
Rethinking and Improving Multi-task Learning
for End-to-end Speech Translation

Yuhao Zhang1, Chen Xu1, Bei Li1, Hao Chen1,
Tong Xiao1,2∗, Chunliang Zhang1,2 and Jingbo Zhu1,2

1School of Computer Science and Engineering,
Northeastern University, Shenyang, China

2NiuTrans Research, Shenyang, China
yoohao.zhang@gmail.com, {xuchenneu,libei_neu}@outlook.com

{xiaotong, zhangcl, zhujingbo}@mail.neu.edu.cn

Abstract

Significant improvements in end-to-end speech
translation (ST) have been achieved through
the application of multi-task learning. How-
ever, the extent to which auxiliary tasks are
highly consistent with the ST task, and how
much this approach truly helps, have not been
thoroughly studied. In this paper, we investi-
gate the consistency between different tasks,
considering different times and modules. We
find that the textual encoder primarily facili-
tates cross-modal conversion, but the presence
of noise in speech impedes the consistency be-
tween text and speech representations. Further-
more, we propose an improved multi-task learn-
ing (IMTL) approach for the ST task, which
bridges the modal gap by mitigating the differ-
ence in length and representation. We conduct
experiments on the MuST-C dataset. The re-
sults demonstrate that our method attains state-
of-the-art results. Moreover, when additional
data is used, we achieve the new SOTA result
on MuST-C English to Spanish task with 20.8%
of the training time required by the current
SOTA method.

1 Introduction

End-to-end (E2E) models have made significant
strides in the artificial intelligence realm, especially
in speech translation (ST). These models have low
latency and less error propagation by providing di-
rect translations from speech inputs (Bérard et al.,
2016; Duong et al., 2016). This approach contrasts
with traditional pipeline models that rely on sepa-
rate automatic speech recognition (ASR) and ma-
chine translation (MT) systems. However, the E2E
model’s single-model design poses new challenges
due to its need for cross-modal and cross-lingual
transfers (Zheng et al., 2021; Xu et al., 2021). To
address this, recent studies have utilized multi-task
learning (MTL), leveraging cross-modal or cross-
lingual training objectives for pre-training or joint

∗Corresponding author.

Acoustic
encoder

Textual
encoder

Decoder

Speech Source text Target text

ASR/MT/
ST loss

Auxiliary loss

Figure 1: Multi-task training architecture for Speech
translation. The dashed line part will be removed in
fine-tune stage.

training (Tang et al., 2021; Ye et al., 2021; Dong
et al., 2021b; Han et al., 2021). This technique as-
sures good convergence of the models and empha-
sizes the importance of the auxiliary loss, offering
a brand-new perspective for further advancements
in E2E ST (Tang et al., 2022).

However, further exploration is necessary to de-
termine how and to what extent these auxiliary
tasks aid the final ST model. Notably, not all aux-
iliary tasks in the fine-tuning stage are beneficial.
This inconsistency arises because MTL is typically
viewed as a multi-objective optimization problem,
often resulting in training trade-offs when objec-
tives conflict (Désidéri, 2012). The ideal MTL
outcome is to achieve Pareto optimality (Sener and
Koltun, 2018), indicating solutions are superior to
any alternatives. Since MTL does not ensure op-
timal performance for the ST task, fine-tuning is
crucial to overcome this shortcoming. Some stud-
ies even underscore a critical conflict between the
ST task and ASR and MT tasks (Xu et al., 2021;
Tang et al., 2022), necessitating a fine-tuning strat-
egy. So answering these questions is crucial to
designing an optimal MTL strategy for the ST task.

In this paper, we rethink task consistency in MTL
and introduce a gradient-based consistency metric,
which denotes the consistency of the gradient direc-
tion between the ST task and other auxiliary tasks.
Our analysis shows that 1) ASR aids the acoustic



encoder and MT facilitates the textual encoder in
audio-to-text transfer, 2) length inconsistency hin-
ders aligning the representations of the two modal-
ities, 3) disparity between noisy speech features
and clean text embeddings as considerable obsta-
cles, and 4) the timing and degree of task influence
exhibit significant variation.

Inspired by the aforementioned observations, we
relax the ASR task that only uses it to help the
acoustic encoder. We propose the Looking-Back
Mechanism (LBM) to overcome length consistency.
It can significantly shrink the speech length with-
out information loss. To bridge the modality gap,
we introduce the Local-to-Global (L2G) training
strategy. By incorporating speech-like noise into
the text and utilizing an L2G extractor, we enhance
contextual information at each layer. This method
effectively guides the interaction between audio
and text sequences and aligns with audio process-
ing requirements. We further propose a task-norm-
based weight decrease method to speed up train-
ing, adjusting task weights based on auxiliary task
influence and timing, thus avoiding unnecessary
training costs.

