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Abstract

Point Cloud Registration (PCR) estimates the relative rigid transformation between two
point clouds of the same scene. Despite significant progress with learning-based approaches,
existing methods still face challenges when the overlapping region between the two point
clouds is small. In this paper, we propose an adaptive multi-step refinement network that
refines the registration quality at each step by leveraging the information from the preceding
step. To achieve this, we introduce a training procedure and a refinement network. Firstly,
to adapt the network to the current step, we utilize a generalized one-way attention mech-
anism, which prioritizes the last step’s estimated overlapping region, and we condition the
network on step indices. Secondly, instead of training the network to map either random
transformations or a fixed pre-trained model’s estimations to the ground truth, we train it
on transformations with varying registration qualities, ranging from accurate to inaccurate,
thereby enhancing the network’s adaptiveness and robustness. Despite its conceptual sim-
plicity, our method achieves state-of-the-art performance on both the 3DMatch/3DLoMatch
and KITTI benchmarks. Notably, on 3DLoMatch, our method reaches 80.4% recall rate,
with an absolute improvement of 1.2%. Our code will be made public upon publication.

1 Introduction

Point Cloud Registration (PCR) estimates the optimal rigid transformation between two point clouds. The
classical Iterative Closest Point (ICP) algorithm (Besl & McKay, 1992) pairs points in two overlapping point
clouds and minimizes the pairwise Euclidean distances. ICP employs an iterative optimization process and,
due to its non-convex nature, requires precise initialization. Some ICP variants (Yang et al., 2015b; Campbell
& Petersson, 2016) introduce global optimizations to improve robustness, at the cost of low efficiency (Fu
et al., 2023).

Recently, learning-based methods, particularly feature-matching techniques, have become predominant in
PCR (Choy et al., 2019; Huang et al., 2021; Qin et al., 2022; Yang et al., 2022; Yu et al., 2021; 2023b; Ao
et al., 2023). These methods employ neural networks to extract features of key points (down-sampled point
cloud), establish point correspondences (Yu et al., 2021; Qin et al., 2023; Yang et al., 2022), and utilize robust
estimators to determine the relative transformation (Choy et al., 2020; Bai et al., 2021; Fischler & Bolles,
1981; Chen et al., 2022a). While these learning-based methods have shown impressive performance, they
encounter challenges in low overlapping scenarios, typically < 30%. The primary issue is during the feature
extraction phase, similar structures and shapes may produce ambiguous key point features. Consequently,
feature-based methods may erroneously match key points that do not belong to the overlapping region,
thereby introducing inaccuracies, as is depicted in Fig. 1 (a) 1. The source point cloud, colored in yellow,
represents the left side of a kitchen scene, while the target point cloud, in blue, represents the right side of
the room. The overlapping region between these two point clouds is small, as can be seen on the right-most
of Fig. 1 (c), where the two point clouds are almost perfectly aligned. As shown by the red lines in Fig. 1
(a), the seminal work GeoTransformer(Qin et al., 2022) erroneously matches one point in the source point
cloud to points outside the overlapping region.

1We manually adjust the position and rotation of the two point clouds for better visualization of matches, same for Fig. 1
(b).
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Figure 1: Illustration of the proposed framework. (a) Matching visualization. Similar structures and shapes
result in similar features, leading to the erroneous matches by the GeoTransformer, where one key point in
the source point is matched to key points in the target point cloud outside the overlapping region, indicated
by red lines. The ground truth match is shown as a green line. (b) Utilizing rough overlapping information,
indicated as the shaded regions, PEAL successfully filters out many incorrect matches outside the overlap
area, visualized similarly to (a). (c) Per-step aligned point cloud visualization. Our adaptive multi-step
refinement approach employs multiple models, each progressively trained with more accurate priors as the
model index increases. By adapting to the progressively increasing accuracy of priors during the refinement
steps, our method surpasses PEAL in performance. RE and TE stand for rotation error (↓) and translation
error (↓) (Best viewed on a screen when zoomed in).

The recent work PEAL (Yu et al., 2023b) introduces a post-processing method to refine the registration
results. It utilizes the overlap estimation of a pre-trained PCR network, i.e., GeoTransformer(Qin et al.,
2022), as auxiliary information (also referred to as prior), and incorporates this information in the refinement
network to improve the estimate. By employing the same network repeatedly, PEAL establishes a multi-
step approach (see Fig. 1 (b)) and demonstrates enhanced performance. However, despite being utilized in
multiple steps, the refinement network is only trained for a fixed mapping from prior to ground truth, not
considering the fact that the priors become increasingly accurate throughout the refinement steps.

In this work, our intuition is to enhance multi-step registration by making the refinement process adaptive.
Our first contribution is a training procedure that, rather than mapping a random transformation or a
pre-trained model’s estimate (i.e., GeoTransformer) to the ground truth, trains the network with priors of
varying accuracy levels, from accurate to poor alignments. We design a degradation function that interpo-
lates between the prior and ground truth, enabling a smooth transition from accurate to inaccurate priors.
Adjusting the interpolation ratio lets us manipulate the quality of the priors. Furthermore, we propose to
explicitly condition the network on the current refinement step index, with each step’s network trained sepa-
rately, reflecting the accuracy of the prior. Moreover, we propose a generalized version of one-way attention
focusing on the overlapping regions in both the source and target point clouds. Considering the non-linearity
of the transformation space, we define the degradation function in the spherical linear space (Yew & Lee,
2022).
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Our extensive experiments demonstrate our method’s effectiveness; we achieve state-of-the-art recall rates
on the 3DMatch/3DLoMatch and KITTI benchmarks. Notably, our method yields 80.4% recall rate on the
3DLoMatch benchmark, with an absolute improvement of 1.2% compared with the previous state of the
art. In summary, the effectiveness of our work stems from the following contributions:

• We introduce a novel adaptive multi-step refinement method tailored for the low-overlap challenge
in PCR, achieving state-of-the-art registration recall rates on the 3DMatch/3DLoMatch and KITTI
benchmarks.

• We propose a training procedure that makes the network adaptive to the improving prior quality
during refinement and consequently improving registration.

• We propose a generalized one-way attention mechanism that focuses on the pre-aligned overlapping
regions of the two point clouds, facilitating improved feature learning.

2 Related Work

Traditional point cloud registration (PCR) methods estimate the rigid transformation (rotation
and translation) between two point clouds using geometric or appearance information. The most widely
used PCR methods are Iterative Closest Point (ICP) (Besl & McKay, 1992) and its variants (Chen &
Medioni, 1992; Segal et al., 2009). Despite their widespread application in various real-world scenarios due
to their straightforward formulation, ICP algorithms are sensitive to initial conditions and are prone to
convergence at local minimum. To address this, some approaches, such as Go-ICP (Yang et al., 2015b)
and GOGMA (Campbell & Petersson, 2016), integrate Branch-and-Bound optimization into ICP. However,
the global optimization process inherent to these methods significantly increases computational time, thus
limiting their practicality.

