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Abstract

Two-way partial AUC (TPAUC) is a critical performance metric for binary classification
with imbalanced data, as it focuses on specific ranges of the true positive rate (TPR)
and false positive rate (FPR). However, stochastic algorithms for TPAUC optimization
remain under-explored, with existing methods either limited to approximated TPAUC
loss functions or burdened by sub-optimal complexities. To overcome these limitations,
we introduce two innovative stochastic primal-dual double block-coordinate algorithms
for TPAUC maximization. These algorithms utilize stochastic block-coordinate updates
for both the primal and dual variables, catering to both convex and non-convex settings.
We provide theoretical convergence rate analyses, demonstrating significant improvements
over prior approaches. Our experimental results, based on multiple benchmark datasets,
validate the superior performance of our algorithms, showcasing faster convergence and
better generalization. This work advances the state of the art in TPAUC optimization and
offers practical tools for real-world machine learning applications.

1 Introduction

The area under the ROC curve, commonly referred to as AUC, is frequently utilized as a measure of the
model’s classification ability, without the explicit setting of a threshold. With a long history dating back to
the late 90s (Herbrich et al., 1999), AUC is acknowledged as a more informative metric than accuracy for
assessing the performance of binary classifiers in the context of imbalanced data and widely used in machine
learning.

In many applications, there are large monetary costs due to high false positive rates (FPR) and low true
positive rates (TPR), e.g., in medical diagnosis. Hence, a measure of primary interest is the region of the ROC
curve corresponding to low FPR and high TPR, i.e., TPR ≥ 1 − θ0, FPR ≤ θ1, for some θ0, θ1 ∈ (0,1), which
is referred to as two-way partial AUC (TPAUC). Nevertheless, research on efficient optimization algorithms
to optimize TPAUC for learning a classifier remains underdeveloped.
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Table 1: Comparison with prior works for optimizing the TPAUC loss, where n+ is the number of positive
examples, S is the mini-batch size of positive examples, B is the mini-batch size of negative examples, and d
is the dimension of the model parameter

Method Convexity Loop Iteration Complexity Total Complexity
SONX (Hu et al., 2023) non-convex Single O((B + S)d) O(

n+
B1/2Sϵ6 )

SOTA (Zhu et al., 2022) non-convex Double O((B + S)d + n+) O(
n+
ϵ6 )

STACO1 (Ours) convex Single O((B + S)d) O(
n+
Sϵ2 )

STACO2 (Ours) non-convex Double O((B + S)d) O(
n+

BSϵ6 )

Compared with standard AUC maximization, optimizing TPAUC presents several unique technical challenges.
First, the estimator of TPAUC requires selecting subsets of positives and negatives in the top and bottom
ranks. Some earlier works have proposed heuristic approaches for TPAUC maximization, including selecting
examples based on their ranks in the mini-batch or converting data selection into ad-hoc data weighting (Yang
et al., 2021; Kar et al., 2014), which do not provide a guarantee of optimizing TPAUC losses.

Recently, Zhu et al. (2022) have initiated rigorous optimization of TPAUC losses. They converted data
selection in top/bottom ranks into pairwise loss selection and reformulated it using the tool of distributionally
robust optimization. They have proposed two algorithms for two different formulations: SOTAs for solving
a smooth coupled compositional objective that corresponds to a soft TPAUC loss and SOTA for solving
a non-smooth min-max objective that corresponds to an exact TPAUC loss. Nevertheless, SOTAs is not
for optimizing the exact TPAUC loss, and SOTA is inefficient for large datasets as it requires updating all
coordinates of an auxiliary variable corresponding to all positive examples at every iteration. Additionally,
its convergence rate analysis fails to demonstrate any mini-batch speedup.

Hu et al. (2023) has developed an algorithm for solving non-convex non-smooth coupled compositional
objective of the exact TPAUC loss as formulated in (Zhu et al., 2022). However, their method cannot achieve
linear speedup in terms of the mini-batch size of negative examples. In addition, since their method does not
exploit convexity, its convergence guarantee still exhibits a complexity of O(1/ϵ6) even in the convex setting.

To overcome these difficulties, this paper proposes improved algorithms and analysis over SOTA for solving
the non-smooth min-max objective of the exact TPAUC loss. Our key idea is to design stochastic double
block-coordinate updates that simultaneously act on both primal and dual variables. We propose two
methods: STACO1 for convex objectives and STACO2 for non-convex objectives. Our convergence analysis
introduces novel techniques for handling non-bilinear min-max objectives with stochastic block-coordinate
updates, establishing state-of-the-art complexity bounds. Our algorithms enable scalable updates and provable
mini-batch parallel speedup. We compare our results with prior works in Table 1.

We summarize the main contributions of our work below:

• We propose novel primal-dual double block-coordinate algorithms STACO (Stochastic Two-way
partial AUC block-Cordinate Optimizer) designed for convex functions (STACO1) and non-convex
functions (STACO2). These algorithms leverage double block-coordinate updates for both the primal
and dual variables.

• We provide a novel convergence analysis of STACO1 for convex functions. To the best of our
knowledge, this is the first work to analyze double block-coordinate updates for both primal and dual
variables for min-max optimization without a bilinear structure. We extend this analysis to STACO2
for non-convex cases, demonstrating its ability to find (nearly) stationary solutions. We demonstrate
our algorithm enjoys better convergence rate than existing results Hu et al. (2023); Zhu et al. (2022)
by improving the block-size dependency, achieving full mini-batch speedup and time efficiency.

• We conduct comprehensive experiments on both linear and deep models for image classification and
graph classification tasks involving imbalanced data. Our algorithms consistently demonstrate better
performance compared to existing TPAUC maximization methods and various baselines. Additionally,
we perform ablation studies to verify the improved convergence rates of our methods.
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2 Related Work

Two-way Partial AUC (TPAUC). AUC has been studied for more than two decades (Hanley & McNeil,
1982), and a huge amount of work has been devoted to AUC maximization (Yang & Ying, 2022). Compared
to AUC maximization, two-way partial AUC (TPAUC) maximization is much more challenging due to that it
involves the selection of examples whose prediction scores are in a certain range. Recently, studies on TPAUC
have emerged, as researchers have argued that for certain tasks, only the TPR or FPR within a specific
range is of interest (Narasimhan & Agarwal, 2013; Yang et al., 2019; Yuan et al., 2021a; Zhu et al., 2022;
Xie et al., 2024). In particular, by replacing TPR and FPR with surrogate losses, TPAUC maximization
problem can be further transformed into coupled compositional optimization and min-max optimization (Zhu
et al., 2022). Some other works are also focusing on TPAUC (Zhang et al., 2023; Shao et al., 2023; Yang
et al., 2023b; 2022; Shao et al., 2022). Zhang et al. (2023) focuses on optimizing a compositional formulation
for AUC maximization, Shao et al. (2023) considers a weighted AUC formulation for cost-sensitive learning,
and Yang et al. (2023b) considers AUC maximization with certified robustness. Yang et al. (2022); Shao
et al. (2022) focus on TPAUC maximization with the following differences: Yang et al. (2022) tackles the
data selection challenge by a weighting scheme, which does not yield the exact TPAUC surrogate objective;
Shao et al. (2022) considers TPAUC maximization with a special square loss. In contrast, we directly tackle
solving the exact TPAUC surrogate objective without further approximation and our result applies to any
non-decreasing loss function.

Compositional Optimization. Compositional optimization has gained substantial attention in recent years.
This area of optimization deals with objective functions that are composed of multiple nested functions, leading
to challenges in efficient evaluation and optimization. Several papers (Wang et al., 2017a;b; Zhang & Lan,
2020; Zhang & Xiao, 2022) have considered standard compositional optimization, where the inner function
does not depend on the random variable of the outer level. However, simply applying these algorithms to
TPAUC maximization would suffer a high cost (Qi et al., 2021). To address this issue, Zhu et al. (2022) have
formulated TPAUC maximization as FCCO (Finite-Sum Coupled Compositional Optimization) as introduced
in (Qi et al., 2021). Hu et al. (2023) have proposed an algorithm termed SONX for solving a non-smooth
FCCO optimization where the outer function is non-smooth and applied it to TPAUC maximization.

Min-Max Optimization. Many stochastic primal-dual algorithms have been proposed to solve non-convex
min-max optimization since the seminal work (Rafique et al., 2022). Built on their proximal-guided algorithmic
framework, Zhu et al. (2022) developed SOTA for solving the min-max formulation of TPAUC loss. However,
their algorithm suffers from the limitations mentioned before. To address its limitations, we have to consider
double block-coordinate updates for both primal and dual variables and develop advanced techniques to derive
a complexity that has a parallel speed-up, which means complexity is linearly dependent on both positive
and negative mini-batch size . Several works (Zhang & Xiao, 2015; Alacaoglu et al., 2022) have considered
stochastic primal-dual block-coordinate algorithms for solving finite-sum min-max problems with a bilinear
structure, where the block-coordinate update is only applied to the dual variable. Hamedani et al. (2023);
Jalilzadeh et al. (2019) have considered more general min-max problems using block-coordinate updates for
the primal variable only or for both primal and dual variables. However, their algorithm and analysis require
the coupled function to be smooth in terms of both the primal and dual variables, which is not applicable to
TPAUC maximization. In addition, Li et al. (2025) propose a Smoothed Proximal Linear Descent-Ascent
(Smoothed PLDA) algorithm for deterministic nonsmooth nonconvex-nonconcave minimax problems with
convergence guarantees under the KL property. However, PLDA is not directly applicable to large-scale
stochastic problems with composite structure, where full dual updates and deterministic computations are
infeasible. Recently, Wang & Yang proposed a novel stochastic primal-dual block-coordinate algorithm to
solve convex finite-sum compositional optimization problems, which only employs the block-coordinate update
on the dual variable.

2.1 Notations and Definitions

We present notations in this section. For any w ∈ W , the subdifferential ∂wf(w) is the set of subgradients of
f at point w. For a vector y ∈ Rn, y(i) ∈ R represents the i-th coordinate (block) of y, i.e., y = (y(1),⋯,y(n))T.
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We use f∗i to denote the convex conjugate of fi. For a function g(x) = Eξ∼P [g(x; ξ)], we define the stochastic
estimator based on the mini-batch B as g(x;B) ∶= 1

∣B∣ ∑ξ∈B g(x; ξ).

3 Primal-dual Double Block-Coordinate Algorithms for TPAUC Maximization

Let x denote an input example and hw(x) denote a prediction of a parameterized model such as a deep
neural network or a linear model on data x. Denote by S+ the set of n+ positive examples and by S− the set
of n− negative examples. TPAUC measures the area under the ROC curve where the TPR is higher than
1 − θ0 and the FPR is lower than an upper bound θ1. A surrogate loss for optimizing TPAUC with TPR
≥ 1 − θ0, FPR≤ θ1 is given by:

min
w∈Rd

1
n+n−

∑
xi∈S

↑
+[1,k1]

∑
xj∈S

↓
−[1,k2]

ℓ(hw(xj) − hw(xi)), (1)

where ℓ(⋅) is a convex, monotonically non-decreasing surrogate loss of the indicator function I(hw(xj) ≥

hw(xi)), S↑+[1, k1] is the set of positive examples with k1 = ⌊n+θ0⌋ smallest scores, and S↓−[1, k2] is the set of
negative examples with k2 = ⌊n−θ1⌋ largest scores. To tackle the challenge of selecting examples for S↑+[1, k1]
and S↓−[1, k2], we use the following lemma to reformulate (1) (Zhu et al., 2022).
Lemma 3.1. If ℓ(⋅) is non-decreasing, then the TPAUC loss minimization problem (1) is equivalent to the
following:

min
w,s′,s

1
n+
∑

xi∈S+

fi(gi(w, s(i)), s′), (2)

where s = (s(1),⋯, s(n+))⊺, fi(g, s
′) = s′ + 1

θ0
[g − s′]+, and gi(w, s(i)) = 1

n−
∑xj∈S− s(i) + [ℓ(hw(xj)−hw(xi))−s(i)]+

θ1
.

