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Abstract
Recent deep-learning-based super-resolution (SR)
methods have been successful in recovering high-
resolution (HR) images from their low-resolution
(LR) counterparts, albeit on the synthetic and sim-
ple degradation setting: bicubic downscaling. On
the other hand, super-resolution on real-world im-
ages demands the capability to handle complex
downscaling mechanism which produces differ-
ent artifacts (e.g., noise, blur, color distortion)
upon downscaling factors. To account for com-
plex downscaling mechanism in real-world LR
images, there have been a few efforts in construct-
ing datasets consisting of LR images with real-
world downsampling degradation. However, mak-
ing such datasets entails a tremendous amount of
time and effort, thereby resorting to very few num-
ber of downscaling factors (e.g., ×2,×3,×4). To
remedy the issue, we propose to generate realis-
tic SR datasets for unseen degradation levels by
exploring the latent space of real LR images and
thereby producing more diverse yet realistic LR
images with complex real-world artifacts. Our
quantitative and qualitative experiments demon-
strate the accuracy of the generated LR images,
and we show that the various conventional SR
networks trained with our newly generated SR
datasets can produce much better HR images.

1. Introduction
Recent studies on deep learning methodologies and large
train datasets remarkably improved the performance of sev-
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eral image restoration tasks, such as image super-resolution
(SR) (Dong et al., 2015; Zhang et al., 2018a) and image
denoising (Zhang et al., 2017). The datasets used in these
restoration tasks consist of pairs of low- and high-quality im-
ages, and they are used to learn a complex mapping between
the low-quality image and the corresponding high-quality
image. In general, these datasets are produced by assum-
ing simple degradation models, such as bicubic downsam-
pling (Agustsson & Timofte, 2017) and additive Gaussian
noise (Zhang et al., 2017). However, deep SR networks
trained with these synthetic datasets struggle with map-
ping the real-world low-resolution (LR) photos to its high-
resolution (HR) counterparts due to discrepancies between
the distributions of synthetic train images and real-world
test images (i.e., domain misalignment) (Cai et al., 2019).
As a result, several studies have been conducted to generate
new SR datasets that enable the SR networks to handle real-
world LR images rather than synthetic LR images created
by bicubic downsampling.

Recently, a few works have been proposed to simulate com-
plex real-world degradation, attempting to produce more
realistic SR datasets (Xiao et al., 2020; Ji et al., 2020; Wolf
et al., 2021). In particular, RealSR dataset proposed in (Cai
et al., 2019) includes the image pairs of real LR and HR pho-
tos of the same scene taken by changing the focal lengths of
a DSLR camera. For a given scene, an image captured with
a longer focal length (e.g., 105mm) serves as an HR image,
while an image captured with a shorter focal length (e.g.,
35mm) serves as an LR image. Then, an LR-HR image pair
of the given scene (e.g., ×3 degradation level or scale fac-
tor) is created by using a pixel-wise alignment process with
image registration algorithm (Cai et al., 2019). The dataset
construction process is, however, time-consuming and bur-
densome, which makes it almost infeasible to create LR-HR
pairs by continuously changing the degradation level. Thus,
RealSR dataset is only composed of images with very few
number of SR degradation levels (e.g., ×2,×3,×4), which
severely restricts the practical usage in training the SR net-
works for real-world scenarios.

Therefore, we propose to develop a method that can syn-
thesize realistic LR images that are not available in conven-
tional real-world SR datasets by controlling the degradation
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Figure 1. HR and corresponding LR images with different degra-
dation levels (×2,×3 and ×4) from RealSR (Cai et al., 2019) train
dataset.

level continuously. While some recent approaches (Xiao
et al., 2020; Wolf et al., 2021; Ji et al., 2020) are proposed
to synthesize new datasets for a specific target degradation
model, they cannot generate datasets beyond that target do-
main (e.g., unseen/arbitrary degradation levels). However,
generating LR images with unseen/arbitrary degradation lev-
els is challenging as we observe that the distortion changes
in a complex and non-linear manner as the degradation level
changes (see the complex changes in color and blur accord-
ing to the degradation level in Figure 1).

In this work, we start from an observation that LR images
share some common aspects across different levels of degra-
dation (e.g., blue-and-orange color distortions in images
with degradation levels of ×2, ×3 and ×4 in Figure 1). One
naı̈ve approach for generating LR images with continuous
degradation levels would be to simply interpolate two im-
ages with different degradation levels in the pixel space.
However, this approach causes non-realistic artifacts when
two highly different distortions are merged, and the result-
ing images are not diverse (i.e., discriminative approach).
To generate the LR images maintaining degradation fidelity
with continuous manner, we propose to traverse along the
latent space of given LR images to create LR images for un-
seen degradation levels. Specifically, we employ conditional
normalizing flows (NF) (Lugmayr et al., 2020), and owing
to its ability of calculating exact likelihood, we can easily
embed the degradation information to the latent space and
manipulate the latent space to ensure that plausible and di-
verse LR images are generated according to degradation lev-
els. To organize the constrained latent space, our framework
utilizes two losses: a newly introduced LR-consistency loss
and information bottleneck (IB) loss (Tishby et al., 2000).
We present a new LR-consistency loss to enforce the con-
sistency between the generated LR images and real images
in terms of the low-frequency structures. IB loss is used to
ensure that different latent variables correspond to different
degradation levels, generating diverse LR images according
to degradation level.

To our best knowledge, our approach is the first attempt to
generate realistic LR images by changing the degradation
level continuously given an HR image. We empirically
validate the effectiveness of our method in generating LR
images with arbitrary and continuous-valued degradation

levels while capturing complex degradation in real-world.
The experimental results demonstrate that our proposed
dataset can be used to train many conventional SR networks
to handle LR images with arbitrary degradation levels.

2. Related Works
• Single image super-resolution (SISR) The SISR task
aims to enhance the resolution of low-resolution (LR) im-
ages by recovering high-frequency details. Recent deep
learning-based methods have demonstrated remarkable per-
formance (Dong et al., 2015; Kim et al., 2016; Zhang et al.,
2018b;a; Liang et al., 2021), compared to traditional meth-
ods (Chang et al., 2004; Glasner et al., 2009). These meth-
ods require a large amount of training data, thus employing
simple bicubic downsampling to synthesize a sufficiently
large dataset. However, SR networks fail to work on images
that are out of the distribution of training images (El Helou
et al., 2020). Because the real-world degradations do not
follow bicubic downsampling, there exist discrepancies be-
tween real-world LR and synthetic training LR images, lead-
ing to failures of SR networks in real-world scenarios (Cai
et al., 2019).