We test our method on MuST-C 8 language data-
sets. The results show our method can achieve
comparable performance with SOTA work without
fine-tuning on ST task. We then set the new SOTA
by utilizing the knowledge distillation method (Liu
et al., 2019). With additional data, we achieve
comparable performance with that of using only
12.5% ∼ 33.3% training cost compared with the
SOTA work 1.

2 Task Consistency Quantification

In this section we investigate the consistency issue
of multi-task learning on three tasks. We randomly
sample n samples as analysis set D = {(s,x,y)}.
Here s,x,y denote the speech, transcription and
translation sequences respectively. We then build
the ASR set DASR = {(s,x)} and MT set DMT =
{(x,y)}. By inputting the same data (s,x,y) into
the model, we observe that different training tasks
yield distinct parameter gradients. The losses of
different tasks are given by:

LST = −
|y|∑
i

log p(yi|y1:i−1, s) (1)

1Our code is available at https://github.com/xiaozhang521/
IMTL.

LASR = −
|x|∑
i

log p(xi|x1:i−1, s) (2)

LMT = −
|y|∑
i

log p(yi|y1:i−1,x) (3)

where | · | denotes length of the sequence. The
model contains three modules: the acoustic en-
coder (A-Enc), the textual encoder (T-Enc), and
the decoder. The MT task shares the T-Enc and the
decoder with the ST while the ASR shares all pa-
rameters. Thus we can quantify the consistency of
different tasks from the perspective of the gradient.

We employ cosine similarity as the metric for
gradient direction, where higher values indicate
stronger consistency between tasks within a sin-
gle model. To calculate the similarity, we flatten
the gradient matrix into a vector, providing a more
accurate assessment of task consistency, despite
yielding lower values. We focus on evaluating the
gradient of the feed-forward (FFN) sub-layer and
self-attention (ATTEN) sub-layer as representative
parameters of the entire model. Our backbone
model is the robust ConST (Ye et al., 2022). In
our experiments, we set n = 200. We sample five
times and use average values to obtain solid results.

2.1 Consistency in Different Modules
The consistency between the ST task and the other
two tasks (ASR and MT) within these modules is
shown in Figure 2. Although the ASR task shares
all the parameters with the ST task, only the A-Enc
exhibits high consistency with the ST task. This
indicates that modeling speech in the A-Enc serves
the same purpose for both ASR and ST tasks, which
aligns with the conclusions of Anastasopoulos and
Chiang (2018) and Bahar et al. (2019). However,
the consistency between the two tasks decreases
sharply after the textual modal processing in the
T-Enc and decoder. The decoder’s divergence is
expected due to generating texts in different lan-
guages. The T-Enc converts the acoustic feature
to a textual feature for both tasks, but Figure 2 re-
veals lower consistency. It suggests a specific need
for semantic-level representation in the ST task to
achieve the cross-lingual goal.

The decoder exhibits higher consistency com-
pared to the encoder for the MT task, suggesting
that the behavior of the ST decoder leans towards
cross-language processing. However, the T-Enc
still exhibits low consistency. Taking into account
the above analysis on the ASR task, the T-Enc plays

https://github.com/xiaozhang521/IMTL
https://github.com/xiaozhang521/IMTL
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Figure 2: Consistency of different tasks in different
modules.

a unique role in MTL and does not align closely
with either of the other two tasks (Xu et al., 2021).
Therefore, our subsequent analysis will focus on
the T-Enc.

2.2 Impact of T-Enc

We conducted a comparison of the consistency be-
tween the ST task and the other two tasks within
each layer of the T-Enc. Figure 3 illustrates that the
bottom layer of the T-Enc demonstrates a stronger
resemblance to the ASR task. The discrepancy
arises as the feature extraction process diverges fur-
ther between the ASR and ST tasks. This suggests
that the cross-modal transformation of A-Enc is not
achieved, then the T-Enc begins extracting textual
information which is required by ST to adequately
address the cross-lingual objective. We also no-
ticed that the ST task gradually aligns with the MT
task, but the consistency between them is still low.
This raises the question of whether the ASR task
leads to insufficient alignment between speech and
text in the T-Enc.

