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Abstract

Speech Synthesis from non-invasive brain ac-
tivities offers a promising avenue for restor-
ing communication abilities in patients with
neurological disorders. Significant progress
has been made in reconstructing natural speech
from invasive brain recordings; however, these
methods face practical challenges such as the
high risk associated with brain surgery and the
difficulties encountered in maintaining such de-
vices over time. In this work, we formulate the
task of non-invasive brain-to-speech synthesis
and propose NeuralSpeak tailored for this task,
Specifically, we 1) leverage a multi-scale trans-
former model to address the challenges of han-
dling excessively long sequences caused by the
residual vector quantization-based neural codec
in tokenization; 2) introduce a multi-window
fMRI encoder, trained with contrastive learning
to produce brain-derived embeddings that align
closely with semantically rich text representa-
tions. NeuralSpeak achieves state-of-the-art
results in both objective and subjective bench-
mark evaluation. Furthermore, we provide evi-
dence that our model is biologically plausible
and interpretable, mirroring established physio-
logical processes.'

1 Introduction

Neurological disorders, such as stroke, brain tu-
mors, and traumatic brain injury, often impair pa-
tients’ communication abilities, making it crucial
to find alternative ways for them to interact with
their surroundings. Many patients rely on assis-
tive communication devices that interpret nonver-
bal cues like residual head or eye movements, or
utilize brain-computer interfaces (BCIs) to select
letters and form words. While BCIs hold promise
for restoring communicative functions (Owen et al.,
2006; Claassen et al., 2019; King et al., 2013), their
performance significantly lags behind the natural

'Audio samples are available at https://NeuralSpeak.
github.io

speech rate of about 150 words per minute. For
instance, studies by Moses et al. (2021) have re-
ported decoding rates of merely 15.2 words per
minute with BCIs implanted in the sensorimotor
cortex. Similarly, Metzger et al. (2022) have
achieved a typing speed of 29.4 characters per
minute using a similar BCI setup, presenting a po-
tential alternative communication avenue for indi-
viduals with neurological impairments.

To approximate a more natural communication
experience, researchers have turned to directly syn-
thesizing speech from brain activity. Several in-
vestigations have utilized invasive techniques to
decode verbal speech directly from neural activity.
For instance, Anumanchipalli et al. (2019) pro-
posed a system using a recurrent neural network
to decode cortical signals into an articulatory rep-
resentation, which was then translated into intelli-
gible speech through electrocorticography (ECoG)
signals. Kohler et al. (2021) explored a less in-
vasive approach utilizing stereotactic EEG (SEEG)
in conjunction with a recurrent encoder-decoder
model to synthesize audible speech. Furthermore,
Kim et al. (2023) have implemented transfer learn-
ing with a pre-trained self-supervised model to mit-
igate the limited availability of ECoG data. These
advancements underscore the potential for develop-
ing more effective communication prosthetics for
individuals afflicted by neurological disorders, aim-
ing to bridge the gap between artificial and natural
speech production.

However, the use of invasive recordings faces
significant challenges; these include the high risk
associated with brain surgery and the difficulties
encountered in maintaining such devices over ex-
tended periods. Consequently, recent research by
Défossez et al. (2023) has shifted focus to decod-
ing speech from non-invasive brain activity record-
ings, such as magnetoencephalography (MEG) and
electroencephalography (EEG). These modalities
leverage self-supervised representations and con-
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trastive learning to isolate the most probable word
or speech segment from a predefined lexicon. De-
spite their non-invasive nature, both MEG and EEG
are known to produce signals that are notoriously
noisy (Gross et al., 2013; Muthukumaraswamy,
2013; Bai et al., 2023).

In contrast, functional Magnetic Resonance
Imaging (fMRI) offers another non-invasive
method for decoding brain activity into com-
plex outputs, such as images (Ozcelik and Van-
Rullen, 2023; Takagi and Nishimoto, 2023; Ozce-
lik et al., 2022), video (Chen et al., 2023), and
languages (Tang et al., 2023). The superior spa-
tial resolution of fMRI enables precise localiza-
tion of brain activity to specific regions, which
offers an advantage over MEG and EEG. How-
ever, fMRI also has its limitations, including: (1)
The temporal resolution of fMRI is substantially
inferior to that of the sampling rates employed
for speech signals. For example, a speech signal
sampled at a frequency of 16 kHz yields 16,000
discrete samples per second, while a single fMRI
frame encompasses a 2-second interval. This dis-
crepancy imposes a significant constraint on the
capacity of fMRI to resolve the rapid temporal
fluctuations that are characteristic of speech dy-
namics. (2) fMRI measures the Blood Oxygen
Level-Dependent (BOLD) signal, which, while re-
liable, offers an indirect proxy for neural activity.
This is referred to as the Hemodynamic Response
(HR) (Buckner, 1998) and introduces a temporal
delay between the occurrence of neuronal events
and their manifestation in BOLD signals. Con-
sequently, when a speech stimulus is presented,
the associated BOLD signal will exhibit a delayed
response in relation to the actual auditory event.
(3) The nature and format of language representa-
tions in brain recordings remain largely unknown.
Consequently, determining the most suitable rep-
resentations for speech synthesis is an unresolved
problem.

