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Abstract
Current directed graph embedding methods build
upon undirected techniques but often inadequately
capture directed edge information, leading to
challenges such as: (1) Suboptimal represen-
tations for nodes with low in/out-degrees, due
to the insufficient neighbor interactions; (2) Lim-
ited inductive ability for representing new nodes
post-training; (3) Narrow generalizability, as
training is overly coupled with specific tasks.
In response, we propose DUPLEX, an induc-
tive framework for complex embeddings of di-
rected graphs. It (1) leverages Hermitian adja-
cency matrix decomposition for comprehensive
neighbor integration, (2) employs a dual GAT
encoder for directional neighbor modeling, and
(3) features two parameter-free decoders to de-
couple training from particular tasks. DUPLEX
outperforms state-of-the-art models, especially
for nodes with sparse connectivity, and demon-
strates robust inductive capability and adaptabil-
ity across various tasks. The code is available at
https://github.com/alipay/DUPLEX.

1. Introduction
Graphs, as a powerful and versatile data structure, have
cemented their importance across a myriad of domains, in-
cluding social science (Hu et al., 2017), recommendation
systems (Wu et al., 2022), bioinformatics (Yue et al., 2020),
traffic prediction (Zheng et al., 2020), financial and risk
analysis (Yang et al., 2021; Yu et al., 2022). At the heart of
graph analytics lies the concept of graph embedding, which
seeks to encode complex, high-dimensional graph structures
into compact, low-dimensional vector spaces. These repre-
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Figure 1. (a) Many nodes in real digraphs have zero in/out-degree.
(b) Separating in/out-degree yields more low-degree nodes com-
pared to the total degree that disregards direction. (c) Lack of
in-neighbors hinders the dual embedding methods in capturing
node c’s source role.

sentations are then applied to a variety of predictive tasks,
such as link prediction and node classification. While the
research on graph embeddings has achieved notable success,
the primary focus has been on undirected graphs, which
often fail to capture the intricate directional relationships
inherent in many real-world networks.

Take, for example, the realm of social media, where users
(nodes) follow one another, creating a digraph (directed
graph) of influence and information flow. In this scenario,
a directed edge from user u to user v implies that user u
follows user v, but not necessarily vice versa. The direction-
ality of these edges encodes significant information about
user behavior, influence patterns, and community structure.
The need for digraph embedding (DGE) methods that can
proficiently encode such asymmetrical structures is evident,
yet the development of an effective DGE framework must
also navigate several key desiderata to ensure practicality
and utility:

d1. Performance Across Various Node Degrees: Social
networks are characterized by a wide disparity in user con-
nectivity. An efficacious DGE method should consistently
represent both influential personalities and average individ-
uals, irrespective of the network’s sparsity. This challenge
is more pronounced in digraphs, where the separation of
in and out neighbors often results in a higher proportion of
nodes with a skewed degree distribution compared to their
undirected counterparts (illustrated in Figure 1(a)-(b)).

d2. Transductive and Inductive Learning: The fluidity
of social networks, marked by the continual arrival and
departure of users, demands a DGE method capable of
both updating embeddings for current users (transductive
learning) and seamlessly extending to new users (inductive
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Table 1. Existing DGE methods and their specifics.

Embedding Network Learning Algo.

HOPE (Ou et al., 2016),
APP (Zhou et al., 2017),
NERD (Khosla et al., 2019),
ODIN (Yoo et al., 2023),
DGGAN (Zhu et al., 2020)

dual
shallow
(no network)

self-supervised

DiGAE (Kollias et al., 2022) dual spectral GNN self-supervised
BLADE (Virinchi & Saladi, 2023),
CoBA (Liu et al., 2023)

dual spatial GNN self-supervised

Gravity GAE (Salha-Galvan et al., 2019) dual spectral GNN self-supervised
Dhypr (Zhou et al., 2021) dual spatial GNN self-supervised
MagNet (Zhang et al., 2021),
Framelet-MagNet (Lin & Gao, 2023),
SigMaNet (Fiorini et al., 2022)

single spectral GNN supervised

UGCL (Ko et al., 2023) single spectral GNN self-supervised
DUPLEX (proposed method) single spatial GNN self-supervised

learning), without re-training from scratch.

d3. Task Agnosticism: The embeddings produced by the
DGE method should lend themselves to a variety of tasks
such as detecting communities, recommending new con-
nections, and identifying influential users, without being
tailored to any single application.

Regrettably, our survey of the existing landscape reveals a
gap: existing DGE methods fall short in simultaneously
satisfying all these desiderata. As evidenced in Table 1,
while techniques that rely on self-supervised spatial GNNs
(graph neural networks) (Ou et al., 2016; Zhou et al., 2017;
Khosla et al., 2019; Yoo et al., 2023; Kollias et al., 2022;
Virinchi & Saladi, 2023) demonstrate robustness against
inductive bias and different downstream tasks, they typi-
cally learn dual embeddings (source and target roles) for
each node, so as to better represent edge asymmetries. Con-
sequently, they are prone to inferior performance for low
in/out-degree nodes, since it fails to update the source em-
bedding for low-out-degree nodes and the target embedding
for low-in-degree nodes due to insufficient neighbors for
training (cf. Figure 1(c)). On the flip side, single-embedding
strategies (Zhang et al., 2021; Lin & Gao, 2023; Fiorini et al.,
2022; Ko et al., 2023) can alleviate this issue by aggregating
information from both in and out neighbors. However, they
are generally bound to spectral GNN architectures and fully
supervised paradigms, limiting their scope to specific tasks
within a transductive context.

