑
r,ℓ

qr,ℓ(t)er ⊗ ϕ∆
ℓ ,

∑
r,ℓ

q2r,ℓ(t) = 1.

Then EDir(Q(t)) → ρ∆/2 if and only if∑
r,ℓ

q2r,ℓ(t)λ
∆
ℓ → ρ∆, t→ ∞,

which holds if and only if ∑
r

q2r,ρ∆
(t) → 1

q2r,ℓ(t) → 0, ℓ : λ∆ℓ < ρ∆, (28)

given the unit norm constraint. This is equivalent to the Rayleigh quotient of Id ⊗∆ converging
to its maximal value ρ∆. When this occurs, for any sequence tj → ∞ we have that q2r,ℓ(tj) ≤ 1,
meaning that we can extract a converging subsequence that due to Equation (28) will converge to
a unit eigenvector Q∞ of Id ⊗ ∆ satisfying (Id ⊗ ∆)Q∞ = ρ∆Q∞. Conversely assume for a
contradiction that there exists a sequence tj → ∞ such that EDir(F(tj)/||F(tj)||) < ρ∆/2− ϵ, for
some ϵ > 0. Then Equation (28) fails to be satisfied along the sequence, meaning that no subsequence
converges to a unit norm eigenvector F∞ of Id ⊗ ∆ with associated eigenvalue ρ∆ which is a
contradiction to our assumption.

Before we address the formulation of low(high)-frequency-dominated dynamics, we solve explicitly
the system Ḟ(t) = ĀF(t) in Rn×d, with some initial condition F(0). We can vectorize the equation
and solve ˙vec(F(t)) = (Id ⊗ Ā)vec(F(t)), meaning that

vec(F(t)) =

d∑
r=1

n−1∑
ℓ=0

e(1−λ∆
ℓ )tcr,ℓ(0)er ⊗ ϕ∆

ℓ , cr,ℓ(0) := ⟨vec(F(0)), er ⊗ ϕ∆
ℓ ⟩.

Consider any initial condition F(0) such that

d∑
r=1

|cr,0| =
d∑

r=1

∣∣⟨vec(F(0)), er ⊗ ϕ∆
0 ⟩
∣∣ > 0,

which is satisfied for each vec(F(0)) ∈ Rnd \ U⊥, where U⊥ is the orthogonal complement of
Rd ⊗ span(ϕ∆

0 ). Since U⊥ is a lower-dimensional subspace, its complement is dense. Accordingly
for a.e. F(0), we find that the solution satisfies

||vec(F(t))||2 = e2t

(
d∑

r=1

c2r,0 +O(e−2gap(∆)t)

)
= e2t

(
||P⊥

ker(∆)vec(F(0))||
2 +O(e−2gap(∆)t)

)
,

with P⊥
ker(∆) the projection onto Rd ⊗ ker(∆). We see that the norm of the solution increases

exponentially, however the dominant term is given by the projection onto the lowest frequency signal
and in fact

vec(F(t))

||vec(F(t))||
=
P⊥
ker(∆)vec(F(0)) +O(e−gap(∆)t)(I− P⊥

ker(∆))vec(F(0))(
||P⊥

ker(∆)vec(F(0))||2 +O(e−2gap(∆)t)
) 1

2

→ vec(F∞),

such that (Id ⊗∆)vec(F∞) = 0 which means ∆fr∞ = 0, for each column 1 ≤ r ≤ d. Equivalently,
one can compute EDir(F(t)/||F(t)||) and conclude that the latter quantity converges to zero as
t→ ∞ by the very same argument.

In fact, this motivates further the nomenclature LFD and HFD. Without loss of generality we
focus now on the high-frequency case. Assume that we have a HFD dynamics t 7→ F(t),
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i.e. EDir(F(t)/||F(t)||) → ρ∆/2, then we can vectorize the solution and write vec(F(t)) =
||F(t)||vec(Q(t)), for some time-dependent unit vector vec(Q(t)) ∈ Rnd:

vec(Q(t)) =
∑
r,ℓ

qr,ℓ(t)er ⊗ ϕ∆
ℓ ,

∑
r,ℓ

q2r,ℓ(t) = 1.

By Lemma B.1 and more explicitly Equation (28), we derive that the coefficients {qr,ρ∆
} associated

with the eigevenctors er⊗ϕ∆
ρ∆

are dominant in the evolution hence justifying the name high-frequency
dominated dynamics.

The next result provides a theoretical justification for the characterization of low (high) frequency
dominated dynamics in Definition 3.1.

Lemma B.2. Consider a dynamical system Ḟ(t) = GNNθ(F(t), t), with initial condition F(0).

(i) GNNθ is LFD if and only if (Id ⊗ ∆)vec(F(t))
||F(t)|| → 0 if and only if for each sequence

tj → ∞ there exist a subsequence tjk → ∞ and F∞ (depending on the subsequence) s.t.
F(tjk )

||F(tjk )||
→ F∞ satisfying ∆fr∞ = 0, for each 1 ≤ r ≤ d.

(ii) GNNθ is HFD if and only if for each sequence tj → ∞ there exist a subsequence tjk → ∞
and F∞ (depending on the subsequence) s.t. F(tjk )

||F(tjk )||
→ F∞ satisfying ∆fr∞ = ρ∆fr∞,

for each 1 ≤ r ≤ d.

Proof. (i) Since ∆fr(t) → 0 for each 1 ≤ r ≤ d if and only if (Id ⊗ ∆)vec(F(t)) → 0, we
conclude that the dynamics is LFD if and only if (Id ⊗∆)vec(F(t))

||F(t)|| → 0 due to (i) in Lemma B.1.
Consider a sequence tj → ∞. Since vec(F(tj))/||F(tj)|| is a bounded sequence we can extract
a converging subsequence tjk : vec(F(tjk))/||F(tjk)|| → vec(F∞). If the dynamics is LFD, then
(Id ⊗∆)

vec(F(tjk ))

||F(tjk )||
→ 0 and hence we conclude that vec(F∞) ∈ ker(Id ⊗∆). Conversely, assume

that for any sequence tj → ∞ there exists a subsequence tjk and F∞ such that F(tjk )

||F(tjk )||
→ F∞

satisfying ∆fr∞ = 0, for each 1 ≤ r ≤ d. If for a contradiction we had ε > 0 and tj → ∞ such that
EDir(F(tj)/||F(tj)|| ≥ ε – for j large enough – then by (i) in Lemma B.1 there exist 1 ≤ r ≤ d,
ℓ > 0 and a subsequence tjk satisfying

|⟨
(
vec(F(tjk))

||F(tjk)||

)
, er ⊗ ϕ∆

ℓ ⟩| > δ(ε) > 0,

meaning that there is no subsequence of {tjk} s.t. (Id ⊗∆)vec(F(tjk))/||F(tjk)|| → 0, providing
a contradiction.

(ii) This is equivalent to (ii) in Lemma B.1.

Remark. We note that in Lemma B.2 an LFD dynamics does not necessarily mean that the normalized
solution converges to the kernel of Id ⊗∆ – i.e. one in general has always to pass to subsequences.
Indeed, we can consider the simple example t 7→ vec(F(t)) := cos(t)er̄ ⊗ ϕ∆

0 , for some 1 ≤ r̄ ≤ d,
which satisfies ∆fr(t) = 0 for each r, but it is not a convergent function due to its oscillatory nature.
Same argument applies to HFD.