In this work, we propose NeuralSpeak, the first
non-invasive brain-to-speech synthesis framework
for synthesizing natural speech from fMRI record-
ings. NeuralSpeak first encoder fMRI signals with
a multi-window fMRI encoder, which is trained
through contrastive learning. The framework then
transforms speech signals into discrete represen-
tations, which are refined through training with
language models that have been enhanced specifi-
cally for fMRI-guided next-token prediction. Sub-
sequently, our framework reconstructs high-fidelity

waveforms using a unit-based vocoder. Addition-
ally, we leverage a multi-scale Transformer model
to address the challenges of handling excessively
long sequences resulting from the residual vector
quantization codec used in tokenization. Our con-
tributions are summarized as follows:

* We formulate the task of non-invasive brain-to-
speech synthesis and devise NeuralSpeak, a tai-
lored framework that adopts multi-scale language
models for managing the extended discrete rep-
resentations of the speech signal.

¢ To alleviate hemodynamic response phenomenon
and capture semantically rich representations, we
introduce fMRI-language contrastive pretraining
with a multi-window fMRI encoder.

» Experimental results demonstrate that NeuralS-
peak achieves state-of-the-art performances. The
attention analysis revealed mapping to the audi-
tory cortex and higher cognitive networks sug-
gesting our model is biologically plausible and
interpretable.

2 Related Works

2.1 Speech Synthesis from Brain Activity

Speech synthesis from brain activity, also known
as brain-to-speech, is an emerging field that aims
to reconstruct or generate intelligible speech di-
rectly from neural signals. Early attempts at de-
coding brain activity into speech involved sim-
ple models that could predict a limited set of pre-
defined words or phrases (Herff et al., 2015; Mu-
gler et al., 2014; Brumberg et al., 2011). More
recent works (Anumanchipalli et al., 2019; An-
grick et al., 2019; Kohler et al., 2021) have fo-
cused on direct synthesis of speech from invasive
brain recordings with advanced machine learning
networks, typically using ECoG and sEEG. For
instance, Anumanchipalli et al. (2019) have em-
ployed a two-stage decoding approach based on
long short-term memory, wherein articulatory kine-
matic features are estimated from the ECoG signals.
More recently, Défossez et al. (2023) have intro-
duced a model trained with contrastive learning
to decode self-supervised representations of per-
ceived speech from non-invasive recordings. Con-
currently, there is a growing body of research focus-
ing on the reconstruction of music from brain ac-
tivity (Denk et al., 2023; Ramirez-Aristizabal and
Kello, 2022), utilizing modalities such as fMRI and
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Figure 1: A high-level overview of NeuralSpeak. The framework consists of three core stages—(1) aligning fMRI
representations with textual features, (2) autoregressively modeling audio tokens using multi-scale transformers,
and (3) self-supervised waveform reconstruction. The framework employs the FLAN-TS5 text encoder for linguistic

feature extraction.

EEG. However, a notable research gap exists con-
cerning non-invasive brain-to-speech synthesis. In
this study, we present the pioneering framework for
non-invasive brain-to-speech synthesis that lever-
ages fMRI signals.

2.2 Speech Representation

Recent research has increasingly focused on effi-
ciently encoding audio signals into compact dis-
crete representations, aiming to optimize speech
processing and high-fidelity audio coding. Pioneer-
ing techniques such as Wav2Vec (Baevski et al.,
2020) and Hubert (Hsu et al., 2021) have em-
ployed k-means quantization to compress speech
effectively. Additionally, SoundStream (Zeghi-
dour et al., 2021) and Encodec (Défossez et al.,
2022) have explored hierarchical vector quantiza-
tion (VQ) methods to enhance the representation
of acoustic information, showing promise in au-
dio signal reconstruction with higher quality. A
novel group-residual vector quantization (GRVQ)
approach presented by (Yang et al., 2023) fur-
ther advances audio coding. Our work builds upon
SoundStream’s progress to extract discrete repre-
sentations for improved speech synthesis and pro-
cessing, strengthening our proposed framework.

2.3 Language Models

Modeling audio within a compact discrete space
has garnered significant attention, facilitating effi-
cient audio representation through autoregressive
transformers. Innovations like AudioLM (Bor-
sos et al., 2022) and MusicLLM (Agostinelli et al.,
2023) treat audio synthesis as language modeling
with a hierarchical coarse-to-fine structure, yielding
high-quality audio synthesis with granular control.
SpeechDLM (Nguyen et al., 2023), focusing on
speech for dialogue, and MusicGen (Copet et al.,
2023), which handles multiple streams of music

representations, extend these concepts, offering re-
alistic speech and complex musical compositions.
In this study, we introduce a versatile and scal-
able framework for non-invasive brain-to-speech
synthesis. This framework employs an autoregres-
sive sequence-to-sequence (seq2seq) approach and
leverages discrete representations.