• Real-world SISR datasets To bridge the gap, several
works have been proposed to capture real LR-HR pairs of
images using physical equipment like beam-splitter (Qu
et al., 2016) and cameras (Köhler et al., 2019; Zhang et al.,
2019; Cai et al., 2019), as well as traditional degradation
models such as Gaussian noise, kernel, and bicubic inter-
polation (Zhang et al., 2021; Wang et al., 2021). In par-
ticular, RealSR (Cai et al., 2019) dataset was collected by
taking images of the same scene with different focal lengths
and by aligning them through optimization. However, con-
structing these datasets is highly laborious, posing chal-
lenges for building a large-scale dataset. As a result, new
approaches have been recently developed to synthetically
generate much larger datasets for the real-world SR problem.
DML (Xiao et al., 2020) modeled real-world degradation,
where the degradation kernel is assumed to be non-uniform
and spatially varying. Impressionism (Ji et al., 2020) and
DeFlow (Wolf et al., 2021) proposed to learn more com-
plex degradation models using generative methods. BSR-
GAN (Zhang et al., 2021) and Real-ESRGAN (Wang et al.,
2021) learned SR networks that are robust against various
real-world degradations by synthesizing the dataset with a
random combination of multiple degradations. Comparing
to the prior arts, our study aims to tackle the challenge of
generating LR images with continuous degradation levels
facilitating real-world degradation information.

• Arbitrary scale super-resolution To improve the gen-
eralizability and applicability, several SISR networks that
can handle arbitrary scales have been introduced (Hu et al.,
2019; Chen et al., 2021; Yang et al., 2021; Lee & Jin, 2022).
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Meta-SR (Hu et al., 2019) proposed a meta-network that
can predict weights of upscale filters for a given arbitrary
scale factor. Interpreting images as continuous fields of
pixels. LIIF (Chen et al., 2021) adopts implicit neural repre-
sentation, which enables the representation of images with
continuous, arbitrary scales. However, to train these net-
works to handle arbitrary degradation levels, they need LR
images generated with simple bicubic downsampling with
different scaling factors. Thus, these networks can be vulner-
able to real-world degradation due to domain misalignment
problem (Cai et al., 2019).

• Normalizing flow (NF) Owing to its capability in density
estimation, NF has recently gained a particular amount of
attention in computer vision tasks requiring data distribution
modeling (Kingma & Dhariwal, 2018; Lugmayr et al., 2020;
Wolf et al., 2021; Abdelhamed et al., 2019; Wang et al.,
2022; Ardizzone et al., 2020). In SR tasks, SRflow (Lug-
mayr et al., 2020) model the conditional distribution of HR
images given LR images to tackle an ill-posed problem that
a single LR image can be restored into multiple HR images.
Deflow (Wolf et al., 2021) further models the degradation
distributions on the unpaired setting of noisy and clean im-
ages based on SRflow model architecture. However, these
methods can only handle a specifically targeted SR degrada-
tion level (e.g., ×2) and thus cannot handle real-world LR
images with unseen/arbitrary degradation levels.

• Latent space interpolation Several works on image ma-
nipulation and generations (Karras et al., 2020; Patashnik
et al., 2021; Liu et al., 2021; Berthelot* et al., 2019; Chen
et al., 2019; Shen et al., 2020; Zhu et al., 2020) have at-
tempted to generate new images with intended semantic in-
formation by manipulating the latent variables. For instance,
new face images can be generated by controlling high-level
attributes, such as ages, hairstyles, and emotion (Chen et al.,
2019; Shen et al., 2020; Zhu et al., 2020). While these meth-
ods focus on manipulating mostly high-level and domain-
specific attributes, our proposed method aims to accurately
control low-level image attributes like blur and noise using
a constrained latent variable interpolation.

3. Proposed Method: InterFlow
In Figure 1, we can see different artifacts such as noise, blur,
and color distortion as degradation level changes. Thus, we
aim to develop a new generative model which allows us
to control the degradation level arbitrary and generate LR
images, including more realistic artifacts. In this section,
we explain our LR image generation process for unseen
degradation levels by leveraging given real LR images in
the latent space that we dub InterFlow .

To model the degradation information, we use RealSR (Cai
et al., 2019) dataset. The dataset approximates the DLSR

imaging system based on thin lens equation with an addi-
tional assumption that the distance between lens and object
is sufficiently far apart (e.g., >2m) (Cai et al., 2019). Based
on this approximation, the image size can be zoomed lin-
early to the focal length. For instance, the image taken with
a longer focal length can represent enlarged objects with
finer textures. Therefore, we define degradation level s as a
ratio of different focal lengths as follows:

s =
f2
f1

, f2 ≥ f1 (1)

where f2 is fixed to the longest possible focal length (e.g.,
105mm). Images with different degradation levels include
different amounts of noise, blur, and artifacts. We denote
the HR image as IHR and the corresponding LR image as
Is, which are identical visual scenes captured with different
focal lengths f2 and f1, respectively. Any lens distortion,
exposure, and pixel misalignments of IHR and Is are cor-
rected by image pair registration method originally used in
RealSR (Cai et al., 2019) during which Is is scaled up using
bicubic upsampling to have the same resolution as IHR. For
convenience, we will denote the aligned LR image as Is.
Note that s is indicated as scale factor in RealSR (Cai et al.,
2019), but since the paired HR and LR images of RealSR
are pixel-wise aligned, we will refer to s as degradation level
in the following sections to avoid terminology confusion.

Estimating the degradation function for an arbitrary s is
very difficult, since the real degradation process is highly
complex and non-linear (Figure 1 and Figure 4) and real Is
is not available for all s. We circumvent this problem by
leveraging existing real LR images with limited degradation
levels (e.g., ×2 and ×4 LR images in RealSR) in the latent
space. We provide more details in the following sections.

3.1. Learning controllable degradation level

To deal with LR images with different degradation levels,
we first define the latent variable zs of an LR image Is, and
we assume that the latent zs follows a normal distribution
whose mean and variance are µs and σ2

s , respectively:

zs ∼ N (µs, σ
2
s), (2)

where µs and σs are trainable parameters in our work, and
they allow us to generate more distinct LR images for each
degradation level s.