We conducted further investigations into the im-
pact of the ASR task on the T-Enc. We introduced
two widely used ASR losses: 1) the Connectionist
Temporal Classification (CTC) loss (Graves et al.,
2006) after the A-Enc, and 2) the cross-entropy
(CE) loss after the decoder. The former updates
only the A-Enc (Bahar et al., 2019), while the lat-
ter updates the entire model. By exploring various
MTL combinations, the changes in consistency be-
tween the MT and ST tasks are depicted in Fig-
ure 4. We discovered that as the ASR training be-
comes more intensive, the decrease in consistency
between the MT and ST tasks becomes more pro-
nounced at the top layers. Although increasing the
ASR training workload burdens the T-Enc, research
indicates that the ASR task is crucial in helping the
acoustic encoder model speech (Le et al., 2023).
We find the impact of the ASR task on the T-Enc is
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Figure 3: Consistency of different tasks in different
layer of T-Enc.

limited. Thus we further investigate other factors
that impede the consistency between the MT and
ST tasks.

2.3 Discrepancy between MT and ST

We focus on two main differences between speech
and text features: length and representation space.
The length disparity arises from modeling granu-
larity (frames for speech while sub-words for text)
(Xu et al., 2023b). The representation space dis-
crepancy is due to acoustic features extracted by
the acoustic encoder lacking text-based information
(Li et al., 2021; Fang et al., 2022). We implement
the shrinking method (Liu et al., 2020; Dong et al.,
2021a) and contrastive learning (CL) loss (Ye et al.,
2022; Zhang et al., 2023) at the top of T-Enc re-
spectively to investigate the two issues. we employ
"Length" and "Rep" to represent the shrinking and
CL methods respectively in Figure 5 and 6.

To remove the influence of the ASR task, the
experiments are conducted with the MT and ST
tasks. Figure 5 illustrates the shrinking method
effectively increases consistency in the decoder,
as a more compact sequence is easier to extract
information from during cross-attention. However,
this approach also results in the loss of original
information, leading to a significant degradation in
the consistency between the two tasks in the T-Enc.
On the other hand, when incorporating additional
alignment loss, the changes in consistency within
both modules are minimal.

To explore why CL loss does not work, we con-
duct an in-depth analysis from the perspective of
information entropy (IE). Higher entropy implies
greater outcome uncertainty. We compute the IE
of each T-Enc’s self-attention weights, as shown in
Figure 6. The MT task shows lower IE compared
to the ST task, indicating reduced noise sources in
its representation. When we shrink the length of
the speech, the IE is noticeably reduced. This can
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Figure 5: Consistency of different modules.

explain why the decoder exhibits higher gradient
consistency. But if we use the CL loss, it does not
have a impact on the IE. The noisy speech sequence
makes it difficult to learn more textual information.
This finding can explain the CL on sentence-level
representations performs worse than token-level ap-
proaches (Ye et al., 2022). However, when the CL
loss is introduced based on the compressed speech,
we observe that additional information is learned in
the middle layers. Thus we can find that shrinking
is necessary and information gap between ST and
MT tasks still needs to be mitigated.

2.4 Time of Taking Effect

We have identified the discrepancies between dif-
ferent tasks, but the interplay of these tasks dur-
ing the training process has not been thoroughly
studied. Figure 7 illustrates the changes in con-
sistency among the different modules throughout
training. We observe that the assistance provided
by the ASR task primarily occurs at the early stage
and becomes less significant later on. On the other
hand, the impact of the MT task on the ST task
is more complex, with a gradual decrease in con-
sistency over time, indicating slower assistance to
the ST task. Additionally, the behaviors of the
T-Enc and decoder differ significantly. These ob-
servations highlight the diversity in the timing and
effects of different tasks, underscoring the need for
a careful strategy to optimize their training effects
and timing.
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Figure 7: Changes of consistency along training epochs.

3 Method

We propose the improved MTL (called IMTL)
method from three perspectives: 1) denoising the
ST sequence, 2) adding noising to MT, and 3) and
improving training efficiency. The overall training
objective is:

L = LST + waLASR + wmLMT + wcLCL (4)

The CL denotes contrastive learning and we set the
wc to 0.3. Based on the above analysis, we use the
CTC loss as the ASR task.

3.1 Stable Shrinking
From the previous analysis, we find the de-
coder benefits from the decrease in speech length.
Though Liu et al. (2020) and Dong et al. (2021a)
have proposed methods to figure the issue out, there
are two main problems still need to be improved.

Instability Once tokens are removed, the gradi-
ent from the decoder can not guide the acoustic
encoder. Especially when the prediction of speech
is not accurate at the earlier training stage, this will
cause the unstable training.

