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Abstract

Being able to predict the mental states of others is a key factor to effective social1

interaction. It is also crucial to distributed multi-agent systems, where agents are2

required to communicate and cooperate with others. In this paper, we introduce3

such an important social-cognitive skill, i.e. Theory of Mind (ToM), to build4

socially intelligent agents who are able to communicate and cooperate effectively5

to accomplish challenging tasks. With ToM, each agent is able to infer the mental6

states and intentions of others according to its (local) observation. Based on the7

inferred states, the agents decide “when” and with “whom” to share their intentions.8

With the information observed, inferred, and received, the agents decide their sub-9

goals and reach a consensus among the team. In the end, the low-level executors10

independently take primitive actions according to the sub-goals. We demonstrate11

the idea in a typical target-oriented multi-agent task, namely multi-sensor target12

coverage problems. The experiments show that the proposed model not only13

outperforms the state-of-the-art methods in sample efficiency and target coverage14

rate but also has good generalization across different scales of the environment.15

1 Introduction16

Cooperation is a key component of human society, which enables people to divide labor and achieve17

common goals that no individual can reach on his/her own. In particular, human are able to form18

an ad-hoc team with partners and communicate cooperatively with one another [1]. Cognitive19

studies [2, 3, 4] show that the ability to model others’ mental states (intentions, beliefs, and desires),20

called Theory of Mind (ToM) [5], is important for such social interaction. Considering a simple21

real-world scenario (Fig. 1), where three people (Alice, Bob, and Carol) are required to take the22

fruits (apple, orange, and pear) with shortest path. To achieve it, the individual will take four steps23

sequentially: 1) observing their surrounding; 2) Inferring the observation and intention of others; 3)24

communicate with others to share the local observation or intention if necessary; 4) making a decision25

and taking action to get the chosen fruits without conflict. In this process, the ToM is naturally26

adopted in inferring others (Step 2) and also guides the communication among agents (Step 3).27

Motivated by this, machine learning researchers have takes efforts on developing the machine ToM [6]28

or modeling opponents [7] for multi-agent learning [8, 9, 10]. But most of the existing computing29

models are only used in toy environments, where are only a few agents (two or three) performing30

simple tasks. It is still challenging to implement such a thinking mechanism for social agents,31

especially in cases of many agents. That is because the mental state of one agent will be impacted by32

many other agents, leading to the accuracy and efficiency of the ToM drop.33

In this paper, we study the Target-oriented Multi-Agent Cooperation problem (ToMAC). In ToMAC,34

the agents need to cooperatively reach and keep specific relations among the agents and targets. Such35

problem setting widely exists in real-world applications, e.g. collecting multiple objects (Fig. 1),36

navigating to multiple landmarks [11], monitoring a group of pedestrians [12]. When running,37
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Figure 1: A fruits collection example. The agents are required to cooperatively collect the three target
objects (apple, pear, and orange) in the room as fast as possible. The whole process can be divided
into 4 steps. In the first step, 3 agents observes the environment and obtains the state of the visible
targets. In the second step, each agent tries to infer what other agents have seen, and which targets
they shall choose as goals. In the third step, each agent decides whom to communicate with according
to the previous inference. In the fourth step, each agent decides its own goal of target based on what
it observed, inferred, and received.

each agent is required to choose a subset of interesting targets and reaching them to contribute38

to the team goal. In this case, the key to realizing high-quality cooperation is how to reach a39

consensus among agents to avoid the inner conflict in the team. However, the existing multi-agent40

reinforcement learning methods still do not handle it well, as they only implicitly model others in the41

state representation and are inefficient in communication.42

Here we propose a Target-oriented Multi-agent Communication and Cooperation mechanism43

(ToM2C) using the Theory of Mind, shown as Fig. 2. In ToM2C, each agent is of a two-level44

hierarchy. The high level policy (planner) needs to cooperatively choose certain interesting targets as45

a sub-goal to deal with, such as tracking certain moving objects or navigating to a specific landmark.46