To bridge the above gap, we propose DUPLEX (DUal graph
attention networks for comPLEX embedding of digraphs),
a novel approach for digraph embedding. Our method lever-
ages a dual graph attention network (GAT) encoder and two
parameter-free decoders to learn a single complex embed-
ding for each node. Specifically, to tackle the problem for
those low-degree nodes (d1), DUPLEX embraces complex
embeddings, underpinning the source and target roles as
complex conjugates, which facilitates a collaborative op-

timization leveraging both in and out neighbors. For the
inductive power (d2), DUPLEX employs a dual GAT en-
coder with separate components for the amplitude and phase
parts of the complex node embedding. The amplitude en-
coder captures connection information with an undirected
graph aggregator, while the phase encoder characterizes di-
rection information using a digraph aggregator. Both aggre-
gators update node embeddings by collecting information
only from neighboring nodes, eliminating the need to ac-
cess the entire graph and generalizing well to unseen nodes.
Lastly, to achieve task generalization (d3), DUPLEX em-
ploys the two parameter-free decoders (direction-aware and
connection-aware) for reconstructing the Hermitian adja-
cency matrix (HAM) of the digraph. The node embeddings
are then trained in a self-supervised manner, preserving the
structural characteristics. Thus, the resulting node embed-
ding can adapt effectively to various downstream tasks. Our
contributions can be summarized as:

• We propose DUPLEX that learns complex node embed-
dings. Our approach incorporates a dual GAT encoder,
comprising two specially designed graph aggregators for
the amplitude and phase components. To our knowledge,
this is the first exploration of using spatial GNNs for
complex embeddings of digraphs.

• We propose two parameter-free decoders specially de-
signed for complex embeddings, targeting at the recon-
struction of the HAM of the digraph. The model can be
trained in a self-supervised manner, enabling the adapt-
ability of node embeddings across various tasks.

• We conduct comprehensive experiments on diverse tasks
and datasets, showcasing the superior performance of our
approach. The results demonstrate its efficacy in model-
ing low-degree nodes, generalizing to multiple tasks, and
handling unseen nodes.

2. Related Works
The following discussion reviews existing digraph embed-
ding (DGE) methodologies from three perspectives: the na-
ture of the embeddings (dual vs. single), the network designs
(transductive vs. inductive), and the learning paradigms
(supervised vs. self-supervised). These insights further
underscore the innovative design of DUPLEX.

2.1. Dual versus Single Node Embeddings

As shown in the second column of Table 1, studies on DGE
have largely diverged into two camps based on how they
treat node roles: those that generate dual embeddings to
capture distinct source and target roles and those that dis-
till this information into a single embedding. Pioneering
approaches like APP (Zhou et al., 2017) often fall short
for sparsely connected nodes due to inadequate sampling
of these nodes within random walks. Although improved
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sampling strategies from NERD (Khosla et al., 2019) and
BLADE (Virinchi & Saladi, 2023) aim to remedy this, their
effectiveness is curtailed by the small neighborhood sets of
low-degree nodes, which are insufficient for accurate em-
beddings. DGGAN (Zhu et al., 2020) and CoBA (Liu et al.,
2023) strive to settle this problem by bolstering the link be-
tween source and target embeddings, but only in a heuristic
way. Alternatively, GravityGAE (Salha-Galvan et al., 2019)
and its hyperbolic extension (Zhou et al., 2021) employs a
gravitational analogy with a mass parameter only for the
target role, yet struggles with nodes of meager in-degrees.

Conversely, single-embedding methods, exemplified by
MagNet (Zhang et al., 2021) and its extensions (Lin & Gao,
2023; Fiorini et al., 2022; Ko et al., 2023), effectively con-
solidate information from both in and out neighbors into
a unified complex embedding, overcoming the embedding
quality challenges for nodes with low in/out-degrees.

DUPLEX aligns with the latter approach, using the HAM
akin to the magnetic Laplacian. Yet, it advances the notion
by modeling the source and target roles as complex con-
jugates, enabling joint optimization while preserving edge
asymmetries.

2.2. Transductive versus Inductive Network Designs

As shown in the third column of Table 1, the body of DGE
work can also be classified based on its adaptability to un-
seen data. Shallow methods such as HOPE (Ou et al., 2016)
and APP (Zhou et al., 2017), which adapt classical tech-
niques like matrix factorization and random walks to di-
graphs, operate under transductive settings where embed-
dings are directly learned as trainable parameters. Spec-
tral GNNs, including DiGAE (Kollias et al., 2022), Grav-
ity GAE (Salha-Galvan et al., 2019), and MagNet (Zhang
et al., 2021), further necessitate full graph knowledge during
graph Fourier transform, limiting their applicability to new
nodes. Spatial GNNs, represented by BLADE (Virinchi &
Saladi, 2023), CoBA (Liu et al., 2023), and Dhypr (Zhou
et al., 2021), however, infer embeddings by aggregating lo-
cal neighborhood information, enabling them to generalize
to nodes absent during training.

DUPLEX builds upon this spatial approach with a dual
encoder architecture that separately tackles the amplitude
and phase aspects of embeddings, thereby accommodating
both transductive and inductive learning effectively.