In this work, we transform the LR image Is to the latent
zs using conditional NF (Rezende & Mohamed, 2015; Lug-
mayr et al., 2020), where the relation between Is and zs
given IHR is formulated with an invertible neural network
f with parameter θ:{

zs = fθ(Is; IHR)

Is = f−1
θ (zs; IHR),

(3)
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Figure 2. Visualization in a low dimensional space. PCA is used
for dimension reduction of 80 trained means ({µs}s∈S) and they
are projected onto 2D space. (a) NF is trained with bicubic kernel.
(b) NF is trained with Lanczos kernel.

and the conditional probability density function for Is with
change of variables formula is given by,

p(Is|IHR) = |detDfθ(Is; IHR)| · g(zs;µs, σ
2
s), (4)

where D computes the Jacobian of the flow network fθ,
and g(.;µs, σ

2
s) denotes the probability density function of

the normal distribution with mean µs and variance σ2
s . By

using this conditional density function, we can train our
neural network fθ by minimizing the following negative
log-likelihood (NLL) and learn controllable degradation as:

Lflow(θ) = −
∑
s∈S

log p(Is|IHR)

= −
∑
s∈S

log |detDfθ(Is; IHR)|

+ log g(fθ(Is; IHR);µs, σ
2
s),

(5)

where S is the set of discrete degradation levels of LR im-
ages available in SR dataset (e.g., S = {2, 3, 4} for RealSR).
Once fθ is trained, given any HR image IHR, we can syn-
thesize a new LR image for a specific degradation level
(i.e., s ∈ S) by feeding a random sample from the normal
distribution N (µs, σ

2
s) to the inverse function f−1

θ in (3).

3.2. Exploring latent space

To generate LR images for unseen degradation levels, we
first explore the latent space of NF, based on our key observa-
tion that latents of NF change smoothly in a low dimensional
space when the degradation level changes gradually. We
show our finding in Figure 2. To be specific, we collect
LR-HR image pairs for S = {1.1, 1.2, . . . , 8.0} by down-
and up-scaling HR images, in turn, using bicubic kernel,
then train NF with the collected image pairs by minimizing
NLL in (5). Then, using PCA, we project 80 mean values
(i.e., {µs}s∈S) in a high-dimensional space onto 2D and
observe that the projected mean values are lined up in the
low dimensional space in as shown Figure 2(a). In particu-
lar, these projected mean values are changing smoothly as

the degradation level increases. We also see similar results
even when LR-HR image pairs are generated with Lanczos
kernel Figure 2(b).

From this key observation, we assume that a latent for un-
seen degradation (e.g., z1.76) is predictable with nearby
available latents (e.g., z1.7 and z1.8), allowing us to explore
the latent space of NF to generate new LR images for arbi-
trary degradation level.

3.3. Exploiting latent space

In Figure 1, we see that real-world distortions, such as blur
and color shift, change highly non-linearly but smoothly
across degradation levels. Therefore, we assume that real-
world LR images also change smoothly in a latent space as
in Figure 2, thereby exploiting the latent space of NF to gen-
erate new LR images for unseen degradation information.

Specifically, we first predict a latent of an LR image for a
specific degradation level s′ /∈ S, given IHR, by leveraging
existing latents of real LR images in the train-dataset as:

zs′ = a · z⌊s′⌋ + (1− a) · z⌈s′⌉, (6)

where ⌊s′⌋ denotes the largest degradation level in the set
S less than s′, ⌈s′⌉ means the smallest one in S greater
than s′ (⌊s′⌋ < s′ < ⌈s′⌉), and a is the blending weight
(0 < a < 1). Now, we can synthesize a new latent zs′
by interpolating two nearby latents from the dataset with
a, where we can expect more accurate latent prediction
result when these two nearby latents are close (i.e., z⌊s′⌋ ≈
z⌈s′⌉). For example, when pixel-wise aligned IHR, I2 and
I3 images in RealSR are given, we can produce any latent
zs′ where 2 < s′ < 3 by blending the latents of I2 and I3.
Moreover, we can naturally extend our formulation in (6)
to exploit more existing latents larger than two if available
(e.g., polynomial interpolation rather than bilinear one).

Then, we can synthesize a new LR image Is′ for unseen
degradation level s′ by taking the inverse of the our flow
network with given zs′ and IHR as follows:

Is′ = f−1
θ (zs′ ; IHR). (7)

3.4. Constrained Flow

In this work, we aim to generate more realistic LR images
corresponding to the given HR image IHR. However, the
synthetic LR images from f−1

θ optimized solely using NLL
in (5) have some limitations. For instance, pixel-wise align-
ment with IHR is not guaranteed, and they cannot capture
subtle artifacts included in real LR images, such as tiny
noise, as shown in Figure 5 (rightmost). To alleviate this
problem, we give more constraints on the flow network and
further improve the quality of the generated LR images.
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Figure 3. Overview of InterFlow.

• Enforcing LR-consistency Although distributions of
the generated LR images by our InterFlow trained using
the NLL loss in (5) can be similar to those of real LR im-
ages, these synthetic LR images are not accurately aligned
with the corresponding HR images and even include slight
deviations in color as well as alignment.

To solve this problem, we propose a new loss function
LLR-cons(θ) to enforce consistency between the generated
LR image Is′ and corresponding real LR images in terms of
the low-frequency structure:

LLR-cons(θ) = ||Is′ ↓ −(a · I⌊s′⌋ + (1− a) · I⌈s′⌉) ↓ ||, (8)

where I⌊s′⌋ and I⌈s′⌉ are two pixel-wise aligned real LR
images in the train dataset, where their HR counterparts are
the same, but differently degraded, and ↓ indicates the bicu-
bic down-sampling process. Note that the same blending
weight a is used for the latent space fusion in (6) and also
used for image space blending in (8).

Thus, we can enforce the consistency of the low-frequency
information such as color, shape, and structure between
the generated LR image and corresponding real LR images,
rather than high-frequency detail, as we measure the simi-
larity in down-scaled image space.

