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Abstract

Speech Synthesis from non-invasive brain ac-001
tivities offers a promising avenue for restor-002
ing communication abilities in patients with003
neurological disorders. Significant progress004
has been made in reconstructing natural speech005
from invasive brain recordings; however, these006
methods face practical challenges such as the007
high risk associated with brain surgery and the008
difficulties encountered in maintaining such de-009
vices over time. In this work, we formulate the010
task of non-invasive brain-to-speech synthesis011
and propose NeuralSpeak tailored for this task,012
Specifically, we 1) leverage a multi-scale trans-013
former model to address the challenges of han-014
dling excessively long sequences caused by the015
residual vector quantization-based neural codec016
in tokenization; 2) introduce a multi-window017
fMRI encoder, trained with contrastive learning018
to produce brain-derived embeddings that align019
closely with semantically rich text representa-020
tions. NeuralSpeak achieves state-of-the-art021
results in both objective and subjective bench-022
mark evaluation. Furthermore, we provide evi-023
dence that our model is biologically plausible024
and interpretable, mirroring established physio-025
logical processes.1026

1 Introduction027

Neurological disorders, such as stroke, brain tu-028

mors, and traumatic brain injury, often impair pa-029

tients’ communication abilities, making it crucial030

to find alternative ways for them to interact with031

their surroundings. Many patients rely on assis-032

tive communication devices that interpret nonver-033

bal cues like residual head or eye movements, or034

utilize brain-computer interfaces (BCIs) to select035

letters and form words. While BCIs hold promise036

for restoring communicative functions (Owen et al.,037

2006; Claassen et al., 2019; King et al., 2013), their038

performance significantly lags behind the natural039

1Audio samples are available at https://NeuralSpeak.
github.io

speech rate of about 150 words per minute. For 040

instance, studies by Moses et al. (2021) have re- 041

ported decoding rates of merely 15.2 words per 042

minute with BCIs implanted in the sensorimotor 043

cortex. Similarly, Metzger et al. (2022) have 044

achieved a typing speed of 29.4 characters per 045

minute using a similar BCI setup, presenting a po- 046

tential alternative communication avenue for indi- 047

viduals with neurological impairments. 048

To approximate a more natural communication 049

experience, researchers have turned to directly syn- 050

thesizing speech from brain activity. Several in- 051

vestigations have utilized invasive techniques to 052

decode verbal speech directly from neural activity. 053

For instance, Anumanchipalli et al. (2019) pro- 054

posed a system using a recurrent neural network 055

to decode cortical signals into an articulatory rep- 056

resentation, which was then translated into intelli- 057

gible speech through electrocorticography (ECoG) 058

signals. Kohler et al. (2021) explored a less in- 059

vasive approach utilizing stereotactic EEG (sEEG) 060

in conjunction with a recurrent encoder-decoder 061

model to synthesize audible speech. Furthermore, 062

Kim et al. (2023) have implemented transfer learn- 063

ing with a pre-trained self-supervised model to mit- 064

igate the limited availability of ECoG data. These 065

advancements underscore the potential for develop- 066

ing more effective communication prosthetics for 067

individuals afflicted by neurological disorders, aim- 068

ing to bridge the gap between artificial and natural 069

speech production. 070

However, the use of invasive recordings faces 071

significant challenges; these include the high risk 072

associated with brain surgery and the difficulties 073

encountered in maintaining such devices over ex- 074

tended periods. Consequently, recent research by 075

Défossez et al. (2023) has shifted focus to decod- 076

ing speech from non-invasive brain activity record- 077

ings, such as magnetoencephalography (MEG) and 078

electroencephalography (EEG). These modalities 079

leverage self-supervised representations and con- 080
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trastive learning to isolate the most probable word081