2.3. Supervised versus Self-supervised Learning

As shown in the fourth column of Table 1, supervised meth-
ods such as MagNet (Ou et al., 2016) and subsequent vari-
ations (Lin & Gao, 2023; Fiorini et al., 2022; Ko et al.,
2023) leverage spectral GNN encoders with linear or con-
volutional decoders, trained end-to-end for specific tasks.

This task-specific focus can hinder the generalizability of
node embeddings, as they may not fully capture the graph’s
structural features. On the other hand, self-supervised meth-
ods (Ou et al., 2016; Yoo et al., 2023; Liu et al., 2023) differ
by encoding both connectivity and directionality within the
graph, producing embeddings that are suitable for various
downstream tasks.

As a result, DUPLEX employs a self-supervised method and
reconstructs the Hermitian adjacency matrix through two
parameter-free decoders, such that the embeddings given
by the learnable encoder not only align with the graph’s
structural properties but also ensure the adaptability of the
embeddings across multiple tasks.

3. Method
A digraph (directed graph) G = {V, E} is defined by its
nodes V and directed edges E , with each edge (u, v) ∈ E
representing a connection from node u to node v. Our goal is
to represent each node u by a d-dimensional complex vector
xu ∈ Cd×1 that meets the desiderata presented in Section 1.
To this end, we introduce DUPLEX, a novel framework that
is illustrated in Figure 2(a). At the heart of DUPLEX lies
the Hermitian adjacency matrix (HAM), whose symmetrical
structure and complex-valued representation enable the inte-
gration of both directionality and connectivity within a cohe-
sive framework. This mathematical formalism guides the de-
sign of DUPLEX’s embeddings, encoder, decoder, and loss
functions, ensuring coherence with HAM’s fundamental
principles. Specifically, beginning with initial embeddings1,
the dual GAT encoder generates amplitude and phase embed-
dings that encode the graph’s connectivity and directionality,
respectively. A fusion layer within the encoder integrates
these embeddings, while subsequent direction-aware and
connection-aware decoders—both parameter-free—rebuild
the HAM. This architecture ensures that the learned complex
embeddings authentically represent the graph’s structure,
guided by self-supervised loss functions.

In the sequel, we introduce each component in DUPLEX, in-
cluding the HAM and the resulting embedding formulations,
the dual GAT encoder, the decoders, and the loss functions.

3.1. Hermitian Adjacency Matrix Construction

Recall that classical undirected graph embedding methods
often employ matrix factorization techniques that can be
represented as A = X⊺X , where A is the symmetric adja-
cency matrix and X is the corresponding real-valued node
embedding matrix. In contrast, digraphs feature asymmetric
adjacency matrices, resulting in factorizations of the form
A = X⊺

sXt, with Xs and Xt denoting the source and tar-

1For non-attributed graphs, we use the standard normal distri-
bution for initialization.
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Figure 2. The architecture of DUPLEX. (a) Forward pass and backward pass of the model. (b) The undirected (⊕) and directed (⇀⊕) graph
aggregator. (c) The main idea of the direction-aware decoder.

get embeddings, respectively. As highlighted in Section 2.1,
such dual embedding strategies encounter difficulties in gen-
erating high-quality embeddings for nodes with low in/out-
degree. More discussions from the perspective of SVD
(singular value decomposition) are provided in Appendix B.

To address these limitations, we adopt the Hermitian adja-
cency matrix (HAM), a symmetric matrix utilized within
spectral graph theory (Guo & Mohar, 2015; Liu & Li, 2015)
to represent digraphs. The HAM H for a digraph G is
defined in polar form as:

H = As ⊙ exp
(
i
π

2
Θ
)
, (1)

where i represents the imaginary unit, π is the known math-
ematical constant, and ⊙ signifies the Hadamard product.
The symmetric binary matrix As satisfies As(u, v) = 1 if
(u, v) ∈ E ∨ (v, u) ∈ E , and 0 otherwise. The antisymmet-
ric matrix Θ contains elements from the set {−1, 0, 1}, as
defined by:

Θ(u, v) =


1, if (u, v) ∈ E ,
−1, if (v, u) ∈ E ,
0, otherwise.

(2)

As a result, H(u, v) ∈ {i,−i, 1, 0} alone can represent
forward, reverse, bidirectional, and no edge between u and
v, whereas the asymmetric adjacency matrix A requires
both A(u, v) and A(v, u) ∈ {0, 1} for the same goal.

Moreover, the matrix decomposition H = X⊺X̄ allows
for the derivation of the node embedding xu in polar form:

xu = au ⊙ exp
(
i
π

2
θu

)
, (3)

x̄u = au ⊙ exp
(
−iπ

2
θu

)
. (4)

Here, au encapsulates the amplitude and θu the phase of xu.
We can interpret xu and x̄u as the complex conjugate em-
beddings representing the source and target roles of node u,

in contrast to the independent dual embeddings of previous
methods. This embedding representation is a joint func-
tion of au and θu, facilitating co-optimized learning from
both in and out-neighborhoods, which will be explained in
Section 3.2, thus resolving the issue of suboptimal embed-
dings for nodes with low degree connectivity. From another
perspective, xu can be considered as a unified embedding
vector for node u, with the HAM reconstructible through the
Hermitian inner product between node embeddings instead
of the ordinary inner product.