Information loss If tokens are wrongly removed
by method, information loss will happen. The
blank token also contains pause information which
can help the model understand the sentence.

To address the aforementioned issues, we pro-
pose the Looking-back mechanism (LBM), as de-
picted in Figure 8. Given a sequence of speech
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features s = (s1, ..., sn), we first calculate the
probabilities of CTC paths and extract the posi-
tion with the highest value as the decoding result
T = (t1, ..., tn). Since T is generated through
monotonic decoding, adjacent positions may con-
tain repeated tokens in the result. For each repeated
segment in the sequence, we select the token with
the highest confidence within that segment to form
a new unique result T ′ = (t′1, ..., t

′
m). Additionally,

the corresponding new features s′ = (s′1, ..., s
′
m)

can be generated. Note that we do not filter out the
blank positions to prevent error propagation. There-
fore, the key to resolving the mentioned problems
lies in effectively transferring all the information
from s to the compressed features s′. The LBM
method utilizes features from s′ to retrospectively
retrieve information from s and extract the missing
information.

Formally, for an arbitrary feature s′i in s′, we
can determine its index j in s based on t′i and T .
We set a boundary b for looking back, ensuring
that [j − b, j + b] contains all the repeated tokens.
We construct the search matrix A by including all
features from max(1, j − b) to min(j + b, n), ex-
cluding the feature at index j. We then search and
aggregate information in A using the following
formula:

s̃i = Softmax
(
R(s′i) · R(A)T

)
·A (5)

where the R denotes the linear transfer, Softmax()
normalizes the correlation between s′i and A to
0 ∼ 1. We final use the fusion module to integrate
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Figure 9: Encoder of Local-to-global (L2G) training.
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extractor. The light pink parts are shared.

the s′i and s̃i:

sfi = FFN
(
Norm(s′i + s̃i)

)
(6)

here Norm() denotes the normalization layer, and
FFN() denotes a feed-forward network used to fil-
ter redundant information. The LBM method can
automatically learn the weights of each repeated
frame, ensuring that the obtained sfi does not in-
troduce additional noise. Even when the length is
significantly reduced, the LBM can preserve all the
original information and avoid gradient truncation,
thereby promoting stable training.

3.2 Local-to-global Training

We have observed an information difference in rep-
resentation between the MT and ST tasks in the
T-Enc. The main reason is that the speech fea-
ture undergoes high-level abstraction by the acous-
tic encoder, while the text embedding remains un-
processed and devoid of any noise. This inherent
difference causes the model to classify these two
tasks differently, resulting in inconsistent gradi-
ents. Wang et al. (2020b) injects some audio-like
tokens into the MT sequence, while we propose the
local-to-global (L2G) training strategy to bridge
the information gap.

We first introduce noise to the clean text embed-
ding. Taking into account the characteristics of
repeated information and blank positions in speech
sequences, we randomly add blanks or duplicate
certain tokens with a probability of 0.2 for each
position. Our goal is to facilitate the learning of
consistent representations for the two tasks. To



Models FT En-De En-Es En-Fr En-It En-Nl En-Pt En-Ro En-Ru Avg.

Fairseq ST† (Wang et al., 2020a) - 22.7 27.2 32.9 22.7 27.3 28.1 21.9 15.3 24.8
Revisit ST† (Zhang et al., 2022a) ✓ 23.0 28.0 33.5 23.5 27.1 28.2 23.0 15.6 25.2
STEMM (Fang et al., 2022) ✓ 25.6 30.3 36.1 25.6 30.1 31.0 24.3 17.1 27.5
ConST (Ye et al., 2022) ✓ 25.7 30.4 36.8 26.3 30.6 32.0 24.8 17.3 28.0
M3ST (Cheng et al., 2022) ✓ 26.4 31.0 37.2 26.6 30.9 32.8 25.4 18.3 28.6
CMOT (Zhou et al., 2023) ✓ 27.0 31.1 37.3 26.9 31.2 32.7 25.3 17.9 28.7
CRESS (Fang and Feng, 2023) ✓ 27.2 31.9 37.8 27.3 31.6 33.0 25.9 18.7 29.2

Baseline ✓ 25.8 30.4 36.7 26.1 30.5 32.0 24.7 17.3 28.0
IMTL - 26.9 31.5 37.7 27.3 31.3 33.0 25.5 18.3 28.9
IMTL-KD - 27.5 31.8 38.2 27.7 32.0 33.4 25.9 18.6 29.4

Table 1: Performance on different data set. FT denotes the model needs fine-tuning stage. † means the work does
not use the unlabeled speech data.