Then low level policy (executor) takes primitive actions to reach the selected goals for k steps. To be47

more specific, each agent receives local observation of targets, and estimate the local observation of48

others in the ToM Net. Combining the observed and inferred state, the ToM net will predict/infer the49

target choices (intentions) of other agents. After that, each agent decide ‘whom’ to communicate with50

according to local observation filtered by the inferred goals and the estimated observation of others.51

The message is rather simple and comprehensible, which is only the predicted goals of the message52

receiver, inferred by the sender. In the end, all the agents decide its own goals by leveraging the53

observed, inferred, and received information. Thanks to the inferring and sharing of intentions, the54

agents can easily reach a consensus to cooperatively adjust the target-agent relations to the expected.55

Furthermore, we also introduce a communication reduction method to remove the redundant message56

passing among agents. Take the advantage of the centralized training decentralized execution (CTDE)57

paradigm, we measure the effect of the received messages on each agents, by comparing the output58

of the planner with and without messages. Hence, we can figure out the unnecessary connection59

among agents. Then we train the connection choice network to cut these dispensable channels in60

a supervised manner. Eventually, ToM2C systemically solves the problem of ’when’, ’who’ and61

’what’ in multi-agent communication, providing a compact, efficient and interpretable communication62

protocol.63

The experiments are conducted in a challenging multi-sensor multi-target covering scenario. The team64

goal of sensors is to adjust their orientation to cover as many targets as possible. It is shown that our65

method achieves the highest coverage ratio among several state-of-the-art MARL methods [13, 12] in66

the case of 4 sensors and 5 targets. Moreover, we also demonstrate the strong scalability of ToM2C67

in different populations of sensors and targets. We further take an ablation study to evaluate the68

contribution of each key component of our model.69
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2 Related Work70

Multi-agent Cooperation. The cooperation of multiple agents is crucial yet challenging in dis-71

tributed systems. Agents’ policies continue to shift during training, leading to non-stationary en-72

vironment and difficulty in model convergence. Recent work [11, 14, 15, 16, 17] in multi agent73

reinforcement learning (MARL) mainly adopts centralized training decentralized execution (CTDE)74

paradigm to mitigate non-stationarity. However, such training method only implicitly guides agents75

to adapt to certain policy patterns of others. As a result, cooperation collapses even if there is only a76

slight change in the team formation, making the model extremely impractical and poor of scalability.77

Furthermore, some existing work tries to make use of communication to promote cooperation, such78

as [18, 19, 20]. Unfortunately, they all require a broadcast communication channel that pose a huge79

pressure on bandwidth. Besides, even though I2C [13] proposes a individual communication method,80

the message is just the encoding of observation, which is not only costly but also uninterpretable.81

Compared with existing methods, ToM2C does not only apply ToM to explicitly model intentions82

and mental states but also to improve the efficiency of communication to further promote cooperation.83

For the target-oriented multi-agent cooperation, HiT-MAC [12] propose a hierarchical multi-agent84

coordination framework to decomposes the target coverage problem into two-level tasks: assigning85

targets by centralized coordinator and tracking assigned targets by decentralized executors. The86

agents in ToM2C are also of a two-level hierarchy. Differently, thanks to the use of ToM, both levels87

are enabled to perform distributedly.88

Theory of Mind. Theory of Mind is a long-studied conception in cognitive science [2, 3, 4]. However,89

how to apply the discover in cognitive science to building cooperative multi-agent systems still90

remains a challenge. Most previous work make use of Theory of Mind to interpret agent behaviours,91

but fail to take a step forward to enhance cooperation. For example, Machine Theory of Mind [6]92

proposes a meta-learning method to learn a ToMnet that predicts the behaviours or characteristics of93

a single agent. Besides, [21] studies how to apply Bayesian inference to understand the behaviours94

of a group and predict the group structure. [22] introduces the concept of Satisficing Theory of Mind,95

which means the sufficing and satisfying model of others. None of these work looks into the problem96

of multi-agent cooperation. [10] considers a 2-player scenario and employs Bayesian Theory of97

