Published in Transactions on Machine Learning Research (09/2025)

Stochastic Primal-Dual Double Block-Coordinate for Two-
way Partial AUC Maximization

Linli Zhou lynn94874 @tamu.edu
Department of Computer Science and Engineering
Texas AEM University

Bokun Wang bokun.wang@utexas. edu
Department of Electrical and Computer Engineering
University of Texas, Austin

My T. Thai mythai@cise.ufl.edu
Department of Computer and Information Science and Engineering
University of Florida

Tianbao Yang tianbao-yang @tamu. edu
Department of Computer Science and Engineering
Texas AEM University

Reviewed on OpenReview: htips: //openreview. net/ forum? 1d=M3kibBFPq

Abstract

Two-way partial AUC (TPAUC) is a critical performance metric for binary classification
with imbalanced data, as it focuses on specific ranges of the true positive rate (TPR)
and false positive rate (FPR). However, stochastic algorithms for TPAUC optimization
remain under-explored, with existing methods either limited to approximated TPAUC
loss functions or burdened by sub-optimal complexities. To overcome these limitations,
we introduce two innovative stochastic primal-dual double block-coordinate algorithms
for TPAUC maximization. These algorithms utilize stochastic block-coordinate updates
for both the primal and dual variables, catering to both convex and non-convex settings.
We provide theoretical convergence rate analyses, demonstrating significant improvements
over prior approaches. Our experimental results, based on multiple benchmark datasets,
validate the superior performance of our algorithms, showcasing faster convergence and
better generalization. This work advances the state of the art in TPAUC optimization and
offers practical tools for real-world machine learning applications.

1 Introduction

The area under the ROC curve, commonly referred to as AUC, is frequently utilized as a measure of the
model’s classification ability, without the explicit setting of a threshold. With a long history dating back to
the late 90s (Herbrich et al., [1999)), AUC is acknowledged as a more informative metric than accuracy for
assessing the performance of binary classifiers in the context of imbalanced data and widely used in machine
learning.

In many applications, there are large monetary costs due to high false positive rates (FPR) and low true
positive rates (TPR), e.g., in medical diagnosis. Hence, a measure of primary interest is the region of the ROC
curve corresponding to low FPR and high TPR, i.e., TPR > 1 -6y, FPR < 6;, for some 6y, 6, € (0,1), which
is referred to as two-way partial AUC (TPAUC). Nevertheless, research on efficient optimization algorithms
to optimize TPAUC for learning a classifier remains underdeveloped.

https://openreview.net/forum?id=M3kibBFP4q

Published in Transactions on Machine Learning Research (09/2025)

Table 1: Comparison with prior works for optimizing the TPAUC loss, where n, is the number of positive
examples, S is the mini-batch size of positive examples, B is the mini-batch size of negative examples, and d
is the dimension of the model parameter

Method Convexity Loop Iteration Complexity Total Complexity
SONX (Hu et al[2023) non-convex Single O((B + S)d) O(Bl++‘-s66)
SOTA (Zhu et al., [2022)) non-convex Double O((B+S)d+n,) O(’;—g)
STACO1 (Ours) convex Single O((B +S)d) o(s)
STACO2 (Ours) non-convex Double O((B + S)d) O(ps5)

Compared with standard AUC maximization, optimizing TPAUC presents several unique technical challenges.
First, the estimator of TPAUC requires selecting subsets of positives and negatives in the top and bottom
ranks. Some earlier works have proposed heuristic approaches for TPAUC maximization, including selecting
examples based on their ranks in the mini-batch or converting data selection into ad-hoc data weighting (Yang
et al.l |2021; Kar et al 2014)), which do not provide a guarantee of optimizing TPAUC losses.

Recently, |Zhu et al.| (2022)) have initiated rigorous optimization of TPAUC losses. They converted data
selection in top/bottom ranks into pairwise loss selection and reformulated it using the tool of distributionally
robust optimization. They have proposed two algorithms for two different formulations: SOTAs for solving
a smooth coupled compositional objective that corresponds to a soft TPAUC loss and SOTA for solving
a non-smooth min-max objective that corresponds to an exact TPAUC loss. Nevertheless, SOTAs is not
for optimizing the exact TPAUC loss, and SOTA is inefficient for large datasets as it requires updating all
coordinates of an auxiliary variable corresponding to all positive examples at every iteration. Additionally,
its convergence rate analysis fails to demonstrate any mini-batch speedup.

Hu et al. (2023) has developed an algorithm for solving non-convex non-smooth coupled compositional
objective of the exact TPAUC loss as formulated in (Zhu et al., 2022)). However, their method cannot achieve
linear speedup in terms of the mini-batch size of negative examples. In addition, since their method does not
exploit convexity, its convergence guarantee still exhibits a complexity of O(1/€%) even in the convex setting.

To overcome these difficulties, this paper proposes improved algorithms and analysis over SOTA for solving
the non-smooth min-max objective of the exact TPAUC loss. Our key idea is to design stochastic double
block-coordinate updates that simultaneously act on both primal and dual variables. We propose two
methods: STACOL1 for convex objectives and STACO2 for non-convex objectives. Our convergence analysis
introduces novel techniques for handling non-bilinear min-max objectives with stochastic block-coordinate
updates, establishing state-of-the-art complexity bounds. Our algorithms enable scalable updates and provable
mini-batch parallel speedup. We compare our results with prior works in Table

We summarize the main contributions of our work below:

o We propose novel primal-dual double block-coordinate algorithms STACO (Stochastic Two-way
partial AUC block-Cordinate Optimizer) designed for convex functions (STACO1) and non-convex
functions (STACO2). These algorithms leverage double block-coordinate updates for both the primal
and dual variables.

e We provide a novel convergence analysis of STACO1 for convex functions. To the best of our
knowledge, this is the first work to analyze double block-coordinate updates for both primal and dual
variables for min-max optimization without a bilinear structure. We extend this analysis to STACO2
for non-convex cases, demonstrating its ability to find (nearly) stationary solutions. We demonstrate
our algorithm enjoys better convergence rate than existing results [Hu et al.| (2023); |Zhu et al.| (2022])
by improving the block-size dependency, achieving full mini-batch speedup and time efficiency.

e We conduct comprehensive experiments on both linear and deep models for image classification and
graph classification tasks involving imbalanced data. Our algorithms consistently demonstrate better
performance compared to existing TPAUC maximization methods and various baselines. Additionally,
we perform ablation studies to verify the improved convergence rates of our methods.

Published in Transactions on Machine Learning Research (09/2025)

2 Related Work

Two-way Partial AUC (TPAUC). AUC has been studied for more than two decades (Hanley & McNeil,
1982)), and a huge amount of work has been devoted to AUC maximization (Yang & Ying, 2022). Compared
to AUC maximization, two-way partial AUC (TPAUC) maximization is much more challenging due to that it
involves the selection of examples whose prediction scores are in a certain range. Recently, studies on TPAUC
have emerged, as researchers have argued that for certain tasks, only the TPR or FPR within a specific
range is of interest (Narasimhan & Agarwall 2013; |Yang et al.l 2019; |Yuan et al., [2021a; [Zhu et al. 2022;
Xie et al.| 2024]). In particular, by replacing TPR and FPR with surrogate losses, TPAUC maximization
problem can be further transformed into coupled compositional optimization and min-max optimization (Zhu
et al., [2022)). Some other works are also focusing on TPAUC (Zhang et al., |2023; [Shao et al., [2023} [Yang
et al., |2023b; |2022; [Shao et al.| [2022)). |Zhang et al.| (2023) focuses on optimizing a compositional formulation
for AUC maximization, |Shao et al.| (2023) considers a weighted AUC formulation for cost-sensitive learning,
and |Yang et al.| (2023b)) considers AUC maximization with certified robustness. [Yang et al| (2022); |Shao
et al.| (2022)) focus on TPAUC maximization with the following differences: [Yang et al.| (2022)) tackles the
data selection challenge by a weighting scheme, which does not yield the exact TPAUC surrogate objective;
Shao et al.| (2022) considers TPAUC maximization with a special square loss. In contrast, we directly tackle
solving the exact TPAUC surrogate objective without further approximation and our result applies to any
non-decreasing loss function.

Compositional Optimization. Compositional optimization has gained substantial attention in recent years.
This area of optimization deals with objective functions that are composed of multiple nested functions, leading
to challenges in efficient evaluation and optimization. Several papers (Wang et al., [2017ajb; Zhang & Lanl
2020; |Zhang & Xiao, 2022) have considered standard compositional optimization, where the inner function
does not depend on the random variable of the outer level. However, simply applying these algorithms to
TPAUC maximization would suffer a high cost (Qi et al., 2021). To address this issue, |Zhu et al.| (2022)) have
formulated TPAUC maximization as FCCO (Finite-Sum Coupled Compositional Optimization) as introduced
in (Qi et al., |2021)). Hu et al.| (2023]) have proposed an algorithm termed SONX for solving a non-smooth
FCCO optimization where the outer function is non-smooth and applied it to TPAUC maximization.

Min-Max Optimization. Many stochastic primal-dual algorithms have been proposed to solve non-convex
min-max optimization since the seminal work (Rafique et al.|[2022). Built on their proximal-guided algorithmic
framework, |Zhu et al.| (2022)) developed SOTA for solving the min-max formulation of TPAUC loss. However,
their algorithm suffers from the limitations mentioned before. To address its limitations, we have to consider
double block-coordinate updates for both primal and dual variables and develop advanced techniques to derive
a complexity that has a parallel speed-up, which means complexity is linearly dependent on both positive
and negative mini-batch size . Several works (Zhang & Xiaol |2015; |Alacaoglu et al. [2022) have considered
stochastic primal-dual block-coordinate algorithms for solving finite-sum min-max problems with a bilinear
structure, where the block-coordinate update is only applied to the dual variable. Hamedani et al.[(2023));
Jalilzadeh et al.| (2019)) have considered more general min-max problems using block-coordinate updates for
the primal variable only or for both primal and dual variables. However, their algorithm and analysis require
the coupled function to be smooth in terms of both the primal and dual variables, which is not applicable to
TPAUC maximization. In addition, Li et al. (2025) propose a Smoothed Proximal Linear Descent-Ascent
(Smoothed PLDA) algorithm for deterministic nonsmooth nonconvex-nonconcave minimax problems with
convergence guarantees under the KL property. However, PLDA is not directly applicable to large-scale
stochastic problems with composite structure, where full dual updates and deterministic computations are
infeasible. Recently, Wang & Yang| proposed a novel stochastic primal-dual block-coordinate algorithm to
solve convex finite-sum compositional optimization problems, which only employs the block-coordinate update
on the dual variable.

2.1 Notations and Definitions

We present notations in this section. For any w € W, the subdifferential Oy, f(w) is the set of subgradients of
f at point w. For a vector y € R”, y(?) € R represents the i-th coordinate (block) of y, i.e., y = (y), -, y ()T,

Published in Transactions on Machine Learning Research (09/2025)

We use f;' to denote the convex conjugate of f;. For a function g(x) = E¢.p [g(x;&)], we define the stochastic
estimator based on the mini-batch B as g(x;B) = I%\ Yees 9(%:6).

3 Primal-dual Double Block-Coordinate Algorithms for TPAUC Maximization

Let x denote an input example and hyw(x) denote a prediction of a parameterized model such as a deep
neural network or a linear model on data x. Denote by S, the set of n, positive examples and by S_ the set
of n_ negative examples. TPAUC measures the area under the ROC curve where the TPR is higher than
1 -6y and the FPR is lower than an upper bound 6;. A surrogate loss for optimizing TPAUC with TPR
>1-6y, FPR< 6, is given by:

. 1
min
weRd N N _

> > Uhw(x)) = hw(x:)), (1)

x;€81[1,k1] x;€8*[1,kz]

where £(-) is a convex, monotonically non-decreasing surrogate loss of the indicator function I(hw(x;) >
hw(x:)), SI[1, k1] is the set of positive examples with k; = |n, 6] smallest scores, and S*[1, ko] is the set of
negative examples with ky = |[n_61 | largest scores. To tackle the challenge of selecting examples for Sl[l, k1]
and S'[1,k,], we use the following lemma to reformulate (Zhu et al., 2022)).