or speech segment from a predefined lexicon. De-082

spite their non-invasive nature, both MEG and EEG083

are known to produce signals that are notoriously084

noisy (Gross et al., 2013; Muthukumaraswamy,085

2013; Bai et al., 2023).086

In contrast, functional Magnetic Resonance087

Imaging (fMRI) offers another non-invasive088

method for decoding brain activity into com-089

plex outputs, such as images (Ozcelik and Van-090

Rullen, 2023; Takagi and Nishimoto, 2023; Ozce-091

lik et al., 2022), video (Chen et al., 2023), and092

languages (Tang et al., 2023). The superior spa-093

tial resolution of fMRI enables precise localiza-094

tion of brain activity to specific regions, which095

offers an advantage over MEG and EEG. How-096

ever, fMRI also has its limitations, including: (1)097

The temporal resolution of fMRI is substantially098

inferior to that of the sampling rates employed099

for speech signals. For example, a speech signal100

sampled at a frequency of 16 kHz yields 16,000101

discrete samples per second, while a single fMRI102

frame encompasses a 2-second interval. This dis-103

crepancy imposes a significant constraint on the104

capacity of fMRI to resolve the rapid temporal105

fluctuations that are characteristic of speech dy-106

namics. (2) fMRI measures the Blood Oxygen107

Level-Dependent (BOLD) signal, which, while re-108

liable, offers an indirect proxy for neural activity.109

This is referred to as the Hemodynamic Response110

(HR) (Buckner, 1998) and introduces a temporal111

delay between the occurrence of neuronal events112

and their manifestation in BOLD signals. Con-113

sequently, when a speech stimulus is presented,114

the associated BOLD signal will exhibit a delayed115

response in relation to the actual auditory event.116

(3) The nature and format of language representa-117

tions in brain recordings remain largely unknown.118

Consequently, determining the most suitable rep-119

resentations for speech synthesis is an unresolved120

problem.121

In this work, we propose NeuralSpeak, the first122

non-invasive brain-to-speech synthesis framework123

for synthesizing natural speech from fMRI record-124

ings. NeuralSpeak first encoder fMRI signals with125

a multi-window fMRI encoder, which is trained126

through contrastive learning. The framework then127

transforms speech signals into discrete represen-128

tations, which are refined through training with129

language models that have been enhanced specifi-130

cally for fMRI-guided next-token prediction. Sub-131

sequently, our framework reconstructs high-fidelity132

waveforms using a unit-based vocoder. Addition- 133

ally, we leverage a multi-scale Transformer model 134

to address the challenges of handling excessively 135

long sequences resulting from the residual vector 136

quantization codec used in tokenization. Our con- 137

tributions are summarized as follows: 138

• We formulate the task of non-invasive brain-to- 139

speech synthesis and devise NeuralSpeak, a tai- 140

lored framework that adopts multi-scale language 141

models for managing the extended discrete rep- 142

resentations of the speech signal. 143

• To alleviate hemodynamic response phenomenon 144

and capture semantically rich representations, we 145

introduce fMRI-language contrastive pretraining 146

with a multi-window fMRI encoder. 147

• Experimental results demonstrate that NeuralS- 148

peak achieves state-of-the-art performances. The 149

attention analysis revealed mapping to the audi- 150

tory cortex and higher cognitive networks sug- 151

gesting our model is biologically plausible and 152

interpretable. 153

2 Related Works 154

2.1 Speech Synthesis from Brain Activity 155

Speech synthesis from brain activity, also known 156

as brain-to-speech, is an emerging field that aims 157

to reconstruct or generate intelligible speech di- 158

rectly from neural signals. Early attempts at de- 159

coding brain activity into speech involved sim- 160

ple models that could predict a limited set of pre- 161

defined words or phrases (Herff et al., 2015; Mu- 162

gler et al., 2014; Brumberg et al., 2011). More 163

recent works (Anumanchipalli et al., 2019; An- 164

grick et al., 2019; Kohler et al., 2021) have fo- 165

cused on direct synthesis of speech from invasive 166

brain recordings with advanced machine learning 167

networks, typically using ECoG and sEEG. For 168

instance, Anumanchipalli et al. (2019) have em- 169

ployed a two-stage decoding approach based on 170

long short-term memory, wherein articulatory kine- 171

matic features are estimated from the ECoG signals. 172

More recently, Défossez et al. (2023) have intro- 173

duced a model trained with contrastive learning 174

to decode self-supervised representations of per- 175

ceived speech from non-invasive recordings. Con- 176

currently, there is a growing body of research focus- 177

ing on the reconstruction of music from brain ac- 178

tivity (Denk et al., 2023; Ramirez-Aristizabal and 179

Kello, 2022), utilizing modalities such as fMRI and 180
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Figure 1: A high-level overview of NeuralSpeak. The framework consists of three core stages—(1) aligning fMRI
representations with textual features, (2) autoregressively modeling audio tokens using multi-scale transformers,
and (3) self-supervised waveform reconstruction. The framework employs the FLAN-T5 text encoder for linguistic
feature extraction.