Mind to promote collaboration. Nevertheless, the task is too simple and it requires the model of other98

agents to do the inference. On the other hand, opponent modeling [7, 8, 9] is another kind of methods99

comparable with Theory of Mind. Agents endowed with opponent modeling can explicitly represent100

the model of others, and therefore plan with awareness of current status of others. Nevertheless, these101

methods rely on the access to the observation of others, which means they are not truly decentralized102

paradigms.103

3 Methods104

In this section, we will explain how to build a target-oriented social agent to realize efficient multi-105

agent communication and cooperation. We formulate the target-oriented cooperative task as a106

Dec-POMDP [23]. The aim of all agents is to maximize the team reward. Furthermore, agents are107

allowed to communicate with each other to enhance cooperation. The overall network architecture is108

shown in Fig. 2 from the perspective of agent i. The model is mainly composed of four functional109

networks: Observation encoder, ToM net, Communication choice net, and actor-critic net. To be110

specific, it receives a local partial observation oi, which includes the information of visible targets.111

What’s more, it obtains the current pose (φ1, ..., φn) of all the agents, where n is the number of agents.112

The raw observation will be encoded into Ei by an attention-based encoder. Then the agent starts to113

do Theory of Mind inference with the ToM net. It first estimates the observation representation ε114

of each other agents according to their poses. εj can be used for inferring the current visible targets115

of agent j, which is an auxiliary task that will be discussed later. Based on εj and Ei, agent i infers116

the probability of agent j choosing these targets as its goals, denoted as G∗i,j . After that, agent i117

decides whom to communicate with. We employ a graph neural network here as the communication118

choice net. The node feature of agent j is the concatenation of εj and Ei filtered by G∗i,j . The final119

communication connection is sampled according to computed graph edge features. Agent i will120

send G∗i,j to agent j if there exists a communication edge from i to j. Finally, G∗i , Ei and received121

messages is concatenated as ηi for planner(actor) and critic. Planner πH
i (gi|oi) is the high level policy122

that chooses the goals gi, which guides the low-level executor πL
i (ai|oi, gi) to perform primitive123

actions.124
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Figure 2: The architecture of ToM2C for each individual. There are 4 key components: Observation
encoder, Theory of Mind net, Message sender and Decision maker.

In the following sections, we will illustrate the key components of ToM2C in details.125

3.1 Observation Encoder126

We employ the attention module [24] to encode the local observation. There are two prominent127

advantages of this module. On one hand, it is population-invariant and order-invariant, which is128

crucial for scalability. On the other hand, global information can be encoded into single feature due129

to the weighted sum mechanism. In this paper, we use scaled dot-product self-attention similar to130

[12]. m is the number of targets. The input is the local observation ~oi ∈ Rm×dobs
and the output131

is ~Ei ∈ Rm×datt
, where ~oi,q and ~Ei,q represent the raw and encoded feature of target q to agent i132

respectively.133

3.2 Theory of Mind Network (ToM Net)134

Inspired by the Machine Theory of Mind [6], we introduce ToM net that enables agents to infer the135

observation and intentions of others. Most previous work [7, 8, 10] consider two-player scenarios,136

where the agent only needs to model one other agent. Instead, we take a step forward to evaluate our137

model in a more complex multi-agent scenario consisting of n(>3) agents. Therefore, the entire ToM138

net of agent i is actually composed of n-1 separate ToM nets, each utilized to model the corresponding139

agent. The single ToM net is made up of two functional modules: Observation Estimation and Goal140

Inference. The overall ToM net takes the poses of agents and local observation as input. Then it141

outputs the inferred observation representation and goals of others.142

Observation Estimation. The first step of ToM inference is to estimate the observation representation143

of the other agent. The term refers to the visibility of the environment. Intuitively, when an agent144

tries to infer the intention of others, it should first infer which targets are seen by them. Take Bob in145

fig. 1 as an example. Before he tries to infer the goals of Alice and Carol, he first infers that Alice146

cannot observe the apple but Carol can. Similarly, Agent i infers the observation of agent j, denoted147

as εj , with the pose φj . Note that εj is only a representation of the observation. To better learn this148

representation, we introduce an auxiliary task here. Agent i needs to infer which targets are in the149