We will now show that Equation (36) can lead to a HFD dynamics. To this end, we assume that
Ω = W̃ = 0 so that Equation (36) becomes Ḟ(t) = ĀF(t)W. According to Equation (10) the
negative eigenvalues of W lead to repulsion. We show that the latter can induce HFD dynamics as
per Definition 3.1. We let P ρ−

W be the orthogonal projection into the eigenspace of W⊗ Ā associated
with the eigenvalue ρ− := |λW− |(ρ∆ − 1). We recall that λW± are the most positive and most negative
eigenvalues of W respectively. We define ϵHFD by:

ϵHFD := min{ρ− − λW+ , |λW− |gap(ρ∆I−∆), gap(|λW− |I+W)(ρ∆ − 1)}.
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Theorem B.3. If ρ− > λW+ , then Ḟ(t) = ĀF(t)W is HFD for a.e. F(0):

EDir(F(t)) = e2tρ−
(ρ∆

2
||P ρ−

W F(0)||2 +O(e−2tϵHFD)
)
, t ≥ 0,

and F(t)/||F(t)|| converges to F∞ ∈ Rn×d such that ∆fr∞ = ρ∆fr∞, for 1 ≤ r ≤ d. If instead
ρ− < λW+ then the dynamics is LFD and F(t)/||F(t)|| converges to F∞ ∈ Rn×d such that
∆fr∞ = 0, for 1 ≤ r ≤ d, exponentially fast.

Proof of Theorem B.3. Once we compute the spectrum of W ⊗ Ā via Equation (23), we can write
the solution as – recall that Ā = In −∆ so we can rephrase the eigenvalues of Ā in terms of the
eigenvalues of ∆:

vec(F(t)) =
∑
r,ℓ

eλ
W
r (1−λ∆

ℓ )tcr,ℓ(0)ϕ
W
r ⊗ ϕ∆

ℓ ,

with WϕW
r = λWr ϕW

r , for 1 ≤ r ≤ d, where {ϕW
r }r is an orthonormal basis of eigenvectors in

Rd. We can then calculate the Dirichlet energy along the solution as

EDir(F(t)) =
1

2
⟨vec(F(t)), (Id ⊗∆)vec(F(t))⟩ = 1

2

∑
r,ℓ

e2λ
W
r (1−λ∆

ℓ )tc2r,ℓ(0)λ
∆
ℓ .

We now consider two cases:

• If λWr > 0, then λWr (1− λ∆ℓ ) ≤ λW+ .

• If λWr < 0, then λWr (1 − λ∆ℓ ) ≤ |λW− |(ρ∆ − 1) := ρ−, with eigenvectors ϕW
r ⊗ ϕ∆

ρ∆

for each r s.t. WϕW
r = λW− ϕW

r – without loss of generality we can assume that ρ∆ is a
simple eigenvalue for ∆. In particular, if λWr < 0 and λWr (1− λ∆ℓ ) < ρ−, then

λWr (1− λ∆ℓ ) < max{|λW− |(λ∆n−2 − 1), |λW−,2|(ρ∆ − 1)},

where λW−,2 is the second most negative eigenvalue of W and λ∆n−2 is the second largest
eigenvalue of ∆. In particular, we can write

λ∆n−2 = ρ∆ − gap(ρ∆In −∆), |λW−,2| = |λW− | − gap(|λW− |Id +W). (29)

From (i) and (ii) we derive that if λWr (1− λ∆ℓ ) ̸= ρ−, then

λWr (1− λ∆ℓ )− ρ− < −min{ρ− − λW+ , ρ− − |λW− |(λ∆n−2 − 1), ρ− − |λW−,2|(ρ∆ − 1)}
= −min{ρ− − λW+ , |λW− |gap(ρ∆I−∆), gap(|λW− |I+W)(ρ∆ − 1)} = −ϵHFD,

(30)

where we have used Equation (29). Accordingly, if ρ− > λW+ , then

EDir(F(t)) = e2tρ−

ρ∆
2

∑
r:λW

r =λW
−

c2r,ρ∆
(0) +

1

2

∑
r,ℓ:λW

r (1−λ∆
ℓ ) ̸=ρ−

e2(λ
W
r (1−λ∆

ℓ )−ρ−)tc2r,ℓ(0)


= e2tρ−

(ρ∆
2

||P ρ−
W F(0)||2 +O(e−2tϵHFD)

)
.

By the same argument we can factor out the dominant term and derive the following limit for t→ ∞
and for a.e. F(0) since P ρ−

W vec(F(0)) = 0 only if vec(F(0)) belongs to a lower dimensional
subspace of Rnd:

vec(F(t))

vec(F(t))
=
P

ρ−
W vec(F(0)) +O(e−ϵHFDt)((I− P

ρ−
W )vec(F(0)))(

||P ρ−
W vec(F(0))||2 +O(e−2ϵHFDt)

) 1
2

→
P

ρ−
W vec(F(0))

||P ρ−
W vec(F(0))||

,

where the latter is a unit vector vec(F∞) satisfying (Id ⊗ ∆)vec(F∞) = ρ∆vec(F∞), which
completes the proof.

For the opposite case the proof can be adapted without efforts as explicitly derived in the proof of
Theorem 4.1.
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B.3 COMPARISON WITH CONTINUOUS GNNS: DETAILS AND PROOFS

Comparison with some continuous GNN models In contrast with Theorem 3.2, we show that three
main linearized continuous GNN models are either smoothing or more generally LFD. The linearized
PDE-GCND model Eliasof et al. (2021) corresponds to choosing W̃ = 0 and Ω = W = K(t)⊤K(t)
in Equation (36), for some time-dependent family t 7→ K(t) ∈ Rd×d:

ḞPDE−GCND(t) = −∆F(t)K(t)⊤K(t).

The CGNN model Xhonneux et al. (2020) can be derived from Equation (36) by setting Ω =
I− Ω̃,W = −W̃ = I:

ḞCGNN(t) = −∆F(t) + F(t)Ω̃+ F(0).

Finally, in linearized GRAND Chamberlain et al. (2021a) a row-stochastic matrix A(F(0)) is learned
from the encoding via an attention mechanism and we have

ḞGRAND(t) = −∆RWF(t) = −(I−A(F(0)))F(t).

We note that if A is not symmetric, then GRAND is not a gradient flow.

Theorem B.4. PDE−GCND, CGNN and GRAND satisfy the following:

(i) PDE−GCND is a smoothing model: ĖDir(FPDE−GCND
(t)) ≤ 0.

(ii) For a.e. F(0) it holds: CGNN is never HFD and if we remove the source term, then
EDir(FCGNN(t)/||FCGNN(t)||) ≤ e−gap(∆)t.

(iii) If G is connected, FGRAND(t) → µ as t→ ∞, with µr = mean(fr(0)), 1 ≤ r ≤ d.

By (ii) the source-free CGNN-evolution is LFD independent of Ω̃. Moreover, by (iii), over-smoothing
occurs for GRAND. On the other hand, Theorem 3.2 shows that the negative eigenvalues of W can
make the source-free gradient flow in Equation (36) HFD. Experiments in Section 6 confirm that the
gradient flow model outperforms CGNN and GRAND on heterophilic graphs.

We prove the following result which covers Theorem 3.3.

Proof of Theorem B.4. We structure the proof by following the numeration in the statement.

(i) From direct computation we find

dEDir(F(t))

dt
=

1

2

d

dt
(⟨vec(F(t)), (Id ⊗∆)vec(F(t))⟩)

= −⟨vec(F(t)), (K⊤(t)K(t)⊗∆2)vec(F(t))⟩ ≤ 0,

since K⊤(t)K(t)⊗∆2 ⪰ 0. Note that we have used that (A⊗B)(C⊗D) = AC⊗BD.