3 Methods

3.1 Overview

NeuralSpeak is recognized as a scalable and adapt-
able framework that progressively improves the
modeling of speech signals by integrating relevant
fMRI information. This process is organized into
three primary stages, as illustrated in Figure 1: 1)
fMRI-text Alignment Pre-training: fMRI record-
ings are transformed into semantically rich rep-
resentations using contrastive learning objectives
by a multi-window fMRI encoder. 2) Acoustic
Modeling Fine-tuning: Audio tokens are gener-
ated sequentially from the aligned fMRI features
by multi-scale language models. 3) High-Fidelity
Waveform Synthesis: A unit-based vocoder syn-
thesizes high-fidelity waveforms from compressed
acoustic representations. In the following sections,
we describe these steps in detail.

3.2 Discrete Speech Representation

Recently, audio codec models such as SoundStream
(Zeghidour et al., 2021) and Encodec (Défossez
et al., 2022) have demonstrated the effectiveness of
encoder-decoder architectures in learning acoustic
information in a self-supervised manner. These
architectures are capable of extracting rich repre-
sentations from audio data, which can be leveraged
for a variety of generative tasks.

The acoustic codec model typically comprises an
audio encoder, a residual vector quantizer (RVQ),



and an audio decoder: 1) The audio encoder E is
composed of multiple convolutional blocks with
a total downsampling rate of 320, producing con-
tinuous representations at every 20-ms frame at 16
kHz. 2) The residual vector quantizer () generates
discrete representations a; € RT*Na where T is
the number of audio frames after downsampling
and [V, is the number of vector quantization layers,
utilizing a vector quantization technique (Vasuki
and Vanathi, 2006). 3)The audio decoder G re-
constructs the signal ¢y from the compressed latent
representation ay.

3.3 Brain Representation

Multi-window fMRI Encoder While fMRI of-
fers excellent spatial specificity, the BOLD signal
it records is characterized by slow dynamics. An
impulse of neural activity triggers the BOLD sig-
nal to rise and fall over a period of approximately
10 seconds (Logothetis, 2003). This implies that
the fMRI data captured at a specific time may not
fully capture the information about a correspond-
ing auditory stimulus presented at the same time.
Therefore, to adequately extract information for
decoding each scanning window and to accommo-
date the hemodynamic response (HR), we propose
a multi-window Transformer architecture. This ar-
chitecture incorporates spatial-temporal attention
mechanisms to effectively process sequential fMRI
frames.

Consider a series of fMRI frames denoted as
zy € REWXIXV "where W, B, and V represent
the window size, batch size, and the number of
voxels, respectively. Inspired by the Vision Trans-
former (Dosovitskiy et al., 2020), the fMRI data
undergoes an initial transformation through a patch
embedding process to yield z,, € RBW)xPxD
where P denotes the patch size and D signifies the
patch embedding dimension. Subsequently, spatial
attention is computed as follows, with the query @,
key K, and value V all derived from the projected
Tp.

Attention(Q, K, V') = Soft <QKT> vV (1)
ention(Q, K, V) = Softmax
Vdy

Here, dj represents the hidden dimension of the
key. The output 237" is obtained by applying
spatial attention. Subsequently, to compute tempo-
ral attention, we transpose the dimensions of p and
w to obtain ™ € REP*W*D We then apply
the same attention mechanism as in Equation 1,

with the query, key, and value set to 3 ™.

Contrastive fMRI-text Pretraining The encod-
ing of acoustic, phonetic, lexical, and semantic
information in brain recordings remains poorly un-
derstood, posing a significant challenge in identi-
fying optimal representations for speech synthesis.
To address this challenge, we enhance the multi-
window fMRI encoder by incorporating fMRI-text
pairs. Our objective is to align the fMRI-derived
embeddings more closely with semantically rich
text representations.

We process the fMRI data and corresponding
text through distinct encoders: an fMRI encoder
and a text encoder. This yields the fMRI represen-
tation x ¢ € RBXV with dimensionality V, and the
text representation z; € RE*V with dimension-
ality U, where B represents the batch size. Both
representations are then projected into a joint mul-
timodal space with dimension D, resulting in em-
beddings E; € RB*D and E; € RP*P, achieved
via a multilayer perceptron (MLP). Now that the
fMRI and text embeddings are comparable, the
contrastive loss L¢y is calculated as follows:

Lcrp(a,b) = Cross_Entropy(e - (a-b' ), range(n))

Lev(ef,er) = 0.5 x (Lcup(ey, er) + ECLIP(etan))
2)
Where € is a scaling parameter. To create a con-
trastive learning scenario, following the common
practice (Radford et al., 2021; Elizalde et al., 2023;
Huang et al., 2022; Wu et al., 2023), we treat other
elements of the batch as negative samples.