Lemma 3.1. If {(-) is non-decreasing, then the TPAUC loss minimization problem s equivalent to the
following:

min — 3 fi(gi(w,s®),), (2)

where s = (S(l)’...’s(n+))T7 fi(g,s') ="+ %[g - ']+, and g;(w, S(i)) - n% ijés_ () 4 [E(hw(xj)—hovl,(x,-,))—s(i)]J,)
The reformulation above uses an equivalent form of the conditional-value-at-risk (CVaR) loss, 7117 > iy (-) =
ming s + 7717 Yt [4i(+) =]+, where v = k/n for some integer k € [n], £[;(-) denotes the i-th largest value in
{1, £n}. (Ogryczak & Tamir} 2003, Lemma 1). Since [t], = max,eo1]ty, we cast into an equivalent

min-max problem:

K3 A
min max L Y 0. S8 3)
WESTZ];;’:S‘:ER ye[0,1]"* 1y X168, 0o
This problem presents unique challenges that make existing algorithms unsuitable for direct application:
(i) the objective function is non-smooth with respect to w and s due to the hinge function in g;; (ii) both
the primal variable s and the dual variable y are high-dimensional and depend on all positive examples,
preventing their full coordinate updates in each iteration; and (iii) the coupled term is not bilinear with

respect to the primal and dual variables.

3.1 Algorithms

Now we present our efficient algorithms designed to solve the min-max problem in convex and non-convex
settings.

STACOL1 for convex functions. We first consider the convex case when ¢(hw(x;) — hw(x;)) is a convex
function of w. This is true when we learn a linear model such that hyw(x) = w'x. Hence, g;(w, s) is convex
w.r.t. (w,s) for any i € [n], and is a convex-concave min-max problem.

A challenge of solving is that updating all coordinates for s,y would require computing g;(w,s(?) and its
gradient for all positive examples x; € S;, which is prohibited when the number of positive examples is large.
Hence, we have to use block-coordinate updates for both s and y. Let us consider how to update y(* and
s(9 for a sampled coordinate 7. A simple method is to use gradient ascent to update y(* and use gradient
descent to update s(*), which require computing g;(w,s(?) and 9, g;(w,s(?). However, this would require
processing all negative examples S_ as g;(w,s(®)) depends on all negative examples. To reduce this cost, we

Published in Transactions on Machine Learning Research (09/2025)

Algorithm 1 STACO1
1: Initialize wo e W, yo = 1™+, 89 =1+, s =1,
2: fort=0,1,...,7-1do
3: Sample a batch S; ¢ Sy with |S;| =S

4: Sample independent mini-batches By, B, ¢ S_
5: for each i ¢ §; do

6: Update ygi)l according to 1'

7: Update s\ according to (5)

8: end for . 4 ' 4

9: For each i ¢ Sy, yg)l = ygz) and sgi)l = ng)

10: Update w1 according to ((6))

11: Update s;,; according to

12: end for

— 1 T-1 = 1 T-1 =/ 1 T-1 7
13: w=7% tho Wi+1,S = 71 Zt:o St+1,8 = 7 Zt:() St+1

14: Return w, s, s’

need to use stochastic estimators of their gradients. For a random mini-batch of negative samples Bc S_, we
let

1 R V(hw(xj)—hw(xa)_suq+.

. ®.B) =
K2 W7S) -
. B Z

x;eB

At the t-th iteration, we sample a mini-batch of S positive examples S; ¢ S, and a mini-batch of B negative

examples B; ¢ S_. We update yﬁ)l according to

(1) ’

i o 9i(wesy 3B) -8y 1 i)\

y§+)1=argmax{y()'g(t t@ Y t_T(y()—yg)) }aVXiGSt (4)
yOe[0.1] 0 a

where « is a step size parameter. Then we update sﬁ)l,i € S; and w1 using stochastic gradient descent:

Si(fi)l = Sgl) - e%yﬁ)las(i)gi(wt, S§1)7 Bt), VXi € St (5)
Wiel = Wi — eﬂg Z y§+)18wgi(Wt,s§);Bt) (6)
0» jeS,
1 i
St =si-B - Sy (7)

t+1
0oS €Sy

where 8,7, 3" are step size parameters, and we use another mini-batch of negative samples B; independent

of B; to decouple the dependence between ygi)l and B;. The detailed steps of STACO1 are presented in
Algorithm [I]

STACO2 for non-convex functions. Next we consider the non-convex case. We assume £(hw (x;)—hw(x;))
is weakly-convex with respect to w, which holds true when £ is a convex non-smooth function and hw(x) is a
smooth function of w (Hu et al., 2023). Hence, g;(w,s) is weakly-convex with respect to (w,s), and is a
weakly-convex concave min-max problem. Inspired by the proximal-guided algorithm (Rafique et al., 2022])
for non-smooth weakly-convex concave problems, we propose a double-loop algorithm STACO2 for solving
problem . The inner loop updates apply STACOL1 to solve the following problem approximately at the
t-th outer iteration:
K3 4
min max L > y(i)-w+s'+%ﬂw—ww|§+2l

d o
werd oreh ye[01]" My 1 18, o 0l nyy

5 8)

Is = st.0

where w; o,s: ¢ are initial value of w,s at ¢t-th stage, v > 0 is a proper parameter. The addition of quadratic
functions is to ensure the function becomes convex in terms of w,s. At k-th iteration in ¢-th stage, we utilize

Published in Transactions on Machine Learning Research (09/2025)

Algorithm 2 STACO2

1: Initialize wg e W, 89 = 1"+, 55 =1
2: fort=0,1,...,7-1do
3: Initialize y;o = 1™

4: Set Wi 0 =W, St0 = St, 8270 = S;
5: for k=0,1,...,K;-1do
6: Sample a batch S; i c Sy, where |Sy x| = S
7 Sample independent mini-batches By, B, c S-
8: for each i € S; ;, do
9: Update yél]zﬂ according to @i
10: Update s(9 1 according to 1.)
11: end for 4
12: For each i ¢ S 1, ygzlz+1 yizlz and st k+1 s(zlz
13: Update w¢y1 according to (11)
14: Update s;,; according to (12)
15: end for
16: (th St, g;:) = I% ZkK:tO_I(Wt,kJrly St k+1, 32,/“.1)
17: Set w1 = Wy, S¢+1 = S, 31,8+1 = 52
18: end for
19: Return wy,sp, s
following updates:
() o 9:(WeksSi303 Br) = 51 @ _y @)
Yi kel = AIMAX . ’9 ’ ~ 5 (y) V% €Stk (9)
y(e[0,1] 0 Qy ’
- 8
SE,ZI2:+ ngzz 95 (yt 4105 i (We g, tk’Bt k)= (Stk_stg)) VX €St (10)
ne [1
Wi g+l = Wi — 6‘775 3 > Y,El,iﬂ Owgi(We k.S, k,Bt k) +— (Wt k= Wi0) (11)
0 ieSt k Y
St k+1 = ﬁt(l 9.5 S Z yg?]erl)v (12)
0% eS8y

where ay, B¢, nt, B are step size parameters.

We would like to highlight the difference between STACO2 and SOTA (Zhu et al., 2022)), where we use
block-coordinate update for s € R*. In contrast, SOTA needs to update all coordinates of s. This difference
is caused by different techniques for handling all coordinates: they compute an unbiased sparse stochastic
gradient for s by sampling and then update s using a stochastic proximal gradient method. The unbiased
sparse stochastic gradient used in SOTA cannot enjoy a variance bound that scales with the mini-batch
size. In contrast, we just compute an unbiased stochastic gradient for the sampled coordinate of s, and
perform a stochastic gradient descent on sampled coordinates and leave other coordinates unchanged. It is
this difference that makes our analysis more involved and leads to a parallel speed-up.

4 Analysis

In this section, we present the convergence results for our algorithms. We emphasize the contributions of
our convergence analysis for both convex and non-convex settings compared to [Zhu et al. (2022)): (i) our
convergence analysis for the convex case is more refined, leading to an optimal convergence rate which implies
a parallel speed-up in terms of mini-batch size; (ii) our analysis for the non-convex case is also improved,
which not only enjoys a parallel speed-up but also removes strong boundedness assumptions of s; j, 827 . and
the pairwise loss values at all iterations.

Published in Transactions on Machine Learning Research (09/2025)

For analysis, we consider the following optimization problem:

1 n .
: o (s (@)
uEmgiSF(u,S) : ”;:1 fi(gi(u,s*)), (13)

where f; : R - R is closed proper convex and lower-semicontinuous, g; : (U, € S;) — R is possibly non-convex,
and U, S are convex closed sets, g;(u,s()) := E¢,.p, [gi(u,s(z); Cl)] It is equivalent to the following min-max
problem:

1 , .
~ R UG SR) N T)
ugg}sgsr;lgfL(ms,y) n;y gi(u,s™) - £ (y'). (14)

Compared to problem , excludes parameter s’. Since the update of s’ is almost the same as w, our
analysis for solving can be easily extended to STACO1 and STACO2.

4.1 Assumptions

We first outline assumptions underlying our analysis. Notably, these assumptions are easily satisfied for
TPAUC maximization when the loss function ¢ is Lipchitz continuous.

Assumption 4.1. For any ¢ € [n], we suppose f;,g; is Lipschitz continuous, i.e., there exists C'y,Cy > 0 such
that

fi(u) - fi(w)| < Cylu -l
lgi(w,87) = gi (0,5 < Cy (Ju -], +[s") -5P]),
for any u,u € R, u,a e and s() 5% ¢ S,.
Assumption 4.2. For any i € [n], there exists finite 03, 07, 03 such that
. . 2
E¢, |gi(u, s) - g;(u,s;)| <oaf,

E [¢7 () -a? G (¢)-as)

2_ 2 2_ 2
, $015 E, , S 02,
for stochastic subgradients G\ (¢;) € Dugs (u,5;¢;), G$ () € Oy g5 (u, 5D ¢;) at any u e, and s ¢ ;.
Besides, there exists 62 such that
2
<62,
2

NP R AN
y(J)ng)—ny“Gg)

E, ‘
i=1

for any Ggi) e d1gi(u,s), ued,s? ¢ S;, and y € Y. Note that under Assumption we have 62 < C?Cg.

4.2 Convex Case

We first analyze the Algorithm [3] which aims to solve the problem when both f; and g; are convex for
any i € [n]. The analysis is motivated by techniques proposed in Wang & Yang. However, the problem they
considered is % > fi(gi(n)), which excludes the primal parameter s. Notably, the analysis of convergence
of primal parameter u is more tricky than w since its updating only lies in selected coordinates each iteration.

Theorem 4.3. Under Assumptions and when gi(u,s(i)) is conver w.r.t u,s(9, let n =
O(e), B = O(€), and o = O(Be), STACO! can make E[F(u,s)-F(u*,s*)] < € after T =

nC2C2 C20? nC%o2 2 2 _ _ _ _
791 2, 4 no, . . 1 w71 _ 1T
(’)(< LA gt BéeZ + g5 + goo | iterations, where U= % ¥, g Wt41,8 = 7 L4 Ste1-

BSe?

Remark. The proof is included in Appendix The above convergence rate implies a parallel speed-up in
terms of the positive batch size S and negative batch size B. When we use full information at each iteration,
which means ¢y = 0,01 = 0,09 = 0,5 =0, S = n,, the above complexity reduces to O(1/e?), which is a standard
complexity for non-smooth convex optimization (Nesterov et al.l |2018). In addition, the dominating term
O(n/(Se€?)) matches the lower bound proved in Wang & Yang.

Published in Transactions on Machine Learning Research (09/2025)

4.3 Non-convex Case

Now we consider the non-convex case when g; is weakly convex as stated in the following assumption.

Assumption 4.4 (weakly convexity of g;). For any i € [n], we suppose that g;(u,s(?) is p-weakly convex to
u and s for any uelf and s € S;, ie., g;(-) + 2 2l ||2 is convex, where p is a positive number.

It is sometimes difficult to find an e-stationary point (u,s) of the non-smooth function F, i.e.,
dist(0,0F (u,s)) < e. For example, an e-stationary point of function f(x) = [x| does not exist for 0 <e <1
unless it is the optimal solution. To address this problem, (Davis & Drusvyatskiy, |2018) proposed using the
stationarity of the Moreau envelope of the problem as the convergence metric, which has become a standard
metric for solving weakly convex problems.

Given a p-weakly convex function f:R? - R, its Moreau envelope is constructed as
1
FGe) = min { 7w + o= w3}, (15)

where 7 is a positive constant. For a p-weakly convex function f, it can be shown that f, is smooth when
% > p (Davis & Grimmer| [2019)) and its gradient is

VI (x) - §<x— prox. £(x)), (16)
where
prox, f(x) = argmin{ f(w) + o |w - x[2}. (17)
w Y

Notice that when % > p, the minimization in problem 1) is strongly convex, which ensures prox, f (x) is

uniquely defined. Moreover, for any point x € R%, the proximal point x' = prox, f (x) satisfies (Hu et al.,
2023)

Ixt=x|, =7 IVE &)y, (&) < f(w), dist(0,0f(x1)) <[V)], (18)

Thus if |V £, (x)], < €, we can say x is close to a point x' that is e-stationary, which is called nearly e-stationary
solution of f(x). Given an iterate x;, a common idea is using the stochastic subgradient method (SSG) to
approximately solve with x = x;, namely, to compute a solution x;,; such that

) 1
X¢41 ¥ Prox, (X¢) = arg min {f(x) + % [x — x¢ Hg}) (19)
Then x;,1 returned by the SSG method will then be used in the next iterate. Inspired by [Rafique et al.
(2022)), we consider the following update according to equation

(Wt41,8¢41,Ye41) ~ argminargmax { L, (u,s,y;ug,s¢) },
ueld ,seS yey

1 & . . : 1 1
where Ly (u,s,y5w',) = = 5 (ygi(u,sD) = 17 (v) + 5 fu - |5 + 3 I8 Sl (20)

=1

Theorem 4.5. Under Assumptions n and STACO2 with v < ﬁ, = 0(62), Bt = 0(62),
o = O(B€2), and K; = (9(3564 vV = Sﬁ can converge to an e-stationary point of ®.(u,s) in

2 2 2 ~2
1) Cfol + 52 + anC’f 4 an02 . n()‘o
Be* Set Set BSe* BSeb

is a Moreau envelope of F(u,s).