The reformulation above uses an equivalent form of the conditional-value-at-risk (CVaR) loss, 1
nγ ∑

nγ
i=1 ℓ[i](⋅) =

mins s +
1

nγ ∑
n
i=1[ℓi(⋅) − s]+, where γ = k/n for some integer k ∈ [n], ℓ[i](⋅) denotes the i-th largest value in

{ℓ1,⋯, ℓn}. (Ogryczak & Tamir, 2003, Lemma 1). Since [t]+ =maxy∈[0,1] ty, we cast (2) into an equivalent
min-max problem:

min
w∈Rd,s′∈R

s∈Rn+

max
y∈[0,1]n+

1
n+
∑

xi∈S+

y(i) ⋅ gi(w, s(i)) − s′

θ0
+ s′. (3)

This problem presents unique challenges that make existing algorithms unsuitable for direct application:
(i) the objective function is non-smooth with respect to w and s due to the hinge function in gi; (ii) both
the primal variable s and the dual variable y are high-dimensional and depend on all positive examples,
preventing their full coordinate updates in each iteration; and (iii) the coupled term is not bilinear with
respect to the primal and dual variables.

3.1 Algorithms

Now we present our efficient algorithms designed to solve the min-max problem (3) in convex and non-convex
settings.

STACO1 for convex functions. We first consider the convex case when ℓ(hw(xj) − hw(xi)) is a convex
function of w. This is true when we learn a linear model such that hw(x) =w⊺x. Hence, gi(w, s) is convex
w.r.t. (w, s) for any i ∈ [n], and (3) is a convex-concave min-max problem.

A challenge of solving (3) is that updating all coordinates for s,y would require computing gi(w, s(i)) and its
gradient for all positive examples xi ∈ S+, which is prohibited when the number of positive examples is large.
Hence, we have to use block-coordinate updates for both s and y. Let us consider how to update y(i) and
s(i) for a sampled coordinate i. A simple method is to use gradient ascent to update y(i) and use gradient
descent to update s(i), which require computing gi(w, s(i)) and ∂s(i)gi(w, s(i)). However, this would require
processing all negative examples S− as gi(w, s(i)) depends on all negative examples. To reduce this cost, we
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Algorithm 1 STACO1
1: Initialize w0 ∈ W, y0 = 1n+ , s0 = 1n+ , s′0 = 1,
2: for t = 0,1, . . . , T − 1 do
3: Sample a batch St ⊂ S+ with ∣St∣ = S
4: Sample independent mini-batches Bt, B̃t ⊂ S−
5: for each i ∈ St do
6: Update y(i)t+1 according to (4)
7: Update s(i)t+1 according to (5)
8: end for
9: For each i ∉ St, y(i)t+1 = y(i)t and s(i)t+1 = s(i)t

10: Update wt+1 according to (6)
11: Update s′t+1 according to (7)
12: end for
13: w̄ = 1

T ∑
T−1
t=0 wt+1, s̄ = 1

T ∑
T−1
t=0 st+1, s̄

′ = 1
T ∑

T−1
t=0 s′t+1

14: Return w̄, s̄, s̄′

need to use stochastic estimators of their gradients. For a random mini-batch of negative samples B ⊂ S−, we
let

gi(w, s(i);B) =
1
∣B∣
∑

xj∈B

s(i) +
[ℓ(hw(xj) − hw(xi)) − s(i)]+

θ1
.

At the t-th iteration, we sample a mini-batch of S positive examples St ⊂ S+ and a mini-batch of B negative
examples Bt ⊂ S−. We update y(i)t+1 according to

y(i)t+1 = arg max
y(i)∈[0,1]

⎧⎪⎪
⎨
⎪⎪⎩

y(i) ⋅ gi(wt, s(i)t ;Bt) − s
′
t

θ0
−

1
2α
(y(i) − y(i)t )

2⎫⎪⎪
⎬
⎪⎪⎭

,∀xi ∈ St (4)

where α is a step size parameter. Then we update s(i)t+1, i ∈ St and wt+1 using stochastic gradient descent:

s(i)t+1 = s(i)t −
β

θ0
y(i)t+1∂s(i)gi(wt, s(i)t ; B̃t),∀xi ∈ St (5)

wt+1 =wt −
η

θ0

1
S
∑
i∈St

y(i)t+1∂wgi(wt, s(i)t ; B̃t) (6)

s′t+1 = s
′
t − β

′
(1 − 1

θ0S
∑
i∈St

y(i)t+1) (7)

where β, η, β′ are step size parameters, and we use another mini-batch of negative samples B̃t independent
of Bt to decouple the dependence between y(i)t+1 and B̃t. The detailed steps of STACO1 are presented in
Algorithm 1.

STACO2 for non-convex functions. Next we consider the non-convex case. We assume ℓ(hw(xj)−hw(xi))

is weakly-convex with respect to w, which holds true when ℓ is a convex non-smooth function and hw(x) is a
smooth function of w (Hu et al., 2023). Hence, gi(w, s) is weakly-convex with respect to (w, s), and (3) is a
weakly-convex concave min-max problem. Inspired by the proximal-guided algorithm (Rafique et al., 2022)
for non-smooth weakly-convex concave problems, we propose a double-loop algorithm STACO2 for solving
problem (3). The inner loop updates apply STACO1 to solve the following problem approximately at the
t-th outer iteration:

min
w∈Rd,s′∈R

s∈Rn+

max
y∈[0,1]n+

1
n+
∑

xi∈S+

y(i) ⋅ gi(w, s(i)) − s′

θ0
+ s′ +

1
2γ
∥w −wt,0∥

2
2 +

1
2n+γ

∥s − st,0∥
2
2 , (8)

where wt,0, st,0 are initial value of w, s at t-th stage, γ > 0 is a proper parameter. The addition of quadratic
functions is to ensure the function becomes convex in terms of w, s. At k-th iteration in t-th stage, we utilize
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Algorithm 2 STACO2
1: Initialize w0 ∈ W, s0 = 1n+ , s′0 = 1
2: for t = 0,1, . . . , T − 1 do
3: Initialize yt,0 = 1n+

4: Set wt,0 =wt, st,0 = st, s
′
t,0 = s

′
t

5: for k = 0,1, . . . ,Kt − 1 do
6: Sample a batch St,k ⊂ S+, where ∣St,k ∣ = S
7: Sample independent mini-batches Bt,k, B̃t,k ⊂ S−
8: for each i ∈ St,k do
9: Update y(i)t,k+1 according to (9)

10: Update s(i)t,k+1 according to (10)
11: end for
12: For each i ∉ St,k, y(i)t,k+1 = y(i)t,k and s(i)t,k+1 = s(i)t,k

13: Update wt+1 according to (11)
14: Update s′t+1 according to (12)
15: end for
16: (w̄t, s̄t, s̄

′
t) =

1
Kt
∑

Kt−1
k=0 (wt,k+1, st,k+1, s

′
t,k+1)

17: Set wt+1 = w̄t, st+1 = s̄t, s
′
t+1 = s̄

′
t

18: end for
19: Return wT , sT , s

′
T

following updates:

y(i)t,k+1 = arg max
y(i)∈[0,1]

⎧⎪⎪
⎨
⎪⎪⎩

y(i) ⋅
gi(wt,k, s(i)t,k;Bt,k) − s

′
t,k

θ0
−

1
2αt
(y(i) − y(i)t,k)

2⎫⎪⎪
⎬
⎪⎪⎭

,∀xi ∈ St,k (9)

s(i)t,k+1 = s(i)t,k −
βt

θ0
(y(i)t,k+1∂s(i)gi(wt,k, s(i)t,k; B̃t,k) +

1
γ
(s(i)t,k − s(i)t,0)) ,∀xi ∈ St,k (10)

wt,k+1 =wt,k −
ηt

θ0

⎛

⎝

1
S
∑

i∈St,k

y(i)t,k+1∂wgi(wt,k, s(i)t,k; B̃t,k) +
1
γ
(wt,k −wt,0)

⎞

⎠
(11)

s′t,k+1 = s
′
t,k − β

′
t(1 −

1
θ0S

∑
i∈St,k

y(i)t,k+1), (12)

where αt, βt, ηt, β
′
t are step size parameters.

We would like to highlight the difference between STACO2 and SOTA (Zhu et al., 2022), where we use
block-coordinate update for s ∈ R+. In contrast, SOTA needs to update all coordinates of s. This difference
is caused by different techniques for handling all coordinates: they compute an unbiased sparse stochastic
gradient for s by sampling and then update s using a stochastic proximal gradient method. The unbiased
sparse stochastic gradient used in SOTA cannot enjoy a variance bound that scales with the mini-batch
size. In contrast, we just compute an unbiased stochastic gradient for the sampled coordinate of s, and
perform a stochastic gradient descent on sampled coordinates and leave other coordinates unchanged. It is
this difference that makes our analysis more involved and leads to a parallel speed-up.

4 Analysis

In this section, we present the convergence results for our algorithms. We emphasize the contributions of
our convergence analysis for both convex and non-convex settings compared to Zhu et al. (2022): (i) our
convergence analysis for the convex case is more refined, leading to an optimal convergence rate which implies
a parallel speed-up in terms of mini-batch size; (ii) our analysis for the non-convex case is also improved,
which not only enjoys a parallel speed-up but also removes strong boundedness assumptions of st,k, s

′
t,k and

the pairwise loss values at all iterations.
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For analysis, we consider the following optimization problem:

min
u∈U,s∈S

F (u, s) ∶= 1
n

n

∑
i=1
fi(gi(u, s(i))), (13)

where fi ∶ R→ R is closed proper convex and lower-semicontinuous, gi ∶ (U , ∈ Si) → R is possibly non-convex,
and U ,S are convex closed sets, gi(u, s(i)) ∶= Eζi∼Pi

[gi(u, s(i); ζi)]. It is equivalent to the following min-max
problem:

min
u∈U,s∈S

max
y∈Y

L(u, s,y) ∶= 1
n

n

∑
i=1

y(i)gi(u, s(i)) − f∗i (y(i)). (14)

Compared to problem (2), (13) excludes parameter s′. Since the update of s′ is almost the same as w, our
analysis for solving (13) can be easily extended to STACO1 and STACO2.

4.1 Assumptions

We first outline assumptions underlying our analysis. Notably, these assumptions are easily satisfied for
TPAUC maximization when the loss function ℓ is Lipchitz continuous.
Assumption 4.1. For any i ∈ [n], we suppose fi, gi is Lipschitz continuous, i.e., there exists Cf ,Cg > 0 such
that

∣fi(u) − fi(ū)∣ ≤ Cf ∣u − ū∣

∣gi(u, s(i)) − gi(ū, s̄(i))∣ ≤ Cg (∥u − ū∥2 + ∣s
(i)
− s̄(i)∣) ,

for any u, ū ∈ R, u, ū ∈ U and s(i), s̄(i) ∈ Si.
Assumption 4.2. For any i ∈ [n], there exists finite σ2

0 , σ
2
1 , σ

2
2 such that

Eζi
∣gi(u, s(i)) − gi(u, s(i); ζi)∣

2
≤ σ2

0 ,

Eζi ∥Ĝ
(i)
1 (ζi) −G

(i)
1 ∥

2

2
≤ σ2

1 , Eζi ∥Ĝ
(i)
2 (ζi) −G

(i)
2 ∥

2

2
≤ σ2

2 ,

for stochastic subgradients Ĝ(i)1 (ζi) ∈ ∂ugi(u, s(i); ζi), Ĝ(i)2 (ζi) ∈ ∂s(i)gi(u, s(i); ζi) at any u ∈ U , and s(i) ∈ Si.
Besides, there exists δ2 such that

Ej ∥y
(j)G

(j)
1 −

1
n

n

∑
i=1
y(i)G

(i)
1 ∥

2

2
≤ δ2,

for any G(i)1 ∈ ∂1gi(u, s(i)), u ∈ U , s(i) ∈ Si, and y ∈ Y. Note that under Assumption 4.1, we have δ2 ≤ C2
fC

2
g .