(ii) We consider the dynamical system

ḞCGNN(t) = −∆F(t) + F(t)Ω̃+ F(0).

We can write vec(F(t)) =
∑

r,ℓ cr,ℓ(t)ϕ
Ω̃
r ⊗ ϕ∆

ℓ , leading to the system

ċr,ℓ(t) = (λΩ̃r − λ∆ℓ )cr,ℓ(t) + cr,ℓ(0), 0 ≤ ℓ ≤ n− 1, 1 ≤ r ≤ d.

We can solve explicitly the system as

cr,ℓ(t) = cr,ℓ(0)

(
e(λ

Ω̃
r −λ∆

ℓ )t

(
1 +

1

λΩ̃r − λ∆ℓ

)
− 1

λΩ̃r − λ∆ℓ

)
, if λΩ̃r ̸= λ∆ℓ

cr,ℓ(t) = cr,ℓ(0)(1 + t), otherwise.

We see now that for a.e. F(0) the projection (Id ⊗ ϕ∆
ρ∆

(ϕ∆
ρ∆

)⊤)vec(F(t)) is never the dominant
term. In fact, if there exists r s.t. λΩ̃r ≥ ρ∆, then λΩ̃r − λ∆ℓ > λΩ̃r − ρ∆, for any other non-maximal
graph Laplacian eigenvalue. It follows that there is no Ω̃ s.t. the normalized solution maximizes the
Rayleigh quotient of Id ⊗∆, proving that CGNN is never HFD.
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If we have no source, then the CGNN equation becomes
Ḟ(t) = −∆F(t) + F(t)Ω̃ ⇐⇒ vec(Ḟ(t)) = (Ω̃⊕ (−∆))vec(F(t)),

using the Kronecker sum notation in Equation (24). It follows that we can write the vectorized
solution in the basis {ϕΩ̃

r ⊗ ϕ∆
ℓ }r,ℓ as

vec(F(t)) = eλ
Ω̃
+t

 ∑
r:λΩ̃

r =λΩ̃
+

cr,0(0)ϕ
Ω̃
r ⊗ ϕ∆

0 +O(e−gap(λΩ̃
+Id−Ω̃)t)

∑
r:λΩ̃

r <λΩ̃
+

cr,0(0)ϕ
Ω̃
r ⊗ ϕ∆

0


+ eλ

Ω̃
+t

O(e−gap(∆)t)

∑
r,ℓ>0

cr,ℓ(0)ϕ
Ω̃
r ⊗ ϕ∆

ℓ

 ,

meaning that the dominant term is given by the lowest frequency component and in fact, if we
normalize we find EDir(F(t)/||F(t)||) ≤ e−gap(∆)t.

(iii) Finally we consider the dynamical system induced by linear GRAND
ḞGRAND(t) = −∆RWF(t) = −(I−A(F(0)))F(t).

Since we have no channel-mixing, without loss of generality we can assume that d = 1 – one can
then extend the argument to any entry. We can use the Jordan form of A to write the solution of the
GRAND dynamical system as

f(t) = Pdiag(eJ1t, . . . , eJnt)P−1f(0),

for some invertible matrix P of eigenvectors, with

eJkt = e−(1−λA
k )t

1 t · · · tmk−1

(mk−1)!

...
1

 ,

where mk are the eigenvalue multiplicities. Since by assumption G is connected and augmented
with self-loops, the row-stochastic attention matrix A computed in Chamberlain et al. (2021a) with
softmax activation is regular, meaning that there exists m ∈ N such that (Am)ij > 0 for each
entry (i, j). Accordingly, we can apply Perron Theorem to derive that any eigenvalue of A has real
part smaller than one except the eigenvalue λA0 with multiplicity one, associated with the Perron
eigenvector 1n. Accordingly, we find that each block eJkt decays to zero as t→ ∞ with the exception
of the one eJ0t associated with the Perron eigenvector. In particular, the projection of f0 over the
Perron eigenvector is just µ1n, with µ the average of the feature initial condition. This completes the
proof.

B.4 PROPAGATING WITH THE LAPLACIAN

In this subsection we briefly review the special case of Equation (36) where Ω = W, and comment
on why we generally expect a framework where the propagation is governed by the graph vector field
Ā to be more flexible than one with −∆. If Ω = W and we suppress the source term i.e. W̃ = 0,
the gradient flow in Equation (36) becomes

Ḟ(t) = −∆F(t)W. (31)
We note that once vectorized, the solution to the dynamical system can be written as

vec(F(t)) =

d∑
r=1

n−1∑
ℓ=0

e−λW
r λ∆

ℓ tcr,ℓ(0)ϕ
W
r ⊗ ϕ∆

ℓ .

In particular, we immediately deduce the following counterpart to Theorem 3.2:
Corollary B.5. If spec(W) ∩ R− ̸= ∅, then Equation (31) is HFD for a.e. F(0).

Differently from Equation (36) the lowest frequency component is always preserved independent of
the spectrum of W. This means that the system cannot learn eigenvalues of W to either magnify
or suppress the low-frequency projection. In contrast, this can be done if Ω = 0, or equivalently
one replaces −∆ with Ā providing a further justification in terms of the interaction between graph
spectrum and channel-mixing spectrum for why graph-convolutional models use the normalized
adjacency rather than the Laplacian for propagating messages Kipf & Welling (2017).
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B.5 REVISITING THE CONNECTION WITH THE MANIFOLD CASE

In Equation (19) a constant nontrivial metric h in Rd leads to the mixing of the feature channels. We
adapt this idea by considering a symmetric positive semi-definite H = W⊤W with W ∈ Rd×d and
using it to generalize EDir by suitably weighting the norm of the edge gradients as

EDir
W (F) :=

1

4

d∑
q,r=1

∑
i

∑
j:(i,j)∈E

hqr(∇fq)ij(∇fr)ij =
1

4

∑
(i,j)∈E

||W(∇F)ij ||2. (32)

We note the analogy with Equation (19), where the sum over the nodes replaces the integration
over the domain and the j-th derivative at some point i is replaced by the gradient along the edge
(i, j) ∈ E. We generally treat W as learnable weights and study the gradient flow of EDir

W :

Ḟ(t) = −∇FEDir
W (F(t)) = −∆F(t)W⊤W. (33)

We see that Equation (33) generalizes Equation (1).
Proposition B.6. Let P ker

W be the projection onto ker(W⊤W). Equation (33) is smoothing since

EDir(F(t)) ≤ e−2tgap(W⊤W)gap(∆)||F(0)||2 + EDir((P ker
W ⊗ In)vec(F(0))), t ≥ 0.

In fact F(t) → F∞ s.t. ∃ ϕ∞ ∈ Rd: for each i ∈ V we have (f∞)i =
√
diϕ∞ + P ker

W fi(0).