) iterations, where ®.(u,s) = ming g F'(a,8) + % [a- uH; 2*m s - sH2

Remark The proof is included in Appendix We compare the above result with the complexity of
SOTA and SONX. In particular, SOTA has a complexity of (9(6%) result, which cannot show any mini-batch

speedup. SONX has an iteration complexity of O(ﬁ) in Theorem C.4 (Hu et al}|2023). In comparison,

our complexity O(B5s) has a better dependence on B.

Published in Transactions on Machine Learning Research (09/2025)

5 Experiments

We evaluate the empirical performance of our proposed algorithm against baselines for Two-way Partial AUC
Maximization (TPAUC) in a convex setting for learning linear models and a non-convex setting for learning
deep models.

5.1 Settings

Datasets. For linear model experiments, we use three datasets in (Chang & Lin| 2011)), namely HIGGS,
SUSY, and ijennl. For SUSY and HIGGS, we use the first 80% of the data as the training dataset and the
remaining 20% as the testing dataset. For ijennl, we follow the existing split in (Chang & Lin) 2011)). To
create imbalanced datasets for HIGGS and SUSY (ijennl itself is imbalanced), we randomly remove 99.5%
positive data. For deep learning model experiments, we use two molecule datasets from the Stanford Open
Graph Benchmark (OGB) website (Hu et al., 2020) and two biomedical image datasets from MedMNIST
(Yang et al., [2023a)), namely moltox21 (the No.0 target), molmuv (the No.1 target), nodulemnist3d, and
adrenalmnist3d. Those four datasets are naturally imbalanced. The task in molecular datasets is to predict
certain properties of molecules, and the task in biomedical image datasets is binary classification. The
statistics of datasets are presented in Table [5] in Appendix [B]

Models. For linear model experiments, we let hy(x) = w'x. In deep model experiments, for molecule
datasets moltox21 and molmuv, we use Graph Isomorphism Network (GIN) (Xu et all [2018) as the backbone
model, which has 5 mean-pooling layers with 64 hidden units and 0.5 dropout rate. For image datasets
nodulemnist3d and adrenalmnist3d, we learn a convolutional neural network (CNN) and use ResNet18 (He
et al.l |2016]). We utilize the sigmoid function for the final output layer to generate the prediction score and
set the surrogate loss £(-) as the squared hinge loss with a margin parameter (Zhu et al.l 2022).

Baselines. We evaluate our algorithms, STACO1 and STACO2, by comparing their training and testing
performance against various baselines, while STACOL1 is for linear model and STACO?2 is for deep model.
Specifically, we benchmark our methods against other approaches that optimizes different objectives, including
CE for optimizing the cross-entropy loss, AUCM for optimizing an AUC min-max margin loss (Yuan et al.,
2021b)), SOTASs for optimizing a soft TPAUC loss (Zhu et al.,2022), SOTA (Zhu et al., |2022)), and SONX
for optimizing the same TPAUC loss as ours (Hu et al 2023), and PAUCI for optimizing an instance-wise
TPAUC loss (Shao et al., 2022).

Evaluation Metrics. For linear and deep learning model experiments, we evaluate TPAUC with two
settings, i.e., TPR > 0.5 and FPR <0.5, and TPR > 0.25 and FPR <0.75.

Hyperparameter Tuning. In linear model experiments, the model is trained by 3000 iterations, and the
learning rate is decreased by 10-fold on the 500th, 1500th, and 2500th iterations for all methods. For deep
learning experiments, the model is trained by 60 epochs and the learning rate is decreased by 10-fold after
every 20 epochs for all methods. In addition, we pre-train the model for deep learning experiments following
previous studies (Yuan et al.l |2021b; [Zhu et al., [2022). The pre-trained model is trained for 60 epochs using
CE loss with an Adam optimizer on the training datasets, and the initial learning rate is le-3 which is
decreased by 10-fold on the 30th and 45th epochs. We tune the step sizes of STACO1, STACO2, SOTA,
PAUCI, and AUCM in the range {le-2, le-1, 5e-1}, and tune the step sizes of SONX, SOTAs, and CE in the
range {le-3, le-2, le-1}. For STACO1, STACO2, SOTA, and SONX, we fix the margin parameter of the
surrogate loss £ as 0.5, and tune the rate parameter 6y, 6, in {0.4,0.5,0.75} for reporting testing performance.
For SONX, we fix the moving average parameter as 0.9 and tune the momentum parameter in the range
{0, 1e-3, 1le-2, le-1}. For AUCM, we choose the momentum parameter as 0.9, the margin parameter of the
surrogate loss as 0.5, and tune the hyperparameter v that controls consecutive epoch-regularization in {100,
500, 1000}. For SOTAs, we fix 79 =1 = 0.9 and tune A,) in {0.1, 1.0, 10}. For PAUCI, we tune k in [1, 10],
¢1,¢2, 1, A in [0, 1], m in [10, 100] and « in [2, 6]. For all algorithms, we choose the weight decay parameter
as 2e-4. Without specific statements, each algorithm samples 64 data points in each iteration. We execute
all experiments using 5-fold-cross-validation to evaluate testing performance based on the best validation
performance and report the average and standard deviation over multiple runs.

Published in Transactions on Machine Learning Research (09/2025)

5.2 Results

Gou Goso 5044 E
010, < < o4 Som
n Qo048 [y w
g g s s
Doos 3046 Tos gor
Ee < El >
£ g 203 <
Foos Foas & Fon
—— SONX —— SONX = 03 —— SONX = —— SONX
0.02 —— STACO1 —— STACO1 —— STACO1 —— STACO1
042 032 o7
050 100 050 160 030 160 050 100
Total Training Time (scaled) Total Training Time (scaled) Total Training Time (scaled) Total Training Time (scaled)
(a) HIGGS (b) SUSY (c) HIGGS (d) SUSY

Figure 1: Training TPAUC Curves of STACO1 and SONX on two different datasets. The first two shows the
TPAUC (0.5, 0.5) results, and the last two shows the TPAUC (0.75, 0.75) results.

—— SOTA —— SOTA
05 —— SONX —— SONX
—— STACO2 —— STACO2

Loss(0.5, 0.5)

Loss(0.5, 0.5)

100 1.00 100 100

050 o50 o50 050
Total Training Time (scaled) Total Training Time (scaled) Total Training Time (scaled) Total Training Time (scaled)

(a) molmuv(t1) (b) moltox21(t0) (c) adrenalmnist3d (d) nodulemnist3d

0200 ours — SOTA
_oans o o — SONX
R o150 Q 2 —— STACO2
5 Sois S o
Sous e 2
.y g 8 000
S o100 5o 5
B oors) g oors
k] Soos 8
0050 0050
o0 0025
000
% T o5 i o5 1 o 16
Total Training Time (scaled) Total Training Time (scaled) Total Training Time (scaled) Total Training Time (scaled)
(e) molmuv(t1) (f) moltox21(t0) (g) adrenalmnist3d (h) nodulemnist3d

Figure 2: Training Loss Curves of STACO2, SOTA, and SONX on four different datasets. The first row
shows the Loss (0.5, 0.5) results, and the second row shows the Loss (0.75, 0.75) results.

0.040] &, 0.0325] & 3

\ -- SONX ool ™ ---- SONX o401 & ---- SONX
oo3sl @ ---- STACO2 N ---- STACO2 ---- STACO2
N 00275\ . 0035 \
a @ . N a
Zoon S oozso \ Soon!
4 05 A ; \
Z0.025 1 .. N 7 0.025 .
g Zooo Sl e g —
0.020 0.0175 0.020
00150
oo1s 001
050 o8 1% 050 [100 050 072 100
Total Training Steps (scaled) Total Training Steps (scaled) Total Training Steps (scaled)
(a) Batch Size=16 (b) Batch Size=64 (c) Batch Size=256

Figure 3: Negative sample batch size (B) benefits of STACO2 over SONX for training on ogbg-molmuv (t1)
at 16, 64, and 256 batch size.

Training Results. Under two different metrics, we compare the training performance of the linear model
between STACO1 and SONX in Figure[l] and the deep learning model among STACO2, SOTA, and SONX in
Figure[2] We exclude SOTA from linear model experiments since SOTA is designed for optimizing deep learning
models. In the linear model experiments as shown in Figure [I} we plot the TPAUC values throughout the
training process. The results demonstrate that STACO1 exhibits strong and stable performance, consistently
outperforming SONX on both the HIGGS and SUSY datasets in the (0.5, 0.5) and (0.75, 0.75) settings.
These findings indicate that STACO1 is more efficient than SONX in maximizing TPAUC. We also observed
that in Figure [1} across all datasets, there is an abrupt drop and subsequent rise in performance. This is due
to the excessively large step size. Once the step size is reduced, training returns to normal.

10

Published in Transactions on Machine Learning Research (09/2025)

Table 2: TPAUC on the test data of linear and deep models. (6,6;) represents TPR > 1 -6y, FPR < 6;.
Results are reported as mean(std).

. Linear Model Deep Model
Metrics | Methods HIGGS SUSY ijennl molmuv(t1) moltox21(t0) nodulemnist3d adrenalmnist3d
CE 0.041(0.001) 0.300(0.010) 0.230(0.017) 0.715(0.166) 0.267(0.042) 0.657(0.037) 0.507(0.094)
AUCM 0.122(0.001) 0.512(0.015) 0.487(0.098) 0.722(0.114) 0.279(0.038) 0.672(0.021) 0.554(0.022)
(0.5,0.5) SOTAs 0.108(0.001) 0.484(0.001) 0.637(0.030) 0.821(0.110) 0.325(0.030) 0.688(0.019) 0.498(0.090)
B PAUCI 0.138(0.002) 0.519(0.001) 0.664(0.018) 0.820(0.046) 0.283(0.032) 0.684(0.021) 0.541(0.042)
SONX 0.110(0.009) 0.516(0.001) 0.633(0.094) 0.865(0.061) 0.286(0.023) 0.654(0.035) 0.540(0.042)
STACO | 0.158(0.003) 0.520(0.001) 0.682(0.054) | 0.904(0.048) 0.325(0.023) 0.707(0.005) 0.546(0.047)
CE 0.354(0.002) 0.612(0.006) 0.581(0.014) 0.871(0.058) 0.627(0.035) 0.825(0.016) 0.750(0.055)
AUCM 0.435(0.004) 0.726(0.002) 0.728(0.061) 0.851(0.066) 0.630(0.027) 0.831(0.016) 0.772(0.014)
(0.75,0.75) SOTAs 0.441(0.002) 0.746(0.009) 0.813(0.016) 0.821(0.070) 0.614(0.056) 0.838(0.012) 0.763(0.054)
o PAUCI 0.4742(0.003) 0.749(0.007) 0.830(0.030) 0.883(0.024) 0.616(0.030) 0.823(0.014) 0.7642(0.015)
SONX 0.447(0.009) 0.748(0.000) 0.810(0.049) 0.927(0.029) 0.626(0.028) 0.832(0.013) 0.772(0.021)
STACO | 0.484(0.004) 0.752(0.000) 0.839(0.024) | 0.945(0.024) 0.638(0.041) 0.856(0.003) 0.780(0.013)

0325

0310

0.
TPAUC (0.5, 0.5)
TPAUC (0.5, 0.5)

0300

TPAUC(0.5, 0.5)

0295

02%0

0 10 20 4 50 60 0 10 20 40 50 60 y=3e2 y=le7 y=3e2 y=1e7

Vs Ve v=se2 V-1e3
choice of y choice of y

(d) nodulemnist3d

3
Epoch

(b) nodulemnist3d

EQ
Epoch

(a) moltox21(t0)

(¢) moltox21(t0)

Figure 4: First two figures shows the TPAUC (0.5,0.5) training curves of STACO2 with different ~; last two
figures shows the TPAUC (0.5, 0.5) testing results of STACO2 with different . The experiment is conducted
on datasets ogbg-moltox21(t0) and nodulemnist3d.