An alternative methodology in PCR is the feature-matching-based approach. The methods in this category
form correspondences by creating and matching point feature descriptors, and then use robust estimators
to remove outliers and recover the relative pose. Based on how feature descriptors are obtained, traditional
feature matching can be categorized into Local Reference Frame (LRF) based and non-LRF-based descrip-
tors. LRF-based descriptors initially typically begin with covariance analysis (Novatnack & Nishino, 2008;
Tombari et al., 2010) to create a local coordinate system, which then serves as the reference for generat-
ing feature descriptors. Techniques for deriving descriptors from LRF include coordinate plane projection
(Zaharescu et al., 2009) and rotational projection statistics (Guo et al., 2013). By contrast, non-LRF-based
descriptors directly extract features from the raw point cloud. The most notable non-LRF-based methods
are histogram-based, computing shape (Frome et al., 2004) or geometry (Rusu et al., 2009; Wu et al., 2017)
histograms, and integrating these histograms from key points and their neighbors to form descriptors.

Learning-based PCR methods utilize the powerful data-driven ability of deep neural networks for PCR.
Several learning-based methods (Choy et al., 2019; Ao et al., 2021) design local extractors to enhance the
feature representations. The recent integration of Transformer architectures (Vaswani et al., 2017) has
inspired methods (Huang et al., 2021; Yu et al., 2021; Qin et al., 2022; Yang et al., 2022; Chen et al., 2023a;
Yu et al., 2023a; Ao et al., 2023) that incorporate attention mechanisms within PCR networks for robust
results. In addition, some methods (Choy et al., 2020; Bai et al., 2021; Chen et al., 2022a; 2023b; Zhang et al.,
2023) introduce robust estimators to improve the alignment from feature correspondences. Other studies
propose deep learning-based end-to-end registration frameworks (Aoki et al., 2019; Wang & Solomon, 2019;
Yew & Lee, 2020; Yuan et al., 2020; Yew & Lee, 2022; Chen et al., 2022b), which streamline the registration
process. However, these approaches often struggle in challenging scenarios, such as low-overlapping point
clouds. Our work is a multi-step registration pipeline, augmenting registration with auxiliary information
of estimated overlapping regions. Furthermore, we tailor the registration models to each refinement step,
significantly improving the recall rate and robustness.
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Figure 2: Refinement Network at step index k. (1) For two overlapping point clouds P and Q, we extract
super points (FS

P , FS
Q) and fine points (FF

P , FF
Q) using KPConv. (2) We derive matchable superpoint-wise

features using Transformers, where MHA stands for multi-head attention. Instead of standard self and
cross-attention, we employ our generalized one-way attention, integrating the overlapping information from
the previous step Xk−1. (3) We compute the patch-wise correspondence map. (4) We propagate patch-wise
correspondences to fine correspondences. (5) We obtain the final estimate through a robust estimator. (Best
viewed on a screen when zoomed in)

3 Method

Point cloud registration is defined as the process of aligning two partially overlapping point clouds. These are
denoted as the source point cloud (P = {pi ∈ R3|i = 1, ..., N}) and the target point cloud (Q = {qj ∈ R3|j =
1, ..., M}). The goal is to accurately recover the ground-truth relative rigid transformation, X ∗ = {R, t},
which aligns their overlapping region.

We propose a novel multi-step registration framework, F = {fk(X , ·)|k = 1, ..., K}, to adaptively refine the
registration as

Xk = fk(Xk−1, P, Q), (1)

where each step fk utilizes the transformation estimate from the preceding step as auxiliary information.
It is important to note that when all the steps are identical (f1 = f2 = . . . = fK = f), the framework F
simplifies to a repetitive iterative method, akin to PEAL (Yu et al., 2023b).

The proposed framework for point cloud registration consists of three parts. 1) Prior (input alignment)
creation (Section 3.1), which uses a degradation function, denoted as E = {ϵ(X ∗, τ)}, to generate a series of
rigid transformations with varying levels of accuracy. Here, τ ∈ [1, ..., T ] is the accuracy level, that higher
indicates more accurate prior, and T is the number of the accuracy levels. 2) Training (Section 3.2), which
employs the obtained rigid transformation, represented by X̃k−1 = ϵ(X ∗, k), to train the registration models
F across different step indices. 3) Inference (Section 3.3), which utilizes the adaptive refinement network to
obtain the final estimate X̂ .

3.1 Creating Point Cloud Prior Transformations

As illustrated in Fig. 3, PEAL (Yu et al., 2023b) trains the network f to map prior to ground truth. This,
however, has a limitation: The model does not adjust to the improved quality of the prior during the multi-
step refinement process. To adapt the multi-step refinement network to each step, one should specify the
refinement fk that each step should perform.

Consequently, we introduce a degradation function ϵ(X ∗, τ) that generates point cloud prior transformations
based on the accuracy level τ . Notably, the number of accuracy levels T is much larger than the number of
models K, producing diverse samples. The degradation function should meet two criteria. Firstly, a higher
accuracy level should correspond to a more accurate prior transformation, as each step aims to refine the
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Figure 3: 1D toy example. PEAL trains the network to map prior to ground truth. We propose to sample
new prior transformations by interpolating between the GeoTransformer estimate and the ground truth.
Upper row: Illustration of the point cloud alignment transitioning from the GeoTransformer estimate to the
ground truth. (Best viewed on a screen when zoomed in)

result from the previous step. Secondly, the initial prior should be a coarse alignment, as we do not expect
the network to learn to utilize totally random overlapping information.

Taking these requirements into account, we propose to sample priors for each accuracy level τ by interpolating
between the GeoTransformer prior and the ground truth. Given the non-linearity of the transformation space,
we define the degradation within the spherical linear space (Yew & Lee, 2022).

Formally, to define the interpolation, we first define a discrete time step range [0, 1, ..., T ]. Then, we define
the interpolation for both rotation and translation with an accuracy level τ ∈ [0, 1, ..., T ] as

Rτ = Slerp(Rprior
quat , Rgt

quat; ατ ) ,

tτ = (1 − ατ ) · tprior + ατ · tgt,
(2)

where τ indicates the accuracy level of the generated prior alignment and ατ = τ

T
; Slerp(·, ·; ·) is the

spherical linear interpolation (Shoemake, 1985); Rgt
quat and Rprior

quat are the quaternion representation of the
prior and ground-truth rotation; tprior and tgt are the prior and ground-truth translation. As τ decreases,
ατ approaches 0, bringing Rτ , tτ closer to the prior rigid transformation. Conversely, a larger τ shifts Rτ , tτ

towards the ground truth. The Slerp function facilitates a smooth transition in rotation between these
states.