EEG. However, a notable research gap exists con-181

cerning non-invasive brain-to-speech synthesis. In182

this study, we present the pioneering framework for183

non-invasive brain-to-speech synthesis that lever-184

ages fMRI signals.185

2.2 Speech Representation186

Recent research has increasingly focused on effi-187

ciently encoding audio signals into compact dis-188

crete representations, aiming to optimize speech189

processing and high-fidelity audio coding. Pioneer-190

ing techniques such as Wav2Vec (Baevski et al.,191

2020) and Hubert (Hsu et al., 2021) have em-192

ployed k-means quantization to compress speech193

effectively. Additionally, SoundStream (Zeghi-194

dour et al., 2021) and Encodec (Défossez et al.,195

2022) have explored hierarchical vector quantiza-196

tion (VQ) methods to enhance the representation197

of acoustic information, showing promise in au-198

dio signal reconstruction with higher quality. A199

novel group-residual vector quantization (GRVQ)200

approach presented by (Yang et al., 2023) fur-201

ther advances audio coding. Our work builds upon202

SoundStream’s progress to extract discrete repre-203

sentations for improved speech synthesis and pro-204

cessing, strengthening our proposed framework.205

2.3 Language Models206

Modeling audio within a compact discrete space207

has garnered significant attention, facilitating effi-208

cient audio representation through autoregressive209

transformers. Innovations like AudioLM (Bor-210

sos et al., 2022) and MusicLM (Agostinelli et al.,211

2023) treat audio synthesis as language modeling212

with a hierarchical coarse-to-fine structure, yielding213

high-quality audio synthesis with granular control.214

SpeechDLM (Nguyen et al., 2023), focusing on215

speech for dialogue, and MusicGen (Copet et al.,216

2023), which handles multiple streams of music217

representations, extend these concepts, offering re- 218

alistic speech and complex musical compositions. 219

In this study, we introduce a versatile and scal- 220

able framework for non-invasive brain-to-speech 221

synthesis. This framework employs an autoregres- 222

sive sequence-to-sequence (seq2seq) approach and 223

leverages discrete representations. 224

3 Methods 225

3.1 Overview 226

NeuralSpeak is recognized as a scalable and adapt- 227

able framework that progressively improves the 228

modeling of speech signals by integrating relevant 229

fMRI information. This process is organized into 230

three primary stages, as illustrated in Figure 1: 1) 231

fMRI-text Alignment Pre-training: fMRI record- 232

ings are transformed into semantically rich rep- 233

resentations using contrastive learning objectives 234

by a multi-window fMRI encoder. 2) Acoustic 235

Modeling Fine-tuning: Audio tokens are gener- 236

ated sequentially from the aligned fMRI features 237

by multi-scale language models. 3) High-Fidelity 238

Waveform Synthesis: A unit-based vocoder syn- 239

thesizes high-fidelity waveforms from compressed 240

acoustic representations. In the following sections, 241

we describe these steps in detail. 242

3.2 Discrete Speech Representation 243

Recently, audio codec models such as SoundStream 244

(Zeghidour et al., 2021) and Encodec (Défossez 245

et al., 2022) have demonstrated the effectiveness of 246

encoder-decoder architectures in learning acoustic 247

information in a self-supervised manner. These 248

architectures are capable of extracting rich repre- 249

sentations from audio data, which can be leveraged 250

for a variety of generative tasks. 251

The acoustic codec model typically comprises an 252

audio encoder, a residual vector quantizer (RVQ), 253
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and an audio decoder: 1) The audio encoder E is254

composed of multiple convolutional blocks with255

a total downsampling rate of 320, producing con-256

tinuous representations at every 20-ms frame at 16257

kHz. 2) The residual vector quantizer Q generates258

discrete representations at ∈ RT×Nq , where T is259

the number of audio frames after downsampling260

and Nq is the number of vector quantization layers,261

utilizing a vector quantization technique (Vasuki262

and Vanathi, 2006). 3)The audio decoder G re-263

constructs the signal ŷ from the compressed latent264

representation at.265

3.3 Brain Representation266

Multi-window fMRI Encoder While fMRI of-267

fers excellent spatial specificity, the BOLD signal268

it records is characterized by slow dynamics. An269

impulse of neural activity triggers the BOLD sig-270

nal to rise and fall over a period of approximately271

10 seconds (Logothetis, 2003). This implies that272

the fMRI data captured at a specific time may not273

fully capture the information about a correspond-274

ing auditory stimulus presented at the same time.275

Therefore, to adequately extract information for276

decoding each scanning window and to accommo-277

date the hemodynamic response (HR), we propose278

a multi-window Transformer architecture. This ar-279

chitecture incorporates spatial-temporal attention280

mechanisms to effectively process sequential fMRI281

frames.282

Consider a series of fMRI frames denoted as283

xt ∈ RB·W×1×V , where W , B, and V represent284

the window size, batch size, and the number of285

voxels, respectively. Inspired by the Vision Trans-286

former (Dosovitskiy et al., 2020), the fMRI data287

undergoes an initial transformation through a patch288

embedding process to yield xp ∈ R(B·W )×P×D,289

where P denotes the patch size and D signifies the290

patch embedding dimension. Subsequently, spatial291

attention is computed as follows, with the query Q,292

key K, and value V all derived from the projected293

xp.294

Attention(Q,K, V ) = Softmax
(
QK⊤
√
dk

)
V (1)295

Here, dk represents the hidden dimension of the296

key. The output xspatialp is obtained by applying297

spatial attention. Subsequently, to compute tempo-298

ral attention, we transpose the dimensions of p and299

w to obtain xtemp
p ∈ RB·P×W×D. We then apply300

the same attention mechanism as in Equation 1,301

with the query, key, and value set to xtemp
p .302

Contrastive fMRI-text Pretraining The encod- 303

ing of acoustic, phonetic, lexical, and semantic 304

information in brain recordings remains poorly un- 305

derstood, posing a significant challenge in identi- 306

fying optimal representations for speech synthesis. 307

To address this challenge, we enhance the multi- 308

window fMRI encoder by incorporating fMRI-text 309

pairs. Our objective is to align the fMRI-derived 310

embeddings more closely with semantically rich 311

text representations. 312

We process the fMRI data and corresponding 313

text through distinct encoders: an fMRI encoder 314

and a text encoder. This yields the fMRI represen- 315

tation xf ∈ RB×V with dimensionality V , and the 316

text representation xt ∈ RB×U with dimension- 317

ality U , where B represents the batch size. Both 318

representations are then projected into a joint mul- 319

timodal space with dimension D, resulting in em- 320

beddings Ef ∈ RB×D and Et ∈ RB×D, achieved 321

via a multilayer perceptron (MLP). Now that the 322

fMRI and text embeddings are comparable, the 323

contrastive loss LCL is calculated as follows: 324

LCLIP(a, b) = Cross_Entropy(ϵ · (a · b⊤), range(n))

