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Abstract

Neural networks are known to fail with high confidence, especially for data that
somehow differs from the training distribution. Such an unsafe behaviour limits
their applicability. To counter that, we show that models offering accurate confi-
dence levels can be defined via adding constraints in their internal representations.
To do so, we encode class labels as fixed unique binary vectors, or class codes, and
use those to enforce class-dependent activation patterns throughout the model’s
depth. Resulting predictors are dubbed total activation classifiers (TAC), and TAC
is used as an additional component to a base classifier to indicate how reliable
a prediction is. Empirically, we show that the resemblance between activation
patterns and their corresponding codes results in an inexpensive unsupervised
approach for inducing discriminative confidence scores. Namely, we show that
TAC is at least as good as state-of-the-art confidence scores extracted from existing
models, while strictly improving the model’s value on the rejection setting.

1 Introduction

Recent work has shown that commonly used model classes and learning algorithms yield simple
class-dependent patterns in their learned representations [14, 9], i.e., specific groups of representations
activate more or less strongly depending on high-level features of inputs. This behaviour can be
useful to define predictors able to reject/defer test data that do not follow common patterns, provided
that one can efficiently verify similarities between new data and common patterns.

Rather than hoping this property emerges, we seek to build it into models. To do so, we introduce total
activation classifiers (TAC): a component that can be attached to any kind of multi-layer classifiers.
TAC obtains activation profiles via slicing and reducing (e.g., summing or averaging) the activations
of a stack of layers. In addition, we turn the label set into a set of hard-coded class-dependent
codes [4, 6, 16]. During training, activation profiles are then encouraged to match the patterns
defined by the codes. In other words, class codes define valid internal configurations of activations by
indicating which groups of features should be strongly activated for a given class. At testing time,
TAC decides on the best match between an observed activation profile and class codes, and distances
can be used as confidence scores to detect low-confidence, likely erroneous predictions.

Intuitively, the motivation for constraining internal representations is two-fold: 1. Given data, we can
measure how close to a valid pattern the activations of a model are, and finally use such a measure
as a confidence score. That is, if the model is far from a valid activation pattern, then its prediction
should be deemed unreliable. 2. Tying internal representations with the labels adds constraints to
attackers. For a standard classifier, an attacker’s only job is to make it so that any output unit fires up
more strongly than the correct one, and any intermediate configuration of outputs that satisfy that
condition are valid perturbations. In our proposal, an attack is only valid if the entire set of activations
matches the pattern of the wrong class.
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Figure 1: Illustration of a Total Activation Classifier (TAC). Without loss of generality, we consider
the case where aw is 2-dimensional. The set of codes define valid activation patterns.

2 total activation classifiers (TAC)

2.1 Model definition

We will consider classes of predictors of the form f ′ ∈ F ′ : X 7→ [0, 1]L with L ≫ K, i.e.,
models that map data onto the unit cube in RL, which we define by leveraging the set of n-layered
neural networks. The outputs of layer i within any chosen f ′ ∈ F ′ are represented by aiw, w ∈
[1, 2, 3, ...,Wi], where Wi indicates the width of layer i given by its number of output features. We
then partition the set of representations aiw into disjoint subsets (or slices) of uniform sizes, denoted
by Si

l , l ∈ {1, 2, ...⌊L/n⌋}. Intuitively, our goal is to make it so that groups of high-level features
“fire up” more strongly depending on the underlying class of the input. To enforce that property, we
consider the sequence of total activations of slices. That is, for the feature slice Si

l on layer i, we will
consider its total activation

Ai
l(f

′, x) =
∑

ai
w∈Si

l

∑
h′,h′′

aiw,h′,h′′ , (1)

where features are arbitrarily considered as 2-dimensional objects (h′ and h′′ are, for example, spatial
dimensions in convolutional architectures for images). Note that total activations are defined similarly
for features of any dimension by simply reducing away the extra dimensions. The sequence of
total activations obtained from slices across all layers, denoted A(f ′, x), will be referred to as the
activation profile of x. An illustration is provided in Figure 1, where a generic convolutional model
has the outputs of its layers partitioned into slices Si

l which are then reduced to yield the sequence
A(f ′, x), the activation profile of x as induced by f ′. Figure 10 in the Appendix shows a Pytorch [15]
implementation of feature slicing and activation profile computation. Given a stack of layers yielding
activation profiles of dimension L, a set of class codes of dimension L, and a distance D, we define
total activation classifiers (TAC) such that they make the prediction

y′ := argmin
i∈Y

D(A(f ′, x), Ci) with associated confidence −D(A(f ′, x), Cy′). (2)