Proof of Proposition B.6. We can vectorize the gradient flow system in Equation (33) and use the
spectral characterization of W⊤W ⊗∆ in Equation (23) to write the solution explicitly as

vec(F(t)) =
∑
r,ℓ

e−(λW
r λ∆

ℓ )tcr,ℓ(0)ϕ
W
r ⊗ ϕ∆

ℓ ,

where {λWr }r = spec(W⊤W) ⊂ R≥0 with associated basis of orthonormal eigenvectors given by
{ϕW

r }r. Then

EDir(F(t)) =
1

2
⟨vec(F(t)), (Id ⊗∆)vec(F(t))⟩ = 1

2

∑
r,ℓ

e−2t(λW
r λ∆

ℓ )c2r,ℓ(0)λ
∆
ℓ

=
1

2

∑
r:λW

r =0,ℓ

c2r,ℓ(0)λ
∆
ℓ +

1

2

∑
r:λW

r >0,ℓ>0

c2r,ℓ(0)e
−2t(λW

r λ∆
ℓ )λ∆ℓ

= EDir((P ker
W ⊗ In)vec(F(0))) +

1

2

∑
r:λW

r >0,ℓ>0

c2r,ℓ(0)e
−2t(λW

r λ∆
ℓ )λ∆ℓ

≤ EDir((P ker
W ⊗ In)vec(F(0))) +

ρ∆
2
e−2tgap(W⊤W)gap(∆)||F(0)||2,

where we recall that P ker
W is the projection onto ker(W⊤W) and that by convention the index ℓ = 0

is associated with the lowest graph frequency λ∆0 = 0 – by assumption G is connected. This proves
that the dynamics is in fact smoothing. By the very same argument we find that

vec(F(t)) → (Id ⊗ P ker
∆ )vec(F(0)) + (P ker

W ⊗ In)vec(F(0)), t→ ∞,

with P ker
∆ the orthogonal projection onto ker∆ – the other terms decay exponentially to zero. We

first focus on the first quantity, which we can write as

(Id ⊗ P ker
∆ )vec(F(0)) =

∑
r

cr,0(0)ϕ
W
r ⊗ ϕ∆

0 ,

which has matrix representation ϕ∆
0 ϕ⊤

∞ ∈ Rn×d with

ϕ∞ :=
∑
r

cr,0(0)ϕ
W
r .

By Equation (26) we deduce that the i-th row of ϕ∆
0 ϕ⊤

∞ ∈ Rn×d is the d-dimensional vector
√
diϕ∞.

We now focus on the term

(P ker
W ⊗ In)vec(F(0)) =

∑
r:λW

r =0,j

cr,j(0)ϕ
W
r ⊗ ϕ∆

j
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which has matrix representation
∑

r:λW
r =0,j cr,j(0)ϕ

∆
j (ϕW

r )⊤. In particular, the i-th row is given by∑
r:λW

r =0,j

cr,j(0)(ϕ
∆
j )iϕ

W
r = P ker

W fi(0).

This completes the proof of Proposition B.6.

Proposition B.6 implies that no weight matrix W in Equation (33) can separate the limit embeddings
F∞ of nodes with same degree and same input features. In particular, we have the following
characterization:

• Projections of the edge gradients (∇F)ij(0) ∈ Rd into the eigenvectors of W⊤W with
positive eigenvalues shrink along the GNN and converge to zero exponentially fast as
integration time (depth) increases.

• Projections of the edge gradients (∇F)ij(0) ∈ Rd into the kernel of W⊤W stay invariant.

If W has a trivial kernel, then nodes with same degrees converge to the same representation and
over-smoothing. Differently from Nt & Maehara (2019); Oono & Suzuki (2020); Cai & Wang (2020),
over-smoothing occurs independently of the spectral radius of the ‘channel-mixing’ if its eigenvalues
are positive – even for equations which lead to residual GNNs when discretized Chen et al. (2018).
According to Proposition B.6, we do not expect Equation (33) to succeed on heterophilic graphs
where smoothing processes are generally harmful – this is confirmed in Figure 3 (see prod-curve). To
deal with heterophily, one needs negative eigenvalues to generate repulsive forces among adjacent
features.

A more general energy. Since in general one needs to generate repulsive forces too to deal with
heterophilic graphs, we extend the Dirichlet energy associated with H = W⊤W ⪰ 0 to an energy
accounting for mutual – possibly repulsive – interactions in feature space Rd. We first rewrite the
energy EDir

W in Equation (32) as

EDir
W (F) =

1

2

∑
i

⟨fi,W⊤Wfi⟩ −
1

2

∑
i,j

āij⟨fi,W⊤Wfj⟩. (34)

If we replace the occurrences of W⊤W with arbitrary symmetric matrices Ω,W ∈ Rd×d we obtain

Eθ(F) :=
1

2

∑
i

⟨fi,Ωfi⟩ −
1

2

∑
i,j

āij⟨fi,Wfj⟩ ≡ Eext
Ω (F) + Epair

W (F), (35)

with associated gradient flow of the form (see Appendix B)

Ḟ(t) = −∇FEθ(F(t)) = −F(t)Ω+ ĀF(t)W. (36)

If we include the source term, then we have fully recovered the general energy in Equation (6) and its
associated gradient flow.

C PROOFS AND ADDITIONAL DETAILS OF SECTION 4

We first explicitly report here the expansion of the discrete gradient flow in Equation (11) after m
layers to further highlight how this is not equivalent to a single linear layer with a message passing
matrix Ām as for SGCN Wu et al. (2019). For simplicity we suppress the source term.

F(t+ τ) = F(t) + τ
(
−F(t)Ω+ ĀF(t)W

)
vec(F(t+ τ)) =

(
Ind + τ

(
−Ω⊗ In +W ⊗ Ā

))
vec(F(t))

vec(F(mτ)) =

m∑
k=0

(
m

k

)
τk
(
−Ω⊗ In +W ⊗ Ā

)k
vec(F(0)) (37)

and we see how the message passing matrix Ā actually enters the expansion after m layers with each
power 0 ≤ k ≤ m. This is not surprising, given that we are discretizing a linear dynamical system,
meaning that we are approximating an exponential matrix.
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C.1 FROM ENERGY TO EVOLUTION EQUATIONS: EXACT EXPANSION OF THE GNN SOLUTIONS

We first address the proof of the main result.

Proof of Theorem 4.1. We consider a linear dynamical system

F(t+ τ) = F(t) + τĀF(t)W,

with W symmetric. We vectorize the system and rewrite it as

vec(F(t+ τ)) = (Ind + τW ⊗ Ā)vec(F(t))

which in particular leads to

vec(F(mτ)) = (Ind + τW ⊗ Ā)mvec(F(0)).

We can then write explicitly the solution as

vec(F(mτ)) =
∑
r,ℓ

(
1 + τλWr (1− λ∆ℓ )

)m
cr,ℓ(0)ϕ

W
r ⊗ ϕ∆

ℓ .

We now verify that by assumption in Equation (13) the dominant term of the solution is the projection
into the eigenspace associated with the eigenvalue ρ− = |λW− |(ρ∆ − 1). The following argument
follows the same structure in the proof of Theorem B.3 with the extra condition given by the step-size.
First, we note that for any r such that λWr > 0, we have

|1 + τρ−| > |1 + τλW+ | ≥ |1 + τλWr (1− λ∆ℓ )|

since we required ρ− > λW+ in Equation (13). Conversely, if λWr < 0, then

|1 + τλWr (1− λ∆ℓ )| ≤ max{|1 + τρ−|, |1 + τλW− |}

Assume that τ |λW− | > 1, otherwise there is nothing to prove. Then |1 + τρ−| > τ |λW− | − 1 if and
only if

τ |λW− |(2− ρ∆) < 2,

which is precisely the right inequality in Equation (13). We can then argue exactly as in the proof of
Theorem B.3 to derive that for each index r such that λWr < 0 and λWr ̸= λW− , then

|1 + τλWr (1− λ∆ℓ )| ≤ max{|1 + τ |λW−,2|(ρ∆ − 1)|, |1 + τ |λW− |(λ∆n−2 − 1)|}

with λW−,2 and λ∆n−2 defined in Equation (29). We can then introduce

δHFD := max{λW+ , ρ−−|λW− |gap(ρ∆I−∆), ρ−− (ρ∆−1)gap(|λW− |I+W), |λW− |− 2

τ
} (38)

and conclude that

fi(mτ) =
∑
r,ℓ

(
1 + τλWr (1− λ∆ℓ )

)m
cr,ℓ(0)ϕ

∆
ℓ (i)ϕW

r

= (1 + τρ−)
m

c−,n−1(0)ϕ
∆
n−1(i) · ϕW

− +O
((

1 + τδHFD

1 + τρ−

)m) ∑
ℓ,r:λW

r (1−λ∆
ℓ ) ̸=ρ−

cr,ℓ(0)ϕ
∆
ℓ (i)ϕW

r


= (1 + τρ−)

m
(
c−,n−1(0)ϕ

∆
n−1(i) · ϕW

− +O (δm)
)
,

which completes the proof of Equation (14).

