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ABSTRACT

Building on the successes in other domains, there has been rapid development of
language models (LMs) for genomics. Key to this development is the establish-
ment of proper benchmarks and systematic evaluation approaches. The bench-
marks that have been proposed so far have focused on tasks that depend on short-
range sequence contexts, while the evaluation of models for long-range tasks that
are integral to genomics, such as gene expression and genetic variant prediction,
is lacking. In this work, we propose a benchmark that fills this need and intro-
duce the genomics long-range benchmark – an evaluation tool that is designed
to encompass tasks requiring long-range sequence dependencies, an aspect which
we deem crucial to genomic applications of DNA language models. In addition
to clearly defining and organizing relevant tasks into a cohesive benchmark, we
provide preliminary results of several prominent and recent DNA LMs evaluated
on the proposed benchmark. Finally, we probe the tasks in our benchmarks by
exploring the effect of context length extension methods for one of the evaluated
DNA LMs, the Nucleotide Transformer. By proposing this benchmark we hope
to stimulate the ongoing development of DNA LMs and provide a fruitful testing
ground for future developments that aim to capture long-range sequence modeling
in genomics.

1 INTRODUCTION

Foundation models have emerged as a promising approach to tackle a broad array of problems across
different domains (Bommasani et al., 2021), such as natural language processing and computer
vision, and more recently in biology. An important driver for the development of such types of
models has been the creation of proper benchmarks and systematic evaluation approaches. For
example, it is difficult to separate the advent and success of AlphaFold in protein structure prediction
(Jumper et al., 2021) from the Critical Assessment of Protein Structure Prediction competitions
that spurred the development of this model (Kryshtafovych et al., 2021). More recent successes of
foundation models include applications to the field of genomics and DNA sequences (Dalla-Torre
et al., 2023; Ji et al., 2021; Nguyen et al., 2023; Zhou et al., 2023; Benegas et al., 2023). DNA
language models (LMs) are showing promise in solving a diverse set of genomics tasks, and to
foster their development and adoption it is important to establish benchmarks adapted to the tasks
of core importance to the genomics community.

The Nucleotide Transformer (NT) work was the first attempt to establish a systematic study and
benchmark of language models for DNA, testing models of varying sizes up to 2.5B parameters
and pre-trained on diverse genomes from different individuals and species Dalla-Torre et al. (2023).
This benchmark included 18 diverse tasks of chromatin, splicing, and regulatory element predic-
tions. Since then, other benchmark datasets have been published (Nguyen et al., 2023; Zhou et al.,
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2023; Marin et al., 2023). Although these datasets have provided important means by which we
can compare existing models, they are limited to tasks that require short-range sequence context,
typically up to 10k base pairs (bp). There remains a need for similar benchmarks for long-context
tasks such as gene expression and genetic variant predictions, which are of higher relevance to the
scientific community.

Tasks such as predicting the expression of every gene in different cell types from sequence alone and
the impact of genetic variants on gene expression, remain challenging tasks in biology because they
depend on long-range interactions between the regulatory elements that modulate the expression of
the target gene, which can be as far as 1 million bp (Furlong & Levine, 2018). The recently proposed
architecture, known as Enformer, achieved state of the art performance on these tasks by combining
convolutional and transformer layers to effectively integrate information from up to 100k bp away in
the genome (Avsec et al., 2021). Enformer was trained in a supervised way to predict thousands of
epigenetic and transcriptional profiles from hundreds of cell types using only the DNA sequence as
input, thus also learning the intricate correlations between these diverse molecular entities. Towards
the goal of building a standardized benchmark that encapsulates meaningful long-range genomic
applications we make the following contributions:

1. We propose the genomics long-range benchmark (LRB) as an evaluation suite that tests the
capabilities of models for solving long-range genomics tasks.

2. We use this benchmark to compare the performance of different LMs with the Enformer as
a baseline.

3. We study how to efficiently extend the context of current shorter-range LMs and demon-
strate increased performance with increased context size.

2 GENOMICS LONG-RANGE BENCHMARK

The motivation of the genomics LRB is to compile a set of relevant genomic tasks requiring long-
range dependencies which will act as a robust evaluation tool for genomic LMs. While serving as
a strong basis of evaluation, the benchmark must also be efficient and user-friendly. To achieve this
we strike a balance between task complexity and computational cost through strategic decisions,
such as down-sampling or combining datasets.