• Enforcing latent discriminability Conventional gener-
ative models learn to capture distribution of train datasets,
whereas we utilize the learned distributions to predict a la-
tent beyond these learned distributions. However, we see
that the generated LR images Is′ from InterFlow trained
with only NLL do not show characteristic of real LR im-
ages when s′ /∈ S, and it is a natural phenomenon when
the two learned normal distributions N (µ⌊s′⌋, σ

2
⌊s′⌋) and

N (µ⌈s′⌉, σ
2
⌈s′⌉) are close enough and overlapped. This re-

stricts the capability of NF to generate new and distinctive
LR images for unseen degradation levels, so we employ the
information bottleneck (IB) (Tishby et al., 2000) to give
more discriminability among the learned distributions, and
it yields IB loss function as,

LIB = − 1

|S|
∑
s∈S

log
N (fθ(Is; IHR);µs, σ

2
s)∑

t∈S N (fθ(It; IHR);µt, σ2
t )
, (9)

where |S| denotes the cardinality of S.

Note that, unlike other approaches which employ IB for
generative classification tasks (Ardizzone et al., 2020), we
use IB to improve the generation capability of the generative
model for unseen distributions.

• Overall flow Figure 3 shows the overall flow of the
proposed LR image generation approach. Our proposed
network is trained to minimize the following loss function:

Ltotal = Lflow + λLR-cons · LLR-cons + λIB · LIB, (10)

where λLR-cons and λIB are user-parameters to control the bal-
ance among loss terms. In our experiments, we demonstrate
that we can produce plausible LR images even for unseen
degradation level with the aid of proposed loss models.

4. Experimental Results
In this section, we elaborate on implementation details and
measure the quantitative and qualitative results of the gener-
ated LR images, and show the elevation of SR performance
with the aid of our synthetic LR images. We will release our
source code and dataset upon acceptance.

4.1. Implementation details

• InterFlow architecture For InterFlow, we use a slightly
modified version of the conditional NF introduced in SR-
Flow (Lugmayr et al., 2020). However, we can use any
conditional NF architecture and do not restrict our method
to a specific network architecture. See our supplementary
material for the detailed network configuration.

• Experimental settings To train and evaluate the pro-
posed method, we use the real-world SR dataset (RealSR
ver.2). Specifically, RealSR is composed of images captured
by Canon and Nikon cameras. To show the generalization
ability of our method, we use only Canon train-dataset to
train InterFlow and then synthesize LR images given HR
images in the Nikon dataset through our InterFlow.

Our InterFlow is trained by minimizing the loss in (10) using
the Adam optimizer (Kingma & Ba, 2015) with 160×160
train-patches (batch size = 8) for 100k iterations. The learn-
ing rate is initially set to 10−4 and reduced by half at 50k,
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Figure 4. Visual comparison of LR images. (a) Real LR images in
RealSR dataset. (b) Our synthetic images obtained by changing a.

Figure 5. Visual comparison of high frequency components. Our
InterFlow successfully generates tiny noise in real LR images than
the naı̈ve image space interpolation approach. From left to right:
synthetic LR image by image space interpolation, our synthetic
LR image, and RealSR ×3 LR image.

75k, and 90k iterations. Moreover, downscaling factor in
the proposed LR-consistency loss in (8) is set to 4, and
we use λLR-cons = 10 and λIB = 1 which are determined
empirically.

Using our generated LR images, we train conventional SR
networks; VDSR (Kim et al., 2016), RCAN (Zhang et al.,
2018a), KPN (Cai et al., 2019), HAN (Niu et al., 2020),
NLSN (Mei et al., 2021), and SwinIR (Liang et al., 2021).
In particular, we add a squeeze operation (Kingma & Dhari-
wal, 2018) at the beginning of RCAN, HAN, NLSN, and
SwinIR architectures to enable them to take LR input whose
resolution is equal to that of output, thereby being able to
handle our train-dataset. We use k = 5 in KPN. These six
SR networks are trained by minimizing the conventional
L1 loss using the Adam optimizer with 128× 128 patches
(batch size = 16) for 70k, 300k, 200k, 300k, 300k, and
300k iterations, respectively. The learning rate is initially
set to 10−4 and halved at 50%, 75%, and 87.5% of the total
training iterations.

Furthermore, for extensive experiments, we collect more test
data for degradation levels ×2.5 and ×3.5 using the same
dataset acquisition process in RealSR (Cai et al., 2019). To
be specific, we use Canon 5D Mark 3 camera equipped with
a lens with focal length 24 ~105 mm to take pairs of LR
and HR images. Our RealSR ×2.5 dataset is acquired by
taking 40 pairs of images with focal lengths of 42 mm and
105 mm, and RealSR ×3.5 dataset is collected by taking 40
pairs of images with the focal length of 31 mm and 105 mm.
More details are available in the supplementary material.

4.2. LR image generation results

To evaluate the quality of the generated LR images, we
train our InterFlow with the LR images in RealSR Canon
trainset for ×2 and ×4 degradation levels (i.e., {2, 4} ∈ S).
Using the fully trained InterFlow, we generate LR images
given RealSR Nikon test HR images via formulations (6)-
(7). Following (Jang et al., 2021), we first measure the
accuracy of added noise in our generated LR images using
KL-divergence. Then, we show qualitative results and SR
results to demonstrate the superiority of our generated LR
images.

In Figure 6, we evaluate the KL-divergence of our synthetic
LR images on ×3 with Nikon ×3 LR test images, which
are the ground truth LR images for ×3 RealSR. In this
figure, we provide KL-divergence by changing the blending
weight a in the latent space (red line) and in the image space
(green line). We observe that each method reaches a certain
local minimum, which corresponds to the optimal blending
weight a that makes the generated dataset to resemble the
ground truth ×3 RealSR LR images (i.e., Nikon ×3 LR
test images). However, we can easily see that the minimum
value of KL-divergence in the LR images generated by naı̈ve
image space interpolation does not reach the minimum KL-
divergence value of latent space interpolation method (ours).
Thus indicating the superiority of our method over the naı̈ve
image space interpolation method.

Moreover, the visual comparison in Figure 5 demonstrates
that our latent space interpolation method produces more
plausible noise than the result by image (pixel) space inter-
polation. Specifically, we observe that the naı̈ve image space
interpolation method (leftmost image in Figure 5) does not
simulate the complex noise present above the yellow letter
‘M’ of the ground truth RealSR ×3 LR image (rightmost
image in Figure 5). In Figure 4, we show a qualitative
result of our method that accurately reproduces the complex
degradation of RealSR. We can see that by changing the
blending weight a, our InterFlow captures the change from
LR×2 to LR×4 to accurately predict LR×3 image.