2.2 Training

Training is carried out to search for f ′ ∈ F ′ with activation profiles close to the correct code. To
enforce that behaviour, we minimize the training objective

Lbin = − 1

NL

N∑
i=1

C⊤
yi
log σ

(
A(f ′, xi)

)
+ (1− Cyi

)⊤ log
(
1− σ

(
A(f ′, xi)

))
, (3)
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where N is the size of the batch of data used to compute the objective, L is the length of the code and
activation profile, and σ is the sigmoid function. Lbin computes the binary cross-entropy loss for
each dimension of the code and is minimized for a perfect match between activation profiles and the
correct codes. While minimizers of Lbin yield the properties we need into a model, we empirically
observed that training against Lbin is not trivial in that it requires the use of aggressive learning rates,
rendering training unstable, especially so for large (i.e., ≥ 1000) label sets Y . To overcome that issue,
we define a second training objective by parameterizing a conditional categorical distribution over
the label set using the distances between a given activation profile and all the codes and performing
maximum likelihood estimation. More formally, the alternative training objective is

Lce = − 1

N

N∑
i=1

log
e−D(A(f ′,xi),Cyi

)/τ∑K
k=1 e

−D(A(f ′,xi),Ck)/τ
, (4)

where τ is a scaling parameter.

While both Lbin and Lce are reasonable choices for the training of TAC, each presents challenges.
As mentioned above, Lbin is such that it yields unstable training but we found that, in the cases
where one can minimize it, it produces models able to match codes very closely, and as such provide
discriminative confidence scores. On the other hand, training Lce is less unstable in that more
common hyperparameter configurations work out of the box. However, minimizers of Lce are not
as good at matching vertices tightly since the objective only requires activation profiles to lie closer
to the correct code than they are from other codes and, in that case, using distances as confidence
scores is not as effective. We thus consider the linear combination of these training objectives
L = αLbin + βLce, where α and β are hyperparameters. This choice takes advantage of the relative
easiness of training against Lce and the pressure of Lbin towards solutions able to match codes more
closely. We remark that both objectives share minima, so minimizing their sum does not introduce
any real trade-off.

3 Evaluation

Attaching TAC to pre-trained models: Provided that one has their ready-to-use classifier, a TAC
can be added on top of its features, and the base classifier is preserved as-is (i.e., “frozen”). To do so,
we isolate TAC from the base predictor via trainable projection layers applied in the representations
of the base classifier. Then, we apply slice/reduce operations on those projections to obtain activation
profiles. Projections correspond to independent MLP networks, one for each layer of the base
classifier. This approach is intended to simplify TAC training and enable its use in more practical
scale, but it also enables the combined use of confidence scores obtained by TAC and by the base
classifier such as the maximum softmax probability (MSP) or the maximum logit score (MLS) [18].

Baselines: For a fair comparison, we consider approaches that do not require access to out-of-
distribution data. Directly using statistics of the output layer of classifiers was observed recently to
yield state-of-the-art performance on different OOD detection tasks [18]. We thus consider MLS [18],
MPS [8], and DOCTOR [7], all obtained from the base classifier, as our main performance targets.

Rejecting classifiers: We evaluate TAC as a rejecting classifier, i.e., it can abstain if not sufficiently
confident in its predictions. We leverage the framework proposed by Casati et al. [2], which defines
the application-specific error cost ω capturing the ratio of how much we dislike accepting incorrect
classifications over how much we like accepting correct ones. This framework then proposes to
evaluate predictors in terms of their value V as a function of ω: V = Nc−ωNi