LCL(ef , et) = 0.5× (LCLIP(ef , et) + LCLIP(et, ef ))
(2) 325

Where ϵ is a scaling parameter. To create a con- 326

trastive learning scenario, following the common 327

practice (Radford et al., 2021; Elizalde et al., 2023; 328

Huang et al., 2022; Wu et al., 2023), we treat other 329

elements of the batch as negative samples. 330

3.4 Multi-Scale Acoustic Modeling 331

Despite the effectiveness of our audio codec model 332

in compressing raw waveforms into a condensed 333

format with dimensions T ×Nq, the conventional 334

Transformer architecture faces a significant limi- 335

tation due to its intrinsic quadratic computational 336

complexity, denoted by O(T 2N2
q ). This complex- 337

ity makes the model inefficient when processing 338

even the compressed sequences, as they remain con- 339

siderably lengthy. In response to this challenge, we 340

draw inspiration from the work of Yu et al. (2023) 341

and propose a multi-scale Transformer architec- 342

ture tailored for discrete audio sequences. This 343

hierarchical framework addresses correlations both 344

within and between frames by incorporating dis- 345

tinct global and local Transformer modules. Specif- 346

ically, the architecture segments every Nq consecu- 347

tive token into global modeling units, subsequently 348

managing the tokens within each segment at a local 349

scale, as depicted in Figure 2. 350
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Figure 2: The architecture of multi-scale Transformer
with patch size P = Nq = 3. Inputs to both the global
and local models are padded by a single patch. The
global model’s output serves as the conditioning context
for the local model, which then autoregressively predicts
each patch in parallel. Note that the gray blocks denote
the padding tokens.

Initially, to facilitate the patching of fMRI351

embeddings, we duplicate each embedding Nq352

times to populate a patch. This patch is then353

concatenated with the corresponding audio seg-354

ment embedding ap, incorporating special tokens355

such as ’<fMRI_start>’, ’<fMRI_end>’, ’<au-356

dio_start>’ and ’<audio_end>’ to identify bound-357

aries. This process yields the patch embedding358

Et ∈ RB×K×DG·Nq , where K represents the patch359

length, and DG is the dimension of the global360

embedding. To enable autoregressive modeling,361

we subsequently augment the patched sequence362

with a trainable padding embedding at the begin-363

ning, while excluding the final patch from the input.364

This modified sequence is then processed by the365

global model to obtain the global hidden states366

hG ∈ RB×K×DG·Nq . In the third step, we map367

the output of the global model to the dimension368

of the local model, DL, and reshape the output se-369

quence into ELocal
t ∈ RB·K×Nq×DL . For this local370

embedding, we introduce an offset by incorporat-371

ing a trainable local padding embedding. Finally,372

we feed the local embedding into the local model373

and compute the probability distribution over the374

vocabulary, as described by the following equation:375

p (a | xf ,ap; θARs) =
T∏
t=0

p (at | a< t,xf ,ap; θARs) ,

(3)376

Where θARs represents the parameters of the au- 377

toregressive models (i.e., the global model and lo- 378

cal model), and at denotes the audio token at time 379

t. 380

3.5 High-Fidelity Waveform Synthesis 381

Upon completion of the training process, language 382

models can be utilized to generate acoustic tokens 383

based on the provided fMRI signals. Subsequently, 384

a unit-based vocoder is employed to synthesize 385

the corresponding speech waveforms. It is worth 386

noting that the acoustic codec used, such as Sound- 387

Stream, leverages multiple quantization levels, typ- 388

ically 12, to enhance the quality of speech recon- 389

struction. Thus, reducing the number of codebooks 390

during the inference stage might result in a notice- 391

able drop in perceptual quality. 392

To maintain the quality of the generated audio 393

waveforms, we employ a unit-based neural vocoder 394

specially designed for waveform generation from 395

acoustic units. This vocoder is trained from scratch 396

and achieves high-quality audio reconstruction us- 397

ing only three quantization levels. Inspired by the 398

architecture of the BigVGAN model (Lee et al., 399

2022), our synthesizer consists of a generator and 400

a multi-resolution discriminator (MRD). The gen- 401

erator incorporates a set of look-up tables (LUT) 402

for embedding the discrete representations, along- 403

side a series of blocks. Each block consists of 404

transposed convolutions and a residual block with 405

dilated layers. The transposed convolutions are 406

responsible for upsampling the encoded represen- 407

tation to match the input sample rate, while the 408

dilated layers enhance the receptive field. 409

3.6 Training and Inference Procedures 410

Our model undergoes training through a bifurcated 411

strategy comprising three distinct stages. Initially, 412

the fMRI encoder is trained on our dataset utiliz- 413

ing contrastive learning, while concurrently, the 414

language model undergoes training on audio sam- 415

ples with text conditioning. In the subsequent stage, 416

both the fMRI encoder and the language models are 417

fine-tuned jointly using paired fMRI-audio data. In 418

the third stage, which focuses on synthesis, we train 419

the advanced vocoder using a composite loss func- 420

tion that integrates the least-squares adversarial 421

loss, feature matching loss, and spectral regression 422

loss. During inference, we consistently employ 423

top-k sampling to generate predictions, and then 424

the audio output is synthesized from the tokens 425

predicted by the language model. 426
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Model MOS (↑) SMOS (↑) WER (↓) SIM (↑)