3.2. Dual GAT Encoder

The encoder in DUPLEX aims to generate the amplitude
au and phase θu embeddings, which combine to form the
complex node embeddings xu. One of the nice properties
of the HAM is the separation of the amplitude As and
phase Θ components to capture the connection and direction
information, as shown in Eq. (1). Moreover, Eqs. (3) and
(4) reveal that the amplitude parts of the source and target
embeddings are identical for a node, but the phase parts
exhibit opposite signs. In other words, the phase embedding
is direction-aware, whereas the amplitude embedding is
not. This insight lays the groundwork for a dual encoder
that separately processes amplitude and phase, enabling
streamlined learning and halving the time complexity and
parameter count compared to direct complex embeddings
encoding (detailed in Appendix D).

Our dual encoder comprises an amplitude encoder, a phase
encoder, and a fusion layer, all based on the spatial GAT
backbone for its flexibility and scalability (Velickovic et al.,
2018). Note that GAT can be replaced by other spatial
GNNs in DUPLEX (see Section 4.3). Both encoders update
embeddings by aggregating information from in and out
neighbors, mitigating the issue of poor embeddings for low-
degree nodes, as we further discuss now.
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3.2.1. AMPLITUDE ENCODER

Since the amplitude embedding au captures connection
information akin to undirected graphs, we utilize the original
GAT (Velickovic et al., 2018) to update au:

a′
u = ϕ

(
⊕
(
{av,∀v ∈ N (u)}

))
, (5)

where a′
u denotes the updated amplitude embedding, N (u)

includes node u and its neighbors, ϕ is the activation func-
tion (ReLU in our case), and ⊕(·) is the aggregator used for
the undirected graph (see Figure 2(b)):

⊕
(
{av,∀v ∈ N (u)}

)
=

∑
v∈N (u)

fa(au,av)ψa(av). (6)

Here, fa(au,av)ψa(av) is a learnable attention mechanism
that computes the relevance of neighbor embeddings to node
u.

3.2.2. PHASE ENCODER

Bridging the gap between undirected graph embedding ap-
proaches and the directionality of digraphs, the phase en-
coder introduces a novel, direction-aware graph aggrega-
tor. This aggregator respects the sign difference of θu in
Eqs. (3) and (4). Specifically, it consumes information from
the in-neighbors and out-neighbors with different signs (as
depicted in Figure 2(b)), enabling the phase encoder to ef-
fectively incorporate the contributions from both types of
neighbors while considering their inherent asymmetry:

⇀⊕
(
{θv : v ∈ N (u)}

)
=

∑
v∈Nin(u)

fθ(θu,θv)ψθ(θv)

−
∑

v∈Nout(u)

fθ(θu,θv)ψθ(θv), (7)

where Nin(u) and Nout(u) denote the sets of in-neighbors
and out-neighbors, respectively. The resulting phase embed-
ding in each layer can be updated as:

θ′
u = ϕ

(
⇀⊕

(
{θv : v ∈ N (u)}

))
. (8)

This design choice results in a phase encoder that is dis-
tinctly directional, setting it apart as a novel contribution to
graph representation learning.

3.2.3. FUSION LAYER

The fusion layer functions as a pivotal junction where the
amplitude and phase embeddings intersect, each carrying
unique yet complementary information essential for the re-
construction of the HAM. Let us consider the amplitude
encoder as an illustrative example. In the fusion layer, we
not only aggregate the information from the amplitude em-
beddings but also gather side information from the phase

embeddings of the previous layer using the undirected graph
aggregator ⊕. Mathematically, this can be formulated as:

a′
u = ϕ

(
⊕
(
{av,∀v ∈ N (u)}

)
+⊕

(
{θv,∀v ∈ N (u)}

))
.

(9)
The resulting a′

u is then propagated to the subsequent layers
in the amplitude encoder. On the other hand, for the phase
encoder, the fusion layer can be similarly expressed by
replacing ⊕ with ⇀⊕ in Eq. (9).

Our approach employs a “mid-fusion” strategy, integrating
embeddings at the network’s intermediate layers for two
main reasons. First, in the absence of attributes, node fea-
tures are initially random, and early fusion might introduce
noise rather than beneficial information. Second, fusing
at the terminal layer could dilute the unique attributes of
amplitude and phase embeddings that encode connection
and directional information, respectively, potentially hin-
dering the decoders’ ability to accurately reconstruct the
HAM. Consequently, the fusion layer is optimally placed as
an intermediary, allowing for the coordinated optimization
within the dual encoder framework.

The integration of the fusion layer within the DUPLEX
framework is also founded on the hypothesis that an ade-
quately flexible encoder can achieve superior performance
by permitting the controlled interchange of information be-
tween the amplitude and phase. This fusion is implemented
utilizing the attention mechanism, where the resulting at-
tention score dictates the strength of the interchange. A
critical aspect of this implementation is that when the atten-
tion score is minimal, nearing zero, it effectively precludes
the exchange of information between the amplitude and
phase. Consequently, the data itself, from which the atten-
tion scores are adaptively learned, governs the presence and
extent of information exchange.

Relation to GAT: DUPLEX amounts to GAT for undirected
graphs after removing the phase or direction-related com-
ponents. In other words, DUPLEX is an extension of GAT
that is augmented for digraphs through the integration of
direction information, and so inherits the merits of GAT.