observation field of agent j, based on this representation εj and local observation ~Ei. In practice, we150

employ a GRU to model the observation of others on time series.151

Goal Inference. After agent i finishes the observation estimation of others, it is able to predict which152

targets will be chosen by them at this step. Just like human, the agent infers the intentions of others153

based on what it sees and what it thinks that others see. If we denote this goal inference network as154

a function GI, then the process can be formulated as :G∗i,j,q = GI( ~Ei,q, εj). G∗i,j,q stands for the155

probability of agent j choosing target q, inferred by i. Since there are a total of n agents and m targets156

in the environment, ~G∗i ∈ R(n−1)×m.157
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With ToM net, each agent holds a belief on the observation and goal intentions of others. Such belief158

is not only taken into account for final self decision, but also serves as a indispensable component in159

communication choice. The details will be discussed in the next section.160

3.3 Message Sender161

Learning to communicate has been studied in a number of multi-agent reinforcement learning works.162

However, most of them either require a public communication channel or a centralized mechanism to163

decide the communication connection, which is definitely unrealistic for real multi-agent systems.164

Moreover, the message is usually an encoded feature, making it both uninterpretable and lengthy.165

Instead, we introduce a message sender by leveraging the information inferred by ToM net. Each166

agent decides ‘when’ and with ‘whom’ to communicate completely on its own. And the message167

is the inferred ToM goals of the receiver. To achieve this, we use a graph neural network similar168

to [25, 26]. The details is in the next paragraph. After the model is trained, we further propose a169

communication reduction method to remove useless connections and improve the efficiency of the170

communication network.171

Inferred-goal Filter. As stated before, we use Graph Neural Network (GNN) to learn the connection172

in an end-to-end manner. In previous works [27], there is only one global graph that collects all the173

observation as node features. Such implementation breaks the individuality. Instead, we propose a174

method to make use of the inferred state and intention to generate local graphs. Specifically, in the175

perspective of agent i, the feature of agent j is the target features filtered by the inferred goals G∗i,j as176

follows. δ is a probability threshold, if G∗i,j,q > δ, then agent i considers it as the goal that will be177

chosen by agent j.178

E′i,j =

m∑
q=1

(G∗i,j,q > δ) · Ei,q (1)

Then we concatenate the filtered feature E′i,j with the estimated observation representation εj , to179

form the estimated node feature ui,j = (E′i,j , εj). For agent i itself, ui,i = (
∑

q Ei,q, εi), where εi is180

also computed by Observation Estimation module with the pose of i.181

Connection Choice. For a scenario consisting of n agents, there is a total of n directed graphs182

G = (G1,G2, ...Gn). Gi = (Vi, Ei) is the local graph for agent i to compute the communication183

connection from agent i. The vertices Vi = {f(ui,j)}, where f is a node feature encoder. Edges184

Ei = {σ(ui,j , ui,k)}, where σ is an edge feature encoder. Like the Interaction Networks (IN) [26],185

we propagate the node and edge features spatially to obtain node and edge effect. For convenience,186

we will describe only graph Gi in the following formula and omit the index i. Let Vj be the encoded187

node feature of j, and hj be the node effect. Similarly, let Ej,k be the encoded edge feature, hj,k be188

the edge effect. Initially, hj = Vj , hj,k = Ej,k. Then the graph iterates for several times to propagate189

the effect:190

hj = Ψnode(Vj , hj ,
∑
k

hk,j) (2)

191

hj,k = Ψedge(hj , hk, hj,k) (3)