Conversely, if ρ− < λW+ , then the projection onto the eigenspace spanned by ϕW
+ ⊗ϕ∆

0 is dominating
the dynamics with exponential growth (1+τλW+ (1+0))m. We can then adapt the very same argument
above by factoring out the dominating term once we note that due to the choice of symmetric
normalized Laplacian ∆, we have ϕ∆

0 (i) =
√
di, which then yields Equation (15).

We can now also address the proof of Corollary 4.2.
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Proof of Corollary 4.2. Once we have the node-wise expansion we can simply compute the Rayleigh
quotient of Id ⊗∆. We report the explicit details for the HFD case since the argument for LFD
extends without relevant modifications. Using Equation (12), we can compute the Dirichlet energy
along a solution of F(t+ τ) = F(t) + τĀF(t)W satisfying Equation (13) by

EDir(F(mτ)) =
1

2

∑
r,ℓ

(
1 + τλWr (1− λ∆ℓ )

)2m
c2r,ℓ(0)λ

∆
ℓ

= (1 + τρ−)
2m

ρ∆
2

∑
r:λW

r =λW
−

c2r,ρ∆
(0) +O

((
1 + τδHFD

1 + τρ−

))2m ∑
ℓ,r:λW

r (1−λ∆
ℓ )̸=ρ−

c2r,ℓ(0)λ
∆
ℓ


= (1 + τρ−)

2m

(
ρ∆
2

||P ρ−
W F(0)||2 +O

((
1 + τδHFD

1 + τρ−

)2m
))

,

where P ρ−
W is the orthogonal projector onto the eigenspace associated with the eigenvalue ρ− =

|λW− |(ρ∆ − 1). In particular, since

vec(F(mτ)) = (1 + τρ−)
m
(
P

ρ−
W vec(F(0)) +O(δm)

)
,

we find that the dynamics is HFD with vec(F(t))/||vec(F(t))|| converging to the unit projection
of the initial projection by P ρ−

W provided that such projection is not zero, which is satisfied for a.e.
initial condition F(0).

C.2 COMPARISON WITH EXISTING RESULTS: PROOFS

Proof of Theorem 4.3. If we drop the residual connection and simply consider F(t+τ) = τĀF(t)W,
then

vec(F(mτ)) = (τW ⊗ Ā)mvec(F(0)).

Since G is not bipartite, the Laplacian spectral radius satisfies ρ∆ < 2. Therefore, for each pair of
indices (r, ℓ) we have the following bound:

|λWr (1− λ∆ℓ )| ≤ max{λW+ , |λW− |},

and the inequality becomes strict if ℓ > 0, i.e. λ∆ℓ > 0. The eigenvalues λW+ and λW− are attained
along the eigenvectors ϕW

+ ⊗ϕ∆
0 and ϕW

− ⊗ϕ∆
0 respectively. Accordingly, the dominant terms of the

evolution lie in the kernel of Id⊗∆, meaning that for any F0 with non-zero projection in ker(Id⊗∆)
– which is satisfied by all initial conditions except those belonging to a lower dimensional subspace –
the dynamics is LFD. In fact, without loss of generality assume that |λW− | > λW+ , then

vec(F(mτ)) = |λW− |m
∑

r:λW
r =λW

−

(−1)mcr,0(0)ϕ
W
− ⊗ ϕ∆

0

+ |λW− |m
O(φ(m))

Ind −
∑

r:λW
r =λW

−

(ϕW
− ⊗ ϕ∆

0 )(ϕW
− ⊗ ϕ∆

0 )⊤

 vec(F(0))

 ,

with φ(m) → 0 as m→ ∞, which completes the proof.

Gradient flow as spectral GNNs. We finally discuss Equation (11) from the perspective of
spectral GNNs as in Balcilar et al. (2020). Let us assume that W̃ = 0, Ω = 0. If we let ∆ =
ΦWΛW(ΦW)⊤ be the eigendecomposition of the graph Laplacian and {λWr } be the spectrum of W
with associated orthonormal basis of eigenvectors given by {ϕW

r }, and we introduce zr(t) : V → R
defined by zri (t) = ⟨fi(t),ϕW

r ⟩, then we can rewrite the discretized gradient flow as

zr(t+ τ) = ΦW(I+ τλWr (I−Λ∆))(ΦW)⊤zr(t) = zr(t) + τλWr Āzr(t), 1 ≤ r ≤ d. (39)

Accordingly, for each projection into the r-th eigenvector of W, we have a spectral function in the
graph frequency domain given by λ∆ 7→ 1 + τλWr (1− λ∆). If λWr > 0 we have a low-pass filter
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while if λWr < 0 we have a high-pass filter. Moreover, we see that along the eigenvectors of W,
if λWr < 0 then the dynamics is equivalent to flipping the sign of the edge weights, which offers a
direct comparison with methods proposed in Bo et al. (2021); Yan et al. (2021) where some ‘attentive’
mechanism is proposed to learn negative edge weights based on feature information.

The previous equation simply follows from

zri (t+ τ) = ⟨fi(t+ τ),ϕW
r ⟩ = ⟨fi(t) +W(Āf(t))i,ϕ

W
r ⟩

= zri (t) + λWr
∑
j

āijz
r
j (t),

which concludes the derivation of Equation (39).

D PROOFS AND ADDITIONAL DETAILS OF SECTION 5

Proof of Theorem 5.1. First we check that if time is continuous, then Eθ in Equation (35) is decreasing.
We use the Kronecker product formalism to rewrite the gradient ∇FEθ(F) as a vector in Rnd:
explicitly, we get

∇FEθ(F) = (Ω⊗ In −W ⊗ Ā)vec(F) + (W̃ ⊗ In)vec(F(0)).

It follows then that
dEθ(F(t))

dt
= (∇FEθ(F(t)))⊤ vec(Ḟ(t)) =

= (∇FEθ(F(t)))⊤ σ (−∇FEθ(F(t))) .
If we introduce the notation Z(t) = −∇FEθ(F(t), then we can rewrite the derivative as

dEθ(F(t))
dt

= −Z(t)⊤σ(Z(t)) = −
∑
α

Z(t)ασ(Z(t)α) ≤ 0

by assumption on σ. The discrete case follows similarly. Let us use the same notation as above so we
can write F(t+ τ) = F(t) + τσ(Z(t)), with Z(t) = −∇FEθ(F(t)).