GT 4.25 ± 0.07 / 0.02 /

Model Performances
Random 1.32 ± 0.15 1.14 ± 0.17 0.99 0.04
Regression 2.61 ± 0.10 2.43 ± 0.08 0.93 0.32
Cascaded 2.66 ± 0.09 3.12 ± 0.09 0.86 0.49
NeuralSpeak 3.56 ±0.07 3.41 ±0.08 0.08 0.62

Analysis Across Different Subjects
Subject 2 3.49 ±0.09 3.36 ±0.10 0.14 0.58
Subject 3 3.52 ±0.08 3.40 ±0.09 0.10 0.59

Table 1: We summarize the results of comparison and analysis across different subjects in one table using objective
and subjective metrics to evaluate the quality and style similarity of generated samples. By default, we use the data
of Subject 1 for evaluation.

4 Experiments427

4.1 Experimental Setup428

4.1.1 The fMRI Dataset429

We conduct preprocessing of the dataset from430

LeBel et al. (2023) following the methodology es-431

tablished by Jain et al. (2020). Detailed descrip-432

tions of the data collection and preprocessing steps433

are provided in the Appendix A. The stimulus set434

comprises 84 narratives, each lasting between 10 to435

15 minutes, with a cumulative duration of approxi-436

mately 15.8 hours.437

4.1.2 Model Configurations438

The sample rate of speech samples is 16,000 Hz.439

The dataset contains 3 subjects and each subject440

varies in the size of ROIs, where Subject 1, 2, and441

3 have 1929, 4792, and 2747 voxels, respectively.442

For audio tokens, we train the SoundStream model443

with 12 quantization levels, each with a codebook444

of size 1024 and the same downsampling rate of445

320. We take 3 quantization levels as the acoustic446

tokens. Language models are both 24-layer global447

transformers with an attention dimension of 1536448

and 6-layer local transformers with the same di-449

mension. As for the unit-based vocoder, we use450

the modified V1 version of BigVGAN. A compre-451

hensive table of hyperparameters is available in452

Appendix B.1.453

4.1.3 Training and Evaluation454

During training, we train language models for 50K455

steps using 8/80 NVIDIA A100 GPUs with a batch456

size of 10000 tokens for each GPU on the publicly-457

available fairseq framework (Ott et al., 2019).458

Adam optimizer is used with β1 = 0.9, β2 =459

0.98, ϵ = 10−9. The contrastive learning of fMRI460

encoder is optimized with an initial learning rate 461

10−3 using 8 NVIDIA A100 GPUs. Reconstruct- 462

ing audio model is optimized with a segment size 463

of 8192 and a learning rate of 1× 10−4 until 500K 464

steps using 4 NVIDIA A100 GPUs. During infer- 465

ence, we use batch size 1 of autoregressive decod- 466

ing in language modeling. 467

4.1.4 Evaluation Metrics 468

To evaluate the performance of NeuralSpeak on 469

synthesized speech samples, we include both ob- 470

jective metrics and subjective metrics. For objec- 471

tive evaluation, Word Error Rate (WER) is used 472

to evaluate the intelligibility of generated speech, 473

Similarity Score (SIM) is for similarity in terms of 474

speaker identity. For subjective evaluation, MOS 475

is adopted to provide human-centric judgment for 476

the quality of speech samples. Note all subjective 477

results are obtained from Amazon Mechanical Turk 478

for fair comparison. Appendix C shows details of 479

the subjective evaluation process. 480

4.2 Model Performances 481

To comprehensively evaluate the superiority of 482

NeuralSpeak and the effectiveness of our proposed 483

methods, we compared it with other baselines us- 484

ing subjective and objective metrics. We compare 485

the generated audio samples with other systems, 486

including 1) GT, the ground-truth speech; 2) Ran- 487

dom: a random baseline model that predicts the 488

audio units using a randomly initialized version 489

of NeuralSpeak; 3) Regression: we train a linear 490

regression to predict the softmax probability of 491

the true audio units generated by the audio codec 492

model; 4) Cascaded: this baseline is composed 493

of state-of-the-art fMRI-to-text model (Tang et al., 494

2023) in this dataset and Text-to-Speech MVoice 495
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Model MOS (↑) SMOS (↑) WER (↓) SIM (↑)

NeuralSpeak 3.56 ±0.07 3.41 ±0.08 0.08 0.62

w/o Contrastive 3.49 ±0.08 3.32 ±0.08 0.15 0.60
w/o Multi-window fMRI Encoder 3.54 ±0.08 3.38 ±0.09 0.13 0.59
w/o Multi-scale Transformer 3.36 ±0.07 3.25 ±0.08 0.18 0.52
w/o Language Cortex 3.42 ±0.08 3.34 ±0.08 0.17 0.54
w/o Auditory Cortex 3.39 ±0.09 3.32 ±0.08 0.16 0.50