4.2 Convex Case

We first analyze the Algorithm 3, which aims to solve the problem (14) when both fi and gi are convex for
any i ∈ [n]. The analysis is motivated by techniques proposed in Wang & Yang. However, the problem they
considered is 1

n ∑
n
i=1 fi(gi(u)), which excludes the primal parameter s. Notably, the analysis of convergence

of primal parameter u is more tricky than w since its updating only lies in selected coordinates each iteration.
Theorem 4.3. Under Assumptions 4.1 and 4.2, when gi(u, s(i)) is convex w.r.t u, s(i), let η =
O(ϵ), β = O(ϵ), and α = O(Bϵ), STACO1 can make E [F (ū, s̄) − F (u∗, s∗)] ≤ ϵ after T =

O(
nC2

g C2
f

Sϵ2 +
C2

f σ2
1

Bϵ2 +
nC2

f σ2
2

BSϵ2 +
δ2

Sϵ2 +
nσ2

0
BSϵ2 ) iterations, where ū = 1

T ∑
T−1
t=0 ut+1, s̄ = 1

T ∑
T−1
t=0 st+1.

Remark. The proof is included in Appendix C.2.2. The above convergence rate implies a parallel speed-up in
terms of the positive batch size S and negative batch size B. When we use full information at each iteration,
which means σ0 = 0, σ1 = 0, σ2 = 0, δ = 0, S = n+, the above complexity reduces to O(1/ϵ2), which is a standard
complexity for non-smooth convex optimization (Nesterov et al., 2018). In addition, the dominating term
O(n/(Sϵ2)) matches the lower bound proved in Wang & Yang.
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4.3 Non-convex Case

Now we consider the non-convex case when gi is weakly convex as stated in the following assumption.
Assumption 4.4 (weakly convexity of gi). For any i ∈ [n], we suppose that gi(u, s(i)) is ρ-weakly convex to
u and s(i) for any u ∈ U and s(i) ∈ Si, i.e., gi(⋅) +

ρ
2 ∥⋅∥

2
2 is convex, where ρ is a positive number.

It is sometimes difficult to find an ϵ-stationary point (u, s) of the non-smooth function F , i.e.,
dist(0, ∂F (u, s)) ≤ ϵ. For example, an ϵ-stationary point of function f(x) = ∣x∣ does not exist for 0 ≤ ϵ < 1
unless it is the optimal solution. To address this problem, (Davis & Drusvyatskiy, 2018) proposed using the
stationarity of the Moreau envelope of the problem as the convergence metric, which has become a standard
metric for solving weakly convex problems.

Given a ρ-weakly convex function f ∶ Rd → R, its Moreau envelope is constructed as

fγ(x) ∶= min
w∈Rd

{f(w) + 1
2γ
∥w − x∥22} , (15)

where γ is a positive constant. For a ρ-weakly convex function f , it can be shown that fγ is smooth when
1
γ
> ρ (Davis & Grimmer, 2019) and its gradient is

∇fγ(x) =
1
γ
(x − proxγf(x)), (16)

where

proxγf(x) ∶= arg min
w
{f(w) + 1

2γ
∥w − x∥22}. (17)

Notice that when 1
γ
> ρ, the minimization in problem (15) is strongly convex, which ensures proxγf(x) is

uniquely defined. Moreover, for any point x ∈ Rd, the proximal point x† ∶= proxγf(x) satisfies (Hu et al.,
2023)

∥x†
− x∥2 = γ ∥∇fγ(x)∥2 , fγ(x†

) ≤ fγ(u), dist(0, ∂f(x†
)) ≤ ∥∇fγ(x)∥2 . (18)

Thus if ∥∇fγ(x)∥2 ≤ ϵ, we can say x is close to a point x† that is ϵ-stationary, which is called nearly ϵ-stationary
solution of f(x). Given an iterate xt, a common idea is using the stochastic subgradient method (SSG) to
approximately solve (15) with x = xt, namely, to compute a solution xt+1 such that

xt+1 ≈ proxγ(xt) = arg min
x

{f(x) + 1
2γ
∥x − xt∥

2
2} . (19)

Then xt+1 returned by the SSG method will then be used in the next iterate. Inspired by Rafique et al.
(2022), we consider the following update according to equation (19)

(ut+1, st+1,yt+1) ≈ arg min
u∈U,s∈S

arg max
y∈Y

{Lγ(u, s,y; ut, st)} ,

where Lγ(u, s,y; u′, s′) ∶= 1
n

n

∑
i=1
(y(i)gi(u, s(i)) − f∗i (y(i))) +

1
2γ
∥u − u′∥22 +

1
2nγ
∥s − s′∥22 . (20)

Theorem 4.5. Under Assumptions 4.1, 4.2 and 4.4, STACO2 with γ ≤ 1
2Cf ρ

, ηt = O(ϵ
2), βt = O(ϵ

2),

αt = O(Bϵ
2), and Kt = O(

n
BSϵ4 ∨

1
ηt
∨ n

Sβt
) can converge to an ϵ-stationary point of Φγ(u, s) in

O(
C2

f σ2
1

Bϵ4 +
δ2

Sϵ4 +
nC2

g C2
f

Sϵ4 +
nC2

f σ2
2

BSϵ4 +
nσ2

0
BSϵ6 ) iterations, where Φγ(u, s) =minũ,s̃ F (ũ, s̃)+ 1

2γ
∥ũ − u∥22+

1
2γn
∥s̃ − s∥22

is a Moreau envelope of F (u, s).

Remark The proof is included in Appendix C.3.4. We compare the above result with the complexity of
SOTA and SONX. In particular, SOTA has a complexity of O( n

ϵ6 ) result, which cannot show any mini-batch
speedup. SONX has an iteration complexity of O( n

B1/2Sϵ6 ) in Theorem C.4 (Hu et al., 2023). In comparison,
our complexity O( n

BSϵ6 ) has a better dependence on B.
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5 Experiments

We evaluate the empirical performance of our proposed algorithm against baselines for Two-way Partial AUC
Maximization (TPAUC) in a convex setting for learning linear models and a non-convex setting for learning
deep models.

5.1 Settings

Datasets. For linear model experiments, we use three datasets in (Chang & Lin, 2011), namely HIGGS,
SUSY, and ijcnn1. For SUSY and HIGGS, we use the first 80% of the data as the training dataset and the
remaining 20% as the testing dataset. For ijcnn1, we follow the existing split in (Chang & Lin, 2011). To
create imbalanced datasets for HIGGS and SUSY (ijcnn1 itself is imbalanced), we randomly remove 99.5%
positive data. For deep learning model experiments, we use two molecule datasets from the Stanford Open
Graph Benchmark (OGB) website (Hu et al., 2020) and two biomedical image datasets from MedMNIST
(Yang et al., 2023a), namely moltox21 (the No.0 target), molmuv (the No.1 target), nodulemnist3d, and
adrenalmnist3d. Those four datasets are naturally imbalanced. The task in molecular datasets is to predict
certain properties of molecules, and the task in biomedical image datasets is binary classification. The
statistics of datasets are presented in Table 5 in Appendix B.

Models. For linear model experiments, we let hw(x) = w⊺x. In deep model experiments, for molecule
datasets moltox21 and molmuv, we use Graph Isomorphism Network (GIN) (Xu et al., 2018) as the backbone
model, which has 5 mean-pooling layers with 64 hidden units and 0.5 dropout rate. For image datasets
nodulemnist3d and adrenalmnist3d, we learn a convolutional neural network (CNN) and use ResNet18 (He
et al., 2016). We utilize the sigmoid function for the final output layer to generate the prediction score and
set the surrogate loss ℓ(⋅) as the squared hinge loss with a margin parameter (Zhu et al., 2022).

Baselines. We evaluate our algorithms, STACO1 and STACO2, by comparing their training and testing
performance against various baselines, while STACO1 is for linear model and STACO2 is for deep model.
Specifically, we benchmark our methods against other approaches that optimizes different objectives, including
CE for optimizing the cross-entropy loss, AUCM for optimizing an AUC min-max margin loss (Yuan et al.,
2021b), SOTAs for optimizing a soft TPAUC loss (Zhu et al., 2022), SOTA (Zhu et al., 2022), and SONX
for optimizing the same TPAUC loss as ours (Hu et al., 2023), and PAUCI for optimizing an instance-wise
TPAUC loss (Shao et al., 2022).

Evaluation Metrics. For linear and deep learning model experiments, we evaluate TPAUC with two
settings, i.e., TPR ≥ 0.5 and FPR ≤ 0.5, and TPR ≥ 0.25 and FPR ≤ 0.75.

Hyperparameter Tuning. In linear model experiments, the model is trained by 3000 iterations, and the
learning rate is decreased by 10-fold on the 500th, 1500th, and 2500th iterations for all methods. For deep
learning experiments, the model is trained by 60 epochs and the learning rate is decreased by 10-fold after
every 20 epochs for all methods. In addition, we pre-train the model for deep learning experiments following
previous studies (Yuan et al., 2021b; Zhu et al., 2022). The pre-trained model is trained for 60 epochs using
CE loss with an Adam optimizer on the training datasets, and the initial learning rate is 1e-3 which is
decreased by 10-fold on the 30th and 45th epochs. We tune the step sizes of STACO1, STACO2, SOTA,
PAUCI, and AUCM in the range {1e-2, 1e-1, 5e-1}, and tune the step sizes of SONX, SOTAs, and CE in the
range {1e-3, 1e-2, 1e-1}. For STACO1, STACO2, SOTA, and SONX, we fix the margin parameter of the
surrogate loss ℓ as 0.5, and tune the rate parameter θ0, θ1 in {0.4, 0.5, 0.75} for reporting testing performance.
For SONX, we fix the moving average parameter as 0.9 and tune the momentum parameter in the range
{0, 1e-3, 1e-2, 1e-1}. For AUCM, we choose the momentum parameter as 0.9, the margin parameter of the
surrogate loss as 0.5, and tune the hyperparameter γ that controls consecutive epoch-regularization in {100,
500, 1000}. For SOTAs, we fix γ0 = γ1 = 0.9 and tune λ,λ′ in {0.1, 1.0, 10}. For PAUCI, we tune k in [1, 10],
c1, c2, µ, λ in [0, 1], m in [10, 100] and κ in [2, 6]. For all algorithms, we choose the weight decay parameter
as 2e-4. Without specific statements, each algorithm samples 64 data points in each iteration. We execute
all experiments using 5-fold-cross-validation to evaluate testing performance based on the best validation
performance and report the average and standard deviation over multiple runs.
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5.2 Results

(a) HIGGS (b) SUSY (c) HIGGS (d) SUSY

Figure 1: Training TPAUC Curves of STACO1 and SONX on two different datasets. The first two shows the
TPAUC (0.5, 0.5) results, and the last two shows the TPAUC (0.75, 0.75) results.