3.4 Multi-Scale Acoustic Modeling

Despite the effectiveness of our audio codec model
in compressing raw waveforms into a condensed
format with dimensions 7' x N, the conventional
Transformer architecture faces a significant limi-
tation due to its intrinsic quadratic computational
complexity, denoted by O(T?N7). This complex-
ity makes the model inefficient when processing
even the compressed sequences, as they remain con-
siderably lengthy. In response to this challenge, we
draw inspiration from the work of Yu et al. (2023)
and propose a multi-scale Transformer architec-
ture tailored for discrete audio sequences. This
hierarchical framework addresses correlations both
within and between frames by incorporating dis-
tinct global and local Transformer modules. Specif-
ically, the architecture segments every N, consecu-
tive token into global modeling units, subsequently
managing the tokens within each segment at a local
scale, as depicted in Figure 2.
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Figure 2: The architecture of multi-scale Transformer
with patch size P = N, = 3. Inputs to both the global
and local models are padded by a single patch. The
global model’s output serves as the conditioning context
for the local model, which then autoregressively predicts
each patch in parallel. Note that the gray blocks denote
the padding tokens.

Initially, to facilitate the patching of fMRI
embeddings, we duplicate each embedding N,
times to populate a patch. This patch is then
concatenated with the corresponding audio seg-
ment embedding a,, incorporating special tokens
such as ’<fMRI_start>’, '<fMRI_end>’, ’<au-
dio_start>" and ’<audio_end>’ to identify bound-
aries. This process yields the patch embedding
E; € RBXKEXDaNq where K represents the patch
length, and D¢ is the dimension of the global
embedding. To enable autoregressive modeling,
we subsequently augment the patched sequence
with a trainable padding embedding at the begin-
ning, while excluding the final patch from the input.
This modified sequence is then processed by the
global model to obtain the global hidden states
hg € RBXEXDa-Na [n the third step, we map
the output of the global model to the dimension
of the local model, Dy, and reshape the output se-
quence into Efecdl ¢ RB-KXNexDL For this local
embedding, we introduce an offset by incorporat-
ing a trainable local padding embedding. Finally,
we feed the local embedding into the local model
and compute the probability distribution over the
vocabulary, as described by the following equation:

T

p(a|xg ap;0ars) =

t=0

3)

Hp(at | a< t,xf,ap; 0aRs

)

Where 04, represents the parameters of the au-
toregressive models (i.e., the global model and lo-
cal model), and a; denotes the audio token at time
t.

3.5 High-Fidelity Waveform Synthesis

Upon completion of the training process, language
models can be utilized to generate acoustic tokens
based on the provided fMRI signals. Subsequently,
a unit-based vocoder is employed to synthesize
the corresponding speech waveforms. It is worth
noting that the acoustic codec used, such as Sound-
Stream, leverages multiple quantization levels, typ-
ically 12, to enhance the quality of speech recon-
struction. Thus, reducing the number of codebooks
during the inference stage might result in a notice-
able drop in perceptual quality.

To maintain the quality of the generated audio
waveforms, we employ a unit-based neural vocoder
specially designed for waveform generation from
acoustic units. This vocoder is trained from scratch
and achieves high-quality audio reconstruction us-
ing only three quantization levels. Inspired by the
architecture of the BigVGAN model (Lee et al.,
2022), our synthesizer consists of a generator and
a multi-resolution discriminator (MRD). The gen-
erator incorporates a set of look-up tables (LUT)
for embedding the discrete representations, along-
side a series of blocks. Each block consists of
transposed convolutions and a residual block with
dilated layers. The transposed convolutions are
responsible for upsampling the encoded represen-
tation to match the input sample rate, while the
dilated layers enhance the receptive field.

3.6 Training and Inference Procedures

Our model undergoes training through a bifurcated
strategy comprising three distinct stages. Initially,
the fMRI encoder is trained on our dataset utiliz-
ing contrastive learning, while concurrently, the
language model undergoes training on audio sam-
ples with text conditioning. In the subsequent stage,
both the fMRI encoder and the language models are
fine-tuned jointly using paired fMRI-audio data. In
the third stage, which focuses on synthesis, we train
the advanced vocoder using a composite loss func-
tion that integrates the least-squares adversarial
loss, feature matching loss, and spectral regression
loss. During inference, we consistently employ
top-k sampling to generate predictions, and then
the audio output is synthesized from the tokens
predicted by the language model.