Table 2: The ablation studies to explore the effectiveness of our proposed contrastive learning, multi-window fMRI
encoder, multi-scale transformer, and ROI regions. To replace the multi-window fMRI encoder and multi-scale
transformer, we adopt vision transformers and the language models used by AudioGen (Kreuk et al.), which adopts
parallel prediction.

model (Huang et al., 2023). For easy comparison,496

the results are compiled and presented in Table 1,497

and we have the following observations: 1) For498

the intelligibility of the generated speech, NeuralS-499

peak has achieved a WER of 0.08, which is much500

lower than other systems. This indicates that Neu-501

ralSpeak could generate accessible speech of better502

quality compared to other baselines. 2) For au-503

dio quality, NeuralSpeak has achieved the highest504

MOS with scores of 3.56 ± 0.07 compared to the505

baseline models, demonstrating the effectiveness506

of our model in generating high-fidelity waveforms.507

3) Regarding style similarity, NeuralSpeak scores508

the SMOS of 3.41 ± 0.08. The objective results509

of SIM further show that NeuralSpeak surpasses510

other baselines in generating identified voices.511

Analysis Across Different Subjects To further512

analyze the performance across different subjects,513

we evaluate NeuralSpeak for Subject 2 and Subject514

3. The number of voxels of ROIs varies in differ-515

ent subjects, where Subject 1, 2, and 3 have 1929,516

4792, and 2747 voxels, respectively. The results517

are also included in Table 1, and the following ob-518

servations are made: 1) The WER for Subject 2519

and Subject 3 remains low, indicating the capabil-520

ity of NeuralSpeak to generate intelligible speech521

for different individuals. 2) For Subject 2 and Sub-522

ject 3, NeuralSpeak consistently outperforms the523

baselines in terms of MOS, SMOS, and SIM. This524

indicates the robustness of NeuralSpeak in generat-525

ing high-quality and style-consistent speech across526

different subjects. 3) The results of Subject 1 per-527

forms slightly better than Subject 2 and Subject528

3, we contribute it to the smaller ROI size may529

produce better results with a larger batch size.530

4.3 Ablation Studies531

We conduct ablation studies to demonstrate the ef-532

fectiveness of several key techniques on the test533

set in our model, including the contrastive learn- 534

ing, multi-window fMRI encoder, and multi-scale 535

Transformer. we conduct ablation studies and dis- 536

cuss the key findings as follows. 1) Removing 537

contrastive learning results in a significant degra- 538

dation of generation quality. This indicates that 539

NeuralSpeak has the ability to learn representa- 540

tions of language that are particularly valuable for 541

brain-to-speech synthesis by aligning fMRI rep- 542

resentations with text features. 2) Without the 543

multi-window fMRI encoder designs, there is a dis- 544

tinct degradation in all metrics, which demonstrates 545

that our model successfully alleviates the prob- 546

lem of hemodynamic response using a sliding win- 547

dow and spatial-temporal attention. 3) Multi-scale 548

Transformer outperforms the parallel prediction 549

approach used in AudioGen (Kreuk et al., 2023) 550

in terms of generation quality. This is because 551

the latter fails to preserve the property of auto- 552

regression when introducing concurrent prediction, 553

while our multi-scale Transformer maintains this 554

property. Moreover, our approach considerably 555

reduces complexity from T 2N2
q to T 2

N2
q
+ TNq by 556

incorporating global and local modeling. 4) We fur- 557

ther investigate the performance of using responses 558

solely from language cortex and auditory cortex, 559

and found that the use of responses from both the 560

semantic regions and auditory cortex yielded better 561

results. These findings highlight the importance of 562

both semantic regions and the auditory cortex in 563

representing valuable information for synthesizing 564

high-fidelity waveforms. 565

Retrieval Results We further conduct the fMRI- 566

to-text retrieval experiments to demonstrate the ef- 567

fectiveness of our proposed contrastive fMRI-text 568

pre-training. The performance is evaluated based 569

on the metrics of R@1 and R@10 for both text- 570

to-fMRI (T-F) retrieval and fMRI-to-text (F-T) re- 571

trieval. The results are presented in Table 3, and 572
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A. First Layer B. Middle Layer C. Last Layer

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: Visualization of Transformer Attention Maps. Attention maps of different transformer layers are shown in
(A), (B), and (C). AC: Auditory Cortex; sPMv: superior premotor cortex.

we have the following observations:

Model T-F retrival F-T retrival
R@1 R@10 R@1 R@10

NeuralSpeak 17.2 55.6 24.1 58.2

w/o Contrastive 5.4 21.2 6.5 24.6
w CLAP 13.4 48.9 17.3 47.8
w RoBERTa 15.1 52.7 21.5 53.6

Table 3: The fMRI-to-text retrieval performance. We
compare the performance of our text encoder T5-large
with CLAP text encoder (Elizalde et al., 2023) and
RoBERTa (Liu et al., 2019).573