In the nonlinear model experiments as shown in Figure 2 STACO2 demonstrates competitive performance in
terms of training loss reduction across all four datasets compared to SONX and SOTA. In both the (0.5,
0.5) and (0.75, 0.75) settings, STACO2 achieves lower or comparable loss values while maintaining a stable
training trajectory. These results indicate that STACO?2 is effective in minimizing loss and optimizing model
performance, further supporting its advantage over SONX and SOTA.

Due to space limit, we present more training results in Figure [5] [f] in Appendix [B]

Testing Results. Under two different metrics, we present the testing results for linear and deep learning
models in Table 2] For the linear model, STACO1 consistently outperforms the baseline methods across
various datasets, demonstrating its robustness and strong generalization capability across different datasets
and evaluation criteria. Similarly, for the nonlinear model, STACO2 achieves significant improvements over
existing methods. Notably, compared to SONX, STACO2 exhibits a more pronounced advantage in testing
performance than in training, suggesting superior generalization when optimizing the exact TPAUC loss.

We do not include SOTA (Zhu et al.l |2022)) in the above comparison, since SOTA is quite similar to STACO2
thus they have similar testing results. However, we must point out that the convergence of SOTA is much
slower than STACO?2 since it has to update all the coordinates of s in problem . As shown in Figure
STACO?2 is significantly faster than SOTA.

5.3 Ablation Study

Effect of Batch Size. We examine the impact of negative batch size B on the performance of STACO2 and
SONX to verify the mini-batch speedup of STACO2 over SONX. Specifically, we tune the negative batch
size B in [16, 64, 256]. In Figure [3| we present the training loss curve for STACO2 and SONX on dataset
ogbg-molmuv (t1). Our results show that as batch size increases, STACO2 exhibits greater convergence

11

Published in Transactions on Machine Learning Research (09/2025)

improvement compared to SONX, indicating that it benefits more from a larger batch size. This observation
is consistent with Theorem i.e., STACO2 can achieve full mini-batch speedup than SONX.

Effect of Epoch Decay Factor. We examine the impact of epoch decay parameter v on the training
performance of STACO2. In Theorem v must be less or equal than ﬁ, where C is the Lipschitz
constant for function f; and p is the weakly-convexity parameter for function g;. In TPAUC maximization
problem, Cy is 1. However, p in practice is difficult to determine. Therefore, we tune 7 in the range {300,
500, 1000} in the experiment. Additionally, we conduct v =1e7 case for our ablation study. Notably, STACO2
reduces to STACOL1 if 4 equals an infinitely large number. The results are presented in Figure [l We observe
that an appropriate value of v can yield better training results, verifying Theorem [£.5] and demonstrating the
importance of the epoch decay parameter ~ for primal-dual algorithms in deep learning.

Effect of Surrogate Loss /. We investigate how the choice of surrogate loss function ¢ influences the final
experimental results. Specifically, we consider three common losses: square hinge loss, square loss, and hinge
loss, and evaluate their performance across various datasets. The results show that our algorithm STACO
performs consistently well and remains stable across different surrogate losses, indicating that the choice of ¢
has limited impact on the final performance.

Table 3: Comparison of performance metrics using different nonsmooth losses across datasets. Each entry is
reported as mean(std).

\ HIGGS | SUSY | ijennl
Methods . - - - - —
‘ hinge square square hinge ‘ hinge square square hinge ‘ hinge square square hinge

CE 0.354(0.002) 0.376(0.003) 0.341(0.004) 0.612(0.004) 0.590(0.004) 0.639(0.005) 0.581(0.003) 0.560(0.004) 0.604(0.003)
AUCM 0.435(0.002) 0.462(0.003) 0.411(0.004) 0.726(0.003) 0.748(0.004) 0.699(0.004) 0.728(0.004) 0.752(0.003) 0.701(0.005)
SOTAs 0.441(0.003) 0.467(0.004) 0.415(0.004) 0.746(0.003) 0.773(0.003) 0.719(0.002) 0.813(0.002) 0.840(0.004) 0.787(0.004)
PAUCI 0.474(0.003) 0.500(0.004) 0.451(0.003) 0.749(0.004) 0.724(0.003) 0.777(0.004) | 0.830(0.002) 0.857(0.003) 0.808(0.003)
SONX 0.447(0.003) 0.472(0.003) 0.420(0.004) 0.748(0.003) 0.773(0.003) 0.723(0.003) 0.810(0.002) 0.785(0.003) 0.836(0.004)

STACO 0.484(0.004) 0.511(0.003) 0.458(0.004) | 0.752(0.000) 0.779(0.003) 0.725(0.004) | 0.839(0.024) 0.866(0.004) 0.812(0.004)

5.4 Training Efficiency

To demonstrate the training efficiency of our algorithm, we compare the per-iteration runtime of STACO,
PAUCI, SONX, and SOTA across four benchmark datasets, as shown in Table [d] STACO consistently
achieves the lowest runtime per iteration across all datasets. Notably, it surpasses the second-best method,
SONX, by a substantial margin, particularly on larger datasets such as molmuv and moltox21. These results
highlight the superior computational efficiency of STACO, making it a compelling choice for large-scale or
time-sensitive applications.

6 Conclusion

In this paper, we proposed two novel stochastic primal-dual double block-coordinate algorithms for optimizing
two-way partial AUC (TPAUC), effectively addressing imbalanced data classification. By leveraging stochastic
updates for both primal and dual variables, our methods achieve improved convergence rates in both convex
and non-convex settings. Empirical results demonstrate faster convergence and superior generalization across
benchmark datasets, establishing a new state-of-the-art in TPAUC optimization for real-world applications.

Table 4: Training time per iteration (in seconds) on different datasets.

Methods | molmuv moltox21 nodulemnist3d adrenalmnist3d
SOTA 14.80 8.01 2.02 2.23
SONX 9.78 4.54 1.62 1.76
PAUCI 12.54 5.72 2.51 2.74
STACO 8.72 3.96 1.40 1.48

12

Published in Transactions on Machine Learning Research (09/2025)

Acknowledgments

We are grateful to the reviewers’ comments. LZ, BW, TY were partially supported by NSF grants 2306572
and 2147253.

References

Ahmet Alacaoglu, Volkan Cevher, and Stephen J Wright. On the complexity of a practical primal-dual
coordinate method. arXiv preprint arXiv:2201.07684, 2022.

C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines. TIST, 2(3):27, 2011.

Damek Davis and Dmitriy Drusvyatskiy. Stochastic subgradient method converges at the rate o(d-1/4}) on
weakly convex functions. arXiv preprint arXiv:1802.02988, 2018.

Damek Davis and Benjamin Grimmer. Proximally guided stochastic subgradient method for nonsmooth,
nonconvex problems. SIAM Journal on Optimization, 29(3):1908-1930, 2019.

Erfan Yazdandoost Hamedani, Afrooz Jalilzadeh, and Necdet S Aybat. Randomized primal-dual methods with
adaptive step sizes. In International Conference on Artificial Intelligence and Statistics, pp. 11185-11212.
PMLR, 2023.

James A Hanley and Barbara J McNeil. The meaning and use of the area under a receiver operating
characteristic (roc) curve. Radiology, 143(1):29-36, 1982.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.

R. Herbrich, T. Graepel, and K.: Obermayer. Support vector learning for ordinal re- gression. In International
Conference on Neural Networks, 1999.

Quangi Hu, Dixian Zhu, and Tianbao Yang. Non-smooth weakly-convex finite-sum coupled compositional
optimization. arXiv preprint arXiv:2310.03234, 2023.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in neural
information processing systems, 33:22118-22133, 2020.

Afrooz Jalilzadeh, Erfan Yazdandoost Hamedani, and Necdet S Aybat. A doubly-randomized block-coordinate
primal-dual method for large-scale saddle point problems. arXiv preprint arXiv:1907.03886, 2019.

Anatoli Juditsky, Arkadi Nemirovski, and Claire Tauvel. Solving variational inequalities with stochastic
mirror-prox algorithm. Stochastic Systems, 1(1):17-58, 2011.

Purushottam Kar, Harikrishna Narasimhan, and Prateek Jain. Online and stochastic gradient methods for
non-decomposable loss functions. Advances in Neural Information Processing Systems, 27, 2014.

Harikrishna Narasimhan and Shivani Agarwal. Svmpauctight: a new support vector method for optimizing
partial auc based on a tight convex upper bound. In Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 167-175, 2013.

Yurii Nesterov et al. Lectures on convexr optimization, volume 137. Springer, 2018.

W. Ogryczak and A. Tamir. Minimizing the sum of the k largest functions in linear time. Information
Processing Letters, 85(3):117-122, 2003.

Qi Qi, Youzhi Luo, Zhao Xu, Shuiwang Ji, and Tianbao Yang. Stochastic optimization of areas under

precision-recall curves with provable convergence. Advances in neural information processing systems, 34:
1752-1765, 2021.

13

Published in Transactions on Machine Learning Research (09/2025)

Hassan Rafique, Mingrui Liu, Qihang Lin, and Tianbao Yang. Weakly-convex—concave min—max optimization:
provable algorithms and applications in machine learning. Optimization Methods and Software, 37(3):
1087-1121, 2022.

Huiyang Shao, Qiangian Xu, Zhiyong Yang, Shilong Bao, and Qingming Huang. Asymptotically unbiased
instance-wise regularized partial auc optimization: Theory and algorithm. Advances in Neural Information
Processing Systems, 35:38667-38679, 2022.

Huiyang Shao, Qiangian Xu, Zhiyong Yang, Peisong Wen, Gao Peifeng, and Qingming Huang. Weighted roc
curve in cost space: Extending auc to cost-sensitive learning. Advances in Neural Information Processing
Systems, 36:17357-17368, 2023.

Bokun Wang and Tianbao Yang. A near-optimal single-loop stochastic algorithm for convex finite-sum
coupled compositional optimization. In Forty-second International Conference on Machine Learning.

Mengdi Wang, Ethan X Fang, and Han Liu. Stochastic compositional gradient descent: algorithms for
minimizing compositions of expected-value functions. Mathematical Programming, 161(1-2):419-449, 2017a.

Mengdi Wang, Ji Liu, and Ethan X Fang. Accelerating stochastic composition optimization. Journal of
Machine Learning Research, 18:1-23, 2017b.

Zheng Xie, Yu Liu, Hao-Yuan He, Ming Li, and Zhi-Hua Zhou. Weakly supervised auc optimization: a unified
partial auc approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826, 2018.

Hanfang Yang, Kun Lu, Xiang Lyu, and Feifang Hu. Two-way partial auc and its properties. Statistical
methods in medical research, 28(1):184-195, 2019.

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and Bingbing Ni.
Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image classification. Scientific
Data, 10(1):41, 2023a.

Tianbao Yang and Yiming Ying. Auc maximization in the era of big data and ai: A survey. ACM Computing
Surveys, 55(8):1-37, 2022.

Zhiyong Yang, Qiangian Xu, Shilong Bao, Yuan He, Xiaochun Cao, and Qingming Huang. When all we need
is a piece of the pie: A generic framework for optimizing two-way partial auc. In International Conference
on Machine Learning, pp. 11820-11829. PMLR, 2021.

Zhiyong Yang, Qiangian Xu, Shilong Bao, Yuan He, Xiaochun Cao, and Qingming Huang. Optimizing
two-way partial auc with an end-to-end framework. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(8):10228-10246, 2022.

Zhiyong Yang, Qiangian Xu, Shilong Bao, Peisong Wen, Yuan He, Xiaochun Cao, and Qingming Huang.
Auc-oriented domain adaptation: From theory to algorithm. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(12):14161-14174, 2023b.

Zhuoning Yuan, Zhishuai Guo, Nitesh Chawla, and Tianbao Yang. Compositional training for end-to-end
deep auc maximization. In International Conference on Learning Representations, 2021a.

Zhuoning Yuan, Zhishuai Guo, Yi Xu, Yiming Ying, and Tianbao Yang. Federated deep auc maximization
for hetergeneous data with a constant communication complexity. In International Conference on Machine
Learning, pp. 12219-12229. PMLR, 2021b.

Junyu Zhang and Lin Xiao. Stochastic variance-reduced prox-linear algorithms for nonconvex composite
optimization. Mathematical Programming, pp. 1-43, 2022.

14

Published in Transactions on Machine Learning Research (09/2025)

Xinwen Zhang, Yihan Zhang, Tianbao Yang, Richard Souvenir, and Hongchang Gao. Federated compositional
deep auc maximization. Advances in Neural Information Processing Systems, 36:9648-9660, 2023.

Yuchen Zhang and Lin Xiao. Stochastic primal-dual coordinate method for regularized empirical risk
minimization. In ICML, pp. 353-361, 2015.