In the end, we obtain edge (Ei,j , hi,j), and compute the probabilistic distribution over the type of the192

edge (cut or retain). Here we apply the Gumbel-Softmax trick [28, 29] to sample the discrete edge193

type, so the gradients can be back-propagated in end-to-end training. Considering that it is the local194

communication graph of agent i, only the types of Ei,−i are sampled. If edge Ei,j is retained, agent i195

will send a the inferred goals of j to it.196

Communication Reduction (CR). The communication choice network learns in an end-to-end man-197

ner. If no regularization is applied here, the network tends to learn a relatively dense communication198

connection graph. However, some of these connections are actually redundant. In fact, some receivers199

choose the same goals with and without these messages. Therefore, we can figure out the necessity200

of certain communication edges. Formally, we estimate the effect of the received messages to agent201

i by measuring the KL-divergence between gi and g−i , referred as χ = DKL(g−i ||gi). Note that202

g−i denotes the probability distribution over the goals of agent i when all the messages sent to i are203

masked. If χ < τ , we regard that the messages are redundant to agent i. Thus the edges pointing at i204

will be ‘cut’. Otherwise (χ > τ ), we ‘retain’ all the edges to agent i. Here τ is a constant, regarded205
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as a threshold. Supervised by the generated pseudo labels, the model learns to cut the redundant206

connections easily, leading to a more efficient communication network.207

3.4 Decision Making208

Once the agent receives all the messages, it can decide its own goals of targets based on its
observation, inferred goals of others and received messages. Therefore, the actor-critic feature
ηi = ( ~Ei,maxk

~G∗i,k,
∑

s
~G∗s,k). The second term refers to the max inferred probability of an target

to be chosen by another agent. The third term refers to the sum of the messages from others, indicating
how much certain others infer that agent i should choose the target. The actor decides its goals gi
according to ηi. The centralized critic obtain global feature (η1, ...ηn) to compute value. The low
level executor

πL
i (ai|oi, gi)

takes primitive action to accomplish the sub-goal. Although this executor can also be trained by209

reinforcement learning (RL) as [12], we find a simple rule-based policy can also work well in most210

cases. In this way, other methods without a hierarchical structure only need to learn the high-level211

policy, so we can compare them with our method fairly.212

3.5 Training213

The model can be divided as ToM net and other parts. ToM net is trained in supervised learning with214

the true state of others. Other parts are trained by reinforcement learning (RL). We adopt standard215

A2C [30] as the RL training algorithm, while any MARL method with CTDE framework is also216

applicable, such as PPO [31, 32].217

Learning ToM Net. We introduce two classification tasks for learning the ToM Net, which is218

parameterized by θToM. First, the ToM net infers the goals ~G∗i of others. Note that g∗i,j,q indicates the219

probability of agent j choosing target q, inferred by i. Meanwhile, agent j decides its real goals gj .220

Therefore, gj can be the label of g∗i,j . The Goal Inference loss is the binary cross entropy loss of this221

classification task:222

LGI = − 1

N

∑
i

∑
j 6=i

∑
q

[gj,q · log(g∗i,j,q) + (1− gj,q) · log(1− g∗i,j,q)] (4)

Secondly, the estimated observation representation ε is trained in the auxiliary task mentioned before.223

The agent i infers which targets are in the observation of j, denoted as c∗i,j . The ground truth is the224

real observation field cj . cj,q = 1 indicates that agent j observes target q. Similar to the previous225

Goal Inference task, this Observation Estimation learning also adopts binary cross entropy loss:226

LOE = − 1

N

∑
i

∑
j 6=i

∑
q

[cj,q · log(c∗i,j,q) + (1− cj,q) · log(1− c∗i,j,q)] (5)

L(θToM) = LGI + LOE (6)

Training Strategy. We find that it is hard for an agent to learn long-term planning from scratch.227

Therefore, we set the initialize episode length L and discount factor γ to a low value, forcing agents228

to learn short-term planning first. During training, the episode length and discount factor γ increase229

gradually, leading the agents to estimate the value on a longer horizon.230

Furthermore, we freeze the ToM net while the other parts of the model is updated through RL. The231

reason is that the ToM net infers the goals of others, and the policy network is continuously updated232

during RL training. Meanwhile, the output of ToM net is a part of the input to policy network. If we233

train them simultaneously, they are likely to influence each other in a nest loop. Therefore, we only234

collect the ToM inferred data into a batch during RL training. Once the batch is large enough, we235

stop RL and start ToM training to minimize ToM loss in Eq. 6.236
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4 Experiments237

We evaluate ToM2C in the challenging multi-sensor target coverage problem. Sensors need to238

cooperate with others to reach a maximum target coverage rate. We compare our method with 3239

state-of-the-art MARL methods: I2C [13], HiT-MAC [12], A2C [30], and a reference greedy search240

policy. We also conduct an ablation study to validate the contribution of ToM net and message sender.241

Finally, we show that our model can generalize to different size of agents and targets.242

4.1 Environment243
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Figure 3: An example of the target coverage envi-
ronment with obstacles.