4.3. Real-world SR performance

We show that our generated dataset is indeed an effective
dataset for real-world SR. To assess our method, we train
conventional SR networks (VDSR, RCAN, KPN, HAN,
NLSN, and SwinIR) with our generated dataset and evaluate
them with real-world images. Our InterFlow is trained on
RealSR Canon train set for ×2 and ×4 degradation levels
(i.e., {2, 4} ∈ S). The trained InterFlow is used to generate
LR images, given RealSR Nikon HR images. The generated
LR images are used to train these SR networks. These SR
networks are evaluated on both Canon and Nikon test sets
of LR ×3 and corresponding HR images.

In Table 1, we compare SR networks trained with RealSR
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Figure 6. Comparison of high-frequency details. By changing the
blending weight a, we measure the distance from high-frequency
distribution of ×3 Nikon LR images and distributions by synthetic
datasets in terms of KL-divergence.

Table 1. SR results on the RealSR test set with scale ×3 (s = 3).
Results by the ground truth RealSR (×3) train set is the upper
bound, since the ground truth train set is considered unavailable in
this experimental setting (i.e., S = {2, 4} in (5)).

Model Train set Metric
PSNR SSIM LPIPS

VDSR
RealSR (×3) 30.33 0.8503 0.3351
RealSR (×2, ×4) 29.92 0.8404 0.3400
Ours (×2 ~×4) 30.23 0.8497 0.3341

RCAN
RealSR (×3) 30.68 0.8641 0.3243
RealSR (×2, ×4) 30.30 0.8596 0.3281
Ours (×2 ~×4) 30.57 0.8631 0.3155

KPN
RealSR (×3) 30.45 0.8576 0.3351
RealSR (×2, ×4) 30.07 0.8520 0.3361
Ours (×2 ~×4) 30.32 0.8572 0.3263

HAN
RealSR (×3) 30.76 0.8659 0.3216
RealSR (×2, ×4) 30.43 0.8616 0.3261
Ours (×2 ~×4) 30.68 0.8644 0.3167

NLSN
RealSR (×3) 30.72 0.8643 0.3187
RealSR (×2, ×4) 30.47 0.8614 0.3205
Ours (×2 ~×4) 30.63 0.8636 0.3110

SwinIR
RealSR (×3) 30.69 0.8647 0.3217
RealSR (×2, ×4) 30.23 0.8597 0.3255
Ours (×2 ~×4) 30.56 0.8634 0.3166

KernelGAN - 28.55 0.8131 0.3636

×3 dataset (upper bound); RealSR ×2, ×4 datasets (base-
line); and our ×2 ~×4 synthetic datasets (S = {2, 4} in
(5)). RealSR ×3 dataset will provide upper bound perfor-
mance because the domain aligns between train and test
(degradation level ×3). Meanwhile, RealSR ×2, ×4 dataset
serves as baseline for our datasets since they use the same
available training sets. Specifically, we generate ×2 ~×4
datasets using degradation level s′, where 2 < s′ < 4. Our
method consistently outperforms the baseline, and the SR
results are close to the upper bound.

Figure 7 further demonstrates that our synthetic dataset
leads to visually more pleasing SR results, displaying higher
robustness against undesirable artifacts compared to the

Table 2. SR performance results on different train set generated by
Interflow applied different losses (LR-cons, IB) using HAN (tested
on RealSR test set ×3).

Train set LR-Cons IB RealSR ×3 test set
PSNR SSIM LPIPS

RealSR (×2, ×4) ✗ ✗ 30.43 0.8616 0.3261
Ours (×2 ~×4) ✗ ✗ 30.34 0.8567 0.3171
Ours (×2 ~×4) ✓ ✗ 30.16 0.8498 0.3233
Ours (×2 ~×4) ✗ ✓ 30.40 0.8610 0.3209
Ours (×2 ~×4) ✓ ✓ 30.68 0.8644 0.3167

Table 3. Quantitative results are evaluated on the RealSR ×2.5
and RealSR ×3.5 testsets.

Model Train set PSNR SSIM
×2.5 ×3.5 ×2.5 ×3.5

RCAN RealSR 31.79 30.06 0.8864 0.8327
Ours 32.11 30.20 0.8891 0.8337

NLSN RealSR 31.85 30.01 0.8869 0.8295
Ours 31.93 30.20 0.8879 0.8327

Table 4. SR results from HAN trained with different LR generation
methods (tested on the RealSR testset ×3).

Model Train set LR Generation Method RealSR ×3 test set
PSNR SSIM

HAN RealSR ×2,×4
None 30.43 0.8616
Linear Interpolation 30.48 0.8564
InterFlow (Ours) 30.68 0.8644

baseline (see Canon 017 HR.png in Figure 7). The results
indicate that baselines suffer from the discrepancy in degra-
dation levels, while our method is resilient, owing to the
accurate generation of LR images with diverse degradation
levels. We also compare with KernelGAN (Bell-Kligler
et al., 2019), which aims for real-world SR through esti-
mating blur kernels. Models trained with RealSR and our
method exhibit higher performance than KernelGAN, under-
lining the importance of acquiring rich accurate SR datasets.
We also report the results on images with degradation levels
×2.5,×3.5 (i.e., RealSR ×2.5, RealSR ×3.5) in Table 3.
Please see the supplementary material for visual results.

4.4. Ablation study

• Impact of each loss term We demonstrate the effec-
tiveness of proposed loss terms (i.e., , LLR-cons, LIB) by
dissecting them, with results in Table 2. Disabling either
loss terms results in significant performance degradation,
often worse than the baseline trained with only RealSR (×2,
×4) datasets. This highlights the importance of generating
realistic and diverse degradations to tackle real-world SR.

• Interpolating LR images in image space To further
demonstrate the effectiveness of our method, we compare
our method with Linear Interpolation in Table 4, which is
one of the naı̈ve LR generation methods. Specifically, for
Linear Interpolation, we generate LR images with scales
from 2 to 4 by linearly interpolating ×2 and ×4 LR images.
An SR network HAN trained with our dataset demonstrates
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Figure 7. Qualitative comparisons on RealSR dataset with degradation level ×3. (a)-(b) are generated from the SR models (VDSR, RCAN,
KPN) trained with the images on degradation levels ×2,×4 dataset in RealSR. (c)-(d) are generated from the SR models trained with our
generated dataset. The leftmost column, center column and rightmost column shows the results of VDSR, RCAN and KPN, respectively.