3.2 Adaptive Multi-step Refinement

Network backbone. We adopt GeoTransformer (Qin et al., 2022) as the backbone of the refinement
process, illustrated in Fig. 2. The network comprises five stages which we now describe. (1) Feature extraction
employs KP-Conv (Thomas et al., 2019), a point-based convolutional network to extract features. This stage
gradually down-samples the point cloud in its encoding part to extract sparse points, called superpoints (PS ,
QS), and features (FS

P , FS
Q). It then contains a decoding part, which up-samples the superpoints to yield the

final fine points (PF , QF ) and features (FF
P , FF

Q). Using the point-to-node strategy (Li et al., 2018), each
fine point is associated with a superpoint, and each superpoint forms a point patch. (2) Feature interaction
leverages multi-head attention operations on the two sets of superpoints to learn matchable features, with L
interleaved self and cross-attention layers (see Fig. 2). The self-attention and cross-attention module contain
both vanilla attention and the proposed one-way attention (Fig. 4). (3) Coarse matching determines the
correspondence map through feature similarity, matching the superpoints by finding the top-k entries. (4)
Fine matching refines this alignment at the point level within the patch correspondences established by
coarse matching, resulting in precise correspondences. (5) Rigid transformation estimation utilizes the fine
correspondences with a robust estimator, such as RANSAC (Fischler & Bolles, 1981) or LGR (Qin et al.,
2022), to estimate the rigid transformation.
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Figure 4: One-way attention (taking the source point cloud P as an example). (a) The self-one-way-attention
uses the feature of anchor points (FA

P ) as Key and Value in the attention operation to compute the feature
of non-anchor points, reducing the impact of non-overlapping regions on the learned features (FN

P ). (b) The
proposed cross-one-way-attention utilizes the anchor point features in the target point cloud (FA

Q) as Key
and Value, further considering interactions between the two point clouds in the one-way-attention.

Registration process. After generating the prior data in T different levels of accuracy, we linearly divide
this data into K (K < T ) groups (see Fig. 3). Each group will be utilized to train a specific refinement
network, while all models sharing a GeoTransformer backbone. For each accuracy level, the model index is
k = ⌈(τ/T ) ∗ K⌉, where ⌈·⌉ denotes the ceiling function.

Moreover, unlike the standard GeoTransformer, which processes only two point clouds, our refinement net-
work integrates the previous estimates. More specifically, we incorporate overlapping information through
a one-way attention mechanism, akin to the masking technique prevalent in Transformer models (Cheng
et al., 2022). One-way attention gives higher weights to specific regions determined by priors. PEAL (Yu
et al., 2023b) introduces one-way attention to PCR and augments the features by focusing on the overlapping
regions in the point cloud itself. Inspired by this, we propose a more general one-way attention that attends
to both intra and inter-point cloud overlapping regions, arguing that the two overlapping point sets could
be complementary, as visualized in Fig. 4. This allows our model to implicitly take the registration result of
the last step into account.

To be specific, the input of the one-way attention is the feature of the points in the middle of the network,
and one-way attention attempts to establish interactions between point features to update the features.
To formulate the one-way attention, given a transformation estimate Xτ = {Rτ , tτ }, we determine the
overlapping points in source point cloud P as

PS
A = {PS

i | max(O(Xt(PS
i ), QS

j )) > 0}, QS
j ∈ QS , (3)

where Xt(PS
i ) transforms the patches corresponding to PS

i by Xt, and O(·, ·) computes the overlap between
two point patches. We call these points anchor points. The anchor points in the target point cloud QS

A are
defined similarly. We name the remaining points non-anchor points, denoted as PS

N and QS
N .

Then, we perform one-way attention (OA) between the anchor points and the non-anchor points as shown
in Fig. 4. Formally, it can be written as

OA(FA, FN ) = FN + MLP(F N + w × V alueA),
w = softmax(QueryN (KeyA)T /

√
D),

(4)

where FA and FN are the features of the anchor points and the non-anchor points, respectively. Here, we
omit the source point and target point subscripts for brevity. QueryN , KeyA, and V alueA are produced by
applying linear transformations to FA and FN . Instead of taking the anchor points and non-anchor points
from the same point cloud, as in one-way self-attention, we propose to take the anchor points and non-anchor
points from the counterpart point cloud, resulting in one-way cross-attention (see Fig. 4).

6



Under review as submission to TMLR

3.3 Inference

After obtaining the K models trained on the data groups with progressively higher accuracy, we use these
models for inference. In our method, the initial model’s rigid transformation is set to a prior rigid trans-
formation from GeoTransformer (Qin et al., 2022). Importantly, this initial rigid transformation can be
any prior or even pure random noise, and we validate the effect of the input in the experiment section and
supplementary material. During the multi-step optimization process, the rigid transformation output by the
current model serves as prior for the subsequent model. Finally, the result of the last model is considered as
the output of our method.

3.4 Loss Functions

To train the refinement model, we adopt the same training losses as GeoTransformer (Qin et al., 2022),
which consist of an overlap-aware circle loss Loc and a point matching loss Lp, i.e.,

L = Loc + Lp. (5)

The overlap-aware circle loss extends the circle loss (Sun et al., 2020), emphasizing the positive samples
with high overlap. The point-matching loss is formulated as a negative log-likelihood loss on the fine point
correspondences.

4 Experiments

4.1 Implementation Details

For a fair comparison with the baselines, we adhere to the same implementation details and experimental
setup as GeoTransformer (Qin et al., 2023). We preprocess the point clouds by down-sampling them using
voxel grids, setting the voxel size to 2.5cm for the 3DMatch/3DLoMatch benchmarks and 30cm for the
KITTI benchmark. Given that the KITTI benchmark typically contains more points per point cloud than
3DMatch/3DLoMatch, we follow GeoTransformer’s approach by using a 5-stage KP-Conv for KITTI and a
3-stage KP-Conv for 3DMatch/3DLoMatch. For the data degradation process, we set the accuracy levels
T to 1000 to create more diverse data, and this data is divided into K = 5 groups for training K models
(Section 3.2). We train the KITTI model for 80 epochs and the 3DMatch/3DLoMatch models for 20 epochs,
taking around 48 hours on a single V100 GPU. Within each refinement network, the attention module is
applied three times (i.e., L = 3 in Fig. 2).

4.2 Indoor Scenes: 3DMatch & 3DLoMatch

Datasets. Following previous research (Yu et al., 2021; Qin et al., 2022; Yang et al., 2022), we evaluate our
method using the 3DMatch (Zeng et al., 2017) and 3DLoMatch (Huang et al., 2021) benchmarks. These
two datasets are created from 62 RGB-D scenes, with 46 scenes used for training, 8 for validation, and 8 for
testing. A key difference is that 3DLoMatch features a lower overlapping ratio (10% – 30%) than 3DMatch,
which has an overlapping ratio greater than 30%.