3.3. Parameter-free Decoder and Self-supervised Loss

After obtaining the complex embeddings for nodes, DU-
PLEX proceeds to reconstruct the HAM with two parameter-
free decoders (i.e., direction and connection-aware de-
coders), each paired with its own self-supervised loss func-
tion. Unlike previous methods in Table 1 that reconstruct
the real-valued asymmetric adjacency matrices with the
connection-aware decoder, the direction-aware decoder in
DUPLEX is specially designed for the complex-valued
HAM. Meanwhile, the connection-aware decoder comple-
ments the former by focusing on the binary existence of con-
nections, effectively serving as an auxiliary to the direction-
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aware objective. The parameter-free decoders and self-
supervised losses enable DUPLEX to learn both connec-
tivity and directionality within the digraph, fostering node
embeddings that generalize effectively across tasks without
depending on tailored parameterized decoders.

3.3.1. DIRECTION-AWARE DECODER AND LOSS

Recall that HAM comprises four distinct elements, namely
H(u, v) ∈ R = {i,−i, 1, 0}, which respectively signify
forward, reverse, bidirectional, and no edges between any
pair of nodes u and v. The reconstruction task models the
estimated matrix elements Ĥ(u, v) = x⊺

ux̄v to align with
the ground truth H(u, v). Recognizing the limitations of
low-rank embeddings in capturing the full spectrum of the
HAM, we approach the problem as a classification task.
Each edge (u, v) is assigned probabilities corresponding
to its edge type, based on the relative distance between
Ĥ(u, v) and H(u, v) (illustrated in Figure 2(c)):

P (Ĥ(u, v) = r) =
exp(−|x⊺

ux̄v − r|)∑
r′∈R exp(−|x⊺

ux̄v − r′|)
, ∀r ∈ R,

(10)
where the L1 distance is used, due to its advantage over
L2 (Appendix J.4). We then minimize the negative log-
likelihood of the samples pertaining to different edge types,
resulting in the self-supervised direction-aware loss:

Ld = −
∑
r∈R

∑
H(u,v)=r

logP (Ĥ(u, v) = r). (11)

3.3.2. CONNECTION-AWARE DECODER AND LOSS

The connection-aware decoder isolates the task of discern-
ing node connectivity by reconstructing As, the amplitude
component of the HAM (1), from the amplitude embeddings
au. It posits the connection probability for an edge (u, v)
as:

P (Âs(u, v) = 1) = σ(a⊺
uav), (12)

where σ is the sigmoid function and Âs is the estimated
connection matrix. This decoder’s loss function Lc adheres
to the same negative log-likelihood minimization principle
as the direction-aware loss.

3.3.3. TOTAL LOSS

The total loss can be written as: L = Ld + λLc, where λ
is the weight parameter for the connection-aware loss Lc.
The optimization target of the connection-aware loss is sub-
sumed within the broader objective of the direction-aware
loss. In tandem, the connection-aware loss can support the
direction-aware loss by constraining the optimization space
in the initial stages. As a result, we start with a predefined
value of λ = λ0, and allow λ to decay (i.e., λ = λ0q

k) with
a decay factor q < 1 as the number of epochs k increases,

Table 2. Dataset characteristics.

Dataset |V| |E| %Directed Edges Feature Dim #Classes

Cora-ml 2,995 8,416 93.9 2,879 7
Citeseer 3,312 4,715 95.0 3,703 6
Cora 23,166 91,500 94.9 - -
Epinions 75,879 508,837 59.5 - -
Twitter 465,017 834,797 99.7 - -

reflecting the decreasing necessity of the connection-aware
loss as direction-aware accuracy improves. This objective
function implicitly mandates au and θu to encapsulate the
amplitude and phase information respectively, given the
encoders possess sufficient flexibility to facilitate such char-
acterization.

3.3.4. SUPERVISED TRAINING OF DUPLEX

Apart from self-supervised training, DUPLEX can be read-
ily trained end-to-end in a supervised manner for specific
downstream tasks. This entails replacing the decoder and
loss function with a task-specific objective. Taking node
classification as an example, given the complex embed-
dings encoded by the dual GAT encoder, we can simply
concatenate the amplitude and phase embeddings. These
concatenated embeddings are then mapped to node labels
using a linear layer as in (Zhang et al., 2021). The model is
then trained using a cross-entropy loss function, optimizing
its performance specifically for the node classification task.

Relation to the MagNet series: MagNet (Zhang et al.,
2021) and its variants (Fiorini et al., 2022; Lin & Gao, 2023)
mainly extend spectral GCNs from undirected to digraphs
by substituting the traditional Laplacian in graph convolu-
tions with its magnetic counterpart, combining amplitude
and phase embeddings, and utilizing a linear decoder for link
prediction tasks. While both the magnet Laplacian and the
HAM are Hermitian matrices, MagNet’s approach is rooted
in spectral domain convolutions. In contrast, DUPLEX inno-
vatively employs spatial GNNs derived from the properties
of HAM, with the goal of further reconstructing the HAM.
Furthermore, unlike the MagNet series, which predomi-
nantly operates under fully supervised training, DUPLEX
takes advantage of a self-supervised learning paradigm.

4. Experiments
In this section, we benchmark DUPELX against existing
digraph embedding methods on three tasks, namely, link
prediction, transductive node classification, and inductive
node classification. Furthermore, we conduct a comprehen-
sive ablation study on DUPLEX to assess the significance
of its different components.
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Table 3. Link prediction AUC (%) and ACC (%) for subtask 1 and 2. The best results are in bold and the second are underlined.