N , where Nc and Ni

correspond to the number of correct and incorrect error detection predictions made by a model over
a sample of size N = Nc +Ni +Nr, for Nr rejections. In Figure 2, we plot the Value Operating
Characteristic (VOC, cf. definition in [2]) curves for TAC, MLS, and MSP. The base predictor
corresponds to a ViT [5] (Base-16x16) we pre-trained, and TAC operates in 13 different layers. We
perform k-fold (k = 5) splits on the test set of ImageNet and, for a given split and value of ω, we
use the largest part of the data to select the confidence rejection threshold that maximizes V . Curves
averaged over splits are plotted for the data used for threshold selection (indicated as train in the
plot) as well as for the left-out splits. One can then note that TAC’s scores yield the highest value V
throughout a broad range of ω, if not all of it. Additionally, the performance of detection scores for
detecting prediction errors is reported in Table 1. For the test sets of both HWU64 and CLINC150,
and also ImageNet [3] in this case, we compare different scores when trying to detect whether the
base model made an error. TAC yields a higher detection rate in all cases.
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Method Det. AUROC (%) Det. Rate (%)
HWU64

MPS [8] 89.39 81.43
DOCTOR [7] 89.39 81.43

MLS [18] 89.36 80.12
TAC (L1) 89.25 83.25

CLINC150
MPS [8] 90.56 82.77

DOCTOR [7] 90.56 82.96
MLS [18] 91.36 82.66
TAC (L1) 93.25 85.70

ImageNet
MPS [8] 80.74 73.63

DOCTOR [7] 80.91 73.69
MLS [18] 53.69 52.75

TAC (Cosine) 89.41 81.64
Table 1: Detection of prediction errors. Detec-
tion rates are measured at the threshold where
true positive and false negative rates match.
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Figure 2: VOC curves for different predic-
tors on ImageNet as a function of ω, the
application-specific error cost characterizing
how desirable it is reject incorrect classifi-
cations. The overall value V of TAC-based
predictors dominates for a broad range of ω.

Out-of-distribution detection: As a safe policy, a classifier should be such that for an unseen class
it would abstain from predicting. We test this behavior with TAC by using distances to decide when
not to predict. Performance is evaluated on the CLINC150 benchmark. In this case, the training
sample is such that an UNKNOWN class is used to indicate data not represented in the remainder of
the label set. We train our models on all classes except UNKNOWN, but try to detect unknown classes
at testing time. Detection performance is reported in Table 2. We compare with MLS [18] and the
approach introduced by Shao et al. [17] where a Gaussian mixture model (GMM) is trained on top of
representations, and the likelihood of test instances according to the generative model is used as a
detection score. TAC can improve detection performance, especially so in terms of detection rate. In
Figure 3, we report the detection performance obtained when different distances are used on top of
TAC. Performance seems consistent across possibilities except for the case of L∞, which indicates
that there is often some dimension with a loose match between activation and code, no matter whether
data is in- or out-of-distribution.

Method Det. AUROC (%) Det. Rate (%)
GMM [17] 96.55 91.51
MLS [18] 97.00 91.78
TAC (L1) 97.28 92.82

Table 2: Comparison of different scoring
strategies used for detection of examples from
classes unseen during training. The detec-
tion rate measures the fraction of correctly
detected attackers at the threshold where true
positive and false negative rates match. For
TAC, we report results considering the best
performing distances, L1 in this case.
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Figure 3: Detection of out-of-sample test in-
stances in terms of AUROC.

4 Conclusion

We introduced total activation classifiers (TAC): a model component that can be attached to existing
predictors to provide scores indicating how likely it is that predictions are incorrect. Our empirical
evaluation showed that distances, as measured between activation profiles and class codes, defined
effective detection scores of problematic predictions. Notably, we trained TAC on top of models
as large as variations of transformer architectures such as BERT for text and ViT for images, and
observed resulting scores to yield much more effective rejecting classifiers than the base models TAC
builds upon. We also showed that the TAC’s scores can be used to detect data from unseen classes.
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A Additional results

A.1 Proof-of-concept

To test for whether commonly used models are able to match activation patterns given by class codes,
we train a TAC’ed WideResNet-28-10 [13] on CIFAR-10 [10], starting from random weights. TAC’s
slice/reduce operations are applied in three layers that output 160, 320, and 640 2-dimension feature
maps. We use 16 slices in each layer so that the resulting code length L is 48. Upon training to
convergence, we inspect the representations obtained from a random draw of the test set, as displayed
in Figure 4. Each column in the figure contains information about a different layer (layer depth
grows from left to right). In the first row, we plot the raw activations after average pooling spatial
dimensions. The activation profile A is displayed in the second row, where one can see a tight match
with the ground-truth codes, as displayed in the third row. The differences between A and code are
shown in the bottom row.