(a) molmuv(t1) (b) moltox21(t0) (c) adrenalmnist3d (d) nodulemnist3d

(e) molmuv(t1) (f) moltox21(t0) (g) adrenalmnist3d (h) nodulemnist3d

Figure 2: Training Loss Curves of STACO2, SOTA, and SONX on four different datasets. The first row
shows the Loss (0.5, 0.5) results, and the second row shows the Loss (0.75, 0.75) results.

(a) Batch Size=16 (b) Batch Size=64 (c) Batch Size=256

Figure 3: Negative sample batch size (B) benefits of STACO2 over SONX for training on ogbg-molmuv (t1)
at 16, 64, and 256 batch size.

Training Results. Under two different metrics, we compare the training performance of the linear model
between STACO1 and SONX in Figure 1, and the deep learning model among STACO2, SOTA, and SONX in
Figure 2. We exclude SOTA from linear model experiments since SOTA is designed for optimizing deep learning
models. In the linear model experiments as shown in Figure 1, we plot the TPAUC values throughout the
training process. The results demonstrate that STACO1 exhibits strong and stable performance, consistently
outperforming SONX on both the HIGGS and SUSY datasets in the (0.5, 0.5) and (0.75, 0.75) settings.
These findings indicate that STACO1 is more efficient than SONX in maximizing TPAUC. We also observed
that in Figure 1, across all datasets, there is an abrupt drop and subsequent rise in performance. This is due
to the excessively large step size. Once the step size is reduced, training returns to normal.
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Table 2: TPAUC on the test data of linear and deep models. (θ0, θ1) represents TPR ≥ 1 − θ0, FPR ≤ θ1.
Results are reported as mean(std).

Metrics Methods Linear Model Deep Model
HIGGS SUSY ijcnn1 molmuv(t1) moltox21(t0) nodulemnist3d adrenalmnist3d

CE 0.041(0.001) 0.300(0.010) 0.230(0.017) 0.715(0.166) 0.267(0.042) 0.657(0.037) 0.507(0.094)
AUCM 0.122(0.001) 0.512(0.015) 0.487(0.098) 0.722(0.114) 0.279(0.038) 0.672(0.021) 0.554(0.022)

(0.5,0.5) SOTAs 0.108(0.001) 0.484(0.001) 0.637(0.030) 0.821(0.110) 0.325(0.030) 0.688(0.019) 0.498(0.090)
PAUCI 0.138(0.002) 0.519(0.001) 0.664(0.018) 0.820(0.046) 0.283(0.032) 0.684(0.021) 0.541(0.042)
SONX 0.110(0.009) 0.516(0.001) 0.633(0.094) 0.865(0.061) 0.286(0.023) 0.654(0.035) 0.540(0.042)
STACO 0.158(0.003) 0.520(0.001) 0.682(0.054) 0.904(0.048) 0.325(0.023) 0.707(0.005) 0.546(0.047)
CE 0.354(0.002) 0.612(0.006) 0.581(0.014) 0.871(0.058) 0.627(0.035) 0.825(0.016) 0.750(0.055)
AUCM 0.435(0.004) 0.726(0.002) 0.728(0.061) 0.851(0.066) 0.630(0.027) 0.831(0.016) 0.772(0.014)

(0.75,0.75) SOTAs 0.441(0.002) 0.746(0.009) 0.813(0.016) 0.821(0.070) 0.614(0.056) 0.838(0.012) 0.763(0.054)
PAUCI 0.4742(0.003) 0.749(0.007) 0.830(0.030) 0.883(0.024) 0.616(0.030) 0.823(0.014) 0.7642(0.015)
SONX 0.447(0.009) 0.748(0.000) 0.810(0.049) 0.927(0.029) 0.626(0.028) 0.832(0.013) 0.772(0.021)
STACO 0.484(0.004) 0.752(0.000) 0.839(0.024) 0.945(0.024) 0.638(0.041) 0.856(0.003) 0.780(0.013)

(a) moltox21(t0) (b) nodulemnist3d (c) moltox21(t0) (d) nodulemnist3d

Figure 4: First two figures shows the TPAUC (0.5,0.5) training curves of STACO2 with different γ; last two
figures shows the TPAUC (0.5, 0.5) testing results of STACO2 with different γ. The experiment is conducted
on datasets ogbg-moltox21(t0) and nodulemnist3d.

In the nonlinear model experiments as shown in Figure 2, STACO2 demonstrates competitive performance in
terms of training loss reduction across all four datasets compared to SONX and SOTA. In both the (0.5,
0.5) and (0.75, 0.75) settings, STACO2 achieves lower or comparable loss values while maintaining a stable
training trajectory. These results indicate that STACO2 is effective in minimizing loss and optimizing model
performance, further supporting its advantage over SONX and SOTA.

Due to space limit, we present more training results in Figure 5, 6 in Appendix B.

Testing Results. Under two different metrics, we present the testing results for linear and deep learning
models in Table 2. For the linear model, STACO1 consistently outperforms the baseline methods across
various datasets, demonstrating its robustness and strong generalization capability across different datasets
and evaluation criteria. Similarly, for the nonlinear model, STACO2 achieves significant improvements over
existing methods. Notably, compared to SONX, STACO2 exhibits a more pronounced advantage in testing
performance than in training, suggesting superior generalization when optimizing the exact TPAUC loss.

We do not include SOTA (Zhu et al., 2022) in the above comparison, since SOTA is quite similar to STACO2
thus they have similar testing results. However, we must point out that the convergence of SOTA is much
slower than STACO2 since it has to update all the coordinates of s in problem (2). As shown in Figure 2,
STACO2 is significantly faster than SOTA.

5.3 Ablation Study

Effect of Batch Size. We examine the impact of negative batch size B on the performance of STACO2 and
SONX to verify the mini-batch speedup of STACO2 over SONX. Specifically, we tune the negative batch
size B in [16, 64, 256]. In Figure 3, we present the training loss curve for STACO2 and SONX on dataset
ogbg-molmuv (t1). Our results show that as batch size increases, STACO2 exhibits greater convergence
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improvement compared to SONX, indicating that it benefits more from a larger batch size. This observation
is consistent with Theorem 4.5, i.e., STACO2 can achieve full mini-batch speedup than SONX.

Effect of Epoch Decay Factor. We examine the impact of epoch decay parameter γ on the training
performance of STACO2. In Theorem 4.5, γ must be less or equal than 1

2Cf ρ
, where Cf is the Lipschitz

constant for function fi and ρ is the weakly-convexity parameter for function gi. In TPAUC maximization
problem, Cf is 1. However, ρ in practice is difficult to determine. Therefore, we tune γ in the range {300,
500, 1000} in the experiment. Additionally, we conduct γ =1e7 case for our ablation study. Notably, STACO2
reduces to STACO1 if γ equals an infinitely large number. The results are presented in Figure 4. We observe
that an appropriate value of γ can yield better training results, verifying Theorem 4.5 and demonstrating the
importance of the epoch decay parameter γ for primal-dual algorithms in deep learning.

Effect of Surrogate Loss ℓ. We investigate how the choice of surrogate loss function ℓ influences the final
experimental results. Specifically, we consider three common losses: square hinge loss, square loss, and hinge
loss, and evaluate their performance across various datasets. The results show that our algorithm STACO
performs consistently well and remains stable across different surrogate losses, indicating that the choice of ℓ
has limited impact on the final performance.

Table 3: Comparison of performance metrics using different nonsmooth losses across datasets. Each entry is
reported as mean(std).

Methods HIGGS SUSY ijcnn1
hinge square square hinge hinge square square hinge hinge square square hinge

CE 0.354(0.002) 0.376(0.003) 0.341(0.004) 0.612(0.004) 0.590(0.004) 0.639(0.005) 0.581(0.003) 0.560(0.004) 0.604(0.003)
AUCM 0.435(0.002) 0.462(0.003) 0.411(0.004) 0.726(0.003) 0.748(0.004) 0.699(0.004) 0.728(0.004) 0.752(0.003) 0.701(0.005)
SOTAs 0.441(0.003) 0.467(0.004) 0.415(0.004) 0.746(0.003) 0.773(0.003) 0.719(0.002) 0.813(0.002) 0.840(0.004) 0.787(0.004)
PAUCI 0.474(0.003) 0.500(0.004) 0.451(0.003) 0.749(0.004) 0.724(0.003) 0.777(0.004) 0.830(0.002) 0.857(0.003) 0.808(0.003)
SONX 0.447(0.003) 0.472(0.003) 0.420(0.004) 0.748(0.003) 0.773(0.003) 0.723(0.003) 0.810(0.002) 0.785(0.003) 0.836(0.004)
STACO 0.484(0.004) 0.511(0.003) 0.458(0.004) 0.752(0.000) 0.779(0.003) 0.725(0.004) 0.839(0.024) 0.866(0.004) 0.812(0.004)

5.4 Training Efficiency

To demonstrate the training efficiency of our algorithm, we compare the per-iteration runtime of STACO,
PAUCI, SONX, and SOTA across four benchmark datasets, as shown in Table 4. STACO consistently
achieves the lowest runtime per iteration across all datasets. Notably, it surpasses the second-best method,
SONX, by a substantial margin, particularly on larger datasets such as molmuv and moltox21. These results
highlight the superior computational efficiency of STACO, making it a compelling choice for large-scale or
time-sensitive applications.

6 Conclusion

In this paper, we proposed two novel stochastic primal-dual double block-coordinate algorithms for optimizing
two-way partial AUC (TPAUC), effectively addressing imbalanced data classification. By leveraging stochastic
updates for both primal and dual variables, our methods achieve improved convergence rates in both convex
and non-convex settings. Empirical results demonstrate faster convergence and superior generalization across
benchmark datasets, establishing a new state-of-the-art in TPAUC optimization for real-world applications.

Table 4: Training time per iteration (in seconds) on different datasets.

Methods molmuv moltox21 nodulemnist3d adrenalmnist3d
SOTA 14.80 8.01 2.02 2.23
SONX 9.78 4.54 1.62 1.76
PAUCI 12.54 5.72 2.51 2.74
STACO 8.72 3.96 1.40 1.48
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A Vanilla Algorithm

Algorithm 3 Simplified STACO1
1: Initialize u0 ∈ U , s0 ∈ S, y0 ∈ Y
2: for t = 0,1, . . . , T − 1 do
3: Sample a batch St ⊂ {1, . . . , n}, ∣St∣ = S
4: for each i ∈ St do
5: Sample independent size-B mini-batches B(i)t , B̃

(i)
t from Pi

6: Compute ĝ(i)t (B
(i)
t ) = gi(ut, s(i)t ;B(i)t )

7: Compute Ĝ(i)t,1(B̃
(i)
t ) ∈ ∂ugi(ut, s(i)t ; B̃(i)t ), Ĝ

(i)
t,2(B̃

(i)
t ) ∈ ∂s(i)gi(ut, s(i)t ; B̃(i)t )

8: y(i)t+1 = arg maxy(i)∈Yi
{y(i)ĝ(i)t (B

(i)
t ) − f

∗
i (y(i)) − 1

2α
(y(i) − y(i)t )

2
}

9: s(i)t+1 = s(i)t − β
1
S ∑i∈St

y(i)t+1Ĝ
(i)
t,2(B̃

(i)
t )

10: end for
11: For each i ∉ St, y(i)t+1 = y(i)t , s(i)t+1 = s(i)t

12: ut+1 = ut − η
1
S ∑i∈St

y(i)t+1Ĝ
(i)
t,1(B̃

(i)
t )

13: end for
14: ū = 1

T ∑
T−1
t=0 ut+1, s̄ = 1

T ∑
T−1
t=0 st+1

15: Return ū, s̄

Algorithm 4 Simplified STACO2
1: Initialize u0 ∈ U , s0 ∈ S
2: for t = 0,1, . . . , T − 1 do
3: Initialize yt,0 ∈ Y
4: Set ut,0 = ut, st,0 = st