Eθ(F(t+ τ)) = ⟨vec(F(t+ τ)),
1

2
(Ω⊗ In −W ⊗ Ā)vec(F(t+ τ)) + (W̃ ⊗ In)vec(F(0))⟩

= ⟨vec(F(t)) + τσ(Z(t)),
1

2
(Ω⊗ In −W ⊗ Ā)vec(F(t+ τ)) + (W̃ ⊗ In)vec(F(0))⟩

= ⟨vec(F(t)) + τσ(Z(t)),
1

2

(
Ω⊗ In −W ⊗ Ā

)
(vec(F(t) + τσ(Z(t))) + (W̃ ⊗ In)vec(F(0))⟩

= ⟨vec(F(t)), 1
2
(Ω⊗ In −W ⊗ Ā)vec(F(t)) + (W̃ ⊗ In)vec(F(0))⟩

+ τ⟨vec(F(t)), 1
2
(Ω⊗ In −W ⊗ Ā)σ(Z(t))⟩

+ τ⟨σ(Z(t)), 1
2
(Ω⊗ In −W ⊗ Ā)vec(F(t) + (W̃ ⊗ In)vec(F(0))⟩

+ τ2⟨σ(Z(t)), 1
2
(Ω⊗ In −W ⊗ Ā)σ (Z(t))⟩.

By using that Ω⊗ In −W ⊗ Ā is symmetric, we find that

Eθ(F(t+ τ)) = Eθ(F(t)) + τ⟨σ(Z(t), (Ω⊗ In −W ⊗ Ā)vec(F(t) + (W̃ ⊗ In)vec(F(0))⟩

+ τ2⟨1
τ
(F(t+ τ)− F(t)),

1

2
(Ω⊗ In −W ⊗ Ā)

1

τ
(F(t+ τ)− F(t))⟩

= Eθ(F(t))− τ⟨σ(Z(t)),Z(t)⟩+ ⟨F(t+ τ)− F(t),
1

2
(Ω⊗ In −W ⊗ Ā)(F(t+ τ)− F(t))⟩

≤ Eθ(F(t)) + C+||F(t+ τ)− F(t))||2,

where again we have used that Z⊤σ(Z) ≥ 0. This completes the proof.
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To further support the principle that the effects induced by W are similar even in this non-linear
setting, we consider a simplified scenario.

Lemma D.1. If we choose Ω = W = diag(ω) with ωr ≤ 0 for 1 ≤ r ≤ d and W̃ = 0 i.e.
t 7→ F(t) solves the dynamical system

Ḟ(t) = σ (−∆F(t)diag(ω)) ,

with xσ(x) ≥ 0, then the standard graph Dirichlet energy satisfies

dEDir(F(t))

dt
≥ 0.

Proof. This again simply follows from directly computing the derivative:

dEDir(F(t))

dt
=

1

4

d

dt

 d∑
r=1

∑
(i,j)∈E

(
fri (t)√
di

−
frj (t)√
dj

)2


=

d∑
r=1

∑
i∈V

(∆fr)iσ(−ωr(∆fr)i) =
d∑

r=1

∑
i∈V

(∆fr)iσ(|ωr|(∆fr)i) ≥ 0.

Important consequence: The previous Lemma implies that even with non-linear activations, negative
eigenvalues of the channel-mixing induce repulsion and indeed the solution becomes less smooth as
measured by the classical Dirichlet Energy increasing along the solution. Generalising this result to
more arbitrary choices is not immediate and we reserve this for future work.

E ADDITIONAL DETAILS ON EXPERIMENTS

E.1 GENERAL EXPERIMENTAL DETAILS

GRAFF is implemented in PyTorch Paszke et al. (2019), using PyTorch geometric Fey & Lenssen
(2019) and torchdiffeq Chen et al. (2018). Code and instructions to reproduce the experiments are
available on GitHub. Hyperparameters were tuned using wandbBiewald (2020) and random grid
search. Experiments were run on AWS p2.8xlarge machines, each with 8 Tesla V100-SXM2 GPUs.

Methodology. Throughout the experiments and ablations we rely on the following parameterisations.
We implement ψEN, ψDE as single linear layers or MLPs, and we set Ω to be diagonal. For the
real-world experiments we consider diagonally-dominant (DD) and diagonal (D) choices for the
structure of W that offer explicit control over its spectrum. In the (DD)-case, we consider a
W0 ∈ Rd×d symmetric with zero diagonal and w ∈ Rd defined by wα = qα

∑
β |W0

αβ | + rα,
and set W = diag(w) + W0. Due to the Gershgorin Theorem the eigenvalues of W belong to
[wα −

∑
β |W0

αβ |,wα +
∑

β |W0
αβ |], so the model ‘can’ easily re-distribute mass in the spectrum of

W via qα, rα. This generalizes the decomposition of W in Chen et al. (2020) providing a justification
in terms of its spectrum. For (D) we take W to be diagonal. To investigate the role of the spectrum of
W on synthetic graphs, we construct three additional variants: W = W′ +W′⊤, W = ±W′⊤W′

named sum, prod and neg-prod respectively where prod (neg-prod) variants have only non-negative
(non-positive) eigenvalues.

E.2 ABLATION STUDIES ON SYNTHETIC HOMOPHILY

Synthetic experiments and ablation studies. To investigate our claims in a controlled environment
we use the synthetic Cora dataset of (Zhu et al., 2020, Appendix G). Graphs are generated for target
levels of homophily via preferential attachment – see Appendix E.3 for details. Figure 3 confirms the
spectral analysis and offers a better understanding in terms of performance and smoothness of the
predictions. Each curve – except GCN – represents one version of W as in ‘methodology’ and we
implement Equation (11) with W̃ = 0, Ω = 0.
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Figure 3: Experiments on synthetic datasets
with controlled homophily.

Figure 3 (top) reports the test accuracy vs true label
homophily. Neg-prod is better than prod on low-
homophily and viceversa on high-homophily. This
confirms Theorem 4.1 where we have shown that the
gradient flow can lead to a HFD dynamics – that are
generally desirable with low-homophily – through
the negative eigenvalues of W. Conversely, the prod
configuration (where we have an attraction-only dy-
namics) struggles in low-homophily scenarios even
though a residual connection is present. Both prod
and neg-prod are ‘extreme’ choices and serve the pur-
pose of highlighting that by turning off one side of the
spectrum this could be the more damaging depend-
ing on the underlying homophily. In general though
‘neutral’ variants like sum and (DD) are indeed more
flexible and better performing. In fact, (DD) outper-
forms GCN especially in low-homophily scenarios,
confirming Theorem 4.1 where we have shown that without a residual connection convolutional
models are LFD – and hence more sensitive to underlying homophily – irrespectively of the spectrum
of W. This is further confirmed in Figure 4.

In Figure 3 (bottom) we compute the homophily of the prediction (cross) for a given method and we
compare with the homophily (circle) of the prediction read from the encoding (i.e. graph-agnostic).
The homophily here is a proxy to assess whether the evolution is smoothing, the goal being explaining
the smoothness of the prediction via the spectrum of W as per our theoretical analysis. For neg-prod
the homophily after the evolution is lower than that of the encoding, supporting the analysis that
negative eigenvalues of W enhance high-frequencies. The opposite behaviour occurs in the case of
prod and explains that in the low-homophily regime prod is under-performant due to the prediction
being smoother than the true homophily. (DD) and sum variants adapt better to the true homophily.
We note how the encoding compensates when the dynamics can only either attract or repulse (i.e. the
spectrum of W has a sign) by decreasing or increasing the initial homophily respectively.

E.3 ADDITIONAL DETAILS ON SYNTHETIC ABLATION STUDIES:
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Figure 4: Experiments on synthetic
Cora - GCN ablation

The synthetic Cora dataset is provided by (Zhu et al., 2020,
Appendix G). They use a modified preferential attachment
process to generate graphs for target levels of homophily.
Nodes, edges and features are sampled from Cora propor-
tional to a mix of class compatibility and node degree result-
ing in a graph with the required homophily and appropriate
feature/label distribution. To validate the provided data be-
fore use we provide Table 2 summarising the properties of
the synthetic Cora dataset. All rows/levels of homophily
have the same number of nodes (1,490), edges (5,936), fea-
tures (1,433) and classes (5).