We further and test how good of a confidence score one can get by measuring some distance between A
and code. In Figure 5, we plot histograms of L1 distances for clean data and adversarial perturbations
of the test set of CIFAR-10. Attackers correspond to subtle PGD perturbations [13] obtained under a
L∞ budget of 8

255 . We consider the white-box access model in which the attacker has full access
to the target predictor and the table of codes. Attackers are created so that the activation profile A
moves towards the code of a wrong class. Attackers fail in matching codes as tightly as clean data.
TAC can then spot attackers and defer low-confidence predictions to a human evaluator.
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Figure 4: Activations of a TAC’ed Wide-ResNet-28-
10 trained on CIFAR-10.
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Figure 5: Distance histograms for attacks
and natural images on CIFAR-10.

A.2 Further results on training TAC from scratch

In Table 3, we report clean prediction accuracy and detection performance for adversarial pertur-
bations. In this case, we compare standard classifiers with their corresponding TAC considering
both MNIST and CIFAR-10. PGD adversarial perturbations are obtained with [13] attacks under
L∞ budgets of 0.3 and 8

255 for MNIST and CIFAR-10, respectively. The same WideResNet-28-10
discussed in Section A.1 is used for CIFAR-10, while a 4-layered convolutional model is used
for MNIST. We evaluated different detection scores corresponding L0, L1, L2, and L∞ distances
measured between A and codes, and reported the one that performed the best in each case (L∞
and L1 for MNIST and CIFAR-10, respectively). We evaluated both MSP and MLS for the base
classifiers and reported the best performer. TAC improves the detection performance at the cost of
a slight drop in prediction accuracy. We investigate the drop in accuracy by testing the capacity of
the model after the TAC operations are included. To do that, we train models to overfit randomly
assigned labels on the training set of MNIST. Figure 6 illustrates the in-sample error rate, where one
can notice that while both models manage to achieve a minimum error rate, one class converges much
faster than the other. Thus, we propose applying TAC to trained base classifiers to avoid such training
difficulties. We’ll show that, in that case, we avoid accuracy drops even in much larger models and
datasets.
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Clean Accuracy (%) Det. AUROC (%)
MNIST

Base model 99.0 75.7
TAC (L∞) 98.6 80.8

CIFAR-10
Base model 95.6 93.7
TAC (L1) 94.9 95.7

Table 3: Prediction performance as well as
adversarial detection evaluation for PGD at-
tackers under L∞ budgets of 0.3 and 8

255 for
the cases of MNIST and CIFAR-10, respec-
tively.
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Figure 6: Capacity test on MNIST. Models
overfit randomly assigned labels.

A.3 Matching of activation profiles and codes

In Figures 7a and 7b, we report further evidence showing that TAC succeeds in matching activation
profiles and class codes. To do so, we compare codes with the set of class-wise average activation
profiles given by the following for a particular class label c ∈ Y and a data sample D:

Ā(f ′, c) =
1

|Dc|
∑

x,y∈D

A(f ′, x)1[y = c], (5)

where 1[·] is the indicator function and Dc is the subset of D that belongs to class c:

Dc = {(x, y) ∈ D : y = c}. (6)

For both MNIST and CIFAR-10, we then build the heatmaps shown in Figures 7a and 7b by computing
the cosine distances between class average activation profiles and codes. That is, a heatmap H will
be a |Y| × |Y| matrix such that entry Hij will be:

Hij(f
′) = 1− cos(Ā(f ′, i), Cj). (7)

In both the cases of MNIST and CIFAR-10, we observe that H is such that its main diagonal is
highlighted, indicating an effective matching between activation profiles averaged for a given class
and the corresponding class code.
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Figure 7: Heatmaps indicating the distances between activation profiles averaged per class and
different class codes.
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A.4 Extra details and results on the performance of rejecting classifiers

A.4.1 VOC curves

We provide further results comparing TAC with commonly used confidence scores such as output
layer statistics when models are expected to reject or abstain from predicting if not confident enough.
We then repeat the procedure we used to create the VOC curve reported in Figure 2 for other datasets.
To do that, we split the test sets into 5 splits. For each such split, we use the larger portion of the data
(four splits) to find the confidence threshold that maximizes the value V of the underlying predictor
under the given error detection scoring strategy. We then plot the average value curves as a function
of ω (the error cost) for both the larger (train) and smaller (test) data portions when we refrain from
predicting from any exemplar for which the confidence score is below the threshold for the given ω.
Figures 8a, 8a, and 8c correspond to VOC curves for HWU64, CLINC150, and ImageNet (same as
Fig. 2 but with matching range of ω for consistency with other cases), respectively.