5: for k = 0,1, . . . ,Kt − 1 do
6: Sample a batch St,k ⊂ {1, . . . , n}, ∣St,k ∣ = S
7: for each i ∈ St,k do
8: Sample independent size-B mini-batches B(i)t,k , B̃(i)t,k from Pi

9: Compute ĝ(i)t,k(B
(i)
t,k) = gi(ut,k, s(i)t,k;B(i)t,k)

10: Compute Ĝ(i)t,k,1(B̃
(i)
t,k) ∈ ∂ugi(ut,k, s(i)t,k; B̃(i)t,k), Ĝ

(i)
t,k,2(B̃

(i)
t,k) ∈ ∂s(i)gi(ut,k, s(i)t,k; B̃(i)t,k)

11: y(i)t,k+1 = arg maxy(i)∈Yi
{y(i)ĝ(i)t,k(B

(i)
t,k) − f

∗
i (y(i)) − 1

2αt
(y(i) − y(i)t,k)

2
}

12: s(i)t,k+1 = arg mins(i)∈Si
{⟨s(i), 1

S ∑i∈St,k
y(i)t,k+1Ĝ

(i)
t,k,2(B̃

(i)
t,k) +

1
γ
(s(i)t,k − s(i)t,0)⟩ +

1
2βt
(s(i) − s(i)t,k)

2
}

13: end for
14: For each i ∉ St,k, y(i)t,k+1 = y(i)t,k, s

(i)
t,k+1 = s(i)t,k

15: ut,k+1 = arg minu∈U {⟨u, 1
S ∑i∈St,k

y(i)t,k+1Ĝ
(i)
t,k,1(B̃

(i)
t,k) +

1
γ
(ut,k − ut,0)⟩ +

1
2ηt
∥u − ut,k∥

2
2}

16: end for
17: Compute ūt =

1
Kt
∑

Kt−1
k=0 ut,k+1, s̄t =

1
Kt
∑

Kt−1
k=0 st,k+1

18: Set ut+1 = ūt, st+1 = s̄t

19: end for
20: Return uT , sT
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Table 5: Datasets Statistics (for nodulemnist3d and adrenalmnist3d, we follow the given training, validation
and testing split). The percentage in parenthesis represents the proportion of positive samples.

Dataset Train (Validation) Test
HIGGS 4157561 (0.5%) 1039299 (0.5%)
SUSY 2181312 (0.5%) 544489 (0.5%)
ijcnn1 49990 (9.71%) 91701 (9.5%)

ogbg-moltox21 (t0) 6556 (4.2%) 709 (4.5%)
ogbg-molmuv (t1) 13025 (0.17%) 1709 (0.35%)

nodulemnist3d 1,158 (25.4%) / 165 (25.4%) 310 (20.6%)
adrenalmnist3d 1,188 (21.8%) / 98 (22.4%) 298 (23.1%)

(a) ijcnn1 (b) SUSY (c) higgs

(d) ijcnn1 (e) SUSY (f) higgs

Figure 5: Training loss Curves of STACO1 and SONX on three different datasets. The first row shows the
Loss (0.5, 0.5) results, and the second row shows the Loss (0.75, 0.75) results.

(a) molmuv(t1) (b) moltox21(t0) (c) nodulemnist3d (d) adrenalmnist3d

(e) molmuv(t1) (f) moltox21(t0) (g) nodulemnist3d (h) adrenalmnist3d

Figure 6: Training TPAUC Curves of STACO2, SOTA, and SONX on four different datasets. The first row
shows the TPAUC (0.5, 0.5) results, and the second row shows the TPAUC (0.75, 0.75) results.
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B More Experiment Results

B.1 Additional plots for training loss curves

Figure 5 presents the training loss curves of STACO1 and SONX across three different datasets under two
evaluation settings, (0.5, 0.5) and (0.75, 0.75). The results indicate that STACO1 consistently achieves lower
and more stable loss values compared to SONX across all datasets. Notably, the variance in training loss is
lower for STACO1, suggesting improved stability during optimization. The only exception is Figure 5c, which
corresponds to optimizing the loss with (0.5,0.5) weights. We believe this is a limitation of the primal-dual
algorithm, which involves two learning rates. In practical applications, improper tuning of these rates may
lead to training instability. Besides, it is important to note that the loss curve is less stable compared to deep
learning experiments, primarily due to the absence of pretraining for the linear model.

B.2 Additional plots for training TPAUC curves

Figure 6 presents the training TPAUC curves for STACO2, SOTA, and SONX across the four datasets. In
both TPAUC (0.5, 0.5) and TPAUC (0.75, 0.75) settings, STACO2 demonstrates competitive performance
compared to SOTA and SONX, with better stability and faster convergence speed. Specifically, in some
cases, STACO2 achieves superior results, particularly in later training stages, indicating its effectiveness in
optimizing TPAUC objectives.

C Proof

C.1 Preliminary Lemmas

Throughout the proof, for a space X , we define its diameter with respect to the measure ψ(⋅) = 1
2 ∥⋅∥

2
2 as

DX ∶= [maxx∈X ψ(x) −minx∈X ψ(x)]1/2. Besides, a ≍ b means that there exists c,C > 0 such that cb ≤ a ≤ Cb.
We first present a lemma here that will be useful in our later analysis.
Lemma C.1 (Lemma 4 in Wang & Yang). Suppose that the function ϕ ∶ X → R is on a convex, closed domain
X and ϕ is µ-convex with respect to Euclidean distance function d(x,y) ∶= 1

2 ∥x − y∥22 for any x,x′ ∈ X , i.e.,
ϕ(x) ≥ ϕ(x′) + ⟨ϕ′(x′), x − x′⟩ + µd(x,x′), ∀x,x′ ∈ X . For x̂ = arg minx∈X {ϕ(x) + ηd(x,x)}, we obtain

ϕ(x̂) − ϕ(x) ≤ ηd(x,x) − (η + µ)d(x, x̂) − ηd(x̂,x), ∀x ∈ X . (21)

C.2 Convex Case

In this section, we present the proof of the convex case. We begin by defining virtual sequences for Algorithm
3. The virtual sequences ȳ and s̄ are calculated with full coordinates, which is easier to bound in analyze.
Thus, we also hope to bound the difference between true sequences and virtual sequences.
Definition C.2 (virtual sequence). In Algorithm 3, a virtual sequence {ȳt} is defined as follows:

ȳ(i)t+1 = arg max
y(i)∈Yi

{y(i)ĝ(i)t (B
(i)
t ) − f

∗
i (y(i)) −

1
2α
(y(i) − y(i)t )

2
} i ∈ [n]. (22)

Additionally, a virtual sequence {s̄t} is defined as follows:

s̄(i)t+1 = arg min
s(i)∈Si

{(y(i)t+1Ĝ
(i)
t,2(B̃

(i)
t )) ⋅ s

(i)
+

1
2β
(s(i) − s(i)t )

2
} i ∈ [n]. (23)

Next, we present a useful lemma, which is helpful in bounding y related error term.
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Lemma C.3 (Lemma 9 in Wang & Yang). Suppose {ȳt},{ŷt} are virtual sequences for any t ≥ 0 in Algorithm
3. Then, for any λ1 > 0,y ∈ Y, it follows that:

E [ 1
2nα

(∥y − yt∥
2
2 − ∥y − ȳt∥

2
2 − ∥ȳt − yt∥

2
2)] ≤

1
2αS

(∥y − yt∥
2
2 − ∥y − yt+1∥

2
2) +

λ1

2αS
(∥y − ŷt∥

2
2 − ∥y − ŷt+1∥

2
2)

−
1

2αn
(1 − 1

λ1S
) ∥ȳt+1 − yt∥

2
2 . (24)

We define that Gt is the σ-algebra generated by {B0,S0,⋯,Bt−1,St−1,Bt} and Ft is the σ-algebra generated
by {B0,S0,⋯,Bt−1,St−1,Bt,St}. Note that Gt ⊂ Ft and yt+1 is Ft-measurable. Now we proceed to show the
descent lemma.
Lemma C.4 (Descent Lemma). Under Assumption 4.1 and 4.2, suppose {ȳt},{ỹt},{ŷt},{s̄t} are virtual
sequences for Algorithm 3. Then, for any t ∈ [0, T − 1], taking expectation over Ft, it holds that:

E [L(ut+1, st+1,y) −L(u, s, ȳt+1)]

≤
1
2η
(∥u − ut∥

2
2 −E ∥u − ut+1∥

2
2) +

1
2βS

(∥s − st∥
2
2 −E ∥s − st+1∥

2
2) +

1
αS
(∥y − yt∥

2
2 −E ∥y − yt+1∥

2
2)

+
1
αS
(∥y − ŷt∥

2
2 −E ∥y − ŷt+1∥

2
2) +

1
αS
(∥y − ỹt∥

2
2 −E ∥y − ỹt+1∥

2
2)

+ 64ΩC2
fC

2
g +

Sασ2
0

2Bn
+
ασ2

0
2B
+
ηC2

fσ
2
1

B
+
ηδ2

S
+
βC2

fσ
2
2

B
, (25)

where Ω =max{η, β}.

Proof. See Appendix C.2.1.

C.2.1 Proof of Lemma C.4

Proof. By Definition, we have

L(ut+1, st+1,y) −L(u, s, ȳt+1)

=
1
n

n

∑
i=1
(y(i)gi(ut+1, st+1) − f

∗
i (y(i))) −

1
n

n

∑
i=1
(ȳ(i)t+1gi(u, s) − f∗i (ȳ

(i)
t+1))

=
1
n

n

∑
i=1
(y(i) − ȳ(i)t+1)gi(ut+1, st+1) −

1
n

n

∑
i=1
f∗i (y(i)) +

1
n

n

∑
i=1
f∗i (ȳ

(i)
t+1)

+
1
n

n

∑
i=1

ȳ(i)t+1 (gi(ut+1, st+1) − gi(ut, st)) +
1
n

n

∑
i=1

ȳ(i)t+1 (gi(ut, st) − gi(u, s)) . (26)

Using the convexity of gi, we obtain the following upper bound:

L(ut+1, st+1,y) −L(u, s, ȳt+1)

≤
1
n

n

∑
i=1
(y(i) − ȳ(i)t+1)gi(ut+1, st+1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I

−
1
n

n

∑
i=1
f∗i (y(i)) +

1
n

n

∑
i=1
f∗i (ȳ

(i)
t+1)

+
1
n

n

∑
i=1

ȳ(i)t+1 (gi(ut+1, st+1) − gi(ut, st))+
1
n

n

∑
i=1

ȳ(i)t+1 (⟨G
(i)
t,1 , ut − u⟩ +G(i)t,2(st − s))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
II

. (27)

We now analyze terms I and II separately. For term I, we decompose as follows:

I = 1
n

n

∑
i=1
(y(i) − ȳ(i)t+1)gi(ut+1, st+1)

=
1
n

n

∑
i=1
(y(i) − ȳ(i)t+1)ĝ

(i)
t (B

(i)
t ) +

1
n

n

∑
i=1
(y(i) − ȳ(i)t+1) (gi(ut+1, st+1) − ĝ

(i)
t (B

(i)
t ))
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For term II, by decomposition we obtain:

II = ⟨ 1
S
∑
i∈St

y(i)t+1Ĝ
(i)
t,1(B̃

(i)
t ) −

1
n

n

∑
i=1

ȳ(i)t+1G
(i)
t,1 , u − ut+1⟩ − ⟨

1
S
∑
i∈St

y(i)t+1Ĝ
(i)
t,1(B̃

(i)
t ), u − ut+1⟩

+
1
n

n

∑
i=1
⟨ȳ(i)t+1G

(i)
t,1 , ut − ut+1⟩

+
1
n

n

∑
i=1
⟨ȳ(i)t+1 (Ĝ

(i)
t,2(B̃

(i)
t ) −G

(i)
t,2) , s − st+1⟩ −

1
n

n

∑
i=1
⟨ȳ(i)t+1Ĝ

(i)
t,2(B̃

(i)
t ), s − st+1⟩

+
1
n

n

∑
i=1
⟨ȳ(i)t+1G

(i)
t,2 , st − st+1⟩ . (28)

Combining all terms above, we arrive at the key inequality:

L(ut+1, st+1,y) −L(u, s, ȳt+1)

≤
1
n

n

∑
i=1
(y(i) − ȳ(i)t+1)ĝ

(i)
t (B

(i)
t ) −

1
n

n

∑
i=1
f∗i (y(i)) +

1
n

n

∑
i=1
f∗i (ȳ

(i)
t+1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C1

+
1
n

n

∑
i=1
(y(i) − ȳ(i)t+1) (gi(ut+1, st+1) − ĝ

(i)
t (B

(i)
t )) +

1
n

n

∑
i=1

ȳ(i)t+1 (gi(ut+1, st+1) − gi(ut, st,k))

+ ⟨
1
S
∑
i∈St

y(i)t+1Ĝ
(i)
t,1(B̃

(i)
t ) −

1
n

n

∑
i=1

ȳ(i)t+1G
(i)
t,1 , u − ut+1⟩−⟨

1
S
∑
i∈St

y(i)t+1Ĝ
(i)
t,1(B̃

(i)
t ), u − ut+1⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C2

+
1
n

n

∑
i=1
⟨ȳ(i)t+1G

(i)
t,1 , ut − ut+1⟩

+
1
n

n

∑
i=1
⟨ȳ(i)t+1 (Ĝ

(i)
t,2(B̃

(i)
t ) −G

(i)
t,2) , s − st+1⟩−

1
n

n

∑
i=1
⟨ȳ(i)t+1Ĝ

(i)
t,2(B̃

(i)
t ), s − st+1⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C3

+
1
n

n

∑
i=1
⟨ȳ(i)t+1G

(i)
t,2 , st − st+1⟩ . (29)

We now analyze the upper bounds of C1, C2, and C3 in turn. For C1, invoking Lemma C.1 and Lemma C.3, it
holds that

C1 ≤
Lemma C.1

[
1

2nα
(∥y − yt∥

2
2 − ∥y − ȳt+1∥

2
2 − ∥ȳt+1 − yt∥

2
2)]

≤
Lemma C.3

1
2αS

(∥y − yt∥
2
2 − ∥y − yt+1∥

2
2) +

λ1

2αS
(∥y − ŷt∥

2
2 − ∥y − ŷt+1∥

2
2)

−
1

2αtn
(1 − 1

λ1S
) ∥ȳt+1 − yt∥

2
2 . (30)

For C2, noticing here we have

ϕ(u) ∶= ⟨ 1
S
∑
i∈St

y(i)t+1Ĝ
(i)
t,1(B̃

(i)
t ), u⟩ , (31)

and ϕ(⋅) is convex in Lemma C.1, it follows that

C2 ≤
Lemma C.1

1
2η
(∥u − ut∥

2
2 − ∥u − ut+1∥

2
2) −

1
2η
∥ut+1 − ut∥

2
2 . (32)

For C3, in a similar manner, we can obtain

C3 ≤
Lemma C.1

1
2nβ
(∥s − st∥

2
2 − ∥s − s̄t+1∥

2
2) −

1
2nβ
∥s̄t+1 − st∥

2
2 . (33)
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Substituting the above inequality into (29), and taking expectation over Ft, we can get

E [L(ut+1, st+1,y) −L(u, s, ȳt+1)]

≤
1

2αS
(∥y − yt∥

2
2 −E ∥y − yt+1∥

2
2) +

λ1

2αS
(∥y − ŷt∥

2
2 −E ∥y − ŷt+1∥

2
2) −

1
2αn
(1 − 1

λ1S
)E ∥ȳt+1 − yt∥

2
2

+
1
2η
(∥u − ut∥

2
2 −E ∥u − ut+1∥

2
2) −

1
2η

E ∥ut+1 − ut∥
2
2 +

1
2nβ
(∥s − st∥

2
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(i)
t,2(B̃

(i)
t ) −G

(i)
t,2) , s − st+1⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D6

. (34)

For D1, noticing that E [(s(i) − s̄(i)t+1)
2] = S

n
(s(i) − s̄(i)t+1)

2 + n−S
n
(s(i) − s(i)t )

2 for any i ∈ [n], then we obtain

D1 ≤
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(∥s − st∥

2
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2
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1
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E ∥s̄t+1 − st∥
2
2 . (35)

Inspired by Lemma 10 in Wang & Yang, we bound D2 as following.
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1
n
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(i)
t (B

(i)
t ))]

=
1
n

n

∑
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The last term in (36) is bounded as
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t ))] .

(37)

To bound the first term in (37), we have E [y(i)t (gi(ut+1, st+1) − ĝ
(i)
t (B

(i)
t )) ∣Ft] = 0. Besides, according to

Corollary 12 in Juditsky et al. (2011), for some λ2 > 0, we have
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where {ỹt} is also a virtual sequence for Algorithm 3. For any λ3 > 0, the second term can be bounded as:

1
n

n

∑
i=1

E [(y(i)t − ȳ(i)t+1) (gi(ut+1, st+1) − ĝ
(i)
t (B

(i)
t ))] ≤

λ3σ
2
0

2B
+

E ∥ȳt+1 − yt∥
2
2

4λ3n
. (39)

Put (36), (37), (38), and (39) together,
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For D3, under Assumption 4.1, for some λ5, λ6 > 0, we have

D3 ≤ CfCgE ∥ut+1 − ut∥2 +
SCfCg

n2 E [
n

∑
i=1
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For D4, similar to the derivations on D3, it holds that

D4 ≤
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2η
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2
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2
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Finally invoking Lemma 4 in Juditsky et al. (2011)(as well as Lemma 7 in Zhang & Lan (2020)) on D5 and
D6, we have
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Supposing λ1 = 1 + 1
S
, λ2 =

n
Sα
, λ3 = α,λ4 = 8C2

g max{β, η}, λ5 = λ6 =
1
8 and substituting D1,D2,D3,D4,D5,D6

into equation (34) yields desired result.

C.2.2 Proof of Theorem 4.3

Proof. Fix any t ≥ 0. Applying Lemma C.4 with (u, s) = (u∗, s∗), where (u∗, s∗) ∶= arg minu∈U,s∈S F (u, s),
and summing from t = 0 to T − 1, taking expectation on F0, we obtain

T−1
∑
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≤
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S
+
βC2

fσ
2
2

B
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Since L(u, s,y) is convex on u, s and linear on y, we have

max
y

L(ū, s̄,y) −L(u∗, s∗, ¯̄y) ≤max
y

1
T

T−1
∑
t=0

L(ut+1, st+1,y) −L(u∗, s∗, ȳt+1), (45)

where ū = 1
T ∑

T−1
t=0 ut+1, s̄ = 1

T ∑
T−1
t=0 st+1, ¯̄y = 1

T ∑
T−1
t=0 ȳt+1. Next, consider the left-hand side (LHS):

L(ū, s̄,y) −L(u∗, s∗, ¯̄y) = 1
n

n

∑
i=1
(y(i)gi(ū, s̄(i)) − f∗i (y(i))) −

1
n

n

∑
i=1
(¯̄y(i)gi(u∗, s∗(i)) − f∗i (¯̄y(i))) . (46)
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Choose y(i) = ỹ(i) ∈ arg maxv{v(i)gi(ū, s̄(i))−f∗i (v(i))}, By the definition of conjugate, we have y(i)gi(ū, s̄(i))−
f∗i (y(i)) = fi(gi(ū, s̄(i))). By Fenchel-Young inequality, it holds that ¯̄y(i)gi(u∗, s∗(i)) − f∗i (¯̄y(i)) ≤
fi(gi(u∗, s∗(i))). Combining the above F (ū, s̄) − F (u∗, s∗) ≤ maxy

1
T ∑

T−1
t=0 L(ut+1, st+1,y) − L(u∗, s∗, ȳt+1),

it follows that
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1
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2
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2
1

B
+
ηδ2

S
+
βC2
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2
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. (47)

Choose α ≍ Bϵ
σ2

0
, η ≍min{ ϵ

C2
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f
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, Sϵ
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}

and T ≍max{C2
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f
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D

2
SC2

g C2
f

Sϵ2 ,
C2

f σ2
1

Bϵ2 ,
D

2
SC2

f σ2
2

BSϵ2 , δ2

Sϵ2 ,
D2
Yσ2

0
BSϵ2 } completes the proof.

C.3 Non-convex Case

In this section, we present the proof of the non-convex case. The key to the analysis is to apply the convergence
analysis of STACO1 for the regularized problem at each stage. However, there is a gap as STACO1 requires
gi(w, s(i)) to be convex. To address this gap, we reformulate the problem in (8) as the following:

Lt(u, s,y) =
1
n

n

∑
i=1

y(i) (gi(u, s(i)) +
1

2τ (i)
∥u − ut,0∥

2
2 +

1
2τ (i)

(s(i) − s(i)t,0)
2
) − f∗i (y(i))

+ (
1

2γ
−

1
2n

n

∑
i=1

y(i)

τ (i)
) ∥u − ut,0∥

2
2 +

1
2nγ
∥s − st,0∥

2
2 −

1
2n

n

∑
i=1

y(i)

τ (i)
(s(i) − s(i)t,0)

2
, (48)

where τ (i) is a proper constant. By carefully choosing the value of τ (i), we can make gi(u, s(i)) +
1

2τ(i)
∥u − ut,0∥

2
2 +

1
2τ(i)
(s(i) − s(i)t,0)

2
to be convex in terms of u, s(i) such that we can leverage the con-

vergence analysis of STACO1. Nevertheless, our algorithm does not depend on τ (i) as computing the gradient
of u and s(i) will remove τ (i). We now introduce some definitions and notations for our later analysis.

Φγ(u, s; u′, s′) ∶= F (u, s) + 1
2γ
∥u − u′∥22 +

1
2nγ
∥s − s′∥22

ut = ut,0

st = st,0

(u†
t , s

†
t) = arg min

u∈U,s∈S
{F (u, s) + 1

2γ
∥u − ut∥

2
2 +

1
2nγ
∥s − st∥

2
2} . (49)

Since fi is convex and gi is non-convex, the function F (⋅, ⋅) is non-convex with respect to u ∈ U and s ∈ S.
Lemma C.5. Under Assumption 4.1 and 4.4, F (⋅, ⋅) is Cfρ-weakly convex on u ∈ U and Cf ρ

n
-weakly convex

on s ∈ S.

Proof. See Appendix C.3.1.