Model MOS (1) SMOS (1)  WER () SIM (1)
GT 4.25 +0.07 / 0.02 /
Model Performances

Random 1.32+£0.15 1.14+£0.17 0.99 0.04
Regression 2,61 £0.10 243 +0.08 0.93 0.32
Cascaded 2.66 +0.09 3.124+0.09 0.86 0.49
NeuralSpeak 3.56 +-0.07 3.41 +0.08 0.08 0.62
Analysis Across Different Subjects

Subject 2 3.49 £0.09 3.36 +0.10 0.14 0.58
Subject 3 3.52+0.08 3.40 +0.09 0.10 0.59

Table 1: We summarize the results of comparison and analysis across different subjects in one table using objective
and subjective metrics to evaluate the quality and style similarity of generated samples. By default, we use the data

of Subject 1 for evaluation.
4 [Experiments

4.1 Experimental Setup
4.1.1 The fMRI Dataset

We conduct preprocessing of the dataset from
LeBel et al. (2023) following the methodology es-
tablished by Jain et al. (2020). Detailed descrip-
tions of the data collection and preprocessing steps
are provided in the Appendix A. The stimulus set
comprises 84 narratives, each lasting between 10 to
15 minutes, with a cumulative duration of approxi-
mately 15.8 hours.

4.1.2 Model Configurations

The sample rate of speech samples is 16,000 Hz.
The dataset contains 3 subjects and each subject
varies in the size of ROIs, where Subject 1, 2, and
3 have 1929, 4792, and 2747 voxels, respectively.
For audio tokens, we train the SoundStream model
with 12 quantization levels, each with a codebook
of size 1024 and the same downsampling rate of
320. We take 3 quantization levels as the acoustic
tokens. Language models are both 24-layer global
transformers with an attention dimension of 1536
and 6-layer local transformers with the same di-
mension. As for the unit-based vocoder, we use
the modified V1 version of BigVGAN. A compre-
hensive table of hyperparameters is available in
Appendix B.1.

4.1.3 Training and Evaluation

During training, we train language models for 50K
steps using 8/80 NVIDIA A100 GPUs with a batch
size of 10000 tokens for each GPU on the publicly-
available fairseq framework (Ott et al., 2019).
Adam optimizer is used with 51 = 0.9,83; =
0.98, ¢ = 10~Y. The contrastive learning of fMRI

encoder is optimized with an initial learning rate
1073 using 8 NVIDIA A100 GPUs. Reconstruct-
ing audio model is optimized with a segment size
of 8192 and a learning rate of 1 x 10~* until 500K
steps using 4 NVIDIA A100 GPUs. During infer-
ence, we use batch size 1 of autoregressive decod-
ing in language modeling.

4.1.4 Evaluation Metrics

To evaluate the performance of NeuralSpeak on
synthesized speech samples, we include both ob-
jective metrics and subjective metrics. For objec-
tive evaluation, Word Error Rate (WER) is used
to evaluate the intelligibility of generated speech,
Similarity Score (SIM) is for similarity in terms of
speaker identity. For subjective evaluation, MOS
is adopted to provide human-centric judgment for
the quality of speech samples. Note all subjective
results are obtained from Amazon Mechanical Turk
for fair comparison. Appendix C shows details of
the subjective evaluation process.

4.2 Model Performances

To comprehensively evaluate the superiority of
NeuralSpeak and the effectiveness of our proposed
methods, we compared it with other baselines us-
ing subjective and objective metrics. We compare
the generated audio samples with other systems,
including 1) GT, the ground-truth speech; 2) Ran-
dom: a random baseline model that predicts the
audio units using a randomly initialized version
of NeuralSpeak; 3) Regression: we train a linear
regression to predict the softmax probability of
the true audio units generated by the audio codec
model; 4) Cascaded: this baseline is composed
of state-of-the-art fMRI-to-text model (Tang et al.,
2023) in this dataset and Text-to-Speech M Voice



Model MOS (1) SMOS (1) WER () SIM (1)
NeuralSpeak 3.56 £0.07 3.41 £0.08 0.08 0.62
w/o Contrastive 3.49 +0.08 3.32 +0.08 0.15 0.60
w/o Multi-window fMRI Encoder 3.54 +0.08 3.38 +0.09 0.13 0.59
w/o Multi-scale Transformer 3.36 £0.07 3.25 +0.08 0.18 0.52
w/o Language Cortex 3.42 £0.08 3.34 +0.08 0.17 0.54
w/o Auditory Cortex 3.39 £0.09 3.32 +0.08 0.16 0.50

Table 2: The ablation studies to explore the effectiveness of our proposed contrastive learning, multi-window fMRI
encoder, multi-scale transformer, and ROI regions. To replace the multi-window fMRI encoder and multi-scale
transformer, we adopt vision transformers and the language models used by AudioGen (Kreuk et al.), which adopts

parallel prediction.

model (Huang et al., 2023). For easy comparison,
the results are compiled and presented in Table 1,
and we have the following observations: 1) For
the intelligibility of the generated speech, NeuralS-
peak has achieved a WER of 0.08, which is much
lower than other systems. This indicates that Neu-
ralSpeak could generate accessible speech of better
quality compared to other baselines. 2) For au-
dio quality, NeuralSpeak has achieved the highest
MOS with scores of 3.56 + 0.07 compared to the
baseline models, demonstrating the effectiveness
of our model in generating high-fidelity waveforms.
3) Regarding style similarity, NeuralSpeak scores
the SMOS of 3.41 £ 0.08. The objective results
of SIM further show that NeuralSpeak surpasses
other baselines in generating identified voices.