Zhe Zhang and Guanghui Lan. Optimal algorithms for convex nested stochastic composite optimization.
arXiv preprint arXiw:2011.10076, 2020.

Dixian Zhu, Gang Li, Bokun Wang, Xiaodong Wu, and Tianbao Yang. When auc meets dro: Optimizing
partial auc for deep learning with non-convex convergence guarantee. In International Conference on

Machine Learning, pp. 27548-27573. PMLR, 2022.

15

Published in Transactions on Machine Learning Research (09/2025)

A Vanilla Algorithm

Algorithm 3 Simplified STACO1

1: Initialize ug €U, sp €S, yg eV
2: fort=0,1,...,7-1do
3: Sample a batch S; c {1,...,n}, |Si| =S

4 for each i ¢ §; do o

5: Sample independent size-B mini-batches Bt(z),B,gZ) from P;

6: Compute gﬁ?(Bt@) = g;(uy, sgl); Bt(l)) _ _ _ ' _

7 Compute GE?(B(D) € Ougi(uy, s (2);3(1)) G(Z)(B(l)) €0, (i)gi(Ut7s§Z);Bt(Z))
N2

sy agmagon, YOI B - 1 6O) - & (vO -y))

9 sty =8 = 0L Ties, yIL G (BY)

10: end for

11: For each 7 ¢ St, yt+1 y(? S§+)1 = sg ?

12: Ugpp = Uy — 77§ 2ieS, Y§i)1G§,1) (Bt(7))

13: end for

— 1 T-1 = 1 T-1
4:u=75 Y0 Up41,8= T =0 St+1
15: Return u,s

Algorithm 4 Simplified STACO2

1: Initialize ug eUd,s0 € S
2: fort=0,1,...,7-1do
3: Initialize y; 0 € Y

4: Set us o = uy,s¢0 =S¢
5: for k=0,1,...,K;-1do
6: Sample a batch Sy, c {1,...,n}, [Sx|=S
7: for each i € S), do
8: Sample independent size-B mini batches BEZ Zg from P;
0 Compute }(2 Byi) = gi(uen, sy B ,3)
10: Compute G kl(lg)eaugz(ut ks S tk, ,Z) G((B z)easugl(utk, E,i,l’)’il,z)
2

11: yﬁ ;zﬂ arg maxy ey, {y()9(2)(33)) I (y(2 (y(R) }

; & i i i i)\2
12: S§,11+1 = arg minge g, {(S(l), % 2ieSe Y,E ;1+1 () 1 (sgg - SE_’S > + 2—[1% (s() - Sili) }
13: end for
14: For each i ¢ Sy, yt k+1 yE ,1, §12+1 :sij,z
15: W ka1 = ATEMiN {(u Bies, YRGB + L(ugk —w0)) + 5 Ju-ug i3}
16: end for
17: Compute u; = K Zk 0 Ty k+1,S¢ = K Zk 0 St k+1
18: Set uy 1 = Uy, Sp41 = St
19: end for

20: Return urp,sr

16

Published in Transactions on Machine Learning Research (09/2025)

Table 5: Datasets Statistics (for nodulemnist3d and adrenalmnist3d, we follow the given training, validation
and testing split). The percentage in parenthesis represents the proportion of positive samples.

Dataset

Train (Validation)

Test

HIGGS
SUSY
ijennl

4157561 (0.5%)
2181312 (0.5%)
49990 (9.71%)

1039299 (0.5%)
544489 (0.5%)
91701 (9.5%)

ogbg-moltox21 (t0) 6556 (4.2%) 709 (4.5%)
ogbg-molmuv (t1) 13025 (0.17%) 1709 (0.35%)
nodulemnist3d 1,158 (25.4%) / 165 (25.4%) 310 (20.6%)
adrenalmnist3d 1,188 (21.8%) / 98 (22.4%) 298 (23.1%)
0 —— SONX 07 —— SONX i:z —— SONX
— STACOL o W e — STACOL
Total TrainianSEI'ime (scaled) e " Total Trammg Tlme (scaled) Total TrainianSEI'ime (scaled) e
(a) ijennl (b) SUSY (c) higgs
—— SONX 035 —— SONX 055 —— SONX
ﬁ“’“ — STACO1 o — sTAcOl o — sTAcOl

0.50
Total Training Time (scaled)

(d) ijennl

1.00
Total Tralnlng Tlme (scaled)

(e) SUSY

00
Total Tralnlng Tlme (scaled)

(f) higgs

Figure 5: Training loss Curves of STACO1 and SONX on three different datasets. The first row shows the
Loss (0.5, 0.5) results, and the second row shows the Loss (0.75, 0.75) results.

TPAUC(0.5, 0.5)
TPAUC(0.5, 0.5)

092 — soTA
05 —— SONX
— STACO2

050 160
Total Training Time (scaled)

(a) molmuv(t1)

5
g 8

o

—— SOTA
—— SONX
—— STACO2

TPAUC(0.75, 0.75)

TPAUC(0.75, 0.75)

°

@ Fos
o o
Sor b
Sos gos
(%] o
08 2
—— SOTA a —— SOTA a o4 —— SOTA
5 =
—— SONX o4 —— SONX —— SONX
—— STACO2 03 —— STACO2 02 —— STACO2
o5 w0 050 0 o5 0
Total Training Time (scaled) Total Training Time (scaled) Total Training Time (scaled)
(b) moltox21(t0) (¢) nodulemnist3d (d) adrenalmnist3d
0o o
0s50
g gon
oo Sos
0500 Goss
g
S oars S oso
S 0.850 £
—— SOTA Fie —— SOTA 207 —— SOTA
£ £
— SONX o8 — SONX Fo70 — SONX
—— STACO2 0.800 —— STACO2 065 —— STACO2

050 100
Total Training Time (scaled)

(e) molmuv(t1)

100 030 100

o50
Total Training Time (scaled)

(f) moltox21(t0)

1.00

o50
Total Training Time (scaled)

(g) nodulemnist3d

Total Training Time (scaled)

(h) adrenalmnist3d

Figure 6: Training TPAUC Curves of STACO2, SOTA, and SONX on four different datasets. The first row
shows the TPAUC (0.5, 0.5) results, and the second row shows the TPAUC (0.75, 0.75) results.

17

Published in Transactions on Machine Learning Research (09/2025)

B More Experiment Results

B.1 Additional plots for training loss curves

Figure [B] presents the training loss curves of STACO1 and SONX across three different datasets under two
evaluation settings, (0.5, 0.5) and (0.75, 0.75). The results indicate that STACO1 consistently achieves lower
and more stable loss values compared to SONX across all datasets. Notably, the variance in training loss is
lower for STACO1, suggesting improved stability during optimization. The only exception is Figure 5¢, which
corresponds to optimizing the loss with (0.5,0.5) weights. We believe this is a limitation of the primal-dual
algorithm, which involves two learning rates. In practical applications, improper tuning of these rates may
lead to training instability. Besides, it is important to note that the loss curve is less stable compared to deep
learning experiments, primarily due to the absence of pretraining for the linear model.

B.2 Additional plots for training TPAUC curves

Figure [0] presents the training TPAUC curves for STACO2, SOTA, and SONX across the four datasets. In
both TPAUC (0.5, 0.5) and TPAUC (0.75, 0.75) settings, STACO2 demonstrates competitive performance
compared to SOTA and SONX, with better stability and faster convergence speed. Specifically, in some
cases, STACO2 achieves superior results, particularly in later training stages, indicating its effectiveness in
optimizing TPAUC objectives.

C Proof

C.1 Preliminary Lemmas

Throughout the proof, for a space X, we define its diameter with respect to the measure ¢(-) = 3 HH% as

Dy = [maxxex ¥(X) — minyey w(x)]l/Z. Besides, a X b means that there exists ¢, C' > 0 such that ¢b < a < Cb.
We first present a lemma here that will be useful in our later analysis.

Lemma C.1 (Lemma 4 in Wang & Yang)). Suppose that the function ¢ : X — R is on a convez, closed domain

X and ¢ is pi-conver with respect to Euclidean distance function d(x,y) =% |x - yHg for any x,x" € X, i.e.,
d(x) > p(x) + (¢ (x'), x - x') + pd(x,x"), Vx,x" € X. For X = argmin, ,{o(x) + nd(x,x)}, we obtain

(b(ﬁ) - d)(X) < nd(x7§) - (77 + ,U,)d(X, 5() - nd(ﬁvz)a VxeX. (21)

C.2 Convex Case
In this section, we present the proof of the convex case. We begin by defining virtual sequences for Algorithm

[Bl The virtual sequences y and s are calculated with full coordinates, which is easier to bound in analyze.
Thus, we also hope to bound the difference between true sequences and virtual sequences.

Definition C.2 (virtual sequence). In Algorithm 3| a virtual sequence {y;} is defined as follows:

_(i i) ~(8) £ 1a(i w (i 1 i i)\ 2)
750, =argmax {y O30 (B0) - £ 70) - - (v -¥7) el (22)
y®Dey; @

Additionally, a virtual sequence {8;} is defined as follows:

@ . 0 A o 1 p)\2)
{0y =argmin ({3 G1(B™) s+ 5 (s —sO) | ieln) (23)

Next, we present a useful lemma, which is helpful in bounding y related error term.

18

Published in Transactions on Machine Learning Research (09/2025)

Lemma C.3 (Lemma 9 in[Wang & Yang). Suppose {y:},{3+} are virtual sequences for any t > 0 in Algorithm
[Then, for any A1 >0,y €Y, it follows that:

1 2 2 e 2 1 2 2\ . M1 o2 o2

B 5 (Iy-vil3 - Iy =503 50 - 31l3)] € 5og (15 =32l = Iy =y 13) + s (Iy =003 - Iy - 501 12)
1 1 _ 2

—((1-— - . 24

2an()\15) Iyee1 = yells (24)

We define that G; is the o-algebra generated by {Bo,So, -, Bi-1,Si-1, B} and F; is the o-algebra generated
by {Bo,So, ", Bt-1,St-1, Bt, St }. Note that G; ¢ F; and yu41 is Fi-measurable. Now we proceed to show the
descent lemma.

Lemma C.4 (Descent Lemma). Under Assumption[{.1] and[{.3, suppose {yi},{y:},{¥¢},{5:} are virtual
sequences for Algorithm @ Then, for any t € [0,T - 1], taking expectation over Fy, it holds that:

E [L(ut+l7 St+1>}’) - L(u7 S, }_’t+1)]

1 2 2 2 2 1 2 2
<o (-l B lu - ly) + o (Is = sl ~Bls—seal3) + — (Iy - el ~Bly -yea)

1

2n 268

1 o2 L2 1 -2 -2

s (ly =35 -Bly =5a13) + —< (Iy ~5:1s - Ely ~311)
2 2 020.2 52 020.2
Sa00+%+77 f 1+L+5 192

64QC7C : 25
PRI e, "B T B T8 T B (25)
where = max{n, 8}.
Proof. See Appendix [C.2.1] O
C.2.1 Proof of Lemma|C.4
Proof. By Definition, we have
L(ut+1, st+1,Y) — L(0,8,¥141)
Oy ()
Z (y 92(ut+17st+1) f A)) n? Z yt+1gz(u S f (yt+1
1 & 4 %
- Z(y< Vg (e, si) - = Ef)+~ Zf (i)
ZYt+1 (gi(uei1,8601) — gi(ug, 1)) + — ZYt+1 (gi(ug,s¢) = gi(u,s)) . (26)
i=1
Using the convexity of g;, we obtain the following upper bound:
L(ut+1a St+1, y) - L(ll, S, S’t+1)
1 L i —(17 1 n * 7
<=3 (D =30 g (U s01) = Y f (D) + = Z £
ni=1 =1
1
1n , ,
5 Z; t+1 (gz(uﬂlﬂsﬂl) gz(utﬂ St)+ z;yg—)l ((ngl)’ ug - u> + Ggg(st - S)) : (27)

II

We now analyze terms I and II separately. For term I, we decompose as follows:

Z(y(z) Yt+1)i (W1, 8¢41)
=1

= E Z(y(i) _Yt+1)gt)(B()) +— " Z(y(-) ygi)l (97(ut+175f+1) gt)(B()))

=1

19

Published in Transactions on Machine Learning Research (09/2025)

For term II, by decomposition we obtain:

1 _ 1 7 "z
H:(SZ §+)1G (B()) nz §+)1G§1)au_ut+1>_<s.ZngrlG (B()) u-— ut+1>

]- n —(2 7
+ ; ; <y§+)1G§71)a Uy — ut+1>
1T &) (A6, 56 i 1 &) A
=2 (70 (GRBD) - 610) s -sen) -~ Y (VAGDB), s -0
i=1 i=1
+ l Zn: <y§+)1G§l2)’ St — St+1> . (28)
n