Table 5. Ablation study on design choices for the LR-consistency
and IB losses with HAN (evaluated on the RealSR testset ×3).

Method RealSR ×3 test set
PSNR SSIM

λLR-cons = 1 30.56 0.8635
λLR-cons = 10 30.68 0.8644
λLR-cons = 100 30.52 0.8611
λIB = 0.1 30.43 0.8635
λIB = 1 30.68 0.8644
λIB = 10 N/A N/A
No downsampling 30.20 0.8511
2× downsampling 30.25 0.8529
4× downsampling 30.68 0.8644

higher performance, stressing its effectiveness.

• Impact of hyper-parameters We investigate the influ-
ence of hyper-parameters in our loss function: λLR-cons, λIB,
and downsampling factor in LLR-cons, as reported in Table 5
in supplementary materials. When the downsampling factor
in LLR-cons is too small, LR images with intermediate degra-
dation levels are forced to contain high-frequency details
that exist in the images Is1 and Is2 . When λIB decreases,
generated LR images lose degradation information, making
it unsuitable for LR input images. Otherwise, if IB loss
is too high, we observed unstable training as the shift of
distributions in NF becomes too large, preventing the LR
images from being mapped to predefined distributions.

4.5. Scale-arbitrary SR networks with InterFlow

Scale-arbitrary networks (Chen et al., 2021; Hu et al., 2019)
and InterFlow share the objective of handling LR images
with various degradation levels. However, scale-arbitrary
networks inherently require train dataset of arbitrary scales

and thus have relied on synthetic dataset, limiting their
performance on real-world images. We investigate whether
our generated dataset enhances the performance of scale-
arbitrary networks in modeling arbitrary degradation levels
of real-world images.

• Experimental settings We perform experiments on two
scale-arbitrary networks: MetaSR (Hu et al., 2019) and
LIIF (Chen et al., 2021) with EDSR-baseline (Lim et al.,
2017) as a backbone. We follow the same model config-
urations from the official implementations and the same
learning configurations from Section 4.1, except that patch
size is set as 48 × 48 to match the settings of MetaSR and
LIIF while total iteration is set as 200k for convergence.
We generate LR images using five different methods: Bicu-
bic, Linear Interpolation, BSRGAN (Zhang et al., 2021),
Real-ESRGAN (Wang et al., 2021), and the proposed Inter-
flow. For BSRGAN and Real-ESRGAN, we employed the
same hyper-parameters from their official implementations
to generate degraded images. As with previous experiments,
we train networks on RealSR ×2, ×4 train set and evalu-
ate them on RealSR ×3 test set. For reference, we also
measure the upper bound performance by training on im-
ages with the same degradation level as test set: RealSR
×3 train set. Note that MetaSR and LIIF cannot use Re-
alSR dataset as is because these networks expect LR images
to have varying resolutions corresponding to degradation
level, while RealSR LR and HR images have the same res-
olution to align pixels for correcting lens distortions and
misaligned contents (Cai et al., 2019). To train them with
RealSR, LR images are further downsampled via a bicubic
downsampling operation with a downscale factor that is the
same as degradation level s. However, there may be addi-
tional degradations introduced by downsampling operation,
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Table 6. SR results by scale-arbitrary networks on the RealSR test
set ×3.

Model Train set LR Generation Method RealSR ×3 test set
PSNR SSIM LPIPS

MetaSR

RealSR ×3 None 30.43 0.8572 0.3311
RealSR ×1 Bicubic (baseline) 28.99 0.8165 0.3488
RealSR ×2,×4 Linear Interpolation 30.30 0.8541 0.3231
RealSR ×1 BSRGAN 28.15 0.8114 0.3867
RealSR ×1 Real-ESRGAN 26.90 0.8077 0.3813
RealSR ×2,×4 InterFlow (Ours) 30.42 0.8569 0.3222

LIIF

RealSR ×3 None 30.43 0.8578 0.3325
RealSR ×1 Bicubic (baseline) 29.00 0.8167 0.3490
RealSR ×2,×4 Linear Interpolation 30.33 0.8560 0.3271
RealSR ×1 BSRGAN 28.23 0.8133 0.3875
RealSR ×1 Real-ESRGAN 27.07 0.8090 0.3817
RealSR ×2,×4 InterFlow (Ours) 30.44 0.8581 0.3263

Table 7. SR results by scale-arbitrary networks on the DRealSR
test set ×3.

Model Train set LR Generation Method DRealSR ×3 test set
PSNR SSIM LPIPS

MetaSR

RealSR ×3 None 31.14 0.8705 0.3596
RealSR ×1 BSRGAN 30.07 0.8579 0.3831
RealSR ×1 Real-ESRGAN 29.00 0.8489 0.3825
RealSR ×2,×4 InterFlow (Ours) 31.16 0.8651 0.3559

LIIF

RealSR ×3 None 31.15 0.8705 0.3616
RealSR ×1 BSRGAN 30.21 0.8601 0.3823
RealSR ×1 Real-ESRGAN 29.00 0.8493 0.3827
RealSR ×2,×4 InterFlow (Ours) 31.15 0.8662 0.3613

possibly even damaging original degradation information.
Thus, generating real-world LR images with scale resolu-
tions according to degradation levels is an interesting future
research direction.

• Results Table 6 reports the results after training net-
works with four different versions of train sets: RealSR ×3
for upper bound reference; bicubic interpolation on RealSR
×1 HR images; linear interpolation on RealSR ×2 and ×4;
and dataset generated by Interflow (Ours) trained on RealSR
×2 and ×4. Note that generating LR images by bicubic in-
terpolation on ×1 HR images is the same procedure used by
MetaSR, LIIF, and other conventional SR networks, serving
as a baseline. Inferior performance by baselines verifies
that conventional synthetic LR generation methods are not
suitable for real-world images. In contrast, dataset by our In-
terFlow greatly improves the performance and even achieves
performance near upper bound. The results demonstrate that
InterFlow is complementary to scale-arbitrary networks and
helps them better handle unseen degradation levels.