Results support our previous conclusion: the best detection score is application-dependent. In other
words, best performers depend on the value of ω as well as on the underlying data. In any case, the use
of TAC’s scores results in improvements in several cases making it clear that the proposed approach
should be used in cases where prediction errors are costly/unsafe and rejecting is a possibility or a
requirement.
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Figure 8: VOC Curves.

A.4.2 Accuracy under varying rejection levels

To further assess the effect in performance given by rejecting classifiers when evaluated only on
high confidence data points, we plot in Figures 9a, 9b, and 9c the test accuracy for various levels
of rejection. In more detail, while in the vertical axis we plot the standard prediction accuracy on
the underlying task, the horizontal axis corresponds to the fraction of the test set that is used for
evaluation, and we keep the test instances yielding the highest confidence. For example, if data
fraction is at the value 0.3 in any of those curves, it indicates that 30% of the test data was used for
evaluation, and the selection is made after sorting data points in decreasing order of confidence. We
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further measure the area under the curves, which is better when higher and upper bounded by the
value of 1.

A general observation is that, for almost all cases, we observe an expected behaviour: the more
we reject the better is the resulting prediction accuracy. This suggests that all of the considered
confidence scores correlate well with prediction correctness. As before, results suggest that the best
confidence score is data-dependent and also dependent on which level of rejection one is able to
tolerate in a given application. Nonetheless, TAC can be beneficial over compared statistics.
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Figure 9: Accuracy/rejection curves. The horizontal axis indicates the fraction of the test set that was
used to measure prediction accuracy. Only the highest confidence test points are used.

B Implementation details

B.1 TAC’s slice/reduce implementation example

In Figure 10, we show an example of an implementation of TAC’s slice and reduce operations on top
of 2-dimensional features. These operations are repeated in all the layers that are to be TAC’ed in a
model stack and results are concatenated to define the complete activation profiles, and those should
match in dimension with class codes.

B.2 Additional training details

Codes definition The only requirement we consider for the class codes is that they are as dissimilar
as possible in some sense. To build that set, one could use deterministic procedures such as, for
instance, computing Hadamard matrices. However, we observed that, given large enough codes,
randomly building C suffices for us to get discriminative codes. We thus define C as a random matrix
of dimensions |Y| ×L, where entries are independent Bernoulli(0.5) random variables, observed at
initialization.
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1 def compute_activation_profile(
2 features: torch.FloatTensor , n_slices: int
3 ) -> torch.FloatTensor:
4

5 """ Compute TAC’s slice -reduce operations.
6 Expects features with shape [N,C,H,W] where:
7 N is the batch size.
8 C is the number of channels of the conv. layer.
9 H and W are spatial dimensions.

10

11 Args:
12 features (torch.FloatTensor): Input features.
13 n_slices (int): Number of slices.
14

15 Returns:
16 torch.FloatTensor: Sliced and reduced activations of a layer.
17 """
18

19 batch_size , feature_dimension = features.size (0), features.size (1)
20

21 slices_size = feature_dimension // n_slices
22 total_slices_length = slices_size * n_slices
23

24 slices_indices = torch.arange(total_slices_length).view(n_slices ,
slices_size)

25

26 activation_profile = features[:, slices_indices , :, :]
27 activation_profile = activation_profile.view(batch_size , n_slices ,

-1)
28 activation_profile = activation_profile.sum(-1, keepdim=True)
29

30 return activation_profile

Figure 10: Pytorch implementation of feature slicing and activation profiles computation for a TAC
induced by 2-dimensional convolution layers.