The environment is modified based on the one244

used in HiT-MAC [12], and it inherits most of245

the characters. As is shown in Fig.3, it is a 2D en-246

vironment that simulates the real target coverage247

problem in directional sensor networks. Each248

sensor can only see the targets in the sector, if249

not blocked by any obstacle. There 2 types of250

target: destination-navigation and random walk-251

ing. The former one moves in the shortest path252

to reach a previously sampled destination. The253

latter one moves randomly at each time step. At254

the beginning of each episode, the location of255

sensors, targets and obstacles are randomly sam-256

pled. Besides, the targets type is also sampled257

according to a pre-defined probability.258

Observation Space. At each time step, the local observation oi is a set of agent-target pairs:259

(oi,1, ...oi,m). If target q is visible to agent i, then oi,q = (i, q, di,q, αi,q), where di,q is the distance260

and αi,q is the relative angle. If target q is not visible to i, then oi,q = (0, 0, 0, 0). Therefore,261

oi ∈ Rm×4.262

Action Space. The primitive action for a sensor is to stay or rotate +5/-5 degrees. For our method,263

the high level action is the chosen goals gi, which is a binary vector of length m. gi,q = 1 means the264

agent chooses target q as one of its goals. gi,q = 0 means not. Although the low-level executor can265

be trained by reinforcement learning (RL) as [12], we find a simple rule-based policy can also work266

well in most cases. Therefore we only train the high-level policy. In this way, other methods without267

a hierarchical structure are comparable with our method.268

Reward. Reward is the coverage rate of targets: r = 1
m

∑
q Iq , where Iq = 1 if q is covered by any269

sensor. If there is no target covered by sensors, we punish the team with a reward r = −0.1.270

4.2 Baselines271

We compare our methods with 4 baselines. HiT-MAC [12] is a hierarchical method that uses a272

coordinator to enhance cooperation. I2C [13] proposes a individual communication mechanism,273

which is also achieved by ToM2C. A2C [30] is a standard reinforcement learning algorithm. Here we274

employ A2C to train a single agent that selects the goals for all the sensors. Finally, we implement a275

heuristic search algorithm as a reference policy. This policy searches in one step for the primitive276

actions of all the sensors to minimize the sum of minimum angle distance of a target to a sensor.277

4.3 Results278

As fig.4(a) shows, ToM2C achieves the second highest reward (75) in the setting of 4 sensors and 5279

targets, only lower than the searching policy (80). The vanilla A2C shows a similar performance to280

random policy, indicating that the task is not trivial. The reward performance of HiT-MAC is around281

62, lower than the result presented in the original paper. This could be attributed to the addition of282

obstacles. I2C reaches a fair reward of 66, but we will show that such performance is still lower than283

our ablation models.284

Ablation Study. We conduct this study to evaluate the 2 key components of our model: ToM net and285

Message sender. The ToM2C-Comm model abandons communication, so the actor makes decisions286
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Figure 4: The learning curve of our method with baselines and reference policies. The learning-based
methods are all trained in environment with 4 sensors and 5 targets. (a) comparing ours with baselines;
(b) comparing ours with its ablations.
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Figure 5: Communication performance analysis of our method compared with other algorithms. (a)
comparison of the communication edges numbers; (b) comparison of the communication bandwidth.