To further demonstrate the generalizability of our method,
we compare BSRGAN and Real-ESRGAN on an unseen
test set that was not used during the training phase. We
adopt DRealSR (Wei et al., 2020) dataset because it con-
tains images captured in diverse environments and settings,
using cameras from various manufacturers such as Canon,
Sony, Nikon, Olympus, and Panasonic. In Table 7, we ob-
serve that both MetaSR and LIIF, trained with our synthetic
dataset, demonstrate superior performance on the unseen
test set compared to BSRGAN and Real-ESRGAN. They
even achieve performance levels similar to those trained

with the specific scale factor (i.e., RealSR ×3). Therefore,
our results demonstrate that using the proposed dataset for
training allows the SR networks to have a broader general
applicability.

While the BSRGAN and Real-ESRGAN methods for syn-
thesizing datasets for SR have the advantage of making
neural networks robust to various types of degradations,
they have a fundamental limitation. These methods do not
accurately model the real-world degradations that need to
be considered when simulating real camera zooming. As a
result, neural networks trained on the generated dataset from
BSRGAN and Real-ESRGAN tend to produce restored im-
ages with lower quality, as indicated by lower PSNR, SSIM,
and LPIPS values, compared to neural networks trained on
our synthesized dataset (see Table 6 and Table 7). Further-
more, in the context of arbitrary scale single image super-
resolution (SISR) tasks, the dataset synthesis methods using
BSRGAN or Real-ESRGAN require determining complex
hyperparameters for degradation mixtures at each scale fac-
tor. This becomes difficult and impractical in real-world
scenarios.

5. Limitations and Conclusion
In this work, we propose to generate LR images including
realistic artifacts for unseen degradation levels with our
Interflow approach. One limitation of our approach is that
we cannot explicitly determine the blending weight a for
a specific degradation level since real degradation changes
non-linearly. Thus, alleviating this limitation is what we
will study in the near future.

Nevertheless, we addressed a novel task, namely, generating
LR-HR paired dataset for SR with unavailable degradation
levels. To solve this problem, we proposed a constrained
NF which enforces LR consistency and discriminability on
each degradation level. Despite the difficulty of the task, our
InterFlow successfully generates accurate LR images for un-
seen degradation levels and can be used to successfully train
SR networks for the real-world SR task. Furthermore, if ad-
ditional real-world degradation such as noise (Abdelhamed
et al., 2018; Anaya & Barbu, 2018) or image compression
artifacts are integrated as a unified dataset, we believe that
our model will be able to generate a larger class of complex
image degradation to train deep neural networks.
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Supplementary Material

A. InterFlow Architecture
For our InterFlow, we use a slightly modified version of SRFlow (Lugmayr et al., 2020). SRFlow is a conditional normalizing
flow (NF) model based on the architectures of Glow (Kingma & Dhariwal, 2018) and RealNVP (Dinh et al., 2017). Similar
to Glow, the forward operation of SRFlow consists of L levels. At each level, it begins with a squeeze operation to reduce
the resolution of the input image while increasing the depth. Then, K flow steps are followed, where each step consists
of its own distinct invertible operation. Finally, it ends with a split operation which only passes a part of the output to the
next level and uses the rest as latent variables. For our InterFlow, we use K = 16, and L = 2. Each flow step consists of
four trainable operations. They are Actnorm (Kingma & Dhariwal, 2018), invertible 1x1 convolution (Kingma & Dhariwal,
2018), affine injector (Lugmayr et al., 2020), and conditional affine coupling (Lugmayr et al., 2020). Especially, affine
injector and conditional affine coupling are conditional operations that make the architecture conditionally invertible. We let
h denote the encoder of our InterFlow, In SRFlow, the input resolution for the SRFlow encoder is smaller than the output
image of the flow function. In contrast, in our InterFlow, the input resolution of h and the resolution of the output image are
the same. Therefore, we add a squeeze operation at the beginning of the encoder h to match the resolution and change the
input depth of the first convolution.

B. Training and Evaluation
B.1. Train-time and Run-time

As our Interflow is a slightly modified version of SRFlow, it has few more parameters compared to SRFlow network. It
has 31 M parameters with settings of the final version mentioned in our main manuscript. It takes 1.5 days to train with an
NVIDIA V100 GPU and takes 0.35 seconds to generate a single LR image which has a resolution of 160 × 160.

B.2. Training InterFlow with RealSR ×2, ×4

Experiments conducted in Figure 4-6 and Table 1-3 in the manuscript are designed to evaluate how well models can handle
unseen degradation levels. To this end, we assume that we only have access to ×2 and ×4 degradation levels during training,
then evaluate the models on scale factor ×3. Therefore, we train our InterFlow using RealSR train dataset with degradation
level s ×2 and ×4 captured by a Canon camera. With the trained InterFlow, we generate LR images by changing the
blending weight a for degradation levels 2 < s′ < 4 using RealSR train images captured by a Nikon camera for ×2 and
×4 degradation levels. These synthesized LR images are used to train the SR networks. To evaluate the performance of
the trained SR networks, we use RealSR test dataset for ×3 degradation level. Notably, the test dataset for the evaluation
includes images captured by both Canon and Nikon cameras. Experimental results from this setting are shown in Figure 4-6,
and Table 1-3 in the manuscript.

C. Qualitative results
C.1. Results on RealSR ×2.5 and RealSR ×3.5

Experiments in Table 4 in the manuscript, and Figure 8 in the supplementary material aim to evaluate under more unseen
degradation levels: ×2.5 and ×3.5. To do so, SR networks are evaluated on RealSR ×2.5 and ×3.5 testset that we
collected. Our collected RealSR ×2.5 and ×3.5 testset contains a total of 80 HR-LR image pairs taken in outdoor and
indoor environments. Some sample images are shown in Figure 12.

We first train our InterFlow, which is then used to generate LR images for 2 < s′ < 4 to train the SR networks. Notably, we
train our InterFlow using all the RealSR Canon train-images (i.e., , S ∈ {2, 3, 4}), and generate LR images using RealSR
Nikon train-images for all scale factors (i.e., , S ∈ {2, 3, 4}).
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Figure 8. Qualitative comparisons on RealSR ×2.5 and ×3.5 test images that we acquired using the same data acquisition process for
RealSR dataset (Cai et al., 2019). (a)-(b) SR results from RCAN and HAN trained with conventional dataset only. (c)-(d) SR results from
RCAN and HAN trained with our synthetic dataset.
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Figure 9. Qualitative comparisons on RealSR ×3 test images with the two repersentive scale-arbitrary SR networks: LIIF (Chen et al.,
2021) and MetaSR (Hu et al., 2019) with EDSR-baseline (Lim et al., 2017). Each SR result of (a),(b),(c) is generated from the SR
networks with different sets of synthesized LR images: bicubic interpolation on RealSR ×1 HR (a), linear interpolation on RealSR ×2
and ×4 (b), and synthesized from our Interflow using RealSR ×2 and ×4 (c).