Models FT En-De En-Fr En-Es

ConST (Ye et al., 2022) ✓ 28.3 38.3 32.0
STPT (Tang et al., 2022) ✓ - 39.7 33.1
M3ST (Cheng et al., 2022) ✓ 29.3 38.5 32.4
CMOT (Zhou et al., 2023) ✓ 29.0 39.5 32.8
CRESS (Fang and Feng, 2023) ✓ 29.4 40.1 33.2
SpeechUT (Zhang et al., 2022b) ✓ 30.1 41.4 33.6

Baseline ✓ 28.4 39.1 32.4
IMTL - 29.3 40.6 33.4
IMTL-KD - 29.7 41.1 33.9

Table 2: Performance on different data set with addi-
tional training data.

achieve this, we propose the L2G feature extrac-
tor. We aim to use the interaction window size to
limit the positions from which information is ex-
tracted. Convolution networks are well-suited for
this purpose, and we implement the L2G extractor
using:

x = x+Conv(Norm(x)) (7)

where Conv() denotes the depthwise separable con-
volution (Chollet, 2016). We add the extractor in
front of each Transformer layer in T-Enc. This ex-
tractor can learn relevant information from a given
window c, which is determined by the convolution
kernel size. Unlike the self-attention mechanism
that learns from the entire sequence, this window
focuses on a specific region, aiding the two tasks in
learning the same information. However, it also in-
troduces additional information for MT task, which
necessitates the text’s ability to enhance its denois-
ing capabilities. Finally, we utilize the consistency
loss to align the representations extracted by the
extractor and attention mechanisms.

The study conducted by Xu et al. (2021) demon-
strates that the MT task requires a more global
understanding to form a semantic-level representa-
tion, whereas the acoustic task primarily relies on

local information. To address this, we propose an
increasing window approach to assist the acoustic
representation in capturing global textual informa-
tion. Specifically, we introduce an increasing stride
for the convolution field, where each layer’s field
increases by d. Therefore, the kernel size of the
i-th T-Enc layer is c+ d ∗ i.

3.3 MTL Based on Task Impact

Our previous analysis reveals that the impact of
different tasks and modules varies over time. This
insight has inspired us to develop a new training
strategy that gradually eliminates the auxiliary task,
rather than relying on an additional fine-tuning
stage. This approach simplifies and streamlines
the entire training process. To achieve this objec-
tive, we need to determine whether the auxiliary
task is beneficial at each training step and assess
its level of impact. We can examine the change in
task consistency to address the first question. When
the task consistency stabilizes and different tasks
reach a balanced state, we can reduce the training
weight assigned to the auxiliary task. However, to
effectively decrease the weight, we must quantify
the influence of the auxiliary task.

In multi-task learning, the use of norms has been
extensively studied (Argyriou et al., 2008; Maurer
et al., 2013). Norms can evaluate the sparsity of
a matrix and are commonly employed to enhance
the information in network parameters, thereby im-
proving the effectiveness of MTL. Consequently,
gradient norms have been successfully utilized in
computer vision (Chen et al., 2018) to balance the
impact of different tasks. Taking inspiration from
this, we propose a task impact metric for auxiliary
tasks based on gradient norms. We sample k in-
stances from the training set to create D′, which we
then feed into the model to obtain gradients for the



Models En-De Length En-Fr Length
ratio(%) ratio(%)

Baseline 25.8 100.00 36.7 100.00
Shrinking 25.7 53.97 36.8 57.72

+LBM 26.3 55.67 37.2 60.13

Table 3: Ablation study on shrinking method.

various tasks. The task impact m of auxiliary task
i can be calculated using the following formula:

mi =
1

k

∑
j∈D′

(
||δji ||2

||δjst + δji ||2
) (8)

where δji is the ATTEN (self-attention sub-layer)
gradient of data j for task i, || · ||2 denotes the 2-
norm of the matrix. The higher m shows updating
the gradient will have a greater impact on the ST
task. Containing the change of different tasks, we
give the weight of the different task at t-th update
as follows:

wt
i = wt−1

i (mi)
u/s (9)

where u represents the current training step, and s
denotes the smoothing coefficient. The impact of
these two hyper-parameters can be likened to tem-
perature coefficients and we can set appropriate u
and s values to ensure that changes in task weights
correspond to changes in task consistency. Since
the weight between T-Enc and Decoder differs, we
select the maximum value as w for the MT task.
The design of w takes into account the consistency
and impact of different tasks, thus avoiding un-
necessary computational resources when auxiliary
tasks are not beneficial. Furthermore, this training
strategy allows us to remove the other task in time
and achieve optimal performance without the need
for tedious fine-tuning stages.