2.1 VARIANT EFFECT PREDICTION

This task, derived from the Enformer paper (Avsec et al., 2021), involves predicting whether a
single nucleotide polymorphism (SNP) directly perturbs gene expression. The input to the task is
a sequence from the human reference genome whose center position corresponds to a SNP with a
reference and alternative allele. The output is a binary label, where labels are assigned to the positive
class if their causal probability, given by population-based fine mapping analysis tool SuSiE (Wang
et al., 2020), is > .9 (Avsec et al., 2021). The dataset originally proposed in Enformer was composed
of 48 sub-datasets each corresponding to a different tissue. For the sake of ease of evaluation, we
combine the sequences across tissues into one dataset. To preserve tissue information, we combine
model embeddings with one-hot encoded tissue-indicator vectors. Since no test set was specified in
the original dataset, we designate chromosomes 9 and 10 as the held out test set and the remaining
chromosomes are designated for training purposes.

2.2 CAGE PROFILING

This task corresponds to a biological assay that allows for high-throughput expression profiling of
genes at their transcription start sites (TSS). The Cap Analysis of Gene Expression (CAGE) task,
originally proposed in the Basenji paper (Kelley et al., 2018) and subsequently used in Enformer
(Avsec et al., 2021), involves predicting the measured CAGE levels across the positions of the gene
in various tissues and cell types. Input is a sequence from the human reference genome and outputs
are continuous values of CAGE signal across the sequence for several tissue types. It is important
to note that the dataset from Enformer uses CAGE labels of size 896 × 638, which correspond to
896 bins of 128 bp each and 638 human tissue types or cell lines (Avsec et al., 2021). For the sake
of ease of evaluation and to make the task less computationally intensive, we subset the labels by
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sampling a representative set of 50 tissues to a final tensor of 896 × 50. We maintain the original
test dataset split from Basenji and Enformer, but we combine the train and validation sets into one
training split. Finally, continuous labels are log(1 + x) transformed and subsequently processed
with standard scaling.

2.3 BULK RNA-SEQ GENE EXPRESSION

Bulk RNA-sequencing is another biological assay which measures average expression of genes from
a population of cells in a given tissue. For this task, the input is also a sequence from the human
reference genome that is centered around the TSS. The output here is a single vector of continuous
values representing the bulk RNA levels of a gene across 218 different tissue types. This task
differs from the CAGE gene expression task not only by the biological assay but also in that the
predictions here have a single expression value per gene, while for CAGE, we predict sequence
coverage at different bin positions across the gene. The original dataset presented in the training
and evaluation of ExPecto (Zhou et al., 2018) assigned chromosome 8 to the test dataset and all
remaining chromosomes to the train dataset, which we maintain as our dataset splits. Continuous
labels for this task are also log(1 + x) transformed and standardized.

2.4 EVALUATION METHODOLOGY

As an initial analysis of our proposed benchmark, we begin by evaluating recently developed ge-
nomic LMs, such as NT and HyenaDNA (Dalla-Torre et al., 2023; Nguyen et al., 2023), on the
genomics LRB. We also evaluate Enformer with the same methodology described below to provide
a baseline result against which we can compare the genomic LMs. In order to fairly and system-
atically evaluate these models, we employ several design decisions. Firstly, we carry out five-fold
cross validation (CV), selecting the best performing model for each fold based on validation loss,
and evaluating on the held out test set for which we report the mean performance across folds.
Validation dataset sampling for CV is done as follows: for variant effect and bulk RNA 5 chromo-
somes from the train set are randomly selected to each serve as a single validation set in the CV
process. For CAGE prediction, given that the original test set was not split by chromosome and that
sequences from the same chromosome appear in both train and test, we randomly select a distinct
10% portion of the train set to serve as the validation set for each fold. To train and evaluate mod-
els in a standardized manner, we first run inference of each model to obtain embeddings for input
sequences. These embeddings are then used to train a multi-layer perceptron (MLP). MLP hidden
dimensions are sized in an adaptive way such the hidden state size is equal to two times the base
model’s embedding dimension. Embeddings of shape sequence length × embedding dimension
are processed uniquely for each task.