Metrics. We adopt the evaluation metrics from Predator’s(Huang et al., 2021), reporting Registration Recall
(RR), Feature Matching Recall (FMR) and Inlier Ratio (IR) across varying numbers of correspondences. RR
measures the percentage of point cloud pairs aligned within a specified RMSE (Root Mean Square Error),
i.e., RMSE < 0.2m). IR quantifies the ratio of correspondences that fall within a residual threshold under
the true transformation, while FMR assesses the percentage of point cloud pairs with an IR exceeding 5%.

Registration results. Tab. 1 compares our method with recent deep learning-based baselines, including
4 local descriptors (FCGF, D3Feat, SpinNet, and YOHO), and 10 Transformer-based methods (REGTR,
Predator, CoFiNet, GeoTransformer, OIF-Net RoITR, BUFFER, PEAL, SIRA-PCR, and DiffPCR). We
adhere to the evaluation protocol of Predator (Huang et al., 2021), sampling 5 different numbers of cor-
respondences (5000, 2500, 1000, 500, 250) for each method and evaluating the results. As REGTR and
BUFFER directly output the final rigid transformation, they are excluded from correspondence metrics.
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3DMatch

RR (%) ↑ IR (%) ↑ FMR (%) ↑
Method Reference 5000 2500 1000 500 250 5000 2500 1000 500 250 5000 2500 1000 500 250

D
es

cr
ip

to
r FCGF ICCV2019 (Choy et al., 2019) 85.1 84.7 83.3 81.6 71.4 56.8 54.1 48.7 42.5 34.1 97.4 97.3 97.0 96.7 96.6

D3Feat CVPR2020 (Bai et al., 2020) 81.6 84.5 83.4 82.4 77.9 39.0 38.8 40.4 41.5 41.8 95.6 95.4 94.5 94.1 93.1
SpinNet CVPR2021 (Ao et al., 2021) 88.6 86.6 85.5 83.5 70.2 47.5 44.7 39.4 33.9 27.6 97.6 97.2 96.8 95.5 94.3
YOHO ACM MM2022 (Wang et al., 2022) 90.8 90.3 89.1 88.6 84.5 64.4 60.7 55.7 46.4 41.2 98.2 97.6 97.5 97.7 96.0

Tr
an

sf
or

m
er

-b
as

ed

REGTR CVPR2022 (Yew & Lee, 2022) 92.0 - - - - - - - - - - - - - -
Predator CVPR2021 (Huang et al., 2021) 89.0 89.9 90.6 88.5 86.6 58.0 58.4 57.1 54.1 49.3 96.6 96.6 96.5 96.3 96.5
CoFiNet NeurIPS2021 (Yu et al., 2021) 89.3 88.9 88.4 87.4 87.0 49.8 51.2 51.9 52.2 52.2 98.1 98.3 98.1 98.2 98.3

GeoTransformer CVPR2022 (Qin et al., 2022) 92.0 91.8 91.8 91.4 91.2 71.9 75.2 76.0 82.2 85.1 97.9 97.9 97.9 97.9 97.6
OIF-Net NeurIPS2022 (Yang et al., 2022) 92.4 91.9 91.8 92.1 91.2 62.3 65.2 66.8 67.1 67.5 98.1 98.1 97.9 98.4 98.4
RoITr CVPR2023 (Yu et al., 2023a) 91.9 91.7 91.8 91.4 91.0 82.6 82.8 83.0 83.0 83.0 98.0 98.0 97.9 98.0 97.9

BUFFER CVPR2023 (Ao et al., 2023) 92.9 - - - - - - - - - - - - - -
PEAL CVPR2023 (Yu et al., 2023b) 94.4 94.1 94.1 93.9 93.4 74.8 81.3 86.0 87.9 89.2 98.5 98.6 98.6 98.7 98.7

SIRA-PCR ICCV2023 (Chen et al., 2023a) 93.6 93.9 93.9 92.7 92.4 70.8 78.3 83.7 85.9 87.4 98.2 98.4 98.4 98.5 98.5
DiffPCR Arxiv2024 (Wu et al., 2023) 94.2 - - - - 55.4 - - - - 97.4 - - - -

Ours 94.4 94.3 94.5 94.0 93.9 75.0 81.6 86.3 88.2 89.4 98.3 98.3 98.3 98.3 98.3

3DLoMatch

RR (%) ↑ IR (%) ↑ FMR (%) ↑
Method 5000 2500 1000 500 250 5000 2500 1000 500 250 5000 2500 1000 500 250

D
es

cr
ip

to
r FCGF ICCV2019 (Choy et al., 2019) 40.1 41.7 38.2 35.4 26.8 21.4 20.0 17.2 14.8 11.6 76.6 75.4 74.2 71.7 67.3

D3Feat CVPR2020 (Bai et al., 2020) 37.2 42.7 46.9 43.8 39.1 13.2 13.1 14.0 14.6 15.0 67.3 66.7 67.0 66.7 66.5
SpinNet CVPR2021 (Ao et al., 2021) 59.8 54.9 48.3 39.8 26.8 20.5 19.0 16.3 13.8 11.1 75.3 74.9 72.5 70.0 63.6
YOHO ACM MM2022 (Wang et al., 2022) 65.2 65.5 63.2 56.5 48.0 25.9 23.3 22.6 18.2 15.0 79.4 78.1 76.3 73.8 69.1

Tr
an

sf
or

m
er

-b
as

ed

REGTR CVPR2022 (Yew & Lee, 2022) 64.8 - - - - - - - - - - - - - -
Predator CVPR2021 (Huang et al., 2021) 59.8 61.2 62.4 60.8 58.1 26.7 28.1 28.3 27.5 25.8 78.6 77.4 76.3 75.7 75.3
CoFiNet NeueIPS2021 (Yu et al., 2021) 67.5 66.2 64.2 63.1 61.0 24.4 25.9 26.7 26.8 26.9 83.1 83.5 83.3 83.1 82.6

GeoTransformer CVPR2022 (Qin et al., 2022) 75.0 74.8 74.2 74.1 73.5 43.5 45.3 46.2 52.9 57.7 88.3 88.6 88.8 88.6 88.3
OIF-Net NeurIPS2022 (Yang et al., 2022) 76.1 75.4 75.1 74.4 73.6 27.5 30.0 31.2 32.6 33.1 84.6 85.2 85.5 86.6 87.0
RoITr CVPR2023 (Yu et al., 2023a) 74.7 74.8 74.8 74.2 73.6 54.3 54.6 55.1 55.2 55.3 89.6 89.6 89.5 89.4 89.3

BUFFER CVPR2023 (Ao et al., 2023) 71.8 - - - - - - - - - - - - - -
PEAL CVPR2023 (Yu et al., 2023b) 79.2 79.0 78.8 78.5 77.9 49.1 54.1 60.5 63.6 65.0 89.1 89.2 89.0 89.0 88.8

SIRA-PCR ICCV2023 (Chen et al., 2023a) 73.5 73.9 73.0 73.4 71.1 43.3 49.0 55.9 58.8 60.7 88.8 89.0 88.9 88.6 87.7
DiffPCR Arxiv2024 (Wu et al., 2023) 73.4 - - - - 22.5 - - - - 80.6 - - - -

Ours 80.0 80.4 79.2 78.8 78.8 49.7 55.4 61.8 64.5 66.2 86.3 85.9 86.0 86.1 85.9

Table 1: Results on indoor datasets. The results of the compared methods are taken from their paper. The
best scores are in red, the second best in yellow.