In the visual results in Figure 8, we see that the SR networks trained with our synthetic datasets output much sharper and
clearer images with more details, while the SR networks trained with conventional datasets produce unexpected artifacts
(see HAN ×2.5).
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𝑎 = -1.5 𝑎 = -1.0 𝑎 = -0.5 𝑎 = 0 𝑎 = 1 𝑎 = 1.5 𝑎 = 2.0 𝑎 = 2.5𝑎 = 0.5

Figure 10. Visual results with extra-polation. Generated LR images with blending weights where −1.5 ≤ a ≤ 2.5. Note that we train our
InterFlow only for 0 < a < 1.
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Figure 11. Visualization of log-likelihood histograms for learned normal distribution N (µ4, σ
2
4). Note that Interflow is trained on RealSR

Canon ×2,×4 trainset, and the statistics mean µ4 and variance σ2
4 are trained during training-phase. Each log-likelihood value is

calculated by transformed latent variable zs and N (µ4, σ
2
4), respectively, where s ∈ {2, 4}. (a) The figure illustrates learned distributions

without using the IB loss LIB . Test samples for s = 4 do not follow the learned distribution N (µ4, σ
2
4). (b) The figure illustrates learned

distributions with the IB loss LIB . Test sample distribution for s = 4 is similar to the learned distribution N (µ4, σ
2
4).

C.2. Results on RealSR ×3.0 with scale-arbitrary SR networks

To show that our proposed real-world LR generation with arbitrary degradation levels is complementary to scale-arbitrary
SR networks, we show the performance improvement on real-world LR images when scale-arbitrary SR networks are trained
with our generated LR images. We perform evaluation on two representative scale-arbitrary SR networks: LIIF (Chen et al.,
2021) and MetaSR (Hu et al., 2019). While Table 6 in the main manuscript provides the quantitative results, we provide the
qualitative counterpart in Figure 9. We can observe that when the networks are trained in a standard manner (LR generation
by bicubic downsampling), the estimated SR have blurred and unclear edges. By contrast, when the networks are trained
with LR images generated by linear interpolation, the estimated HR images seem to have noticeable and undesirable artifacts.
Lastly, when the networks are trained with our method, the networks provide sharper images with lest artifacts. Along with
Table 6 in the main manuscript, the qualitative results further validate the effectiveness of our proposed framework InterFlow
in generating real-world LR images with arbitrary degradation level and thereby facilitating the robustness of scale-arbitrary
networks to real-world LR images with unknown degradation level.

C.3. Extrapolation in Latent Space

In this section, we stress-test our InterFlow outside of its operating region to investigate how well InterFlow can generalize.
Specifically, we analyze how the quality of generated LR images changes if extrapolation is performed in the latent space
instead of interpolation.
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Table 8. SR results on several real-world test sets with scale ×3 (s = 3).

Model LR Generation Method NIQE ↓
OST300 DPED-iphone ADE20K-val

Bicubic - 7.4154 7.7566 7.3238

LIIF
BSRGAN 7.4710 8.6454 7.8580
Real-ESRGAN 6.8803 8.2202 7.2591
InterFlow (Ours) 5.9209 6.4287 6.0690

In Figure 10, we generate LR images by changing the blending weight, where we use a =
{−1.5,−1.0,−0.5, 0, 0.5, 1, 1.5, 2.0, 2.5}. From the results, we see that generated LR images by extrapolation in
the latent space for a < 0 include more details and sharp edges, and the results for a > 1 include more blurs, as we expected.
However, unexpected noise is added to the resulting images, and removing these artifacts to achieve more realistic LR
images will be our future work.

D. Visualizing latent distribution
In this section, we analyze our InterFlow by visualizing the distributions in its learned latent space. In particular, we
visualize the histograms of log-likelihood of RealSR Canon trainset and testset. In (a), we can observe that distribution
of ×2,×4 Test is significantly overlapped. Furthermore, some portions of ×2 Test are assigned with a higher likelihood
compared to ×4 Train. It is a well-known problem that NF with naı̈ve NLL loss cannot discriminate between in and out
distribution when NF transform images into latent variables (Nalisnick et al., 2018; Kirichenko et al., 2020). That is, this
entangled degradation information inhibits NF from generating distinctive LR images with unseen, intermediate degradation
levels. On the contrary, in (b), through InterFlow trained with LLR−cons,LIB , we can observe that each distribution of
log-likelihoods for ×2,×4 Test is separated. With the help of LLR−cons that maintains smooth transition along sparse
density area, InterFlow is able to generate more discriminated features such as real-world noises or artifacts. Thus, the
visualization analysis further corroborates the effectiveness of our proposed framework InterFlow to generate synthetic
datasets with arbitrary and continuous degradation levels.

E. More quantitative comparisons
In this section, we compare BSRGAN and Real-ESRGAN on other real-world datasets such as OST300 (Wang et al., 2018),
DPED (Ignatov et al., 2017), and ADE20K (Zhou et al., 2017). As the datasets do not have corresponding ground-truth HR
images, we measure restored image quality using non-reference image quality assessment such as NIQE (Mittal et al., 2012).
In Table 8, we follow the same experiment settings from Table 7 where the test datasets are not used in a training phase, and
our method shows superior performance compared to BSRGAN and Real-ESRGAN on all of three unseen test sets.

F. Sample images of extended RealSR dataset
We collect extended RealSR dataset to measure SR performance for degradation levels ×2.5 and ×3.5. It contains a total of
80 HR-LR image pairs taken in outdoor and indoor environments. Some sample images are shown in Figure 12.

15



Learning Controllable Degradation for Real-World Super-Resolution via Constrained Flows

× 1.0 × 2.5 × 3.5

Figure 12. Sample images in our own RealSR ×2.5 and RealSR ×3.5 testsets.
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