4 Experiments

4.1 Data
We conducted experiments on the multilingual
MuST-C dataset (Di Gangi et al., 2019). The
dataset consists of eight language pairs: English
(En) to German (De), French (Fr), Spanish (Es), Ro-
manian (Ro), Russian (Ru), Italian (It), Portuguese
(Pt), and Dutch (Nl). For the En-De, En-Fr, and
En-Es MT tasks, we collected external training
data from WMT16, WMT14, and WMT13 respec-
tively. As additional ASR data, we utilized the
LibriSpeech (Panayotov et al., 2015) clean-100

Models En-De En-Fr

Baseline 25.8 36.7
+Fixed window 26.2 37.3
+L2G 26.4 37.5

LBM 26.3 37.2
+Fixed window 26.6 37.5
+L2G 26.9 37.7

Table 4: Ablation study on L2G training.

dataset. The Dev set was used for validation, and
tst-COMMON set served as the test set for all tasks.
SentencePiece2 segmentation with a vocabulary
size of 10,000 was applied to all training datasets.
The detail of the data is shown in Appendix A.

4.2 Model settings

We used the Fairseq toolkit (Ott et al., 2019; Wang
et al., 2020a) to implement our methods. The
Transformer-BASE configurations were cho-
sen as the baseline settings, with approximately
150M parameters. We reproduced the ConST
method to establish a strong baseline (Ye et al.,
2022). The acoustic encoder was initialized with
the audio-only pre-trained HuBert (Hsu et al.,
2021). In the presence of additional data, we fol-
lowed the setup of SpeechUT (Zhang et al., 2022b),
which utilized a hidden size of 768, 12 attention
heads, and a 3072 FFN dimension. Each training
batch contained 20M audio frames. We set the
training steps to 80K. When using additional MT
data, the data size for different tasks becomes ex-
tremely unbalanced. Therefore, we first trained the
MT task for 15 epochs with 8192 tokens per batch
and then sampled 3 million sentences as MT data
for MTL. We change the updated frequency to 4
and the training step to 40K. The kernel size c and
the increased stride d for the L2G extractor was set
to 5 and 3, respectively. The value of s was set to
5000 for the ASR task and 10,000 for the MT task.
The initial weights of ASR and MT tasks are 1.0.
We updated the task weight every 5000 training
steps and removed the task when the weight fell
below 0.1. During inference, we average the last
10 checkpoints for evaluation. The other decoding
settings are the same as those in CRESS (Fang and
Feng, 2023). We use ScareBLEU (Post, 2018) as
the metric for ST performance. The experiments
were conducted on eight NVIDIA GeForce RTX
3090 GPUs.

2https://github.com/google/sentencepiece
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4.3 Results

The comparison of our IMTL and other works un-
der the circumstance of no additional data is shown
in Table 1. We find that the work utilizing the pre-
training and fine-tuning paradigm achieves a sig-
nificant improvement compared to the vanilla train-
ing strategy. M3ST even designs a two-stage fine-
tuning method. However, few works have explored
the extent of improvement gained by pre-training
(Le et al., 2023), which is a high-cost method. Our
IMTL, which dynamically decreases the weight of
the auxiliary task and does not rely on fine-tuning,
still achieves state-of-the-art (SOTA) performance.
This proves that our method fixes the consistency
during multi-task learning and further improves
training efficiency. We have noticed that the newly
proposed SOTA work implements teacher-forcing
to bridge the modal gap, known as the knowledge
distillation (KD) method. We further incorporate
the KD method (Liu et al., 2019; Xu et al., 2021)
into our IMTL, resulting in IMTL-KD. This demon-
strates that our method is complementary to the KD
method and achieves a new SOTA performance.

We also compare our method with other works
that utilize extra training data. The SOTA work
SpeechUT aims to cover all speech-to-text tasks,
thus it requires a significant amount of training
resources (pre-training for 3 days with 32 GPUs)
and a complicated training strategy. In contrast, our
model achieves comparable or better performance
with much fewer training resources (e.g., 1.5 days
with 8 GPUs for the En-De task) and does not
require fine-tuning. The building process is much
simpler and more efficient.