Analysis Across Different Subjects To further
analyze the performance across different subjects,
we evaluate NeuralSpeak for Subject 2 and Subject
3. The number of voxels of ROIs varies in differ-
ent subjects, where Subject 1, 2, and 3 have 1929,
4792, and 2747 voxels, respectively. The results
are also included in Table 1, and the following ob-
servations are made: 1) The WER for Subject 2
and Subject 3 remains low, indicating the capabil-
ity of NeuralSpeak to generate intelligible speech
for different individuals. 2) For Subject 2 and Sub-
ject 3, NeuralSpeak consistently outperforms the
baselines in terms of MOS, SMOS, and SIM. This
indicates the robustness of NeuralSpeak in generat-
ing high-quality and style-consistent speech across
different subjects. 3) The results of Subject 1 per-
forms slightly better than Subject 2 and Subject
3, we contribute it to the smaller ROI size may
produce better results with a larger batch size.

4.3 Ablation Studies

We conduct ablation studies to demonstrate the ef-
fectiveness of several key techniques on the test

set in our model, including the contrastive learn-
ing, multi-window fMRI encoder, and multi-scale
Transformer. we conduct ablation studies and dis-
cuss the key findings as follows. 1) Removing
contrastive learning results in a significant degra-
dation of generation quality. This indicates that
NeuralSpeak has the ability to learn representa-
tions of language that are particularly valuable for
brain-to-speech synthesis by aligning fMRI rep-
resentations with text features. 2) Without the
multi-window fMRI encoder designs, there is a dis-
tinct degradation in all metrics, which demonstrates
that our model successfully alleviates the prob-
lem of hemodynamic response using a sliding win-
dow and spatial-temporal attention. 3) Multi-scale
Transformer outperforms the parallel prediction
approach used in AudioGen (Kreuk et al., 2023)
in terms of generation quality. This is because
the latter fails to preserve the property of auto-
regression when introducing concurrent prediction,
while our multi-scale Transformer maintains this
property. Moreover, our approach considerably
reduces complexity from T2Nq2 to %—22 + TNy by
incorporating global and local modelinqg. 4) We fur-
ther investigate the performance of using responses
solely from language cortex and auditory cortex,
and found that the use of responses from both the
semantic regions and auditory cortex yielded better
results. These findings highlight the importance of
both semantic regions and the auditory cortex in
representing valuable information for synthesizing
high-fidelity waveforms.

Retrieval Results We further conduct the fMRI-
to-text retrieval experiments to demonstrate the ef-
fectiveness of our proposed contrastive fMRI-text
pre-training. The performance is evaluated based
on the metrics of R@1 and R@10 for both text-
to-fMRI (T-F) retrieval and fMRI-to-text (F-T) re-
trieval. The results are presented in Table 3, and
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Figure 3: Visualization of Transformer Attention Maps. Attention maps of different transformer layers are shown in
(A), (B), and (C). AC: Auditory Cortex; sPMv: superior premotor cortex.

we have the following observations:

Model T-F retrival F-T retrival
ode R@l R@I0 R@l R@I0
NeuralSpeak 17.2 55.6 24.1 58.2
w/o Contrastive 5.4 21.2 6.5 24.6
w CLAP 134 48.9 17.3 47.8
w RoBERTa 15.1 52.7 21.5 53.6

Table 3: The fMRI-to-text retrieval performance. We
compare the performance of our text encoder T5-large
with CLAP text encoder (Elizalde et al., 2023) and
RoBERTza (Liu et al., 2019).

1) When the contrastive learning technique was
removed, lower results were obtained for both T-F
retrieval and F-T retrieval. This demonstrates the
effectiveness of contrastive learning in improving
retrieval performance. 2) Replacing the T5 encoder
with alternative text encoders resulted in a degra-
dation of retrieval performance. This highlights
the importance of using advanced text encoders to
enhance the retrieval results.

4.4 Interpretation Results

We calculate the average attention across the entire
test set and visualize the voxel-wise self-attention
value on a brain flat map. The resulting figure
(Figure 3) shows a comprehensive distribution of
attention throughout the entire brain region, from
which we derive key insights:

1) The attention maps highlight the significant
role played by the auditory cortex and language
cortex (specifically the Broca and sPMv regions) in
the natural speech synthesis process. These regions
exhibit high attention values, indicating their cru-
cial involvement in the processing and generation
of speech. This finding aligns with our existing
knowledge of the brain, where the auditory cor-
tex is responsible for sound perception (King and
Schnupp, 2007) and language-related regions are
involved in language production and comprehen-
sion (Friederici, 2012).