In the variant effect task, mean embeddings are computed from a 1,500 bp window centered around
the SNP for both the sequence with the reference and alternative allele. The mean embeddings for
the reference and alternative alleles are subsequently concatenated together to create a vector that
has dimension 2 · embedding dimension. Since sequences across all tissues were combined into a
single dataset, we inject tissue information by additionally concatenating a one-hot encoded vector
of tissue type with the concatenated mean embeddings of the previous step. This final representation
is then passed as input to an MLP with two hidden layers, which is trained with a cross-entropy loss.

Given that CAGE prediction is a task that requires making predictions for each position along the
sequence, base model embeddings for each position in the sequence are input directly into an MLP
with two hidden layers so that loss can be computed from every position in the sequence. It is
important to note that models with a receptive field smaller than 114k bp, corresponding to the
original 896 bins of 128 bp each, use a subset of the labels for computing the loss and model with
receptive field larger than 114k bp use a sequence mask. We use mean squared error as the training
objective.

For the bulk RNA task, mean embeddings are computed across a window of 384 bp upstream of
the TSS and 256 bp downstream. The mean embeddings are subsequently fed into an MLP with a
single hidden layer. As with CAGE, we use mean squared error as the training objective.
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HyenaDNA Nucleotide Transformer Enformer

# Params / Context Length (bp) 1.6M /
1K

.4M /
16K

3.3M /
32K

6.6M /
160K

50M /
12K

100M /
12K

250M /
12K

500M /
12K

251M /
196K

Variant Effect
Prediction

AUC-ROC 0.705 0.704 0.713 0.706 0.714 0.722 0.721 0.719 0.755
Accuracy 0.648 0.649 0.658 0.647 0.661 0.664 0.661 0.657 0.668

Bulk RNA
Expression

Spearman Rgenes 0.701 0.622 0.605 0.726 0.750 0.761 0.776 0.780 0.871
Spearman Rtissues 0.182 0.166 0.167 0.230 0.225 0.219 0.237 0.306 0.554

R2 0.377 0.264 0.225 0.399 0.397 0.458 0.470 0.478 0.802

CAGE Profile
Expression

Pearson Rgenes 0.278 0.273 0.328 0.297 0.446 0.483 0.508 0.524 0.701
Pearson Rtissues 0.082 0.106 0.139 0.177 0.157 0.162 0.171 0.170 0.541

R2 0.071 0.073 0.110 0.089 0.201 0.235 0.260 0.276 0.492

Table 1: Baseline Results of Contemporary DNA Language Models on the Genomics Long-Range
Benchmark. Best values in each row are bolded.

2.5 BENCHMARKING RESULTS

The evaluation of the variant effect task highlights the Enformer’s modest performance compared to
genomic LMs. Despite variations in dataset partitioning between the original Enformer paper and
our methodology, our results for Enformer yield an AUCROC value of 0.754, closely aligning with
the reported 0.747 in the Enformer paper. We observe that all NT models exhibit slightly better
performance than Hyena DNA models. Additionally, we note that performance appears to drop
when model size reaches a certain point for both Hyena DNA and NT. We attribute this trend to the
increased embedding dimension size in the larger models, leading to more trainable parameters in
the MLP, which potentially causes over-fitting.

In CAGE prediction, we observe a consistent ranking of model performance with Hyena DNA,
NT, and Enformer in ascending order. We observe a Pearson Rgenes across all positions of 0.701
for the Enformer model, closely aligning with the 0.712 reported value in the original paper. For
Pearson Rtissues, we report 0.542 with the original paper reporting 0.532 for tissues with medium
expression variance. Additionally, the significant difference in performance between Enformer and
genomic LMs is likely attributable to Enformer’s supervised training, which included CAGE as a
subset of its original data. We observe a more prominent effect of model size on performance for
NT for the CAGE task than for bulk RNA.

Bulk RNA results mirror the above rankings of model class by performance. A comparison of
Enformer’s performance between our methodology and the original paper shows similar Spearman
Rgenes values, with our methodology at 0.871 and the Enformer paper reporting 0.840. However,
there is a larger difference between the Spearman Rtissues metric, with values of 0.541 and 0.451
for our methodology and the original report, respectively. The increase in performance can likely be
explained by the fact that we trained an MLP in comparison to only training a linear layer as done
in the Enformer paper.

Within NT models, a positive correlation exists between model size and performance metrics such
as Spearman Rgenes and R2. However, the same trend is not observed with Hyena DNA models.