.
Il
[

Combining all terms above, we arrive at the key inequality:

L(ugi1,8641,y) — L(0,8,¥¢41)

1S o)y - YING L& e 1 S
N G GO R- WA
i=1 i=1

C1
1Z i B R 1o
+ ﬁ Z(y() - IS-ZF)I (gl(ut+17 st+1) gﬁz)(B(Z))) g Z ,Ej_)]_ (gi(llt+1,st+1) — g’i(ut7 St,k))
=1 i1
1 i) A ¢ G
+<S Z y§+)1G§,E(B§)) Zyﬁﬁﬁﬁf, u- ut+1)—< t+1 (B()) u— ut+1>
€S 165,5
Ca
1& —(2 [
+ n Z; <y§+)1G§,f, u; - ut+1>
]. L A . 1 n
i i=1 (yii)l (G (B(z)) G‘Sl?)) 87 S”l) n ; (ymGE’;(B(Z)) S — St+1>
Cs
L (i)
E Z: (yHth 2y St = St+1> (29)

We now analyze the upper bounds of Cy, C3, and C3 in turn. For Cy, invoking Lemma and Lemma it
holds that

1 _ 2 _ 2
< - - -)]
1Lemma[2m(||y yill3 = 1y = 313 - 17201 - 4l

<
Lemma [C3] ZOLS
1

2 ~ 2
(ny yels = Iy - veal3) + o S(uy 9il3 = Iy - geal3)

_ 2
- (1 — ~vil?. 30
s (L= 1g) 19 -l (30)
For Cs, noticing here we have
1 i) A (G
o) =5 £ yGEE?) u), @)
€Sy
and ¢(-) is convex in Lemma [C.1] it follows that
2 2 1 2
Lemma%(n Sl - e 3) - o e - wl. (32)
For C3, in a similar manner, we can obtain
2 _ 2 1 2
o, 5 g (5=l = Is=50al3) = 5.5 15 113 (33)

20

Published in Transactions on Machine Learning Research (09/2025)

Substituting the above inequality into 7 and taking expectation over F;, we can get

E [L(lltu’ si+1,y) — L(u,s, yt+1)]

1 2 2 A1 R 5 1 1 B)
< g V=il =Bly =yealz) + 5 (Iy =903 - Bly = 9eal3) - 5 (- LB Iy -yl
1 1 1 ~ 1 B
g (=l =B lu-wia) - oo B fuc - wlf + 5o (fs=sild - Bls - seali) - 5 2B lse - sl
D1
i) = 1 & i
t ZE [(y() - y() 1) (gl(ut+17st+l) I7h)(B()))] " Z [yﬁfl (9i(Ugs1,8¢41) —gi(ut,st))]
i=1 i=1
D» Ds
LS o) () LS~ o) ()
+E 7Zyt+1Gt717 Uy — U+l +E 7Zyt+1Gt72, St — S¢+1
M i=1 L]
Dy
1 G 1 n
B¢ 3y ED) - L3060 w3 (50 (GG -60) s -s). B9
S €St i=1 n;
Ds De

For Dy, noticing that E [(s(i) - égi)l)z] = %(s(i) - égi)l)z + %(s(i) - slgi))2 for any i € [n], then we obtain

1 1 _
1< 55 (5= sl ~Ells—seal3) - 5B [Se — sl (35)

Inspired by Lemma 10 in [Wang & Yang, we bound D5 as following.

iZE[(yO) i) (9:(uer, i) - 587 (B!)))]
_ % éE [(y yt+1) (9i(aes1,86401) — gi(ug,s)] % Zn: [yt+1) (gl(uhsf) a5)(B()))]
: % iE [Hy y£+)1 ng(utﬂ;sml) 92(llt,St)H] % :1 [Yt+1) (gz(ut,St) b)(B()))]

=y

C? sC?
TZ Hut+1 - utH; + TT;;E H§t+1 St||2 + 4A4Cf - Z E I:(y(l }—,§+)1 (gl(uhst) gt)(B()))] (36)

IA

The last term in is bounded as
1& Z
EZ: [yt+)1 (gl(ut,st) gt)(B())]
1y
nf

Z [0 =) (:(uer,s00) - 97 (BE)) | - %iE[92 =50 (9 wernsien) - 00 (B))]

i=1
(37)

To bound the first term in (13—ZI), we have E [y(2 (gt(ut“,stﬂ) gy)(B())) |.7-'] 0. Besides, according to
Corollary 12 in [Juditsky et al.| (2011), for some Ay > 0, we have
2

E[y(i) (97(ut+175t+1) 7)(B()))] <E Hy(R z— A E Hy(i) —5’?) 5 27\2]3 Gi(Wgi1,8¢41) — gt()(B())H
such that
%iE[y(” (9:(usr,s00) - 97 (B)] < QEHY@‘) %EHy(i)_ygi) Z+2:§B’ (38)

i=1

21

Published in Transactions on Machine Learning Research (09/2025)

where {¥;} is also a virtual sequence for Algorithm [3] For any A3 > 0, the second term can be bounded as:

1& @) () ROYRO) X302 By -yl
W B0 =50 (9:(uersse) - 0 (B [« 0+ . (39)

2B 430
Put , , 7 and together,

C S5C? Ao
Dy < L2B [~wl+ 3 5B [See1 — el + 40 CF + 32 (B ly - 3215 - Ely - eea5)
A4 Aan?

i . A303 N E|yi1 _ytHQ

" 40
For D5, under Assumption for some A5, Ag > 0, we have
SC:C
D1 < GOy Juvr -l + 2C2m 3 0 -
As » nCiCT Sxg ., SBCC?
<—E - + + + —. 41
2 laeen — w5 25 M2 E [str1 - st MAg (41)
For Dy, similar to the derivations on Ds, it holds that
)\5 9 T]C;C;)\6 2 BC%C;
Dys<—E - + —E +— 42
4 o lage —uel; 25 2 3 ISe+1 = sell5 g (42)

Finally invoking Lemma 4 in [Juditsky et al.| (2011)(as well as Lemma 7 in Zhang & Lan| (2020)) on D5 and
Dg, we have

1 () nCtoi ns?
DS:_E< z G (B()) Z 1§+)1G§1)7ut+1) 11 L

S’LESt &1 'n,z 1 B S
1 & NOYEC 5Cf02
| EOEHICHE DT IEICER FEe i) ()

Supposing Aj = 1 +3 L X = Gy A3 =\ = 805 max{8,m}, A5 = X¢ = % and substituting D1, Ds, D3, D4, D5, Dg
into equation (3 ylelds desired result. O

C.2.2 Proof of Theorem [4.3
Proof. Fix any ¢ > 0. Applying Lemma with (u,s) = (u*,s*), where (u*,s) := argmin,q, scs F'(0,),
and summing from ¢ =0 to T - 1, taking expectation on Fy, we obtain

T-1
Z E[L(uts1,8¢41,y) - L(u*,8™,¥441)]

I 2 -2
< "= w3+ o ls” =50l + =z Iy =30l3 + by =50l + Iy - o)

25

Saa ao? 770 o7 nd? ﬂcj%az
+T|64QC%C% + 0% L TPy . 44
(975" 2Bn 2B B S B (44)
Since L(u,s,y) is convex on u,s and linear on y, we have
_ 1 T-1
m:?XL(ﬁ,gaY) - L(U*a S*,y) < m;}X ? Z L(ut+17st+1ay) - L(U*a S*aytJrl)a (45)
=0

where u = % Zth_Ol U¢y1,S = % Zth_ol Si1,y = % Zz:)l ¥i+1. Next, consider the left-hand side (LHS):

3 (FOgi(ur,s* D) - f75D)). (46

=1

3\'—‘

L(ﬁ’g’y) - L(u*,s*,}:r) = % zn: (y(l)gl(ﬁ, é(l)) - f:(y(l))) _

=1

22

Published in Transactions on Machine Learning Research (09/2025)

Choose y = () e argmax, {v(?g; (1,5~ f7(v(?)}, By the definition of conjugate, we have y(* g;(1,5()~
fF(y®) = fi(g:(,58%)). By Fenchel-Young inequality, it holds that y®g;(u*,s*®) - fx(y®) <
fi(gi(u*,s*)). Combining the above F(11,5) - F(u*,s*) < max, % Yo Ly, 801, y) - L(u*, 8%, 5441),
it follows that

_ 1 9 1 s 3D3
EF(@,8)- F(u*,s") < —|u* —ug|5 + ——||s* = so|5 + —= + 64QC2C?
(9) (9) 27’]TH 0“2 2SﬂTH 0“2 OCST g f
2 C2 2 2 C2 2
aocy NCjo 52 pCso
+?O+ é ! +%+ é y (47)
. B o mi B S o 13 B
ChooseanU—g,nﬁmln{@,ﬁ%77§}aﬁﬁmm{@7ﬁ§§}
0202 D2 0202 020_2 D2 020_2 2 D2 2
and T x max{—%L, =541 S5 3835{227%, B’é:;’} completes the proof. O

C.3 Non-convex Case

In this section, we present the proof of the non-convex case. The key to the analysis is to apply the convergence
analysis of STACO1 for the regularized problem at each stage. However, there is a gap as STACO1 requires
gi(w, s(’)) to be convex. To address this gap, we reformulate the problem in as the following;:

1 i i 1 2 1 i i)\ 2 * i
Li(us.y) =~ 3oy (g s+ s fu-wold + oy (59 =50) - £76r)
i=1

11 &y® 2 1 2 1 &y® (i) _ (D)2
oy g 2 T e woli e gl mswols -0 205 (5O -s) L 69)
where 7(V) is a proper constant. By carefully choosing the value of 7(¥ we can make g;(u,s()) +

1 1
27 (@) 27 (%)

vergence analysis of STACO1. Nevertheless, our algorithm does not depend on 7(? as computing the gradient
of u and s(? will remove 7(¥. We now introduce some definitions and notations for our later analysis.

. N\ 2 .
; + (s(l) —s%) to be convex in terms of u,s(”) such that we can leverage the con-

lu - u o

1 2 1 2
® .s; I = F : = N o
~(u, 850’8) (u,s) 2 lu-u HQ 2y Is-s H2

u; = U0
St =8¢0
. 1 1
(uI,sZ) = arg min {F(u,s) +—Ju- ut||3 +—|s- st||§} . (49)
ueld,seS 2y 2ny

Since f; is convex and g; is non-convex, the function F(-,-) is non-convex with respect to uelf and s € S.

Lemma C.5. Under Assumption and F(-,-) is Cyp-weakly convex onueld and %—weakly conver
onseS.

Proof. See Appendix O

Now we define the virtual sequence for inner loop update in STACO2.
Definition C.6 (virtual sequence). In Algorithm [4] for any ¢, a virtual sequence {y; }« is defined as follows:
_(i i) A1)/ 1ali wpo (i 1 i N2
)., = argmax {y(9B - £ (v) - o (v -v?) } ien], Vk20
y@®ey; e%7
yio=vio ielnl, (50)
and a virtual sequence {8; x } is defined as follows:

g : i) AG (i 1
S§,11+1 = ar(g)ﬂ;m {(YE,iHGE,i,z(BE,;i) + ;(S

50 =) ieln). (51)

23

Published in Transactions on Machine Learning Research (09/2025)

Lemma, is similar to Lemma but this is for the inner loop in STACO2.

Lemma C.7 (Lemma 9 in |Wang & Yang). Suppose {¥:}x,{J¢x}r are virtual sequences for any ¢t >0 in
Algorithm [}l Then, for any Ay >0,y € Y,t €[0,T 1], the following holds:

1 2 - 2 s 2
E[g (I = ¥0sl3 = Iy = Fean |3 = 15101 -yl

1 2 2 A1 2 . 2
< g Iy =yeald = Iy =verald) + 5o (I = erl = Iy - Funal?)
1 1 _ 2
- 1-— - . 52
2atn()\15) I¥¢41 = ekl (52)

There are two loops update in Algorithm[@] We first present the descent lemma of the inner loop. Its analysis is
similar to that of Lemma However, since g; is not convex on (u,s), we cannot directly apply Lemma
By carefully reformulating the regularized problem, we can leverage the convergence analysis from the convex
case. For the inner loop, we define that G, j is the o-algebra generated by {B: o, S0, -, Brk-1,St-1, B i} and
Fik is the o-algebra generated by {B: o, S0, Bik-1,St k-1, Bi,k» Stk - Note that G, , ¢ Fy i, and y; g1 is
Ft.r-measurable.