PEAL can use either 2D or 3D information as prior. Since the official 3DMatch and 3DLoMatch datasets do
not give the 2D information, PEAL first generates the 2D prior. Since the remaining methods do not need
the 2D information, in Tab. 1, we report the results of PEAL using a 3D prior as input for a fair comparison.
We compare PEAL-2D with our method in a separate table (Tab. 2). Note that PEAL and our method
both adopt iterative optimization, and we use the same number of steps (set to 5) in our experiments.

In PCR, RR is the most critical metric (Yang et al., 2022; Huang et al., 2021), which directly measures the
registration success rate (RMSE smaller than a threshold). As shown in Tab. 1, our method achieves the
highest RR across different numbers of correspondences. Our method outperforms all one-pass techniques,
which provide an estimate with a single-step network. Compared with the multi-step method PEAL, our
method still achieves notably better results. We attribute this improvement to our adaptive refinement
design and our one-way-cross-attention mechanism. Notably, our method with five iterations achieves an
RR of 80.4%, which surpasses PEAL’s performance with ten iterations (78.8%) on 3DLoMatch. Our method
also outperforms DiffPCR (Wu et al., 2023), which is a Diffusion-based PCR network conditioned on the
matching matrix, especially on the 3DLoMatch dataset.

In terms of IR, we achieve the best performance in most configurations and slightly worse than one baseline,
RoITr, with 5000 correspondences. It means our approach can establish better correspondences through
multi-step optimization, which is the key foundation for the improvement of the final registration perfor-
mance, as reflected by RR. Feature Matching Recall (FMR) measures whether correspondences’ inlier ratio
is above a threshold, indicating the percentage of point clouds that are likely to be registered. Notably, FMR
does not test if the actual transformation can be determined (Huang et al., 2021). In terms of the FMR,
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3DMatch 3DLoMatch
RR IR FMR RR IR FMR

GeoTransformer 92.5 70.9 98.2 74.0 43.5 87.1
PEAL-3D 94.2 73.3 98.5 79.0 49.0 87.6
Ours-3D 94.4 73.4 98.3 80.0 49.6 87.0
PEAL-2D 94.3 72.4 99.0 81.2 45.0 91.7
Ours-2D 95.3 73.9 98.5 81.6 50.4 87.7

Table 2: Registration results with the LGR estimator. The best scores are in red, the second best in yellow.

our technique is inferior to some baselines on the 3DMatch/3DLoMatch benchmarks. Given our higher
registration success rate, i.e., RR, we speculate that the worse FMR is caused by point cloud pairs where
both the baseline methods and ours fail to register, where our method yields lower IR.

GeoTransformer (Qin et al., 2023) proposes an LGR estimator to compute the rigid transformation for
coarse-to-fine based methods. We compare the performance of our method with GeoTransformer and PEAL
when combined with LGR. Here, we also compare the results of using a 2D prior as input, as done in PEAL.
As shown in Tab. 2, our method still yields the highest registration recall on both 3DMatch and 3DLoMatch,
no matter whether with a 2D prior or 3D prior.

Additionally, we compare our method with SOTA 3D outlier removal methods, including PointDSC (Bai
et al., 2021), SC2-PCR (Chen et al., 2022a) and MAC (Zhang et al., 2023). In contrast to our method,
these methods use the rotation and translation error, instead of the RMSE, as the threshold for computing
the registration recall. For a fair comparison, we follow the evaluation strategy of MAC to re-compute
the registration recall of our method 2, and present the results in Tab. 3. Following the best result they
report, the RR of compared methods is obtained by combining it with the GeoTransformer to establish
the correspondences. Our method demonstrates substantial improvements over these methods on both the
3DMatch and 3DLoMatch datasets.

3DMatch 3DLoMatch
5000 2500 1000 500 250 5000 2500 1000 500 250

GeoTransformer + PointDSC (Bai et al., 2021) 95.4 95.4 95.2 95.2 94.5 77.8 77.9 77.2 76.9 75.7
GeoTransformer + SC2-PCR (Chen et al., 2022a) 95.6 95.7 95.1 95.3 94.7 78.3 78.4 77.8 77.2 76.3

GeoTransformer + MAC (Zhang et al., 2023) 95.7 95.7 95.2 95.3 94.6 78.9 78.7 78.2 77.7 76.6
Ours 96.9 96.9 97.0 96.6 96.5 84.4 84.4 83.8 83.0 82.5

Table 3: Comparison with the recent outlier removal baselines. Registration Recall is reported as the
evaluation metric. The best scores are in red, the second best in yellow.

Fig. 5 showcases qualitative results of our method applied to point cloud pairs with exceedingly low-
overlapping regions. For comparison, we also show the alignment results of our baseline GeoTransformer,
CoFiNet, PEAL, and the ground truth. Our method accurately aligns the point clouds in these challenging
settings, while GeoTransformer and PEAL get completely wrong results.

Despite our method effectively improving registration recall, we present two failure cases in Fig. 6. In both
examples, the overlap between the two point clouds is substantially low, and a large portion consists of
planes with no distinctive features. Future work on more effective feature extractors may mitigate this issue.

4.3 Outdoor Scenes: KITTI Odometry

Dataset. KITTI odometry (Geiger et al., 2012) consists of 11 sequences of driving scenes scanned using
LiDAR. Following the methodology of previous studies (Qin et al., 2022; Choy et al., 2019), we use sequences
0-5 for training, 6-7 for validation, and 8-10 for testing. We use the optimized ground-truth poses with ICP
and use only point cloud pairs that are at least 10m away for evaluation.

Metrics. We follow (Huang et al., 2021) and evaluate the methods by three metrics: (1) Relative Rotation
Error (RRE), which is the geodesic distance between the estimated and ground-truth rotation matrices;

2We use the evaluation protocol in MAC’s official code released at https://github.com/zhangxy0517/3D-Registration-with-
Maximal-Cliques
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Figure 5: Qualitative results of CoFiNet, GeoTransformer, PEAL, and our method compared with the
ground-truth alignment. The overlapping areas are highlighted by the red boxes. (Best viewed on a screen
when zoomed in)

Figure 6: Failure cases of our method. (Best viewed on a screen when zoomed in)

(2) Relative Translation Error (RTE), which measures the Euclidean distance between the estimated and
ground-truth translation vectors; (3) Registration Recall (RR), which encodes the fraction of point cloud
pairs whose RRE and RTE are both below certain thresholds (RRE< 5◦ and RTE< 2m).