3 CONTEXT EXTENSION FOR DNA LANGUAGE MODELS

In addition to the initial benchmarking of DNA LMs, we also conducted a more in-depth analy-
sis of how context size affects performance on our proposed tasks, focusing on the variant effect
task, where longer-range context is expected to improve performance (Avsec et al., 2021). For this
analysis, we use the smallest NT model with 50M parameters due to computational considerations.

3.1 CONTEXT EXTENSION FOR TRANSFORMER-BASED MODELS

Extending contexts for transformer-based models (Vaswani et al., 2017) is an open area of research.
Owing to the quadratic cost of the attention mechanism in transformer-based models, training with
long contexts is prohibitive in most scenarios. Therefore, much of the work in this realm has focused
on either zero-shot or minimal-fine-tuning length extension. Several works have documented and
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explored the difficulties for length extension in attention-based models (Dubois et al., 2019; Press
et al., 2021; Anil et al., 2022; Kazemnejad et al., 2023). Given that the NT was trained using rotary
positional embeddings (RoPE; (Su et al., 2021)), we focus on recent approaches that have been
proposed for extending contexts of RoPE models by converting the problem of length extrapolation
into one of ”interpolation”. Specifically, we employ the method described in (Peng et al., 2023),
where the frequency used in RoPE embeddings is re-scaled to account for longer sequences. For
more details on length interpolation for RoPE, see the Appendix.

3.2 EXPERIMENT SETUP

We fine-tuned the NT 50M model, initially pre-trained on a context size of 12k bp, on the Human
Genome Dataset (Dalla-Torre et al., 2023), employing context sizes of 24k and 48k bp and utilizing
the NTK-aware method described in (Peng et al., 2023). The model extended to 24k bp was trained
for approximately 80k steps and the model extended to 40k bps steps was trained for about 48k
steps. We also vary the length of the sequence provided to the model during the downstream variant
effect task fine-tuning, with lengths ranging from 12k to 192k bp; the latter being nearly on par
with Enformer’s context window (Avsec et al., 2021). For both the pre-trained and the context
extended models, we apply appropriate NTK-aware rescaling given the input sequence length for
the downstream task. We use 5-fold CV and report average performance on the test set.

3.3 RESULTS ON VARIANT EFFECT PREDICTION

The results are shown in Table 2. We observe that the pre-trained NT 50M model improves perfor-
mance when the input token length is extended from the original 12k bp with which the model was
pre-trained. This indicates that we can potentially see gains even with ‘zero-shot’ context extension
on this model when employing the NTK-aware rescaling. On the other hand, we also asses how
additional training of the base model on an extended context length of 24k and 48k affects how the
model performs on longer context inputs. We observe a steady increase in performance from the
pre-trained model to models that undergo additional training with extended context lengths of 24k
and 48k bp, especially as length of input sequences increases . Of note, the evaluation when using
192k bp inputs for the 48k context-extended model brings the unsupervised pre-trained NT model
performance close to that of the state-of-the-art Enformer model on this task. These results under-
score the critical role of context length in model performance for this type of task and the benefits
of fine-tuning with extended context lengths. In Figure 1, we show that the benefits of context-
extended models with longer input sequences are even more pronounced as the distance between
SNP and nearest gene TSS grows.

Model / Context Length (bp)

Input Context
Length

Pre-trained /
12k

Extended /
24k

Extended /
48k

12K 0.718 0.725 0.729
24K 0.720 0.725 0.730
48K 0.726 0.728 0.732
96K 0.734 0.732 0.738

192K 0.730 0.735 0.742

Table 2: Context extension improves variant effect prediction. AUC-ROC values shown. Best value
is bolded.

We present initial assessment findings regarding genomics LRB, highlighting that while genomic
language models such as NT and Hyena DNA exhibit promising performance, Enformer outper-
forms them. It’s worth noting that Enformer, unlike these language models, underwent supervised
training on data closely aligned with the specifics of our proposed tasks.
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Figure 1: Performance on the variant effect prediction task broken down by distance to nearest gene
TSS. Violin plots represent measures for the 49 tissues. The context-extended model with a longer
input context improves AUC-ROC when compared with the pre-trained 50M NT.