1) When the contrastive learning technique was574

removed, lower results were obtained for both T-F575

retrieval and F-T retrieval. This demonstrates the576

effectiveness of contrastive learning in improving577

retrieval performance. 2) Replacing the T5 encoder578

with alternative text encoders resulted in a degra-579

dation of retrieval performance. This highlights580

the importance of using advanced text encoders to581

enhance the retrieval results.582

4.4 Interpretation Results583

We calculate the average attention across the entire584

test set and visualize the voxel-wise self-attention585

value on a brain flat map. The resulting figure586

(Figure 3) shows a comprehensive distribution of587

attention throughout the entire brain region, from588

which we derive key insights:589

1) The attention maps highlight the significant590

role played by the auditory cortex and language591

cortex (specifically the Broca and sPMv regions) in592

the natural speech synthesis process. These regions593

exhibit high attention values, indicating their cru-594

cial involvement in the processing and generation595

of speech. This finding aligns with our existing596

knowledge of the brain, where the auditory cor-597

tex is responsible for sound perception (King and598

Schnupp, 2007) and language-related regions are599

involved in language production and comprehen-600

sion (Friederici, 2012).601

2) The attention maps across different trans- 602

former layers demonstrate a hierarchical pattern 603

of functionality within the fMRI encoder. In the 604

initial layers (Fig. B), the self-attention layers are 605

primarily focused on the structural characteristics 606

of the input data, delineating brain regions based 607

on their attention values in auditory processing. 608

This observation echoes the brain’s methodical ap- 609

proach to processing auditory information, where 610

lower-level regions analyze basic acoustic features. 611

Progressing to deeper layers (Fig. C and D), the 612

attention becomes more dispersed, resulting in de- 613

creased differentiation between specific regions. 614

This suggests a transition towards the acquisition 615

of more holistic and abstract acoustic features in 616

the deeper layers. 617

5 Conclusion 618

In this work, we proposed NeuralSpeak, a system 619

specifically devised for the task of non-invasive 620

brain-to-speech synthesis, offering a promising 621

pathway to restore communicative functions in pa- 622

tients with neurological impairments. To tackle 623

the obstacles associated with capturing optimal 624

neural representations and addressing the hemo- 625

dynamic response within brain recordings, we de- 626

signed a multi-window fMRI encoder. This en- 627

coder, trained through contrastive learning, gener- 628

ates brain-derived embeddings that exhibit close 629

semantic alignment with text representations. Addi- 630

tionally, to resolve the issue of excessively lengthy 631

audio tokens, we have implemented a multi-scale 632

transformer architecture. The efficacy of NeuralS- 633

peak is affirmed by its state-of-the-art performance 634

in both objective measurements and subjective as- 635

sessments. Moreover, our model demonstrates bio- 636

logical plausibility and interpretability, reflecting 637

well-established physiological processes. We en- 638

visage that our work will serve as a basis for future 639

non-invasive brain-to-speech synthesis studies. 640
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6 Limitation and Potential Risks641

MindSpeak adopts auto-regressive models for high-642

quality synthesis, and thus it inherently requires643

iterative refinements for better results. Besides,644

a longer sequence length typically requires more645

computational resources, and degradation could be646

witnessed with decreased training data. One of647

our future directions is to develop lightweight and648

parallel models for accelerating sampling.649

MindSpeak has the potential to revolutionize650

communication for individuals with speech impair-651

ments. However, as with any advanced technology,652

there are potential negative societal impacts that653

warrant consideration. This technology may po-654

tentially extract and vocalize thoughts without con-655

sent, leading to serious privacy violations and the656

possibility of unauthorized surveillance and mis-657

use of personal information. In addition, there is658

the potential for leading to unequal access, with659

only those who can afford it benefiting from the660

technology, exacerbating social and economic in-661

equalities.662
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A Dataset Collection and Preprocessing914