2) The attention maps across different trans-
former layers demonstrate a hierarchical pattern
of functionality within the fMRI encoder. In the
initial layers (Fig. B), the self-attention layers are
primarily focused on the structural characteristics
of the input data, delineating brain regions based
on their attention values in auditory processing.
This observation echoes the brain’s methodical ap-
proach to processing auditory information, where
lower-level regions analyze basic acoustic features.
Progressing to deeper layers (Fig. C and D), the
attention becomes more dispersed, resulting in de-
creased differentiation between specific regions.
This suggests a transition towards the acquisition
of more holistic and abstract acoustic features in
the deeper layers.

5 Conclusion

In this work, we proposed NeuralSpeak, a system
specifically devised for the task of non-invasive
brain-to-speech synthesis, offering a promising
pathway to restore communicative functions in pa-
tients with neurological impairments. To tackle
the obstacles associated with capturing optimal
neural representations and addressing the hemo-
dynamic response within brain recordings, we de-
signed a multi-window fMRI encoder. This en-
coder, trained through contrastive learning, gener-
ates brain-derived embeddings that exhibit close
semantic alignment with text representations. Addi-
tionally, to resolve the issue of excessively lengthy
audio tokens, we have implemented a multi-scale
transformer architecture. The efficacy of NeuralS-
peak is affirmed by its state-of-the-art performance
in both objective measurements and subjective as-
sessments. Moreover, our model demonstrates bio-
logical plausibility and interpretability, reflecting
well-established physiological processes. We en-
visage that our work will serve as a basis for future
non-invasive brain-to-speech synthesis studies.



6 Limitation and Potential Risks

MindSpeak adopts auto-regressive models for high-
quality synthesis, and thus it inherently requires
iterative refinements for better results. Besides,
a longer sequence length typically requires more
computational resources, and degradation could be
witnessed with decreased training data. One of
our future directions is to develop lightweight and
parallel models for accelerating sampling.

MindSpeak has the potential to revolutionize
communication for individuals with speech impair-
ments. However, as with any advanced technology,
there are potential negative societal impacts that
warrant consideration. This technology may po-
tentially extract and vocalize thoughts without con-
sent, leading to serious privacy violations and the
possibility of unauthorized surveillance and mis-
use of personal information. In addition, there is
the potential for leading to unequal access, with
only those who can afford it benefiting from the
technology, exacerbating social and economic in-
equalities.
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A Dataset Collection and Preprocessing

A.1 fMRI data collection

The MRI data was acquired over six scanning
sessions (15 sessions for the extended dataset)
using a 3T Siemens Skyra scanner at the UT
Austin Biomedical Imaging Center, employing a
64-channel Siemens volume coil. The initial ses-
sion comprised an anatomical scan and functional
localizers. Subsequent sessions involved passive
listening to 4-5 stories, including the story des-
ignated for model testing. Each story was pre-
sented during a single EPI scan, incorporating a
10-second silent padding period at both the be-
ginning and end of the narrative.The audio was
transmitted via Sensimetrics S14 in-ear piezoelec-
tric headphones. To reduce head movement, foam
headcases (CaseForge, Inc., now defunct) were em-
ployed to snugly fit the gap between the partici-
pant’s head and the head coil during data acquisi-
tion. Creating the headcases involved utilizing an
RGB Structure.io sensor (Occipital Inc.) to capture
a three-dimensional scan of each participant’s head,
while their hair was compressed using a swim cap.
Subsequently, these scans were utilized to fabricate
custom styrofoam headcases for individual partici-
pants.

A.2  Speech stimulus Collection

For three of these participants, the training set com-
prises a total of 82 stories, including two additional
stories designated for use as a test dataset. During
stimulus presentation, the audio for each story un-
derwent filtering to rectify frequency response and
phase errors caused by the headphones. This fil-
tering process utilized calibration data supplied by
Sensimetrics, augmented by custom Python code 2.
All stimuli were played at a sampling rate of 44.1
kHz using the pygame library in Python.