Registration results. We compare our network with 9 recent baselines, including FCGF, D3Feat, SpinNet,
Predator, CoFiNet, GeoTransformer, OIF-Net, PEAL, and MAC. PEAL does not have open-source code

Methods Reference RTE ↓ RRE ↓ RR ↑

FCGF ICCV2019 (Choy et al., 2019) 9.5 0.30 96.6
D3Feat CVPR2020 (Bai et al., 2020) 7.2 0.30 99.8
SpinNet CVPR2021 (Ao et al., 2021) 9.9 0.47 99.1
Predator CVPR2021 (Huang et al., 2021) 6.8 0.27 99.8
CoFiNet NeurIPS2021 (Yu et al., 2021) 8.5 0.41 99.8
GeoTrans CVPR2022 (Qin et al., 2022) 6.8 0.24 99.8
OIF-Net NeurIPS2022 (Yang et al., 2022) 6.5 0.23 99.8

PEAL CPPR2023 (Yu et al., 2023b) 6.8 0.23 99.8
MAC CVPR2023 (Zhang et al., 2023) 8.5 0.40 99.5
Ours 6.3 0.23 99.8

Table 4: Results on KITTI odometry. The best scores are in red, the second best in yellow.
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Figure 7: Iteration results using different priors than the training one.

for the KITTI dataset, so we report the result of our implementation. The coarse-to-fine approaches,
which include CoFiNet, GeoTransformer, OIF-Net, PEAL, and our method, are compatible with the LGR
estimator (Qin et al., 2022). Therefore, we present their results combined with LGR. For the other methods,
we use RANSAC as their post-processing step. For PEAL and our method, we just perform two steps of
iterative optimization because the KITTI dataset is relatively simple. As can be seen in Tab. 4, our method
yields a 99.8% RR, which equals the best performance of recent methods. Furthermore, our method achieves
the best RRE and RTE.

4.4 Ablation Studies

In Tab. 6, we analyze our design choices by ablating different components in our framework. All the
experiments use LGR as the post-processing method.

Overlap (%) / RR↑ < 15 15 - 20 20 - 25 25 - 30 > 30

GeoTransformer 57.6 72.9 78.2 84.2 92.3
PEAL 61.9 80.4 87.6 86.2 95.7
Ours 69.4 83.1 88.7 87.8 96.5

Table 5: Regitration recall in the scenes of different overlap rates. The best scores are in red, the second
best in yellow.

Evaluation in different overlap rates. An important aspect of evaluating a network is to measure
whether it is robust to noise. For the point cloud registration task, the overlap rate can reflect the noise
level. Thus, in Tab. 5, we provide a detailed evaluation by dividing 3DLoMatch into different groups
by overlapping ratio, similarly to (Chen et al., 2022a). As reported in the table, our method consistently
outperforms PEAL and GeoTransformer, demonstrating our method’s robustness, particularly in scenarios
with smaller overlaps.

Initialization with different pretrained models. In our method, we use the results obtained by the
pretrained GeoTransformer as input. To illustrate generalization ability, we test other networks to generate
the prior for our method, including Predator (Huang et al., 2021) and CoFiNet (Yu et al., 2021). Furthermore,
we also design two control experiments: 1) providing only an identity matrix, not an actual prior; 2) randomly
sampling a rigid transformation from a Gaussian distribution as prior. In Fig. 7, we report the results at
different iterations. Since Predator and CoFiNet perform worse than GeoTransformer, the performance of
using their results as prior is close to using the identity matrix. Through multi-step optimization, even
without prior, our method yields near 93.5%/79.0% RR on 3DMatch and 3DLoMatch, respectively, which
is much better than the results of GeoTransformer (92.0%/75.0%). This showcases our method’s strong
generalization to different types of priors.

Design of the refinement network. Our method’s refinement network for each timestep leverages both
one-way-self-attention and our novel one-way-cross-attention. To analyze the effectiveness of these two mod-
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3DMatch 3DLoMatch
RR IR FMR RR IR FMR

Full setting 94.4 73.4 98.3 80.0 49.6 87.0
w/o cross 94.3 72.6 98.3 79.5 48.5 86.7
w/o self 93.9 72.5 98.2 79.4 48.7 86.6

w/o self, cross (baseline) 92.5 70.9 98.2 74.0 43.5 87.1
Only prior (baseline) 93.9 70.9 98.6 78.7 47.4 86.6

Add noise 92.7 67.6 97.3 76.9 44.5 85.8
w/o Slerp 94.1 73.0 98.2 79.6 49.2 86.5

Table 6: Ablations on network components and degradation schemes. Full setting: The final version of our
method. Only prior: Directly using the prior as input without degradation scheme. Add noise: Using
Gaussian noise as degradation function. The best scores are in red, second best in yellow.

ules, we remove them separately and summarize the results in Tab. 6. The results indicate that integrating
either module enhances the overall performance, with the best results achieved when both are employed.

Degradation schemes. In our method, we propose a novel degradation scheme for rigid transformation.
Different from the commonly used strategy in generation tasks that relies on random noise as the initial
step for training, we interpolate between prior information and ground truth at different time steps as the
noisy training data for the refinement network. To validate the importance of the degradation scheme, we
also use two different degradation schemes to generate the training inputs. The baseline consists of directly
using the prior as the input, akin to PEAL, and a naive strategy is to add noise to the ground truth. As
shown in Tab. 6, simply adding noise as degradation scheme yields even worse results than the baseline.
The proposed deterministic degradation scheme considers the distribution of the results, and (Full) leads to
the highest results in all three metrics on both the 3DMatch and 3DLoMatch benchmarks.

Finally, we remove the Slerp interpolation function and directly use the Euler angle as the interpolation
function, and the performance also decreases, because the Slerp function can ensure the linear during the
data degradation process.

5 Discussions

Efficiency overhead. Similar to our baseline PEAL Yu et al. (2023b), multi-step methods are generally
slower than single-step methods. As shown in Supp-Tab. 8, our method is consistently more efficient than
PEAL with equivalent or better registration results. A promising future direction could be to employ smaller
networks and compression strategies, such as network pruning, to strike a balance between recall rate and
speed.

Storage overhead. Our pipeline requires storing multiple models and we tested converting the pretrained
models from Float32 to Float16, which reduced the storage size by 50% yet maintained an RR↑ of 80.0%
on 3DLoMatch, outperforming the PEAL (Yu et al., 2023b) baseline without compression (79.0%).

6 Limitation and Conclusion

Our network exhibits dataset bias, necessitating the training of specific models for each application domain,
such as indoor scenes and driving scenes, which is a common issue for learning-based methods.