4.4 Effect of LBM

We compare the effects of the shrinking (Liu et al.,
2020; Dong et al., 2021a) and LBM methods in
Table 3. Directly using the shrinking method does

Models Training time
En-De En-Fr En-Es

SpeechUT 96 Gd + 80k tuning steps

IMTL 12 Gd 32 Gd 20Gd

Table 5: A comparison of training cost with additional
MT data. 1 Gd indicates that using one GPU training
one day. The SpeechUT and IMTL use the V100 and
3090 GPU respectively.

not benefit the model, although it significantly re-
duces the length of the sequence. However, after
applying the LBM method, the model achieves a
0.5 BLEU improvement while maintaining a low
length ratio. This phenomenon demonstrates that
shrinking alone is not stable, and the loss of infor-
mation can lead to performance degradation. We
find the average length of En-De audio is about two
times the length of En-Fr audio, thus the shrinking
effect is better.

4.5 Effect of L2G
We conducted an ablation study on L2G training,
and the results are presented in Table 4. It shows
that adding noise and constraining the field of in-
formation interaction significantly improve the per-
formance compared to the baseline. Furthermore,
the method still performs well based on the LBM,
which confirms the conclusion that compressed se-
quences can learn additional information. When we
apply the local-to-global strategy, the performance
gains further improvement, which demonstrates
that increasing the field size is more suitable for
the goal of modal transformation.

We also analyzed the changes in information
entropy (IE) when applying different methods in
Figure 10. We observed that the IE of the first
MT layer is the highest since we add some noise
to the embedding. Compared to the fixed method,
the L2G method can learn more information in
the middle layers of the model, indicating that a
fixed size hinders the extraction of more global
information. After employing the KD method, the
IEs of all layers become more consistent with MT,
except for the first noisy layer.

4.6 Change of Task Weight
We display the changes in task weights in Fig-
ure 10. The weight of the ASR task decreases
rapidly, while the weight of the MT task gradually
decreases, slowly eliminating its impact on the ST
task. This also aligns with the observed pattern of



gradient consistency in our analysis.
We compare the training time in Table 5 and find

that our method requires about 12.5% ∼ 33.3% of
the training cost of SpeechUT on three MuST-C
tasks. Additionally, our method does not require
alignment with the fine-tuning stage on the ST task.
This demonstrates the efficiency of our method.

5 Related Work

E2E ST has gained attention for its advantages over
cascade systems in terms of reduced latency and
error propagation (Bérard et al., 2016; Duong et al.,
2016; Weiss et al., 2017; Xu et al., 2023a). How-
ever, two main challenges hinder the adoption of
E2E ST: 1) limited ST training data and 2) difficul-
ties in modeling the modality gap. To address these
challenges, pre-training strategies have emerged,
including audio-only self-learning (Baevski et al.,
2020; Hsu et al., 2021), joint audio-transcription en-
coding (Ao et al., 2022; Zhang et al., 2022b; Chen
et al., 2022), and combining MT and ASR data
for pre-training (Wang et al., 2020c; Zheng et al.,
2021). These approaches have shown significant
improvements in ST performance.

Pre-training methods are also combined with
multi-stage and multi-task strategies. The multi-
stage method involves pre-training all modules
with auxiliary tasks, followed by integration and
fine-tuning for the ST task (Xu et al., 2021; Li et al.,
2021; Zhang et al., 2023). On the other hand, multi-
task training utilizes multiple training objectives
within a single model, eventually fine-tuning with
the ST loss (Wang et al., 2020b; Le et al., 2020; Vy-
dana et al., 2021; Tang et al., 2021; Ye et al., 2021).
While most SOTA methods employ the pre-training
and fine-tuning paradigm, few studies have inves-
tigated the impact of other tasks on boosting the
ST task, considering the time-consuming nature of
pre-training. Tang et al. (2022) provided a simple
analysis that showed gradient interference is not
serious and the effectiveness of MTL. In this paper,
we conduct a comprehensive experiment to explore
the impact and time efficiency of other tasks.

Mitigating differences in representation and ad-
dressing variations in sequence lengths are two
ways used to bridge the modality gap between
text and speech. Some work proposes the use
of adapters to reduce differences in pre-trained
modules (Bahar et al., 2019; Li et al., 2021; Xu
et al., 2021). Contrastive learning (Ye et al., 2022;
Zhang et al., 2023) and knowledge distillation tech-

niques are also employed to achieve this objective
(Fang et al., 2022; Zhou et al., 2023; Fang and
Feng, 2023). Furthermore, the mixing-up of two
modal representations has been found to be effec-
tive (Cheng et al., 2022). The inclusion of blank
tokens (Wang et al., 2020b; Zhang et al., 2023) can
improve denoising capabilities. To address length
inconsistencies, shrinking based on ASR prediction
or cluster methods have been utilized (Dong et al.,
2021a; Zhang et al., 2022b).