Now we define the virtual sequence for inner loop update in STACO2.
Definition C.6 (virtual sequence). In Algorithm 4, for any t, a virtual sequence {ȳt,k}k is defined as follows:

ȳ(i)t,k+1 = arg max
y(i)∈Yi

{y(i)ĝ(i)t (B
(i)
t,k) − f

∗
i (y(i)) −

1
2αt
(y(i) − y(i)t,k)

2
} i ∈ [n], ∀k ≥ 0

ȳ(i)t,0 = y(i)t,0 i ∈ [n], (50)
and a virtual sequence {s̄t,k}k is defined as follows:

s̄(i)t,k+1 = arg min
s(i)∈Si

{(y(i)t,k+1Ĝ
(i)
t,k,2(B̃

(i)
t,k) +

1
γ
(s(i)t,k − s(i)t,0)) ⋅ s

(i)
+

1
2βt
(s(i) − s(i)t,k)

2
} i ∈ [n], ∀k ≥ 0

s̄(i)t,0 = s(i)t,0 i ∈ [n]. (51)
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Lemma C.7 is similar to Lemma C.3, but this is for the inner loop in STACO2.
Lemma C.7 (Lemma 9 in Wang & Yang). Suppose {ȳt,k}k,{ŷt,k}k are virtual sequences for any t ≥ 0 in
Algorithm 4. Then, for any λ1 > 0,y ∈ Y, t ∈ [0, T − 1], the following holds:

E [ 1
2nαt

(∥y − yt,k∥
2
2 − ∥y − ȳt,k+1∥

2
2 − ∥ȳt,k+1 − yt,k∥

2
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≤
1

2αtS
(∥y − yt,k∥

2
2 − ∥y − yt,k+1∥

2
2) +
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2αtS
(∥y − ŷt,k∥

2
2 − ∥y − ŷt,k+1∥

2
2)

−
1

2αtn
(1 − 1

λ1S
) ∥ȳt,k+1 − yt,k∥

2
2 . (52)

There are two loops update in Algorithm 4. We first present the descent lemma of the inner loop. Its analysis is
similar to that of Lemma C.4. However, since gi is not convex on (u, s), we cannot directly apply Lemma C.4.
By carefully reformulating the regularized problem, we can leverage the convergence analysis from the convex
case. For the inner loop, we define that Gt,k is the σ-algebra generated by {Bt,0,St,0,⋯,Bt,k−1,St−1,Bt,k} and
Ft,k is the σ-algebra generated by {Bt,0,St,0,⋯,Bt,k−1,St,k−1,Bt,k,St,k}. Note that Gt,k ⊂ Ft,k and yt,k+1 is
Ft,k-measurable.
Lemma C.8 (Descent Lemma for Inner Loop). Under Assumption 4.1,4.2 and 4.4, suppose that
{ȳt,k}k,{ỹt,k}k,{ŷt,k}k,{s̄t,k}k are virtual sequences for Algorithm 4, and let γ ≤ 1

2Cf ρ
and ηt, βt ≤

γ
8 .

Then, for any t ∈ [0, T − 1] and k ∈ [0,KT − 2], the following holds:
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+
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2
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1
αtS
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2
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2
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+ 64ΩtC
2
gC

2
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Sαtσ
2
0

2Bn
+
αtσ

2
0

2B
+
ηtC

2
fσ

2
1

B
+
ηtδ

2

S
+
βtC

2
fσ

2
2

B
, (53)

where Ωt =max{ηt, βt}.

Proof. See Appendix C.3.2.

Lemma C.9 (Proximal Error Bound). Under Assumption 4.1,4.2 and 4.4, letting γ ≤ 1
2Cf ρ

and ηt, βt ≤
γ
8

for any t in Algorithm 4, the following holds:

EΦγ(ut+1, st+1; ut, st) ≤ Φγ(u†
t , s

†
t ; ut, st) +

1
2ηtKt

∥u†
t − ut∥

2

2
+

1
2SβtKt

∥s†
t − st∥

2

2

+
3D2
Y

αtSKt
+ 64ΩtC

2
gC

2
f +

Sαtσ
2
0

2Bn
+
αtσ

2
0

2B
+
ηtC

2
fσ

2
1

B
+
βtC

2
fσ

2
2

B
+
ηtδ

2

S
, (54)

where Ωt =max{ηt, βt}.

Proof. See Appendix C.3.3.

C.3.1 Proof of Lemma C.5

Proof. We first show F (u, s) ∶= 1
n ∑

n
i=1 fi(gi(u, s(i))) is weakly convex on u. For convenience, we denote

gi(⋅, s(i)) as gi(⋅). Then ∀i ∈ [n] and x,y ∈ U , we want to establish: ∀λ ∈ [0,1],

fi(gi(λx + (1 − λ)y)) ≤ λfi(gi(x)) + (1 − λ)fi(gi(y)) +
µ

2
λ(1 − λ) ∥x − y∥22 , (55)
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for some µ > 0. Since gi(x) is ρ-weakly convex, for any x,y ∈ U and λ ∈ [0,1], we have

gi(λx + (1 − λ)y) ≤ λgi(x) + (1 − λ)gi(y) +
ρ

2
λ(1 − λ) ∥x − y∥22 . (56)

Noticing fi(⋅) is monotone non-decreasing, it holds that

fi(gi(λx + (1 − λ)y)) ≤ fi (λgi(x) + (1 − λ)gi(y) +
ρ

2
λ(1 − λ) ∥x − y∥22) . (57)

By the Cf -Lipschitz continuity of fi, we have:

fi(a + δ) ≤ fi(a) +Cf ∣δ∣, (58)

where a = λgi(x) + (1 − λ)gi(y) and δ = ρ
2λ(1 − λ) ∥x − y∥22. Applying above inequality into (57), we can

obtain:

fi(gi(λx + (1 − λ)y)) ≤ fi(λgi(x) + (1 − λ)gi(y)) +Cf ⋅
ρ

2
λ(1 − λ) ∥x − y∥22

≤ λfi(gi(x)) + (1 − λ)fi(gi(y)) +Cf ⋅
ρ

2
λ(1 − λ) ∥x − y∥22 , (59)

where the last inequality holds due to the convexity of fi. Therefore, fi(gi(u, s)) is Cfρ-weakly convex on u.
Summing above inequality from i = 1 to n and averaging, we obtain that F (u, s) is Cfρ-weakly convex on u.
Next, we show that F (u, s) is weakly convex on s. By denoting gi(u, ⋅) as gi(⋅) and following the similar
approach, for any i ∈ [n] and x, y ∈ Si, we have

fi(gi(λx + (1 − λ)y)) ≤ λfi(gi(x)) + (1 − λ)fi(gi(y)) +Cf ⋅
ρ

2
λ(1 − λ)(x − y)2. (60)

Noticing fi(gi(u, s)) is weakly-convex to each coordinate of s, F (u, s) is Cf ρ

n
-weakly convex on s.

C.3.2 Proof of Lemma C.8

Proof. For analysis, we introduce two auxiliary variables τt,k and τ̄t,k, where τ (i)t,k ∶= γy(i)t,k+1 for any i ∈ St,k,
τ̄
(i)
t,k ∶= γȳ(i)t,k+1 for any i ∈ [n]. Before delving into the formal proof of Lemma C.8, we briefly highlight its

role: it provides a variation bound for stochastic gradients under block-coordinate updates, which is the
central technical novelty enabling us to prove parallel mini-batch speedup. The proof proceeds in three steps:
(i) decomposing the variation of block-coordinate updates, and (ii) bounding the dependence on different
batches.
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Step 1: Decomposing the variation of block-coordinate updates. By definition, we have

Lγ(ut,k+1, st,k+1,y; ut,0, st,0) −Lγ(u, s, ȳt,k+1; ut,0, st,0)
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∑
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Observe that for any (u, s) ∈ (U ,S), the function gi(u, s(i)) + 1
2τ̄
(i)
t,k

∥u − u′∥22 +
1

2τ̄
(i)
t,k

(s(i) − s′(i))2 is convex

with respect to u and s(i), for any fixed (u′, s′) ∈ (U ,S), since 1
τ̄
(i)
t,k

= 1
γȳ(i)

t,k+1
≥ ρ. This convexity enables us to
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apply a first-order approximation and derive the following bound:

Lγ(ut,k+1, st,k+1,y; ut,0, st,0) −Lγ(u, s, ȳt,k+1; ut,0, st,0)
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(s(i)t,k+1 − s(i)t,0)
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
III

+
1
n

n

∑
i=1

ȳ(i)t,k+1

2τ̄ (i)t,k

(s(i)t,k+1 − s(i)t,0)
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I

−
1
n

n

∑
i=1

ȳ(i)t,k+1

2τ̄ (i)t,k

(s(i)t,k − s(i)t,0)
2
+

1
n

n

∑
i=1

ȳ(i)t,k+1

2τ̄ (i)t,k

(s(i)t,k − s(i)t,0)
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
III

+
1

2γ
∥ut,k+1 − ut,0∥

2
2 −

1
2γ
∥u − ut,0∥

2
2 +

1
2nγ
∥st,k+1 − st,0∥

2
2 −

1
2nγ
∥s − st,0∥

2
2

−
1
n

n

∑
i=1
f∗i (y(i)) +

1
n

n

∑
i=1
f∗i (ȳ

(i)
t,k+1). (62)
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Noticing

I = 1
n

n

∑
i=1
(y(i) − ȳ(i)t,k+1)gi(ut,k+1, s(i)t,k+1)

=
1
n

n

∑
i=1
(y(i) − ȳ(i)t,k+1)ĝ

(i)
t,k(B

(i)
t,k) +

1
n

n

∑
i=1
(y(i) − ȳ(i)t,k+1) (gi(ut,k+1, s(i)t,k+1) − ĝ

(i)
t,k(B

(i)
t,k))

II = ⟨ 1
S
∑

i∈St,k

y(i)t,k+1
⎛

⎝
Ĝ
(i)
t,k,1(B̃

(i)
t,k) +

1
τ
(i)
t,k

(ut,k − ut,0)
⎞

⎠
−

1
n

n

∑
i=1

ȳ(i)t,k+1
⎛

⎝
G
(i)
t,k,1 +

1
τ̄
(i)
t,k

(ut,k − ut,0)
⎞

⎠
, u − ut,k+1⟩

−
1
S
∑

i∈St,k

⟨y(i)t,k+1
⎛

⎝
Ĝ
(i)
t,k,1(B̃

(i)
t,k) +

1
τ
(i)
t,k

(ut,k − ut,0)
⎞

⎠
, u − ut,k+1⟩

+
1
n

n

∑
i=1
⟨ȳ(i)t,k+1

⎛

⎝
G
(i)
t,k,1 +

1
τ̄
(i)
t,k

(ut,k − ut,0)
⎞

⎠
, ut,k − ut,k+1⟩

+
1
n

n

∑
i=1

ȳ(i)t,k+1(Ĝ
(i)
t,k,2(B̃

(i)
t,k) −G

(i)
t,k,2)(s

(i)
− s̄(i)t,k+1)

−
1
n

n

∑
i=1

ȳ(i)t,k+1
⎛

⎝
Ĝ
(i)
t,k,2(B̃

(i)
t,k) +

1
τ̄
(i)
t,k

(s(i)t,k − s(i)t,0)
⎞

⎠
(s(i) − s̄(i)t,k+1)

+
1
n

n

∑
i=1

ȳ(i)t,k+1
⎛

⎝
G
(i)
t,k,2 +

1
τ̄
(i)
t,k

(s(i)t,k − s(i)t,0)
⎞

⎠
(s(i)t,k − s̄(i)t,k+1)

III = 1
n

n

∑
i=1

ȳ(i)t,k+1 (gi(ut,k+1, s(i)t,k+1) − gi(ut,k, s(i)t,k)) , (63)

and replacing τ (i)t,k = γy(i)t,k+1 and τ̄
(i)
t,k = γȳ(i)t,k+1, it follows that

Lγ(ut,k+1, st,k+1,y; ut,0, st,0) −Lγ(u, s, ȳt,k+1; ut,0, st,0)