Method
Existence Prediction Direction Prediction

Citeseer Cora Epinions Twitter Citeseer Cora Epinions Twitter
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

NERD 80.4(0.6) 79.0(1.1) 85.1(0.5) 72.8(0.1) 78.6(0.1) 66.5(0.1) 94.9(0.0) 77.6(0.1) 82.1(1.0) 83.1(0.6) 92.3(0.2) 76.2(0.5) 86.9(0.3) 55.6(0.1) 95.6(0.1) 80.9(0.1)
DGGAN 84.5(0.9) 50.1(0.0) 89.6(0.2) 54.6(3.0) 84.5(2.7) 50.0(0.0) 99.1(0.1) 77.8(8.1) 89.4(0.8) 50.0(0.0) 95.4(0.2) 57.1(5.0) 94.0(2.0) 50.0(0.0) 99.1(0.1) 80.7(13)
ODIN 86.2(1.1) 76.8(1.5) 90.8(0.2) 83.1(0.2) 90.9(0.1) 83.3(0.2) 99.2(0.0) 98.7(0.1) 95.4(0.8) 87.5(1.2) 96.7(0.2) 90.5(0.2) 97.4(0.0) 92.1(0.1) 99.8(0.0) 99.6(0.0)
DiGAE 87.1(1.9) 72.8(2.1) 83.9(0.5) 70.1(0.2) 81.8(0.1) 70.2(0.1) 98.8(0.0) 56.7(0.0) 78.5(2.1) 56.8(1.7) 89.8(0.3) 71.2(0.2) 91.5(0.1) 55.6(0.1) 99.9(0.0) 50.0(0.0)
MagNet 88.3(0.4) 80.7(0.8) 89.4(0.1) 81.4(0.3) 85.1(0.1) 77.5(0.3) 99.1(0.1) 97.7(0.1) 96.4(0.6) 91.7(0.9) 95.4(0.2) 88.9(0.4) 96.6(0.1) 92.1(0.0) 99.9(0.1) 98.5(0.9)
SigMaNet 91.4(0.8) 84.4(3.2) 93.6(0.2) 87.7(0.4) 90.3(0.0) 82.5(0.0) 99.1(0.0) 98.3(0.0) 98.3(0.3) 97.8(0.9) 96.4(0.0) 94.7(0.1) 96.7(0.0) 92.5(0.0) 99.9(0.0) 99.7(0.0)
DUPLEX* 98.0(0.7) 95.3(0.5) 95.8(0.3) 93.1(0.1) 90.7(0.2) 84.5(0.5) 96.1(0.6) 96.9(0.2) 99.3(0.5) 98.3(0.3) 97.1(0.2) 95.5(0.3) 93.9(0.2) 92.2(0.0) 99.9(0.0) 99.7(0.0)
DUPLEX 98.6(0.4) 95.7(0.5) 95.9(0.1) 93.2(0.1) 91.0(0.2) 85.5(0.0) 99.3(0.2) 98.7(0.1) 99.7(0.2) 98.7(0.4) 97.2(0.2) 95.9(0.1) 95.2(0.4) 92.6(0.1) 99.9(0.0) 99.8(0.0)

Table 4. Link prediction ACC (%) for subtask 3 and 4.

Method
Three-type Classification Four-type Classification

Citeseer Cora Epinions Twitter Citeseer Cora Epinions Twitter

NERD 68.8(0.7) 67.7(0.6) 66.6(0.3) 73.2(0.1) 31.4(0.6) 38.6(0.8) 33.1(0.4) 32.2(0.4)
DGGAN 59.0(0.3) 58.8(0.1) 57.6(0.3) 70.0(5.0) 13.4(4.0) 10.5(6.4) 20.1(0.1) 67.4(7.1)
ODIN 67.2(0.8) 72.1(0.3) 87.3(0.1) 98.5(0.0) 67.1(0.8) 70.6(0.4) 73.1(0.1) 98.0(0.0)
DiGAE 83.7(1.3) 68.5(0.3) 80.4(0.2) 69.8(0.0) 42.3(0.6) 34.4(0.3) 40.2(0.2) 35.9(0.0)
MagNet 72.0(0.9) 66.8(0.3) 76.9(0.9) 93.9(2.6) 69.3(0.4) 63.0(0.3) 65.2(0.4) 91.6(1.1)
SigMaNet 81.3(0.4) 80.3(0.2) 86.4(0.1) 98.0(0.0) 76.2(2.1) 78.7(0.4) 75.4(0.1) 97.2(0.0)
DUPLEX* 93.7(0.9) 92.1(0.1) 88.9(0.1) 99.0(0.1) 90.7(0.8) 88.3(0.2) 74.9(0.6) 93.6(0.3)
DUPLEX 94.8(0.2) 92.2(0.1) 88.9(0.0) 99.2(0.1) 91.1(1.0) 88.4(0.4) 76.4(0.2) 98.1(0.2)

4.1. Datasets and Experiment Set-up

The experiments are conducted on five public datasets of di-
graphs, namely Cora-ml, Citeseer, Cora, Epinions, and Twit-
ter (overview in Table 2 and more details in Appendix E).
Note that only Cora-ml and Citeseer datasets are suitable
for node classification tasks, as they include node labels
and initial attributes. The graph datasets used in our study
are unweighted and directed. We then compare DUPLEX
with a selection of state-of-the-art (SOTA) node embedding
models for digraphs, including both dual and single embed-
ding methods. The first group consists of NERD (Khosla
et al., 2019), DGGAN (Zhu et al., 2020), DiGAE (Kollias
et al., 2022) and ODIN (Yoo et al., 2023). For the second
group, we consider MagNet (Zhang et al., 2021) and Sig-
MaNet (Fiorini et al., 2022). In addition, we examine the
performance of a simplified version of our model, denoted
as DUPLEX*, which excludes the fusion layer. To ensure
optimal performance, we perform hyperparameter selection
for each method. Moreover, we repeat the experiments 10
times and report the average values, along with the standard
deviation across the runs (surrounded by brackets). For
implementation details, please see Appendix F.