6 Conclusion

Most advanced ST methods heavily rely on multi-
task learning, but few studies focus on the rela-
tionship between auxiliary tasks and the ST task
itself. In this study, we design a gradient consis-
tency metric to analyze the impact of other tasks
on the ST task during the multi-task learning pro-
cess. Based on our analysis, we propose improved
methods that address three key aspects: length, rep-
resentation, and training efficiency. Experimental
results on the MuST-C dataset demonstrate that our
approach achieves state-of-the-art performance and
significantly improves training efficiency.
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Limitations

There are some limitations that our work has not
figured out. The analysis is mainly carried out on
the MuST-C dataset, where the training data size
is not large. We did not apply the state-of-the-
art knowledge distillation (KD) method to further
improve performance. The effect of knowledge
distillation based on IMTL has not been sufficiently
investigated.
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Appendix

A Data Details

We conducted experiments on the multilingual
MuST-C dataset (Di Gangi et al., 2019). The de-
tail of the data is shown in Table 6. The detail of
additional data is shown in Table 7.

Language Hours(h) Sentence(K)

En-De 408 234
En-Es 504 270
En-Fr 492 280
En-It 465 258
En-Nl 442 253
En-Pt 385 211
En-Ro 432 240
En-Ru 489 207

Table 6: Training data size of the MuST-C 8 languages.

Dateset Language Sentence

WMT16 En-De 3.9M
WMT13 En-Es 14.2M
WMT14 En-Fr 31.2M
LibriSpeeh 100h En 28.5K

Table 7: Training data size of additional MT and ASR
data.

B Contrastive Loss

In this paragraph, we introduce the notation and
define the loss function for contrastive training. We
start by defining two outputs: A(s) represents the
output of the ST encoder when given the speech
input s, and M(x) represents the output of the pre-
trained text encoder when given the transcription x.
We then consider a set of training samples denoted
as (si, xi).

The loss function for contrastive training, de-
noted as LCL, is defined as follows:

LCL = −
∑

(si,xi)

log
eπ(A(si),M(xi))/τ∑

xj :j ̸=i e
π(A(si),M(xj))/τ

(10)
In this equation, π(·, ·) is a function that com-

putes the similarity between the input vectors. For
our purposes, we choose the cosine function as
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Figure 11: PPL of Dev set during training.

π(·, ·) and apply average pooling to the two se-
quence representations. The variable τ is a scaler
that controls the sharpness of the function output,
and in this case, we set τ to 0.1.

For each speech input si, we have its correspond-
ing labeled transcription xi, which forms a positive
sample (si, xi). Additionally, we utilize transcrip-
tions other than xi (denoted as xj for j ̸= i) to
create negative samples.

C Information Entropy

Information entropy is a concept from informa-
tion theory that measures the average amount of
information contained in a set of data or the un-
certainty associated with the data. In the context
of information theory, entropy is calculated using
the probabilities of different outcomes or events
occurring within a system. The higher the entropy,
the greater the uncertainty or lack of information
about the outcomes. Conversely, lower entropy
indicates a higher degree of predictability or knowl-
edge about the outcomes. The formula is given
by:

H(X) = −
∑

p(x) ∗ log2(p(x)) (11)

where H(X) represents the entropy of a random
variable X , P (x) is the probability of each possible
outcome x, and the sum is taken over all possible
outcomes.

D Coverage Speed

Figure 11 shows the coverage speeds of the base-
line and our IMTL. We can find the IMTL is better
in terms of convergence speed and effect.

E Training Speed

There are mainly three tasks (ASR, MT, and ST)
during the training strategy. Our Improved Multi-
Task Learning (IMTL) algorithm dynamically ad-
justs the training weights assigned to the auxiliary

Training task(s) Speed (Seconds/Epoch)

ST, MT, ASR ∼1187
ST, MT ∼936
ST ∼675

Table 8: Training data size of additional MT and ASR
data.

ASR and MT tasks. Specifically, any auxiliary task
whose training weight diminishes below a thresh-
old of 0.1 will be effectively halted to optimize the
training process. As a bonus, subsequent training
phases are computationally more efficient than the
standard approach, given that both the forward and
backward computations are integrated components
of the overall training pipeline. Table 8 shows a
rough estimate of the training speed of our IMTL
approach on the MuST-C dataset with different
training tasks.