A.1 fMRI data collection915

The MRI data was acquired over six scanning916

sessions (15 sessions for the extended dataset)917

using a 3T Siemens Skyra scanner at the UT918

Austin Biomedical Imaging Center, employing a919

64-channel Siemens volume coil. The initial ses-920

sion comprised an anatomical scan and functional921

localizers. Subsequent sessions involved passive922

listening to 4–5 stories, including the story des-923

ignated for model testing. Each story was pre-924

sented during a single EPI scan, incorporating a925

10-second silent padding period at both the be-926

ginning and end of the narrative.The audio was927

transmitted via Sensimetrics S14 in-ear piezoelec-928

tric headphones. To reduce head movement, foam929

headcases (CaseForge, Inc., now defunct) were em-930

ployed to snugly fit the gap between the partici-931

pant’s head and the head coil during data acquisi-932

tion. Creating the headcases involved utilizing an933

RGB Structure.io sensor (Occipital Inc.) to capture934

a three-dimensional scan of each participant’s head,935

while their hair was compressed using a swim cap.936

Subsequently, these scans were utilized to fabricate937

custom styrofoam headcases for individual partici-938

pants.939

A.2 Speech stimulus Collection940

For three of these participants, the training set com-941

prises a total of 82 stories, including two additional942

stories designated for use as a test dataset. During943

stimulus presentation, the audio for each story un-944

derwent filtering to rectify frequency response and945

phase errors caused by the headphones. This fil-946

tering process utilized calibration data supplied by947

Sensimetrics, augmented by custom Python code 2.948

All stimuli were played at a sampling rate of 44.1949

kHz using the pygame library in Python.950

A.3 Data preprocessing951

fMRI preprocessing was exclusively performed on952

the derivative data. This data underwent motion953

correction using the FMRIB Linear Image Regis-954

tration Tool (FLIRT) from the FMRIB Software955

Library (FSL) version 5.028. Following motion956

correction, all volumes within each run were av-957

eraged to derive a single template volume. Cross-958

run alignment was subsequently conducted using959

FLIRT to align the template volume from each run960

2https://github.com/alexhuth/sensimetrics_
flter

with the template volume from the initial run in 961

the first story session. These automated alignments 962

underwent manual verification. The concatenated 963

motion correction and cross-run transformations 964

were then used to resample the original data into 965

a motion-corrected and cross-run-aligned space, 966

thereby minimizing unwanted blurring associated 967

with multiple resampling steps. The motion cor- 968

rection and cross-run transformations were subse- 969

quently concatenated and applied to resample the 970

original data into a motion-corrected and cross- 971

run-aligned space. This approach mitigates the 972

need for multiple resampling steps, thereby min- 973

imizing undesired blurring effects. Additionally, 974

low-frequency voxel response drift was identified 975

using a 2nd order Savitzky-Golay filter with a 120- 976

second window and subtracted from the signal. To 977

minimize artifacts arising from onset transients 978

and suboptimal detrending performance at the data 979

boundaries, we trimmed the responses by discard- 980

ing the initial and final 20 seconds (equivalent to 10 981

volumes) of each scan. This adjustment effectively 982

eliminated the 10-second silent periods and the first 983

and last 10 seconds of each story. In terms of audio 984

preprocessing, we downsampled the audio samples 985

to 16 kHz before temporally aligning them with the 986

fMRI recordings. 987

B More Implementation Details 988

B.1 Model Configurations 989

We list the model hyper-parameters of NeuralSpeak 990

in Table 4. 991

B.2 Unit-based Vocoder 992

The generator of the unit-based vocoder is con- 993

structed using a set of look-up tables (LUT) to 994

embed the discrete representations, alongside a se- 995

quence of blocks comprising transposed convolu- 996

tions and a residual block with dilated layers. 997

C Subjective Evaluation 998

For evaluating audio quality, we perform MOS 999

(mean opinion score) tests, explicitly instructing 1000

the raters to "(focus on examining the audio quality 1001

and naturalness, and ignore differences in style 1002

(such as timbre, emotion, and prosody))". Testers 1003

present and rate the samples, and each tester is 1004

requested to evaluate subjective naturalness using 1005

a 1-5 Likert scale. 1006

For style similarity evaluation, raters are explic- 1007

itly instructed to "(focus on the similarity of the 1008
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Hyperparameter NeuralSpeak

fMRI Encoder

Patch Size 16
Embed Dim 1024

Encoder Layer 24
Encoder Heads 16

Global Model

Transformer Layer 20
Transformer Embed Dim 1152

Transformer Heads 16
Transformer FFN Dim 4608

Dictionary Length 4163
Patch Size 3

Local Model

Transformer Layer 6
Transformer Embed Dim 1152

Transformer Heads 8
Transformer FFN Dim 4608

Vocoder

Upsample Rates [5, 4, 2, 2, 2, 2]
Hop Size 320

Upsample Kernel Sizes [9, 8, 4, 4, 4, 4]
Number of Parameters 121.6M

Total Number of Parameters 1.4B

Table 4: Hyperparameters of NeuralSpeak.

Acoustic Tokens

Embedding Layer

Conv1D

TransposedConv1D

AMP

Tanh Conv1D
Snake1D

Upsample1D
w/ Low-pass Filter

Downsample1D
w/ Low-pass Filter

DilatedConv1D

Snake1D

𝑓! 𝑥 = 𝑥 +
1
𝛼
sin" 𝛼𝑥

Figure 4: Overview of the unit-based vocoder.

style (timbre, emotion, and prosody) to the refer-1009

ence, and ignore the differences of content, gram-1010

mar, or audio quality.)" during the SMOS (similar-1011

ity mean opinion score) tests. In these tests, each1012

synthesized utterance is paired with a true utter-1013

ance to assess how closely the synthesized speech1014

matches that of the target speaker. Each pair is1015

rated by a single rater.1016

Our subjective evaluation tests were crowd-1017

sourced and carried out by 20 native speakers1018

through Amazon Mechanical Turk. The screen-1019

shots of instructions for the testers are provided1020

in Figure 5. Participants were compensated at1021

a rate of $8 per hour, resulting in an expendi-1022

ture of approximately $600 for participant com-1023

pensation. A limited subset of speech samples1024

utilized in the evaluation is accessible at https:1025

//NeuralSpeak.github.io/.1026

D Reproducibility Statement 1027

We will release our code in the future. The NeuralS- 1028

peak model that we build upon is publicly available 1029

through the Fairseq code repository. To aid repro- 1030

ducibility, we have included an overview of the 1031

hyperparameters in Table 4. 1032
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(a) Screenshot of MOS testing.

(b) Screenshot of SMOS testing.

Figure 5: Screenshots of subjective evaluations.
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