4.2. Downstream Tasks

4.2.1. LINK PREDICTION

Embarking on our exploration with link prediction, we adopt
the approach delineated by Zhang et al.(Zhang et al., 2021)

to randomly split the datasets into training, validation, and
testing subsets, maintaining a ratio of 16:1:3. To thoroughly
evaluate the model’s proficiency in discerning varied edge
types, we engage in four prevalent subtasks: Existence Pre-
diction (EP)(Zhu et al., 2020), which determines the likeli-
hood of an edge’s presence; Direction Prediction (DP)(Zhu
et al., 2020; Zhang et al., 2021), ascertaining the orien-
tation of unidirectional edges; Three-type Classification
(TP)(Zhang et al., 2021), categorizing edges as positive, re-
verse, or non-existent; and Four-type Classification (FP),
discerning positive, reverse, bidirectional, or non-existent
edges. We present additional details in Appendix G.

Notably, DUPLEX, alongside NERD, DGGAN, DiGAE,
and ODIN, employs a self-supervised approach to regen-
erate the directed graph, enabling the direct application of
learned embeddings across all subtasks. The task-specific
MagNet and SigMaNet, by contrast, necessitate individual
end-to-end training for each specific subtask. The outcomes,
including Area Under Curve (AUC) for subtasks EP and DP,
and accuracy (ACC) for all tasks, are listed in Tables 3-4.

DUPLEX shines in the EP and DP experiments, claiming
the highest AUC in 7 out of 8 cases and dominating in ACC
across all subtasks, showcasing its adeptness in capturing
a spectrum of node relationships within digraphs. Even
without the fusion layer, the ablated DUPLEX* variant se-
cures top or near-top AUC or ACC scores in 12 out of 16
experiments. Almost all methods excel in DP, particularly
on larger datasets, likely due to their design focus on edge
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Figure 3. Link existence prediction AUC (%) under extremely low-
degree setting.

directionality and the abundance of training data. Yet, DU-
PLEX distinguishes itself in more nuanced tasks like TP
and FP, and in smaller datasets. For instance, on the Cite-
seer dataset, DUPLEX records approximately 11.1% and
14.9% improvements in TP and FP, respectively. Addition-
ally, ODIN delivers satisfying results across most tasks,
which may stem from its strategic address of potential de-
gree distribution discrepancies between training and testing
sets. Despite this, as a shallow method, ODIN requires re-
initialization for newly introduced nodes and graphs. Mag-
Net and SigMaNet also perform robustly by leveraging the
magnetic Laplacian, extensively harnessing whole-graph
information for embedding optimization. It should be noted,
however, that they incur a greater computational complexity
due to their reliance on complex-valued matrix operations,
a challenge that DUPLEX circumvents with its separation
of the amplitude and phase embeddings, as detailed in Ap-
pendix D.

We further plot the AUC in subtask 1 against the in/out-
degree of nodes in the testing sets of Citeseer and Cora in
Figure 3. The x-axis in the figure denotes the threshold, in-
dicating that in the testing set, the source node’s out-degree
or the target node’s in-degree does not exceed the specified
threshold. This analysis provides insights into the capability
of the benchmark methods in handling low-degree nodes.
As expected, the single embedding methods, namely DU-
PLEX, MagNet and SigMaNet, are robust to the change of
the node degree and consistently outperform the dual embed-
ding methods, namely NERD, DGGAN, DiGAE and ODIN.
This superiority is particularly evident when the maximum
in/out-degree of testing nodes becomes small (e.g., 1). In
this scenario, DUPLEX’s performance surges, attributable
to its complex conjugate role-based collaborative optimiza-
tion, yielding increases from a minimum of 25.9% up to
55.0% on Citeseer, and from 16.3% to 47.8% on Cora, when
juxtaposed with dual embedding methods. Moreover, DU-
PLEX performs even better than MagNet and SigMaNet.
They adopt the magnetic Laplacian as the filter to extract
features from the digraph and further learn a linear classifier
for link prediction based on these features. Instead, DU-
PLEX embraces a reconstruction-centric approach, striving
to reconstitute the HAM through a direction-aware loss, sub-
sequently guiding the dual encoder towards a deeper assimi-

Table 5. Transductive node classification results.