only based on local observation and inferred goals of others. The ToM2C-ToM abandons ToM net, but287

keeps the Messages sender. However, as explained before, the local graph node feature is computed288

based on the ToM net output. To deal with this problem, we use the encoded observation Ej to289

replace the original node feature ui,j . In this way, the n local graphs degrades into one global graph,290

so the ToM2C-ToM model actually breaks the local communication mechanism. We show in fig.4(b)291

that if we abandon one of key components, the performance will drop. Specifically, ToM2C-Comm292

reaches 72, and ToM2C-ToM reaches 68, both higher than I2C. Considering that ToM2C-Comm293

outperforms ToM2C-ToM and ToM net is actually essential for communication, we argue that ToM294

net mainly contributes to our method.295

Communication Analysis. We compare our method with several candidates in regard of communi-296

cation expense. There are 2 metrics here: the number of communication edges and communication297

bandwidth. The latter metric considers both the count of edges and the length of a single message.298

There are 5 candidates here. FC refers to fully connected communication in ToM2C. ToM2C w/o299

CR refers to the ToM2C model without communication reduction. The communication in HiT-MAC300

is between the executors and the coordinator. As is shown in fig.5(a), ToM2C performs the least301

communication in regard of edge count, but this doesn’t fully demonstrate the advantage of ToM2C302

over other methods. In fig.5(b), the communication bandwidth of ToM2C, ToM2C without CR, and303

even FC is much lower than I2C and HiT-MAC. It is because in ToM2C the message is only the304

inferred goals, while I2C and HiT-MAC have to send the local observation. Therefore, the single305

message in ToM2C is much simpler than that of I2C and HiT-MAC. As a result, the communication306

cost of ToM2C is extremely less than existing methods.307

Scalability. We evaluate the scalability of our method to different number of sensors and targets.308

Note that the model is only trained in the setting of 4 sensors and 5 targets, so this could be regarded309
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Figure 6: Analyzing the scalability of our method in scenarios with different sizes of sensors and
targets. (a) n= 4, m is from 3 to 7; (b) m= 5, n is from 2 to 6

as zero-shot transfer. In fig.6(a), the number of sensors is fixed to 4, and in fig.6(b), the number of310

targets is fixed to 5. We also report the result of heuristic search because it is not learnt policy and has311

a good generalization in different settings. It is clear in the figures that the variation of coverage rate312

in ToM2C follows the trend of heuristic search when the difficulty of the setting changes. In this way,313

we show that ToM2C has rather stable generalization among different sizes of sensors and targets.314

5 Conclusion and Discussion315

In this work, we study the target-oriented multi-agent cooperation (ToMAC) problem. Inspired by316

the cognitive study in Theory of Mind (ToM), we propose an effective Target-orient Multi-agent317

Cooperation and Communication mechanism (ToM2C) for ToMAC. For each agent, ToM2C is318

composed of an observation encoder, ToM net, message sender, and decision-maker. The ToM net is319

designed for estimating the observation and inferring the goals (intentions) of others. It is also deeply320

used by the message sender and decision-making. Besides, an communication reduction method is321

proposed to further improve the efficiency of the communication. Empirical results demonstrated322

that our method can deal with challenging scenes and outperform the state-of-the-art MARL methods323

(I2C, HiT-MAC).324

Although impressive improvements have achieved, there is still a number of limitations of this work325

leaving for addressed by future works. 1) The model is only evaluated in a simulated scenario. But326

the environment we used contains most features that other applications, e.g. partial observation,327

team reward structure. And each component in the model is general. So we are confident to extend328

ToM2C in other application scenarios, e.g. cooperative searching in the future. 2) Besides, the329

communication reeducation method can also be further optimized, as the pseudo labels we generated330

for communication reduction are noisy in some cases.331

Broader Impact332

The target-oriented multi-agent cooperation problem widely exists in a lot of real-world applications.333

So a great number of robot tasks will benefit from our work, e.g. cooperatively searching for disaster334

victims, cleaning trash, scene reconstruction, actively capturing sports videos. They all will make335

our life more convenient and better. The use of ToM in multi-agent cooperation and communication336

will also promote the intersection of multi-agent systems and cognitive science, making them mutual337

benefit. But there is also the potential of being misused in the military field, e.g. using directional338

radars to monitor missiles/aircraft or controlling unmanned vehicles to attacks targets. If our method339

fails, some targets in the corner would be neglected by the agents.340
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