In summary, we propose an adaptive multi-step refinement network for robust point cloud registration in
this paper. We introduced technical innovations of conditioning the refinement network on different steps,
and we leveraged a novel training strategy to create point cloud pairs with varying levels of accuracy.
Despite being conceptually simple and having minimal overhead, compared to our baseline, our method
achieves state-of-the-art registration recall on the 3DMatch/3DLoMatch and KITTI benchmarks, with a
notable absolute registration recall improvement of 1.2% on the challenging 3DLoMatch benchmark. This
work also demonstrates the potential of the iterative refinement idea from classical point cloud registration
methods in learning-based systems.

12



Under review as submission to TMLR

References
Sheng Ao, Qingyong Hu, Bo Yang, Andrew Markham, and Yulan Guo. Spinnet: Learning a general surface

descriptor for 3d point cloud registration. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 11753–11762, 2021.

Sheng Ao, Qingyong Hu, Hanyun Wang, Kai Xu, and Yulan Guo. Buffer: Balancing accuracy, efficiency, and
generalizability in point cloud registration. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 1255–1264, 2023.

Yasuhiro Aoki, Hunter Goforth, Rangaprasad Arun Srivatsan, and Simon Lucey. Pointnetlk: Robust &
efficient point cloud registration using pointnet. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7163–7172, 2019.

Xuyang Bai, Zixin Luo, Lei Zhou, Hongbo Fu, Long Quan, and Chiew-Lan Tai. D3feat: Joint learning of
dense detection and description of 3d local features. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6359–6367, 2020.

Xuyang Bai, Zixin Luo, Lei Zhou, Hongkai Chen, Lei Li, Zeyu Hu, Hongbo Fu, and Chiew-Lan Tai.
Pointdsc: Robust point cloud registration using deep spatial consistency. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 15859–15869, 2021.

Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Sensor fusion IV: control paradigms
and data structures, volume 1611, pp. 586–606. Spie, 1992.

Dylan Campbell and Lars Petersson. Gogma: Globally-optimal gaussian mixture alignment. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 5685–5694, 2016.

Suyi Chen, Hao Xu, Ru Li, Guanghui Liu, Chi-Wing Fu, and Shuaicheng Liu. Sira-pcr: Sim-to-real adap-
tation for 3d point cloud registration. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 14394–14405, 2023a.

Yang Chen and Gérard Medioni. Object modelling by registration of multiple range images. Image and
vision computing, 10(3):145–155, 1992.

Zhi Chen, Kun Sun, Fan Yang, and Wenbing Tao. Sc2-pcr: A second order spatial compatibility for efficient
and robust point cloud registration. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 13221–13231, 2022a.

Zhi Chen, Fan Yang, and Wenbing Tao. Detarnet: Decoupling translation and rotation by siamese network
for point cloud registration. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 401–409, 2022b.

Zhi Chen, Kun Sun, Fan Yang, Lin Guo, and Wenbing Tao. ScΘ{2}-pcr++: Rethinking the generation and
selection for efficient and robust point cloud registration. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2023b.

Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-attention
mask transformer for universal image segmentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 1290–1299, 2022.

Christopher Choy, Jaesik Park, and Vladlen Koltun. Fully convolutional geometric features. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 8958–8966, 2019.

Christopher Choy, Wei Dong, and Vladlen Koltun. Deep global registration. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2514–2523, 2020.

Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Communications of the ACM, 24(6):381–395,
1981.

13



Under review as submission to TMLR

Andrea Frome, Daniel Huber, Ravi Kolluri, Thomas Bülow, and Jitendra Malik. Recognizing objects in
range data using regional point descriptors. In European conference on computer vision, pp. 224–237.
Springer, 2004.

Kexue Fu, Jiazheng Luo, Xiaoyuan Luo, Shaolei Liu, Chenxi Zhang, and Manning Wang. Robust point
cloud registration framework based on deep graph matching. IEEE Transactions on Pattern Analysis &
Machine Intelligence, 45(05):6183–6195, 2023.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision
benchmark suite. In 2012 IEEE conference on computer vision and pattern recognition, pp. 3354–3361.
IEEE, 2012.

Yulan Guo, Ferdous Sohel, Mohammed Bennamoun, Min Lu, and Jianwei Wan. Rotational projection
statistics for 3d local surface description and object recognition. International journal of computer vision,
105:63–86, 2013.

Shengyu Huang, Zan Gojcic, Mikhail Usvyatsov, Andreas Wieser, and Konrad Schindler. Predator: Regis-
tration of 3d point clouds with low overlap. In Proceedings of the IEEE/CVF Conference on computer
vision and pattern recognition, pp. 4267–4276, 2021.

Jiaxin Li, Ben M Chen, and Gim Hee Lee. So-net: Self-organizing network for point cloud analysis. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 9397–9406, 2018.

Nicolas Mellado, Dror Aiger, and Niloy J Mitra. Super 4pcs fast global pointcloud registration via smart
indexing. In Computer graphics forum, volume 33, pp. 205–215. Wiley Online Library, 2014.

John Novatnack and Ko Nishino. Scale-dependent/invariant local 3d shape descriptors for fully automatic
registration of multiple sets of range images. In Computer Vision–ECCV 2008: 10th European Conference
on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings, Part III 10, pp. 440–453.
Springer, 2008.

Zheng Qin, Hao Yu, Changjian Wang, Yulan Guo, Yuxing Peng, and Kai Xu. Geometric transformer for
fast and robust point cloud registration. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 11143–11152, 2022.

Zheng Qin, Hao Yu, Changjian Wang, Yulan Guo, Yuxing Peng, Slobodan Ilic, Dewen Hu, and Kai Xu.
Geotransformer: Fast and robust point cloud registration with geometric transformer. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2023.

Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature histograms (fpfh) for 3d registration.
In 2009 IEEE international conference on robotics and automation, pp. 3212–3217. IEEE, 2009.

Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun. Generalized-icp. In Robotics: science and systems,
volume 2, pp. 435. Seattle, WA, 2009.

Ken Shoemake. Animating rotation with quaternion curves. In Proceedings of the 12th annual conference
on Computer graphics and interactive techniques, pp. 245–254, 1985.

Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang, Liang Zheng, Zhongdao Wang, and Yichen Wei.
Circle loss: A unified perspective of pair similarity optimization. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 6398–6407, 2020.

Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette, and
Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 6411–6420, 2019.

Federico Tombari, Samuele Salti, and Luigi Di Stefano. Unique signatures of histograms for local surface
description. In European conference on computer vision, pp. 356–369. Springer, 2010.

14



Under review as submission to TMLR

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Haiping Wang, Yuan Liu, Zhen Dong, and Wenping Wang. You only hypothesize once: Point cloud regis-
tration with rotation-equivariant descriptors. In Proceedings of the 30th ACM International Conference
on Multimedia, pp. 1630–1641, 2022.

Yue Wang and Justin M Solomon. Deep closest point: Learning representations for point cloud registration.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3523–3532, 2019.