Lemma C.8 (Descent Lemma for Inner Loop). Under Assumption and |4.4), suppose that
ekt ATk, {F ek ks {Se.k b are virtual sequences for Algorithm and let v < T and g, B < %.
Then, for any t € [0,T - 1] and k € [0, K1 — 2], the following holds:

E [L (¢ k41, St,k+1, Y5 Ut,0,56,0) — Ly (0,8, ¥4 k413 Ur,0,8¢,0)]

1 2 2 1 2 2 1 2 2
< g (=l = Blu—eren}) + 5o (Is = serl = Bls = supaal3) + — (Iy - veals = Elly - yesal)

277t
2
2

1 N N 2 1 2 - 2
s (Y =90l - Bly = 3enaaly) + = (Iy = 3erls - Bly = Fural)

Sao? N aog . UtCJQcU% . 062 N BtC’;ag

64,C2C3 53
TORAE T 0B, T 2B T B 5 B (53)
where Q= max{ng, Bt }.

Proof. See Appendix [C.3.2} O

Lemma C.9 (Proximal Error Bound). Under Assumption and letting v < ﬁ and g, By < §
for any t in Algorithm[]], the following holds:

E®, (ugi1,8i41;us,8;) <P (uf sl uy S¢) + 1 H117L—1115H2+ ! HSf—StH2
vy +1 +1) = Yy 1Pt) 27]th t 2 2SBth t 2
3D? Saso2 a2 mCiot BCios 52
Yy 2 ~2 t90 t00 fo1 72 M
+ +64Q,CCE + + + + + 54
o SK, 9 f T 9Bn 2B B B s (69
where Qy = max{n, B }.
Proof. See Appendix [C.3.3] O

C.3.1 Proof of Lemma

Proof. We first show F(u,s) = %Z?ﬂ fi(gi(u,s)) is weakly convex on u. For convenience, we denote
gi(-,8) as g;(-). Then Vie [n] and x,y €U, we want to establish: Y\ € [0,1],

Filgi Qo+ (1=0)¥)) € Milgi () + (1= N filgi () + EAA-X) x -y, (55)

24

Published in Transactions on Machine Learning Research (09/2025)

for some g > 0. Since g;(x) is p-weakly convex, for any x,y €/ and A € [0,1], we have
gi(Ax+ (1= MN)y) < Agi(x) + (1= Nai(y) + gk(l -0 [x-yl;- (56)

Noticing f;(+) is monotone non-decreasing, it holds that

Filgi O+ (1=0)9) < £ (A0 + (1= g (3) + EA(1=0) Ix - y13). (57)
By the C-Lipschitz continuity of f;, we have:
fila+9) < fi(a) + Cylo], (58)

where a = Agi(x) + (1 - A)gi(y) and § = EX(1-)) [x - yHg Applying above inequality into , we can
obtain:

filgsOc + (1=209)) € FiOrgi() + (1= Vgi(¥) + Cp - EAA -0 [x -3

< Mil9:(3)) + (1= N Filg3)) + Cp - EAA= V) [x =13 (59)

where the last inequality holds due to the convexity of f;. Therefore, f;(gi(u,s)) is Cyp-weakly convex on u.
Summing above inequality from ¢ = 1 to n and averaging, we obtain that F'(u,s) is C'yp-weakly convex on u.
Next, we show that F(u,s) is weakly convex on s. By denoting g;(u,-) as g;(-) and following the similar
approach, for any i € [n] and z,y € S;, we have

Jilgi(z + (1= N)y)) < Afi(gi(z)) + (1= X) fi(gi(y)) + Cy - g)‘(l -A)(z - 9)2- (60)

Noticing f;(g:(u,s)) is weakly-convex to each coordinate of s, F'(u,s) is %—Weakly convex on s. O

C.3.2 Proof of Lemma

Proof. For analysis, we introduce two auxiliary variables 7, and 7, where Tt(lk) = Vyif,z . for any i€ Sy g,

%t(,lk) = yygf; .1 for any i € [n]. Before delving into the formal proof of Lemma we briefly highlight its
role: it provides a variation bound for stochastic gradients under block-coordinate updates, which is the
central technical novelty enabling us to prove parallel mini-batch speedup. The proof proceeds in three steps:
(i) decomposing the variation of block-coordinate updates, and (ii) bounding the dependence on different
batches.

25

Published in Transactions on Machine Learning Research (09/2025)

Step 1: Decomposing the variation of block-coordinate updates. By definition, we have

Ly (U 41,8t k415 Y5 Ut,0,54,0) — Ly (W, 8, ¥4 1413 U0, S¢,0)

1 1 1
_ (%) il _ 2, - - 2
= Zl (yOgi(ur k.88, - £ (v)) + 3 et =l + 5o It = suoll
1& (%) 1 2
n ;(ik 9i(w,s) = f7 (yt k+1) 2 T o0y Is=scol
1 & i 2 1 i % * i
= Z y¢) gi(Ut k41,8 £, k+1) +) g ke1 =g o5 + N0) (SE 11+1 - 55,3)2 - fi (y())
=1 Tok 27,0
1 1 1w
Ly (ygzzﬂ (gxu R R S B _s;;g>2) ey)
=1 27 t k QTt,k
N 1 lu 2 13 y® lu 2 2 1 i 5’52+1 [= g o2
5 Yt k+1 — U, - () Yt k+1 — U, - — Ug, -) — U0
2y =1 27_}(1@) 2 2y 2 ng 27'5,3 ?
0]
1 2 1 & y®W () (i)ye 1 2 L& Yeke1,) ()2
+ 5 lstrer = stoly - — (Sih1 =500)" — 5= Is=seoly + = X~ (5" = 8;)
2ny + 2 p Z; 97 k) t,k+ t,0 2nry 2y ; Q%t(lk) t,0

1 & i i 1 1 i i
58 (sl s w2

i=1 27}’,{ 27't)k

1 & - 1 (i
+ - Z y§113+1 gi(utﬁlﬁh St(E,ZIZJrl) 0 (i) Hut k+1 — Ne) (S%u 1))2

n;: 27T, tk Tt k

i 2 1 i i
o) - o T -l - <s;,z—s§,3>2)
2T, k 2Tt’k

1& 6 i 2, 1 i i
Sl Z yg,;ﬂ gi(a i, Sgi) + |laek —ueol; + 3 (Sg 11 - S§’3)2

n i=1) 27_() ’

= T k t,k
1 (7) (i)\2
- i) 205
Ti k 27
; (4)

1 s 18 y® 1 2 1 &Y 2

+£Hut,k+l_ _;; () Hut k+1 — + ’]’L; () Hu_ut,OHQ
1 L < (i) (i) 1 e y<,1 NON

B B 2 1 N2 1 thtl (i)

+ 2ny ”St,k+1 St,0”2 n Z t((St k+ St,o) 2ny HS Z 97 () (0)

‘%if((h+ Zf (61)

Observe that for any (u,s) € (U, S), the function g;(u,s®) +3 (,) [u- u'H2 + —(s() —s'(0)2 i convex
) ,

with respect to u and s(, for any fixed (u’,s’) € (U, S), since —5 = ? > p. Thlb convexity enables us to
t,k 'Yyt,ku

26

Published in Transactions on Machine Learning Research (09/2025)

apply a first-order approximation and derive the following bound:

L, (W k41,8t k+1,Y; Ut0,56,0) — Ly (W, 8, ¥4 k413 Ue0,S¢,0)

SN = 1 2 1 i i
> -y, (gxut 1Sy) + gy It - i (St ~ séé)?)
J 2Ttk: tk

<

I

LS 1 i i
- Zygg (gz(ut k1, Sy, Do)+ — @ ke = m(sg’gﬂ - s§73)2
i1 27 =
t,k t.k
111
1 i i
_ gi(ut,k7) -) [—wy 0||2 & (ng _ 55’3)2)
Tt k 2Tt,k
111
1& i i 1 i 1 i i i
Y N (T M R I
=1 Tt,k s
11
i S) 7(1)
_ﬁ Z D) Hllt k+1 — Uy 0“2 Z b) Hll u; 0H2 o Z L G) Hut kel — ut70‘|§
=127 tk T i=1 Ttk i=1 2Tt,k
I 111
n (0 — (1)
L g~ Yk 2_ 1 Yik+1
z D) g ge1 = Z Hut k= Z 0 |ugs -
n =1 Tk = n & 10
! 111
i () — (%)
L& yD i g2, L &Yk L&,) (e
_- —(s -8, 0) +— (s (%) _) 1 kel NON
n i 27it(zk) t,k+1 t,0 121 97 (z) n & 27(2 k1 t.0
I 111
L& Tk, o) iy LETVira, @ el STk @)
t,k+ 7 1)\ 2 tk+ i 2 tk+ i)2
2 =) (8¢ = 500)" — 2 —(4) (st =Se0)” + 2 () (si i —80,0)
Tz1 27, nig 27 n i 270
! 111
! |y 1 — w0l - L lu -2+ 1 ISere1 —seol? - 1 T
" TP 2y TR 2ny T2 opy w2
1& .,
_EZL ())+ Zf (ytk+1

27

Published in Transactions on Machine Learning Research (09/2025)

Noticing
1 i _ (7 7
I= " Z(y() - YE’12+1)gi(ut,k+las,EJz+1)
i=1
1 &, G D) A N, L i (i) /1ol
= o 2O =¥ Da B + 5 26 -y (98D - R BED)

1 ; 1 1&_ ; 1
1= < Z yg?}iu (G(zk 1(B§2) RNO) (g — 0)) Z yﬁ’,ﬁﬂ (G%l NG) (k- ut,())) ,u-— ut,k+1>

S €Sy k Tk ni1 Py
1 i AG) G 1
Z (yi 12+1 GE 12 1(65 12) O (urr—urp) |, u- ut,k+1>
S €Sy k ’ ™ ’ Ty k
1 & i 1
=2 <y§.12+1 Gi,i.l + ﬁ(ut,k —Wo) |, Wk — ut,k+1>
Miz1} ' tk
Lo (A gl o)
+ o z;yt,kH(Gt,kQ(Bf) - Gf k 2)(5(- Stie1)
Lno@ (a0 gy, L) _ @) i) _ ()
T Z;yt,lﬁl (Gt,k,z(Bt,k) 20 (St,k - St,o) (S() - St,k+1)
= t.k
L) (i) RO RINGON PROBIG!
+ o Z;yi,kn (Gt,k,z T (st,k ~5;.4) (St,k =Sy kel
= t.k
m-1 5y (g:(uepn)= gi(ui,s)) (63)
n &Yk iUt k+158¢ 11 i 1Stk
. (1) ()] (i) _ <)
and replacing 7, ; = VY i k1 and 7, = VY i je1s it follows that
L (0 k+1,S¢, k41, Y5 U0, St, 0) -L (u S, ¥t,k+15Ut,0,5¢,0)
<*Z(y())Q Zf ())+ Zfz(t;m
C1
1& 7 — (2 7 [1& 1 z
=3 -yl (9:ursi) -9 BID) + =~ 2 5 (9 (anins()) 9irs())
i=1 i=1
1 1 1 1
+ (Z (YEQHG% 1(8(1)) +— (k- ut,O)) - Z (§k+1G§2 (g —ugo)), u-wy k+1)
S €Sy 1 v nia Y
1 D) A6 pG)y L
_g (§7;+1G§7;71(B§7]3) + *(ut,k - ut,O)v u- ut,k+1>
iGSt,k ’y
Ca
Lot ao) _ <)
+ i §yt7k+1(Gt,k () Gt k, 2)(5(1) =S k+1
1& (L) A6 a6 L. @) () =)
o Z yt,11+1Gt,11,2(Bt,lz) +—(s Stk)) (S(D - S k41
i=1 Y
C3
13 0 ; 1 12 i 1, i i) (i
DN 7 G FR R CHE R R m} oo (s +1G§,,1,2 + 20 -s) 682 -5)
L= . iz v
L < S L) _ ()42
+ %; |ug g1 — ZHutk Z R %;(sm—stvo) . (64)

28

Published in Transactions on Machine Learning Research (09/2025)

For C1, by applying Lemma followed by Lemma [C.7] we obtain:

C

2)]

2 — 2 _
|2 - ”y — Yt k+1 H2 - HYt,Ic+1 — Ytk

1
< I _
! Lemn?ali2nat (Hy Ytk

< L (Hy—}’t k |2 -y -y: k+1||2) + ol (Hy—f’t Kl 2- ly =3t k+1”2)
LemmaQOétS 2 ’ 2 20(tS w2 ’ 2
1 1 _ 2
_m(l_m)ﬂyt,kﬂ_}’t,kb' (65)
For Cy, we define the auxiliary function:
1 i AG) G 1
o(w) = 3 vl | Gl (B + 5 (e — o) | u) (66)
S 5) ok,) 7_()
€St tk
Substituting 7, = vy, ;.,,, this becomes
1 O A gy, L
(b(u) = E Z yt,k+1Gt,k’1(Bt,k) + ;(ut,k - ut,O)vu . (67)
iESt,k
Since ¢(+) is convex, applying Lemma yields:
1 1
Ca< g (=il = Ju =]3) - 3y I = el (68)
For Cs, following the similar manner with Cq, for any ¢ in Sy, we can get
s < (ls = sl - I St |2) - oo [8naer — st (69)
LemmaQTLﬁt w2 ’ 2 271,8,5 ’ w2