A.3 Data preprocessing

fMRI preprocessing was exclusively performed on
the derivative data. This data underwent motion
correction using the FMRIB Linear Image Regis-
tration Tool (FLIRT) from the FMRIB Software
Library (FSL) version 5.028. Following motion
correction, all volumes within each run were av-
eraged to derive a single template volume. Cross-
run alignment was subsequently conducted using
FLIRT to align the template volume from each run

2https://github.com/alexhuth/sensimetrics_
flter
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with the template volume from the initial run in
the first story session. These automated alignments
underwent manual verification. The concatenated
motion correction and cross-run transformations
were then used to resample the original data into
a motion-corrected and cross-run-aligned space,
thereby minimizing unwanted blurring associated
with multiple resampling steps. The motion cor-
rection and cross-run transformations were subse-
quently concatenated and applied to resample the
original data into a motion-corrected and cross-
run-aligned space. This approach mitigates the
need for multiple resampling steps, thereby min-
imizing undesired blurring effects. Additionally,
low-frequency voxel response drift was identified
using a 2" order Savitzky-Golay filter with a 120-
second window and subtracted from the signal. To
minimize artifacts arising from onset transients
and suboptimal detrending performance at the data
boundaries, we trimmed the responses by discard-
ing the initial and final 20 seconds (equivalent to 10
volumes) of each scan. This adjustment effectively
eliminated the 10-second silent periods and the first
and last 10 seconds of each story. In terms of audio
preprocessing, we downsampled the audio samples
to 16 kHz before temporally aligning them with the
fMRI recordings.

B More Implementation Details

B.1 Model Configurations

We list the model hyper-parameters of NeuralSpeak
in Table 4.

B.2 Unit-based Vocoder

The generator of the unit-based vocoder is con-
structed using a set of look-up tables (LUT) to
embed the discrete representations, alongside a se-
quence of blocks comprising transposed convolu-
tions and a residual block with dilated layers.

C Subjective Evaluation

For evaluating audio quality, we perform MOS
(mean opinion score) tests, explicitly instructing
the raters to "(focus on examining the audio quality
and naturalness, and ignore differences in style
(such as timbre, emotion, and prosody))". Testers
present and rate the samples, and each tester is
requested to evaluate subjective naturalness using
a 1-5 Likert scale.

For style similarity evaluation, raters are explic-
itly instructed to "(focus on the similarity of the
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Hyperparameter | NeuralSpeak
Patch Size 16
Embed Dim 1024
fMRI Encoder Encoder Layer 24
Encoder Heads 16
Transformer Layer 20
Transformer Embed Dim 1152
Transformer Heads 16
Global Model Transformer FEN Dim 4608
Dictionary Length 4163
Patch Size 3
Transformer Layer 6
Transformer Embed Dim 1152
Local Model Transformer Heads 8
Transformer FFN Dim 4608
Upsample Rates [5,4,2,2,2,2]
Vocoder Hop Size 320
Upsample Kernel Sizes | [9, 8,4, 4, 4, 4]
Number of Parameters 121.6M
Total Number of Parameters | 1.4B

Table 4: Hyperparameters of NeuralSpeak.
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Figure 4: Overview of the unit-based vocoder.

style (timbre, emotion, and prosody) to the refer-
ence, and ignore the differences of content, gram-
mar, or audio quality.)" during the SMOS (similar-
ity mean opinion score) tests. In these tests, each
synthesized utterance is paired with a true utter-
ance to assess how closely the synthesized speech
matches that of the target speaker. Each pair is
rated by a single rater.

Our subjective evaluation tests were crowd-
sourced and carried out by 20 native speakers
through Amazon Mechanical Turk. The screen-
shots of instructions for the testers are provided
in Figure 5. Participants were compensated at
a rate of $8 per hour, resulting in an expendi-
ture of approximately $600 for participant com-
pensation. A limited subset of speech samples
utilized in the evaluation is accessible at https:
//NeuralSpeak.github.io/.
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D Reproducibility Statement

We will release our code in the future. The NeuralS-
peak model that we build upon is publicly available
through the Fairseq code repository. To aid repro-
ducibility, we have included an overview of the
hyperparameters in Table 4.
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Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit” in order to preview the data and format of the submitted results.

How natural (e s Please and naturalness, and ignore the differences of style (tmbre, emotion and prosody).

Select an option
Transcripts: The wind wakened me. Excellent - Completely natural speech - 5

45
> 0:00/0:01 o0 i

Good - Mostly natural speech -4

3.5

Fair - Equally natural and unnatural speech - 3
25

Poor - Mostly unnatural speech - 2

15

Bad - Completely unnatural speech - 1

(a) Screenshot of MOS testing.

1

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

Instructions Houw similar Is this recording to tne reference audio? Please focus on the similarity of the style (speaker identity, emotion and prosody) to the reference, and ignore the differences of content, grammar, or audio qualiy.

Select an option
Reference audio: Excellent - Completely similar speech - 5

4.5

> 0:00/0:06 L DI -
Good - Mostly similar speech - 4

35
Testing audio:

Fair - Equally similar and dissimilar speech - 3

> 0:00/0:03 o0 i 25
Poor - Mostly dissimilar speech - 2
Corresponding transcripts: The head of the Patchwork Girl was the most curious part of her. 15

Bad - Completely dissimilar speech - 1

(b) Screenshot of SMOS testing.

Figure 5: Screenshots of subjective evaluations.
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