Attaching TAC to pre-trained models The approach we consider in most of the evaluation we
discuss is given by a TAC used as an extension of an existing classifier, and its goal is to provide
confidence scores relative to predictions of the base model. We then propose a simple strategy to
couple a TAC component in a pre-trained classifier. Provided that one has their ready-to-use classifier,
a TAC is added on top of its features, and the base classifier is preserved as-is (i.e., “frozen”). To do so,
we isolate TAC from the base predictor via trainable projection layers applied in the representations
of the base classifier. Then, we apply the slicing and reducing operations defined in Eq. 3 on those
projections to obtain activation profiles. Projections correspond to independent MLP networks, one
for each layer of the base classifier, used after average pooling of spatial dimensions for the case of
multi-dimensional feature maps as in Fig. 1. The projection layers are then trained following the
loss in Eq. ??, but gradients are not propagated to the base classifier, which remains unchanged. We
remark that, while this approach is intended to simplify TAC training and enable its use in more
practical scale, it also enables the combined use of confidence scores obtained by TAC and at the
output layer of the base classifier (e.g., the maximum softmax probability (MSP) or the maximum
logit score (MLS) [18]), i.e., one can reject inputs that have too low confidence w.r.t. to either of
these easy-to-obtain scores.

Optimization and empirical observations Training was performed with Adam in all cases except
for models trained on MNIST and CIFAR-10, where SGD with momentum was employed. A grid-
search over hyperparameters was performed in each dataset, and models reported in the main text
correspond to the configuration reaching the highest prediction accuracy on in-distribution validation
data. All training runs were performed in single GPU hardware, which required a few hours for all
cases except for models trained on ImageNet, which continued improving until 2-3 days. Overall, we
noticed that TAC tends to perform better when weight decay is not applied or when its coefficient is
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set to very small values (< 10−5). Moreover, training against Lbin required relatively large learning
rates compared to commonly used ranges for SGD. For MNIST and CIFAR-10 for instance, training
to accuracy close to the base non-TAC model required learning rates greater than 1, which usually
rendered training unstable. We observed this behaviour to change once we introduced Lce, after which
common ranges of learning rate values used in popular recipes would work without change, though
TAC still required moderate to low values of the weight decay parameter. Also, We usually needed to
put pressure on one of the loss components, and we observed that the combination (α, β) = (1, 10)
worked consistently well.

Choices of distance functions To define D, we either use some Lp distance for p ∈ 0, 1, 2,∞ or a
cosine distance. While we used p = 1 in most cases, we found that the choice of D does not affect
TAC’s performance significantly. For ImageNet, we found that setting D to the cosine similarity
for this model resulted in the best-performing approach. Moreover, at testing time, we used only
the deepest of the 13 layers to compute TAC’s confidence scores since that resulted in improved
performance.

Mixup For models trained on CIFAR-10 and ImageNet, we performed Mixup [19] between pairs of
inputs and their corresponding codes. That is, given a pair of exemplars (x′, y′), (x′′, y′′), we compute
the mixtures of data and codes as given by xmix = αx′ + (1− α)x′′, Cymix = αCy′ + (1− α)Cy′′ ,
and α ∼ Beta(0.2, 0.2). Pairs are created by pairing a training mini-batch with a random interpolation
of its copy, and α is drawn independently for each pair. We present an implementation of the mixing
approach we used for training in Figure 11.

B.3 Model architectures

B.3.1 MNIST

Models trained on MNIST correspond to 4-layered convolutional stacks where each layer is followed
by a LeakyReLU non-linearity. The numbers of channels in each layer are 64, 128, 256, and 512.
To define TAC, we sliced post-activation features output by each such layer into 16 slices such that
activation profiles and codes have dimension 64.

B.3.2 CIFAR-10

Experiments on CIFAR-10 were carried out using a WideResNet-28-10 as described in [13]. Most
ResNet’s implementations (and its variants) split the model stack into four main blocks. We thus
use the outputs of those blocks to define TAC. More specifically, in this case, we used the three
blocks closer to the output, each outputting 160, 320, and 640 2-dimensional features. Once more,
we defined TAC by slicing each set of features into 16 slices such that activation profiles and codes
have dimension 48.

B.3.3 ImageNet

For ImageNet, we trained both a ResNet-50 as well as a ViT under the BASE-16x16 configuration.
For the ResNet case, we used the outputs of its four blocks to define TAC, and dimensions of
representations output in each such part of the model are 256, 512, 1024, 2048, each split in 256
slices to compose activation profiles of size 1024. For the ViT, we used all the 13 transformer layers
after averaging across the spatial dimension. That is, we collect 13 768-dimensional vectors across
depth to define TAC, and set the number or slices in each layer to 256. As discussed in the main text,
for the ViT case, we noticed that using a cosine distance during training helped improve performance.
Moreover, at testing time, using only the final part of the activation profile and code resulted in the
best scoring strategy in this case. In both models, base predictors are pre-trained and TAC is defined
on top of projections of features as described in Section ??.