Kanzhi Wu, Xiaoyang Li, Ravindra Ranasinghe, Gamini Dissanayake, and Yong Liu. Risas: A novel rotation,
illumination, scale invariant appearance and shape feature. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pp. 4008–4015. IEEE, 2017.

Qianliang Wu, Haobo Jiang, Yaqing Ding, Lei Luo, Jin Xie, and Jian Yang. Diff-pcr: Diffusion-based
correspondence searching in doubly stochastic matrix space for point cloud registration. arXiv preprint
arXiv:2401.00436, 2023.

Fan Yang, Lin Guo, Zhi Chen, and Wenbing Tao. One-inlier is first: Towards efficient position encoding for
point cloud registration. Advances in Neural Information Processing Systems, 35:6982–6995, 2022.

Jiaolong Yang, Hongdong Li, Dylan Campbell, and Yunde Jia. Go-icp: A globally optimal solution to 3d icp
point-set registration. IEEE transactions on pattern analysis and machine intelligence, 38(11):2241–2254,
2015a.

Jiaolong Yang, Hongdong Li, Dylan Campbell, and Yunde Jia. Go-icp: A globally optimal solution to 3d icp
point-set registration. IEEE transactions on pattern analysis and machine intelligence, 38(11):2241–2254,
2015b.

Zi Jian Yew and Gim Hee Lee. Rpm-net: Robust point matching using learned features. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 11824–11833, 2020.

Zi Jian Yew and Gim Hee Lee. Regtr: End-to-end point cloud correspondences with transformers. arXiv
preprint arXiv:2203.14517, 2022.

Hao Yu, Fu Li, Mahdi Saleh, Benjamin Busam, and Slobodan Ilic. Cofinet: Reliable coarse-to-fine corre-
spondences for robust pointcloud registration. Advances in Neural Information Processing Systems, 34,
2021.

Hao Yu, Zheng Qin, Ji Hou, Mahdi Saleh, Dongsheng Li, Benjamin Busam, and Slobodan Ilic. Rotation-
invariant transformer for point cloud matching. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5384–5393, 2023a.

Junle Yu, Luwei Ren, Yu Zhang, Wenhui Zhou, Lili Lin, and Guojun Dai. Peal: Prior-embedded explicit
attention learning for low-overlap point cloud registration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 17702–17711, 2023b.

Wentao Yuan, Benjamin Eckart, Kihwan Kim, Varun Jampani, Dieter Fox, and Jan Kautz. Deepgmr:
Learning latent gaussian mixture models for registration. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16, pp. 733–750. Springer, 2020.

Andrei Zaharescu, Edmond Boyer, Kiran Varanasi, and Radu Horaud. Surface feature detection and de-
scription with applications to mesh matching. In 2009 IEEE conference on computer vision and pattern
recognition, pp. 373–380. IEEE, 2009.

Andy Zeng, Shuran Song, Matthias Nießner, Matthew Fisher, Jianxiong Xiao, and Thomas Funkhouser.
3dmatch: Learning local geometric descriptors from rgb-d reconstructions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1802–1811, 2017.

15



Under review as submission to TMLR

Xiyu Zhang, Jiaqi Yang, Shikun Zhang, and Yanning Zhang. 3d registration with maximal cliques. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17745–
17754, 2023.

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Fast global registration. In European Conference on
Computer Vision, pp. 766–782. Springer, 2016.

A Overview of this Supplementary

In the following sections, we first provide a comparison with classical non-learning-based PCR algorithms,
followed by more specific comparisons with PEAL, and then present more qualitative results.

B Comparison with non-Learning-based Methods

Methods ICP Go-ICP Super4PCS FGR Ours

RR 6.59 22.9 21.6 42.7 94.4

Table 7: Comparison of registration recall with classic non-learning methods on the 3DMatch dataset. All
values are sourced from the official leaderboard of 3DMatch. The highest scores are highlighted in bold.

For interested readers, we present a comparison with classic non-learning-based methods (Tab.7), including
ICP (Besl & McKay, 1992), Go-ICP (Yang et al., 2015a), Super4PCS (Mellado et al., 2014), and FGR (Zhou
et al., 2016). Our method significantly outperforms non-learning methods because of effective learned fea-
tures.

C Per-step Comparison with PEAL

We present a step-wise registration recall comparison with PEAL. As shown in Fig. 8, our method yields
consistently better results. Notably, our method with two steps achieves better results than PEAL with
more than 6 steps, highlighting our method’s efficacy.

D Computation Time

We present the time cost of our method in Tab. 8, and compare it with two baselines (GeoTransformer
and PEAL). As a reference, we also put the registration recall (RR) of the methods3. Our method has a
higher computational cost than GeoTransformer in 1-step inference, due to additional network components
of one-way attentions, while being comparable with PEAL. Note that since our method boosts performance
with more steps, we can use the number of steps to run as a parameter for different application scenarios.
In addition, our method can get a higher RR with 2-step optimization than PEAL with 5 steps.

E Qualitative Results

We present more qualitative comparisons with baselines in Fig. 9. Low-overlapping PCR poses a typical
challenge, as non-overlapping regions might be mistakenly matched, leading to incorrect alignments. In
contrast, our method effectively aligns these point clouds.

3For GeoTransformer and PEAL, we use their official code with default settings on the same platform as ours.
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Figure 8: Multi-step registration recall comparison with PEAL. In both the 3DMatch and 3DLoMatch
benchmarks, our method consistently surpasses PEAL. Notably, our method with two steps outperforms
PEAL with more than 6 steps.

3DMatch 3DLoMatch
RR Time (sec.) RR Time (sec.)

GeoTransformer 92.0 0.296 74.0 0.284
GeoTransformer + PEAL 1-step 93.7 0.663 77.8 0.642
GeoTransformer + PEAL 5-step 94.0 2.131 78.5 2.074
GeoTransformer + Ours 1-step 93.9 0.625 78.2 0.620
GeoTransformer + Ours 2-step 94.2 0.954 79.4 0.956
GeoTransformer + Ours 5-step 94.4 1.939 80.0 1.964

Table 8: Comparison of inference time efficiency between GeoTransformer, PEAL and our method. The best
scores are in bold.
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Figure 9: Qualitative comparison of the proposed method with recent methods. From left to right are
CoFiNet, GeoTransformer, PEAL, ours, and ground truth alignment. Our method best aligns these chal-
lenging low-overlapping point cloud pairs. (Best view on a screen when zoomed in)

18


	Introduction
	Related Work
	Method
	Creating Point Cloud Prior Transformations
	Adaptive Multi-step Refinement
	Inference
	Loss Functions

	Experiments
	Implementation Details
	Indoor Scenes: 3DMatch & 3DLoMatch
	Outdoor Scenes: KITTI Odometry
	Ablation Studies

	Discussions
	Limitation and Conclusion
	Overview of this Supplementary
	Comparison with non-Learning-based Methods
	Per-step Comparison with PEAL
	Computation Time
	Qualitative Results