4 DISCUSSION

In this work, we introduce the genomics LRB, a tool to robustly evaluate genomic LMs. We pro-
vide preliminary evaluation results on the genomics LRB for genomic LM’s Hyena DNA and NT
and show comparisons with state of the art supervised model Enformer. Additionally, we explored
context length extension for NT, ultimately displaying that increasing context window, either ‘zero-
shot’ or with additional training, improves performance on variant effect prediction. We propose to
further develop the genomics LRB by adding new tasks such as genome annotation and regulatory
activity prediction. We believe these tasks are not only integral to genomics but would also permit
a fairer comparison with Enformer. To further build on genomic LM evaluations we plan to assess
other models, such as DNABERT (Zhou et al., 2023) and GPN-MSA (Benegas et al., 2023). Finally,
we hope to create an evaluation pipeline that the community can integrate into their own workflows
and a leader board to show current standings on the genomics LRB. It is our hope that the work pre-
sented here can continue to spur development and meaningful advancement of the field of genomics
LMs.
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Figure 2: Shown in the figure is a model of gene transcription regulation. Distal regulatory ele-
ments such as enhancers, silencers, and insulators can effect gene transcription and subsequently
expression. Enhancers recruit transcription factors and increase the target gene’s transcription while
elements, such as silencers, repress it. An insulator’s function is to block the activity of both en-
hancers and silencers. These elements can act on genes over long distances through co-location in
3D space. Single nucleotide polymorphism’s (SNPs) are single base pair changes located in both
coding and non-coding regions. SNPs can alter the function of the elements in which they lie, for
example by changing motifs which are critical for the binding of regulatory proteins. The CAGE
expression task involves predicting the RNA expression quantitative profile at the transcription start
sites of human genes as measured by CAGE, while the bulk RNA-seq tasks involve predicting the
global expression value of the whole gene in a given cell type. In variant effect prediction, the task
is to predict whether a given SNP and it’s alleles affect gene expression.

A LENGTH INTERPOLATION FOR ROTARY EMBEDDINGS

A.1 ROTARY EMBEDDINGS

In attention-based modules, such as those used in Transformer models (Vaswani et al., 2017), for a
sequence of length L, the model takes embeddings in {x}Lj=1,xj ∈ Rd, where d is the dimension
of the embeddings, and computes query, key, and value vectors at every mth and nth position in the
sequence:

qm = fq(xm,m)

kn = fk(xn, n)

vn = fv(xn, n).

fq, fk, fv are query, key, and value transformations, respectively. For rotary embeddings (RoPE; (Su
et al., 2021)), we can think of Rd as equivalent to the complex field Cd/2 and define fq and fk as:

fq(xm,m) = eimΘWqxm

fk(xn, n) = einΘWkxn,

where Wq and Wk are linear transformations and Θ = diag(θ1, . . . , θd/2) is a diagonal matrix,
with θj = b−2j/d and b = 10000.

A.2 ROPE POSITION INTERPOLATION

In the concurrent works of (Chen et al., 2023) and (kaiokendev, 2023), the method of position
interpolation was introduced, whereby longer sequences of length L′ > L are accommodated by
simply rescaling the position input to fq and fk, e.g., fq(xm,m L

L′ ).

A.3 NTK-AWARE ROPE INTERPOLATION

An alternative interpolation scheme, attributed to (bloc97, 2023), is motivated by the claim that
Position Interpolation may lead to the loss of high frequency information. The approach that pur-
portedly resolves this issue is related to the theory of Neural Tangent Kernels (NTK) by means of an
analogy between RoPE and Fourier Features (Tancik et al., 2020), and is thus named “NTK-aware”
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interpolation. This scheme is characterized by a rescaling applied not to the position but rather to
the basis of rotation, as follows:

θj = b′−2j/d

b′ = b ·
( L

L′

) d
d−2

In the experiments on context extension presented in the main text, we adopt this interpolation
scheme, both for zero-shot and additional training context extension.

We note that the authors in (Peng et al., 2023) further tweak and build on NTK-aware interpolation
to create their proposed interpolation scheme, which they title YaRN. However, the full YaRN ap-
proach, as presented in (Peng et al., 2023) requires several manually tuned hyperparameters, which
were carefully selected for the decoder-only generative Llama-2 7 billion parameter model (Touvron
et al., 2023a;b). We therefore adopted the simpler NTK-aware approach in our experiments. Future
work will explore the effect of the interpolation scheme on the results of our context extension
analysis.
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