B.3.4 Text classification

Architectures for the three text classification datasets we considered corresponded to the
RoBERTa-BASE configuration. We train base models and use the projection approach described
in Section ?? to define TAC. As in the case of ViT, we collect 768-dimensional feature vectors across
the 13 layers of the model. However, in this case, rather than averaging out the sequential component
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as in the ViT, we use only the elements corresponding to the end-of-sequence token, and 16 slices are
considered in this case for each set of features.

B.3.5 Projection layers

Projections used to enable the strategy described in Section ?? correspond to stacks of fully-connected
layers followed by ReLU activations. Independent projections are defined in each layer used to feed
TAC. We considered 5 projection configurations named small, large, very-large, x-large, and
2x-large, and the choice amongst those options is treated as a hyperparameter to be selected with
cross-validation for each dataset we trained on. The numbers of fully connected layers for each
configuration is 1, 2, 3, 31, and 5. The x-large and 2x-large configurations include LayerNorm
operations in the inputs and outputs.

B.4 Text classification data

For text classification experiments, we train models on HWU64 [12], Banking77 [1], and
CLINC150 [11], which correspond to sentence-level multi-class classification problems. HWU64 is
composed of 25716 sentences and contains 64 classes, and those correspond to different commands
for virtual assistants. BANKING77 contains 13,083 data exemplars and 77 classes corresponding to
different intents. CLINC150 contains 23,700 utterances and 150 different intent classes, being one of
them an out-of-scope or UNKNOWN class, which is ignored during training of TAC, but used at testing
time for detection evaluations.

1The x-large configuration includes LayerNorm operations in addition to the fully connected layers.
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1 def mixup_interpolation(
2 data_batch: torch.FloatTensor ,
3 one_hot_labels: torch.FloatTensor ,
4 code_labels: torch.FloatTensor ,
5 interpolation_range: float ,
6 ) -> list[torch.FloatTensor ]:
7 """ Mixup style data interpolation.
8

9 Args:
10 data_batch (torch.FloatTensor): batch of data.
11 one_hot_labels (torch.FloatTensor): batch of labels in one -hot

format.
12 code_labels (torch.FloatTensor): batch of binary class codes.
13 interpolation_range (float , optional): Concentration param for

the Bet distribution.
14

15 Returns:
16 Tuple with batches of interpolated pairs from data_batch ,

codes , and labels.
17 """
18

19 permutation_idx = torch.randperm(data_batch.size()[0], device=
data_batch.device)

20

21 data_pairs = data_batch[permutation_idx , ...]
22 label_pairs = one_hot_labels[permutation_idx , ...]
23 code_label_pairs = code_labels[permutation_idx , ...]
24

25 # Mixup interpolator: random convex combination of pairs
26 interpolation_factors = (
27 torch.distributions.beta.Beta(interpolation_range ,

interpolation_range)
28 .rsample(sample_shape =( data_pairs.size (0) ,))
29 .to(data_batch.device)
30 )
31 # Create extra dimensions in the interpolation_factors tensor
32 interpolation_factors_data = interpolation_factors[
33 (... ,) + (None ,) * (data_batch.ndim - 1)
34 ]
35 interpolation_factors_labels = interpolation_factors[
36 (... ,) + (None ,) * (one_hot_labels.ndim - 1)
37 ]
38 interpolation_factors_code_labels = interpolation_factors[
39 (... ,) + (None ,) * (code_labels.ndim - 1)
40 ]
41

42 # Interpolation for a pair x_0 , x_1 and factor t is given by t*(
x_0)+(1-t)*x_1

43 interpolated_batch = (
44 interpolation_factors_data * data_batch
45 + (1.0 - interpolation_factors_data) * data_pairs
46 )
47 interpolated_labels = (
48 interpolation_factors_labels * one_hot_labels
49 + (1.0 - interpolation_factors_labels) * label_pairs
50 )
51 interpolated_code_labels = (
52 interpolation_factors_code_labels * code_labels
53 + (1.0 - interpolation_factors_code_labels) * code_label_pairs
54 )
55

56 return interpolated_batch , interpolated_labels ,
interpolated_code_labels

Figure 11: Pytorch implementation of Mixup interpolations.
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