As well as the ablation shown in Figure 3 we used this dataset to perform an ablation using GCN as
the baseline. We asses the impact of each of the steps necessary to augment a standard GCN model
to GRAFF. This involves 5 steps; 1) add an encoder/decoder. 2) add a residual connection. 3) share
the weights of W and Ω across time/layers. 4) symmetrize W and Ω. 5) remove the non-linearity
between layers. The results are shown in Figure 4 and corroborate Theorem 4.1 that adding a residual
term is beneficial especially in low-homophily scenarios. We also note augmentations 3,4 and 5 are
not ”costly” in terms of performance.

E.4 ADDITIONAL DETAILS ON REAL-WORLD ABLATION STUDIES

For the real-world experiments in Table 1 we performed 10 repetitions over the splits taken from Pei
et al. (2020). For all datasets we used the largest connected component (LCC) apart from Citeseer
where the 5th and 6th split are LCC and others require the full dataset. For Chameleon and Squirrel
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homophily max degree min degree av degree density edge homoph node homoph
0.00 84.33 1.67 3.98 0.0027 0.00 0.00
0.10 71.33 2.00 3.98 0.0027 0.10 0.10
0.20 73.33 1.67 3.98 0.0027 0.20 0.20
0.30 70.00 2.00 3.98 0.0027 0.29 0.30
0.40 77.67 2.00 3.98 0.0027 0.39 0.39
0.50 76.33 2.00 3.98 0.0027 0.49 0.49
0.60 76.00 1.67 3.98 0.0027 0.59 0.60
0.70 67.67 2.00 3.98 0.0027 0.70 0.70
0.80 58.00 1.67 3.98 0.0027 0.78 0.79
0.90 58.00 1.67 3.98 0.0027 0.89 0.89
1.00 51.00 2.00 3.98 0.0027 1.00 1.00

Table 2: Summary of properties of synthetic Cora dataset

we added self loops and made the edges undirected as a preprocessing step. All other datasets
are provided as undirected but without self loops. Each split uses 48/32/20 of nodes for training,
validation and test set respectively. Table 6 summarises each of the datasets.

dataset nodes edges features classes max degree min degree av degree density edge homoph node homoph
Texas 183 558 1,703 5 104 1 3.05 0.0167 0.06 0.06
Wisconsin 251 900 1,703 5 122 1 3.59 0.0143 0.18 0.16
Cornell 183 554 1,703 5 94 1 3.03 0.0165 0.3 0.3
Film 7,600 53,318 932 5 1,303 1 7.02 0.0009 0.22 0.22
Squirrel 5,201 401,907 2,089 5 1,904 2 77.27 0.0149 0.23 0.29
Chameleon 2,277 65,019 2,325 5 733 2 28.55 0.0125 0.26 0.33
Citeseer * 3,327 9,104 3,703 6 99 0 2.74 0.0008 0.74 0.71
Citeseer 2,120 7,358 3,703 6 99 1 3.47 0.0016 0.73 0.71
Pubmed 19,717 88,648 500 3 171 1 4.5 0.0002 0.8 0.79
Cora 2,485 10,138 1,433 7 168 1 4.08 0.0016 0.8 0.81

Table 3: Summary of properties of real-word datasets. All LCC except *

We perform an ablation study to further corroborate the behaviour seen in Figure 3. For heterophilic
datasets we used the splits from Pei et al. (2020). For homophilic datasets we used the methodology
in Shchur et al. (2018), each split randomly selects 1,500 nodes for the development set, from the
development set 20 nodes for each class are taken as the training set, the remainder are allocated as
the validation set. The remaining nodes outside of the development set are used as the test set. This
gives a lower percentage (3-6%) of training nodes. This approach was taken because less training
information is needed in the homophilic setting and performance can become less sensitive to other
factors, meaning less signal from the controlled variable. We tested the structures of W against the
real-world datasets with known homophily, again neg-prod outperforms prod in the heterophilic
setting and vice-versa due the sign of their spectra.

dataset neg prod prod sum
Chameleon 67.32 58.86 68.36
Squirrel 51.39 42.11 51.29
Cora 31.80 79.65 81.17
Citeseer 32.47 67.31 67.53

Table 4: Ablation with controlled spectrum of W on real-world datasets

To validate the complexity analysis in Section 6 we performed a runtime ablation for the models
between standard GCN and GRAFF described in the GCN ablation Figure 4. The average inference
runtime over 100 runs for 1 split of Cora was recorded. We also include runtimes for the provided
dense and sparse implementations of GGCN Yan et al. (2021). Adding the encoder/decoder (step 1)
speeds up the model due to dimensionality reduction. Subsequent steps also reduce complexity and
offer speedup with GRAFF performing the fastest.
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Figure 5: Runtime ablation for inference on Cora dataset

E.5 DETAILS ON HYPERPARAMETERS

Using wandb Biewald (2020) we performed a random grid search with uniform sampling of the
continuous variables. We provide the hyperparameters that achieved the best results from the random
grid search in Table 5. An implementation that uses these hyperparameters is available in the provided
code with hyperparameters provided in graff params.py. Input dropout and dropout are the
rates applied to the encoder/decoder respectively with no dropout applied in the ODE block. Further
hyperparameters decide the use of non-linearities, batch normalisation, parameter vector ω and source
term multiplier β which are specified in the code.

w style lr decay dropout input dropout hidden time step size
chameleon diag dom 0.0050 0.0005 0.36 0.48 64 3.33 1
squirrel diag dom 0.0065 0.0009 0.17 0.35 128 2.87 1
texas diag dom 0.0041 0.0354 0.33 0.39 64 0.6 0.5
wisconsin diag 0.0029 0.0318 0.37 0.37 64 2.1 0.5
cornell diag 0.0021 0.0184 0.30 0.44 64 2.0 1
film diag 0.0026 0.0130 0.48 0.42 64 1.5 1
Cora diag 0.0026 0.0413 0.34 0.53 64 3.0 0.25
Citeseer diag 0.0001 0.0274 0.22 0.51 64 2.0 0.5
Pubmed diag 0.0039 0.0003 0.42 0.41 64 2.6 0.5

Table 5: Selected hyperparameters for real-world datasets

E.6 EXPERIMENTS ON LARGER HETEROPHILIC GRAPHS

Since our frameworks GRAFF and GRAFFNL are fast and efficient, we test them on two larger
heterophilic datasets arXiv-year (Hu et al., 2021) and snap-patents (Leskovec & Krevl, 2014; Leskovec
et al., 2005).

dataset nodes edges features classes edge homoph
arxiv-year 169,343 1,166,243 128 5 .222
snap-patents 2,923,922 13,975,788 269 5 .073

Table 6: Statistics of the larger heterophilic datasets.