29

Published in Transactions on Machine Learning Research (09/2025)

Substituting the above inequalities into and taking expectation with respect to F; i yields:

E [L, (0 k41, S, k+1, Y3 Ut,0,56,0) — Ly (0,8, ¥ k415 Ur,0,8¢,0)]

1 2 2 A1 N2 N 2
< 2005 (Hy =Verls —Ely - yere HQ) + 20,5 (||y ~Verls —Ely - e re Hz)
1 1 .)
-~ (1-—))E -
2am()\15) I¥e ket = Yerls
b L (Jum 2~ E - e [2) - s E e - g2
2n 2y
2 _ 2 1 _ 2
+ B, (||S =Skl ~Els =8 ka1 ||2) - ME I8¢,k+1 = Stk [l5
D1
1 & i _(3 7 ~(2 [
o B[-y ((aers) ~a2(B1))]
i-1
Do
18 . .
+t= Z E [yg,ﬁﬂ (gi(ut»lﬁh SE.leJrl) - gi(uek, SE%))]
ni=1 ’
Ds
1 (i) Ltm o @) ())
+ n > E<yt,k+1Gt,k,1v U,k — ut’k+1> + n Y E (yt,k+1Gt,k,2’ S¢k~ st,k+1>
i=1 i=1
Dy
1 1 2 2
+E| = (w - w0, upr —ppi1) [+ E| — (||Ut,k+1 —u 05 = [uk —ug ol 2)
v 2y
Ds
_ 1 _ 2 2
+E [7 (St,k —St,0, Stk — St,k+1)] +E [7 (Hst,k+1 =s:0l5 = IStk —st0 |2)]
ny 2ny
D
1 (i) A0 g0y _ L) A0
+E(5 D viiaGix 1(Bii) - = 2V Ging U=k
S iESgyk n =1
D7
LA wlo) (A6 (30 (i) h G
o z; E [yt,k-+1 (Gt,k,Z(Bt,k) - Gt,k,Z) (s - St k+1] : (70)

Step 2: Bounding the dependence on different batches. For D;, notice that E [(s(i) - §§2+1)2] =
S (s - §Ef,z+1)2 + =5 (50 - sE’,l)Q for any i € [n]. Then, it holds that

D 2. (71)

2 2 1 _
S—s -E|s-s)——Es -8
” t,kHQ H t,k+1H2 2n5t H t,k+1 t,k|

1
P
256
For Ds, following a similar manner we show in (40)), for some Ay, A3, Ay > 0, we have

2 2

_ A -
D, < /TQE [t = wekls + —2 B [Se o1 —senls + 40 CF + ﬁ (E ly =¥l
4

2
/\4n 2

- 2
~Ely-Firal)
o8 308 E ¥k — Yokl
+ + +

2BA2 2B 4)\371

2
2, (72)

30

Published in Transactions on Machine Learning Research (09/2025)

For Ds, by invoking Assumption for some A5, ¢ > 0, we have

SC:C L i
D5 < CngE Hut,k+1 - f2 ‘E |:Z Si(t,lerl - S)E,Iz]
i=1
)\5 UtC?CgQ SA6 _ 2 SﬁtC?Cg
<—E - : + E - _— 73
oy [enn g onzg, E e MmN (73)
For Dy, same to the derivations for Ds, it holds that
)\5 T]tC?Cg B 5tC)2cC§
Dy< —E - + E - . 74
4 M, Hut,k+1 2 om ”St,lﬁl 2 ()
For D5, noticing
1
5 (Hut,k-+1 - - Hut,k - ;) <= <ut,k+1 —Ut0, Utk — ut,k-+1>7 (75)
then we have
1 1
D;<E [5 (ugk — a0, Ur g - ut,k-+1)] -E [; (g k41 — U0, Wk — ut,k+1>:|
1
= 2B s - vl (76)

In the same manner as for D5, we obtain Dg < n%yE IStk — St k+1 H; Next, applying Lemma 4 in |Juditsky et al.
(2011)(as well as Lemma 7 in |Zhang & Lan| (2020)) on Dy, we have

1 O G 1 1& ; 1
D;=-E <S Z yﬁiﬂ (Gﬁl(Bﬁ,ﬂ) + Ti(ut,k - ut,o)) Z %H (ng;zl + ?(ut,k - Ut,o)) , ut,k+1>

3 \

iESt k ’ i=1 t;k
ntC?O'% 772552
< — 7
B 5 (")
Finally, for Dg, similar to D7, it follows that
LSvgla® (A0 (3O _ A0 B _ <)
Ds = gZE(th+1 (Gtk2(Bt,k)_Gtk2)7 st _Stk+1>
i=1
gl (A0 (7O _ A0 (i)
T 7; E (Yt,k+1 (Gt7k,2(Bt,k) - Gt,k,z)) _st,k+1)
BtCJ%U%
< 78
- (78)
By setting Ay =1+ 5, Ao = Sa s A3 =y, Ay = 80 max{ns, B¢}, and A5 = Ag = é, and substituting the bounds
of D; through Dg mto inequality (70| ., we obtaln the desired result. O

C.3.3 Proof of Lemma

Proof. For any t > 0, by invoking Lemma choosing u = uI,s = sI, and summing from k =0 to K; -1
while taking expectation over F; g, it holds that

Z E [Ly(llt,kn, St k+1,Y;Ut0,50) — LW(UZ,SLS’t,kH; uy 0, St,o)]

277 ||ut U0 |2 2Sﬂ Hst StO” + (Hy_ytong)
Sao0? ayo? ﬁtc 01 B.C? '02 n 52
+ K, (64QthQCJ2c+ 2];710 + 2tBO 5+ é + tS) (79)

31

Published in Transactions on Machine Learning Research (09/2025)

Since L (u,s,y;u’,s’) is convex on u and s, and linear on y, we have
o [N A) ’)

= = . A =
m%?iL'y(lltashy’ut,O,St,o)—Ly(ut,st,Yt,ut,mSt,o)

ye
K- ;
<max — Z Ly (Q¢ k41,8t k41, Y5 Ur,0,8¢,0) — L (ut,St,Yt k+15Ut,0,5¢,0)5 (80)
yey Kt k=0

where u; = K% ZkKjal Uy f41,5¢ = K% ZkK:(;l St k+1, Yt = % 22261 Vi k+1- Next, for the left-hand side (LHS), we
have

L (ﬁt7§t7}’§ U 0,8¢0) — L (UI,SI,}:’t; U¢0,5¢,0)

z yDgi(a,,57) - 7 () +—\|ut—uton2+—nst
2ny

' .= (i 2
z(O gt sl) - 1) - 5 5 It =l - % Isf - sl (81)

Choose y(®) = ygi) € argmaxv{v(i)gi(ﬁt,§§i)) — f(v)}, then we have y(i)gi(ﬁtéii)) - fry®) =
fi(gi(ﬁt,égl))). By Fenchel-Young inequality, it holds that §rtz)gl(ut', (Z)) fi*(égl)) < fi(gi(ui,sz(l))).
Thus, we have @ (T, 8:;,0,840) — P (u],8];140,8,0) < maxy 2+ i@ ZKt YL (W a1, St ks1, Y3 We 0, S10) —

LA,(uI, sI,ymH; Uy 0,8:,0). Dividing both sides by K, completes the proof. O

C.3.4 Proof of Theorem
Proof. We begin by invoking Lemma which yields:

1 1 1
EF(up1,8:041) < F(u],s]) - *E Juges — w5 - %E ISt —sel3 + (2177 + 27) Juf - ut”
tixt

ol3)

(5 T)it sl e e (1
2SB0: K 2ny 2 SK

2 2
Sayo? N aog . ntcfal N ﬁthUQ N 76

2 2
+640,C;C5 + 5Bn 5B 5 3 T (82)
Based on inequality (6) from [Rafique et al.| (2022), the following estimate holds:
1 1
||UI - ut”i + n ||SI - St”z = g - ut||§ T Ist+1 — st Hg
1 2 1 2 2 4 2
S e Y 1 Y S
then
1
EF(ug1,8641) < F(“t?) (277 K, 67) ||ut _ut“ + ,YE“ut ut+1||
1 1 2 2 2
' (25&& ’ %) Iot sl 7B el sl
+ 2 + 640 O2Cf Seuy + 005 + ntC’;af + 5t0]%0§ + nt52. (83)
atSKt 2Bn 2B B B S

Next, we apply the strong convexity of the auxiliary potential function ®., as established in Lemma
Since @, (u,s;u’,s’) is (% — C}p)-strongly convex with respect to u and (n%y - %)—s‘crongly convex with

32

Published in Transactions on Machine Learning Research (09/2025)

respect to s, it follows that:

Cfp 1 Cfp
(3 - OBl -l + (- L2 ol 1
< E¢7(ut+1, St+1;U¢,S¢) — ‘I’W(UL SI; uy, St)
1 2 1 . 2 3D3
< EHuI—ut||2+7E||sI—st||2+ Y
2n: K 2561 Ky aSKy
S 2 2 020_2 C202 (52
+64QtCQCJ% L 2% | X%] + PiCso 4 o (84)
g Bn 2B B B S
Furthermore, using the assumption ~ < ﬁ, the final descent bound simplifies to:
1 2 9 1 2
EF , < F(u),s;)+ + N I
(s se) < F(f) (zn K, 67) fod - wl, (25/6th 6m) Isi - sl
27D3 2 2 9n,C3o? 9B,C303 2
+ Y +5769t02012c+ 950109 + datog Mlind i PrCyo + 910 . (85)
thSKt g 2Bn 2B B B S
Since F(ul,s!) < F(u S Y [
158;) < t:St) ~ 35 | utH2 Sy ||st 5 it follows that
1 2 9 1 9
T
EF(ut+1,st+1)SF(ut,st)—§|‘ut—utH2+2nth _ut”Q_%H tH2 QSBK H _St”2
27D? 9Sayo2 9ayo? INCiot 95:.Co5 op,s2
y 2 2 t90 t90 fo1 o2 Ui
+ +576Q,CC5 + + + + + . 86
o, SK, 9T fT oBn T 2B B B S (86)
Summing both sides over t =0,1,...,7 -1 and taking expectation with respect to Fy o, we conclude:
1 Tl(1 9 9 2
= — ——)E[u/-u —_— - E|s! -s)
Tt=0 (37 2?7th) ” t t” (371’)/ QSﬂth) ” t t||2
F -EF 27D 2
< F(;50) - BF(ur,s7) + 5760,C2C3
T O(tSKt
2 2 9n,C%?2 9B,C%02 2
. 9SS0 N leMep N Mt roq N BCos . N6 . (87)
2Bn 2B B B S
Finally, choosing the step sizes and inner-loop iteration numbers appropriately as:
i € Be? Se2
ntxmln{CQCQ)Cg 27 52 a’YG}
2 B€2
Bt Xmin{igaﬂa’YEZ}
C’ng Cf02
Be?
oy X —5—
a3
Dyog v ny
K, x Yoo 1 iy 88
t maX{ BS€4 e S/Bt ()
we arrive at the desired convergence rate:
E [dist(0,0F (ul,s1))?] < 2T z E(Hut wly = Isf - si)
F -EF
[(u0750) (uT7ST)] n 0(7_162), (89)

~T

33

Published in Transactions on Machine Learning Research (09/2025)

where ¢ is uniformly sampled from {0, 1,---,7 = 1}. Then we can make E [dist(OﬁF(utt, S;[))] < € by choosing
T — O(F(UOySO)_igfu,s F(U,S)

€

). The total iteration complexity would be

+
et Bet Sét Set BSet BSeb

_ 212 2 2 212 2 2
TZth) O(C’gC’f . Cioi 82 . nCyCs nCjos N D%US)
t=0

34

	Introduction
	Related Work
	Notations and Definitions

	Primal-dual Double Block-Coordinate Algorithms for TPAUC Maximization
	Algorithms

	Analysis
	Assumptions
	Convex Case
	Non-convex Case

	Experiments
	Settings
	Results
	Ablation Study
	Training Efficiency

	Conclusion
	Vanilla Algorithm
	More Experiment Results
	Additional plots for training loss curves
	Additional plots for training TPAUC curves

	Proof
	Preliminary Lemmas
	Convex Case
	Proof of Lemma C.4
	Proof of Theorem 4.3

	Non-convex Case
	Proof of Lemma C.5
	Proof of Lemma C.8
	Proof of Lemma C.9
	Proof of Theorem 4.5