≤
1
n

n

∑
i=1
(y(i) − ȳ(i)t,k+1)ĝ

(i)
t,k(B

(i)
t,k) −

1
n

n

∑
i=1
f∗i (y(i)) +

1
n

n

∑
i=1
f∗i (ȳ

(i)
t,k+1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C1

+
1
n

n

∑
i=1
(y(i) − ȳ(i)t,k+1) (gi(ut,k+1, s(i)t,k+1) − ĝ

(i)
t,k(B

(i)
t,k)) +

1
n

n

∑
i=1

ȳ(i)t,k+1 (gi(ut,k+1, s(i)t,k+1) − gi(ut,k, s(i)t,k))

+ ⟨
1
S
∑

i∈St,k

(y(i)t,k+1Ĝ
(i)
t,k,1(B̃

(i)
t,k) +

1
γ
(ut,k − ut,0)) −

1
n

n

∑
i=1
(ȳ(i)t,k+1G

(i)
t,k,1 +

1
γ
(ut,k − ut,0)) , u − ut,k+1⟩

−
1
S
∑

i∈St,k

⟨y(i)t,k+1Ĝ
(i)
t,k,1(B̃

(i)
t,k) +

1
γ
(ut,k − ut,0), u − ut,k+1⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C2

+
1
n

n

∑
i=1

ȳ(i)t,k+1(Ĝ
(i)
t,k,2(B̃

(i)
t,k) −G

(i)
t,k,2)(s

(i)
− s̄(i)t,k+1)

−
1
n

n

∑
i=1
(ȳ(i)t,k+1Ĝ

(i)
t,k,2(B̃

(i)
t,k) +

1
γ
(s(i)t,k − s(i)t,0)) (s

(i)
− s̄(i)t,k+1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C3

+
1
n

n

∑
i=1
⟨ȳ(i)t,k+1G

(i)
t,k,1 +

1
γ
(ut,k − ut,0), ut,k − ut,k+1⟩ +

1
n

n

∑
i=1
(ȳ(i)t,k+1G

(i)
t,k,2 +

1
γ
(s(i)t,k − s(i)t,0)) (s

(i)
t,k − s̄(i)t,k+1)

+
1

2nγ
n

∑
i=1
∥ut,k+1 − ut,0∥

2
2 −

1
2nγ

n

∑
i=1
∥ut,k − ut,0∥

2
2 +

1
2nγ

n

∑
i=1
(s̄(i)t,k+1 − s(i)t,0)

2
−

1
2nγ

n

∑
i=1
(s(i)t,k − s(i)t,0)

2. (64)
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For C1, by applying Lemma C.1 followed by Lemma C.7, we obtain:

C1 ≤
Lemma C.1

[
1

2nαt
(∥y − yt,k∥

2
2 − ∥y − ȳt,k+1∥

2
2 − ∥ȳt,k+1 − yt,k∥

2
2)]

≤
Lemma C.7

1
2αtS

(∥y − yt,k∥
2
2 − ∥y − yt,k+1∥

2
2) +

λ1

2αtS
(∥y − ŷt,k∥

2
2 − ∥y − ŷt,k+1∥

2
2)

−
1

2αtn
(1 − 1

λ1S
) ∥ȳt,k+1 − yt,k∥

2
2 . (65)

For C2, we define the auxiliary function:

ϕ(u) ∶= ⟨ 1
S
∑

i∈St,k

y(i)t,k+1
⎛

⎝
Ĝ
(i)
t,k,1(B̃

(i)
t,k) +

1
τ
(i)
t,k

(ut,k − ut,0)
⎞

⎠
,u⟩ . (66)

Substituting τ (i)t,k = γy(i)t,k+1, this becomes

ϕ(u) = ⟨ 1
S
∑

i∈St,k

y(i)t,k+1Ĝ
(i)
t,k,1(B̃

(i)
t,k) +

1
γ
(ut,k − ut,0),u⟩ . (67)

Since ϕ(⋅) is convex, applying Lemma C.1 yields:

C2 ≤
1

2ηt
(∥u − ut,k∥

2
2 − ∥u − ut,k+1∥

2
2) −

1
2ηt
∥ut,k+1 − ut,k∥

2
2 . (68)

For C3, following the similar manner with C2, for any i in St,k, we can get

C3 ≤
Lemma C.1

1
2nβt

(∥s − st,k∥
2
2 − ∥s − s̄t,k+1∥

2
2) −

1
2nβt

∥s̄t,k+1 − st,k∥
2
2 . (69)
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Substituting the above inequalities into (64) and taking expectation with respect to Ft,k yields:

E [Lγ(ut,k+1, st,k+1,y; ut,0, st,0) −Lγ(u, s, ȳt,k+1; ut,0, st,0)]

≤
1

2αtS
(∥y − yt,k∥

2
2 −E ∥y − yt,k+1∥

2
2) +

λ1

2αtS
(∥y − ŷt,k∥

2
2 −E ∥y − ŷt,k+1∥

2
2)

−
1

2αtn
(1 − 1

λ1S
)E ∥ȳt,k+1 − yt,k∥

2
2

+
1

2ηt
(∥u − ut,k∥

2
2 −E ∥u − ut,k+1∥

2
2) −

1
2ηt

E ∥ut,k+1 − ut,k∥
2
2

+
1

2nβt
(∥s − st,k∥

2
2 −E ∥s − s̄t,k+1∥

2
2) −

1
2nβt

E ∥s̄t,k+1 − st,k∥
2
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D1

+
1
n

n

∑
i=1

E [(y(i) − ȳ(i)t,k+1) (gi(ut,k+1, s(i)t,k+1) − ĝ
(i)
t,k(B

(i)
t,k))]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D2

+
1
n

n

∑
i=1

E [ȳ(i)t,k+1 (gi(ut,k+1, s(i)t,k+1) − gi(ut,k, s(i)t,k))]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D3

+
1
n

n

∑
i=1

E⟨ȳ(i)t,k+1G
(i)
t,k,1, ut,k − ut,k+1⟩ +

1
n

n

∑
i=1

E ⟨ȳ(i)t,k+1G
(i)
t,k,2, s(i)t,k − s̄(i)t,k+1⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D4

+E [ 1
γ
⟨ut,k − ut,0, ut,k − ut,k+1⟩] +E [ 1

2γ
(∥ut,k+1 − ut,0∥

2
2 − ∥ut,k − ut,0∥

2
2)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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Step 2: Bounding the dependence on different batches. For D1, notice that E [(s(i) − s̄(i)t,k+1)
2] =

S
n
(s(i) − s̄(i)t,k+1)

2 + n−S
n
(s(i) − s(i)t,k)

2 for any i ∈ [n]. Then, it holds that
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1

2Sβt
(∥s − st,k∥

2
2 −E ∥s − st,k+1∥

2
2) −

1
2nβt

E ∥s̄t,k+1 − st,k∥
2
2 . (71)

For D2, following a similar manner we show in (40), for some λ2, λ3, λ4 > 0, we have

D2 ≤
C2

g
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2
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2
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2
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+
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+
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2
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+
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2
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4λ3n
. (72)

30



Published in Transactions on Machine Learning Research (09/2025)

For D3, by invoking Assumption 4.1, for some λ5, λ6 > 0, we have

D3 ≤ CfCgE ∥ut,k+1 − ut,k∥2 +
SCfCg

n2 E [
n

∑
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≤
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2
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2
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2
g

2λ5
+
Sλ6

2n2βt
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2
2 +
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2
fC

2
g

2nλ6
. (73)

For D4, same to the derivations for D3, it holds that

D4 ≤
λ5

2ηt
E ∥ut,k+1 − ut,k∥

2
2 +

ηtC
2
fC

2
g

2λ5
+

λ6

2nβt
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2
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2
fC

2
g

2λ6
. (74)

For D5, noticing

1
2
(∥ut,k+1 − ut,0∥

2
2 − ∥ut,k − ut,0∥

2
2) ≤ − ⟨ut,k+1 − ut,0, ut,k − ut,k+1⟩ , (75)

then we have

D5 ≤ E [ 1
γ
⟨ut,k − ut,0, ut,k − ut,k+1⟩] −E [ 1

γ
⟨ut,k+1 − ut,0, ut,k − ut,k+1⟩]

=
1
γ

E ∥ut,k − ut,k+1∥
2
2 . (76)

In the same manner as for D5, we obtain D6 ≤
1

nγ
E ∥st,k − s̄t,k+1∥

2
2. Next, applying Lemma 4 in Juditsky et al.

(2011)(as well as Lemma 7 in Zhang & Lan (2020)) on D7, we have

D7 = −E ⟨ 1
S
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2
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B
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2

S
. (77)

Finally, for D8, similar to D7, it follows that

D8 =
1
n

n

∑
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E ⟨ȳ(i)t,k+1 (Ĝ
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B
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By setting λ1 = 1 + 1
S

, λ2 =
n

Sαt
, λ3 = αt, λ4 = 8C2

g max{ηt, βt}, and λ5 = λ6 =
1
8 , and substituting the bounds

of D1 through D8 into inequality (70), we obtain the desired result.

C.3.3 Proof of Lemma C.9

Proof. For any t ≥ 0, by invoking Lemma C.8, choosing u = u†
t , s = s†

t , and summing from k = 0 to Kt − 1
while taking expectation over Ft,0, it holds that
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∑
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31



Published in Transactions on Machine Learning Research (09/2025)

Since Lγ(u, s,y; u′, s′) is convex on u and s, and linear on y, we have
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where ūt =
1
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1
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∑
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∥ūt − ut,0∥

2
2 +

1
2nγ
∥s̄t − st,0∥

2
2

−
1
n

n

∑
i=1
(¯̄y(i)t gi(u†

t , s
†(i)
t ) − f∗i (¯̄y

(i)
t )) −

1
2γ
∥u†

t − ut,0∥
2
2 −

1
2nγ
∥s†

t − st,0∥
2
2 . (81)

Choose y(i) = ỹ(i)t ∈ arg maxv{v(i)gi(ūt, s̄(i)t ) − f
∗
i (v(i))}, then we have y(i)gi(ūt, s̄(i)t ) − f

∗
i (y(i)) =

fi(gi(ūt, s̄(i)t )). By Fenchel-Young inequality, it holds that ¯̄y(i)t gi(u†
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Lγ(u†
t , s
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t , ȳt,k+1; ut,0, st,0). Dividing both sides by Kt completes the proof.

C.3.4 Proof of Theorem 4.5

Proof. We begin by invoking Lemma C.9, which yields:
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Based on inequality (6) from Rafique et al. (2022), the following estimate holds:
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Next, we apply the strong convexity of the auxiliary potential function Φγ , as established in Lemma C.5.
Since Φγ(u, s; u′, s′) is ( 1

γ
−Cfρ)-strongly convex with respect to u and ( 1

nγ
−

Cf ρ

n
)-strongly convex with
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respect to s, it follows that:
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Furthermore, using the assumption γ ≤ 1
2Cf ρ

, the final descent bound simplifies to:
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Since F (u†
t , s
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Summing both sides over t = 0,1, . . . , T − 1 and taking expectation with respect to F0,0, we conclude:
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Finally, choosing the step sizes and inner-loop iteration numbers appropriately as:
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we arrive at the desired convergence rate:

E [dist(0, ∂F (u†
t̄
, s†

t̄
))

2] ≤
1
γ2T

T−1
∑
t=0

E(∥u†
t − ut∥

2
2 +

1
n
∥s†

t − st∥
2
2)

≤
6 [F (u0, s0) −EF (uT , sT )]

γT
+O(γ−1ϵ2), (89)
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where t̄ is uniformly sampled from {0, 1,⋯, T − 1}. Then we can make E [dist(0, ∂F (u†
t̄
, s†

t̄
))] ≤ ϵ by choosing

T = O(
F (u0,s0)−infu,s F (u,s)

ϵ2 ). The total iteration complexity would be
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