Both the datasets concern predicting ‘publication time’ in a citation network. We report baselines
as in Lim et al. (2021) and the best performing number among GRAFF and GRAFFNL in Table 7.
Before commenting on the results, we observe that LINK (Zheleva & Getoor, 2009) is a method that
only acts on the input adjacency and ignores completely the node features. The facts that LINK is
such a strong baseline on the datasets and that the MLP is instead very poor denote that the features
on these datasets actually carry very little valuable information. Indeed, most of the MPNNs struggle
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arXiv-year snap-patents
MLP 36.7 ± 0.21 31.34 ± 0.05

L Prop 1-hop 43.42 ± 0.17 30.28 ± 0.09
L Prop 2-hop 46.07 ± 0.15 38.61 ± 0.07
LINK 53.97 ± 0.18 60.39 ± 0.07

SGC 1-hop 32.83 ± 0.13 30.31 ± 0.06
SGC 2-hop 32.27 ± 0.06 29.09 ± 0.09
C&S 1-hop 44.51 ± 0.16 35.55 ± 0.05
C&S 2-hop 49.78 ± 0.26 49.08 ± 0.04

GCN 46.02 ± 0.26 45.65 ± 0.04
GAT 46.05 ± 0.51 45.37 ± 0.44 (M)
GCNJK 46.28 ± 0.29 46.88 ± 0.13
GATJK 45.8 ± 0.72 44.78 ± 0.5
APPNP 38.15 ± 0.26 32.19 ± 0.07

H2GCN 49.09 ± 0.1 (M)
MixHop 51.81 ± 0.17 52.16 ± 0.09
GPR-GNN 45.07 ± 0.21 40.19 ± 0.03
GCNII 47.21 ± 0.28 37.88 ± 0.69

LINKX 56 ± 1.34 61.95 ± 0.12

GRAFF 50.52 ± 0.23 55.77 ± 0.27

Table 7: Performance on larger heterophilic datasets. (M) stands for out of memory.

significantly, with the partial exception of MixHop – which accounts directly for 2-hop information at
each layer resulting in worse complexity that GRAFF. The reason why MixHop is more competitive
than other MPNNs is because these datasets have some strong ‘monophily’ type of bias such that
architectures that directly access the more homophilic 2-hop are at an advantage; indeed, it has already
been noted that LINK is indeed meant to work well in this setting (Altenburger & Ugander, 2018).
We also note that the labelling in arXiv-year was introduced in Lim et al. (2021). We point out how
GRAFF manages to stay competitive with other MPNNs and almost consistently outperforms them.
This confirms the validity of our theoretical analysis and motivates investigating energy functionals
that would allow to incorporate higher-order terms as in MixHop in a gradient flow framework. We
also note that by losing the inductive bias of message-passing LINKX is not an optimal framework
for dealing with homophilic graphs as reported in Lim et al. (2021); on the other hand, an advantage
of the gradient flow graph convolutional equations is that they manage to adapt to the underlying
homophily of the graph in a way that is provable and justifiable. The latter point is also in stark
contrast with LINKX which instead works as a ‘black box’ on both adjacency and features.

Remark. Both arXiv-year and snap-patents graphs come as directed and such information is essential
for the task as already noted in Lim et al. (2021). Strictly speaking, by using the directed (and
hence non symmetric) adjacency matrix Ā in Equation (17) and Equation (18) we are no longer
a gradient flow due to the lack of symmetry of the gradient of the quadratic energy Eθ as noted
in Appendix B.1. It is still interesting to observe how symmetrizing and sharing the weights have
enabled our framework to beat both GCN and GCNII by a margin even though we are no longer a
gradient flow. We reserve a more thorough investigation of gradient flows for directed non symmetric
relations to future work.

E.7 FURTHER COMPARISONS WITH BASELINES

In this subsection we provide further comparison with recent baselines (Luan et al., 2021; Lingam
et al., 2021; Maurya et al., 2021) that try to specifically target heterophily. We report their best
numbers without reproducing them.

A few comments are in order. First, we have reported the best numbers over all (several) configurations
of the reported baselines. We note that despite its simplicity, our framework is very competitive on

32



Under review as a conference paper at ICLR 2023

Texas Wisconsin Cornell Film Squirrel Chameleon Citeseer Pubmed Cora
Hom level 0.11 0.21 0.30 0.22 0.22 0.23 0.74 0.80 0.81
#Nodes 183 251 183 7,600 5,201 2,277 3,327 18,717 2,708
#Edges 295 466 280 26,752 198,493 31,421 4,676 44,327 5,278
#Classes 5 5 5 5 5 5 7 3 6

ACMbest 87.84± 3.87 88.43± 3.22 85.95± 5.64 36.89± 1.18 54.4± 1.88 67.08± 2.04 77.15± 1.45 90.00± 0.52 88.01± 1.08
HLPbest 87.57± 5.44 86.67± 4.22 84.05± 4.67 34.59± 1.32 74.17± 1.83 77.48± 0.80 NA NA NA
FSGNN 87.30± 5.55 88.43± 3.22 87.03± 5.77 35.67± 0.69 73.48± 2.13 78.14± 1.25 77.19± 1.35 89.73± 0.39 87.73± 1.36
GRAFF 88.38± 4.53 88.83± 3.29 84.05± 6.10 37.11± 1.08 58.72± 0.84 71.08± 1.75 77.30± 1.85 90.04± 0.41 88.01± 1.03
GRAFFNL 86.49± 4.84 87.26± 2.52 77.30± 3.24 35.96± 0.95 59.01± 1.31 71.38± 1.47 76.81± 1.12 89.81± 0.50 87.81± 1.13

Table 8: Node-classification results.
Cora Citeseer Chameleon Squirrel

Hom level 0.81 0.74 0.23 0.22
#Nodes 2,708 3,327 2,277 5,201
#Edges 5,278 4,676 31,421 198,493
#Classes 6 7 5 5

Test accuracy 87.69± 0.86 76.75± 1.33 70.44± 1.47 59.60± 1.49

EDir
in 0.41 0.22 0.94 0.80

EDir
fin 0.16 0.10 0.73 0.77
λW+ /|λW− | 1.93 1.02 0.98 1.02
λW− −0.40 −0.95 −5.05 −4.80

Table 9: Spectral analysis.

the small heterophilic graphs and stronger on the larger dataset Film and on all the homophilic ones.
On the other hand, HLP and FSGNN are much stronger baselines on Squirrel and Chameleon. This
is also mainly because both the architectures handle the graphs as directed without self-loops which
helps the performance massively and we suspect effectively reduces the heterophily of the graph
hence making tha task easier. We reserve the investigation of heterophily in the context of directed
graphs for future work.

E.8 SPECTRAL PROPERTIES OF THE LEARNT CHANNEL-MIXING

In Table 9 we report a few spectral properties of the channel-mixing W learnt on 4 real datasets
– two homophilic and two heterophilic – along with the value of the normalized Dirichlet energy
X 7→ EDir(X)/∥X∥2 used for characterizing LFD and HFD dynamics.

Some important comments are in order. The quantities EDir
in and EDir

fin are the normalized Dirichlet
energy of the encoded node features before and after the diffusion layers respectively; recall that these
are values between 0 and 2 we introduced in Section 3 to characterize whether a given GNN is mostly
smoothing or not. λW+ /|λW− | instead is the ratio between most positive and most negative eigenvalue.
(i) we note how the initial encoder provides us with node-wise features that are increasingly less
smooth depending on the underlying graph heterophily – as we derive from EDir

in . (ii) The model learns
to adapt to the underlying homophily as we see from the fact that the normalized Dirichlet energy
decreases much more after the message-passing for Cora and Citeseer. (iii) The ratio λW+ /|λW− | –
which is a partial indicator of the amount of attraction vs repulsion exerted by the diffusion – is also
an indicator of performances as we read when comparing the case of CORA with the other datasets.
(iv) As we increase the heterophily, the most negative eigenvalue increases in absolute value since
most likely more repulsion is needed. We argue that the model might benefit from inducing fast
attraction along some directions and fast repulsion along others – since on heterophilic graphs we
have larger positive and negative eigenvalues. Connected to this last point though, we note that at
the end of the architecture we have a decoder that can also potentially discard some node feature
projections hence keeping only the smoother (or less smooth) components.
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