Method
Citeseer Cora-ml

mac. F1 mic. F1 mac. F1 mic. F1

NERD 49.0(0.4) 52.5(0.7) 78.8(2.3) 80.1(1.6)
DGGAN 19.1(1.5) 22.7(1.9) 15.6(1.4) 23.6(3.7)
ODIN 17.7(2.5) 19.2(2.2) 12.6(2.1) 18.0(2.0)
DiGAE 26.6(3.1) 29.8(3.2) 55.1(4.8) 56.2(3.2)
DUPLEX-S 40.0(0.2) 42.6(1.1) 64.3(1.4) 65.7(1.2)
DUPLEX* 51.2(0.1) 54.3(2.0) 76.0(1.3) 77.8(1.6)
DUPLEX 53.0(2.5) 56.2(1.7) 77.9(0.6) 79.8(0.7)

lation of the graph structure. This reconstruction-oriented
methodology likely underpins DUPLEX’s enhanced perfor-
mance relative to feature extraction and linear classification-
based methods. In summary, DUPLEX overcomes the prob-
lem of suboptimal embedding for low-degree nodes in di-
graphs, surpassing other methods by large margins.

4.2.2. TRANSDUCTIVE NODE CLASSIFICATION

In this study, we assess the adaptability of node embeddings
generated by DUPLEX, which were trained using the pro-
posed self-supervised approach, to secondary tasks such as
node classification. After initially training embeddings to
encapsulate the graph’s structure over the entire graph as
delineated in Section 3, we leverage these embeddings to
train a two-layer Multilayer Perceptron (MLP) for node clas-
sification. It is important to highlight that this experiment
unfolds in a transductive setting where labels for the test set
are concealed during training, but not the nodes.

Our comparative analysis encompasses DUPLEX and a
cohort of self-supervised counterparts, including NERD,
DGGAN, DiGAE, and ODIN. For DUPLEX, we combine
amplitude and phase embeddings to derive the final node
representations, whereas for the remaining methods, source
and target embeddings are concatenated. We also introduce
DUPLEX-S, a supervised iteration of DUPLEX, expressly
trained end-to-end for link prediction, to determine if em-
beddings optimized for one task maintain their relevance
across others. To condition DUPLEX-S on the supervised
link prediction task, we adopt the methodology from (Zhang
et al., 2021), which involves concatenating complex embed-
dings for edge-associated node pairs and employing a linear
layer as both decoder and classifier. We then concurrently
train the dual encoder and decoder to classify edges into
four distinct categories. Nodes across all datasets are parti-
tioned into training, validation, and testing subsets with a
3:1:1 split. We utilize macro F1 and micro F1-scores for
our evaluation metrics.

As demonstrated in Table 5, DUPLEX outperforms other
methods on the Citeseer dataset, achieving the highest macro
F1 and micro F1-scores and exceeding baselines by at least
4.0% and 3.7%, respectively. On Cora-ml, DUPLEX fol-
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lows closely behind NERD, securing the second-best re-
sults. This indicates that DUPLEX’s self-supervised node
embeddings are well-suited for node classification tasks. In
comparison, the supervised version, DUPLEX-S, lags be-
hind, underscoring the value of the parameter-free decoder
and self-supervised learning in improving task generaliza-
tion. NERD’s notable performance can be attributed to
its accounting for various node similarity types (both low
and high-order). Capturing higher-order proximities indeed
helps preserve global network structures more effectively,
as nodes with shared neighbors are likely to exhibit simi-
larity. For example, in citation networks, a higher overlap
in cited references between two papers often indicates a
stronger thematic connection between them. This is particu-
larly advantageous for classification tasks, as highlighted in
previous work (Tang et al., 2015). DUPLEX, by stacking
GAT layers, captures higher-order proximities effectively,
achieving comparable or even superior results to NERD.
Additionally, as discussed in detail in Appendix H, NERD
employs a more flexible approach to aggregating neighbor
information, thus avoiding information bottlenecks and en-
abling better representation of low-degree nodes, thereby
achieving improved node classification performance.

4.2.3. INDUCTIVE NODE CLASSIFICATION

We extend our assessment of DUPLEX to an inductive set-
ting, where testing nodes are entirely unseen during the train-
ing phase, a notable departure from our earlier transductive
experiment. In this experiment, we conducted a compara-
tive analysis of DUPLEX against three groups of baseline
methods. Initially, due to the absence of open-source ver-
sions of inductive directed graph embedding methods like
BLADE (Virinchi & Saladi, 2023), we contrast DUPLEX
with transductive models such as MagNet and SigMaNet.
For these models, we retain a transductive framework where
only node labels were hidden in the testing set, providing
these methods with additional training information. Sec-
ondly, we compare DUPLEX with SOTA inductive GNNs
designed for directed graph node classification, such as Dir-
GNN (Rossi et al., 2024). As Dir-GNN can be integrated
with different backbone models, we consider SAGE (Hamil-
ton et al., 2017) (denoted as dir-SAGE) and GAT (Velick-
ovic et al., 2018) (denoted as dir-GAT) here. Thirdly, we
pit DUPLEX against SOTA inductive models for undirected
graphs, such as the initial undirected GAT and SAGE, us-
ing these comparisons as ablation studies to emphasize the
importance of directional information in DUPLEX. GAT
and SAGE act as simplified incarnations of DUPLEX, with
GAT missing the phase encoder and SAGE serving as the
undirected graph aggregator analogue. Our experiments
are conducted on Citeseer and Cora-ml, both consisting of
attributed graphs. As initial embeddings, we employ the
node attributes, which correspond to the word embeddings

Table 6. Inductive node classification results.

Method
Citeseer Cora-ml

mac. F1 mic. F1 mac. F1 mic. F1

SAGE 70.4(1.2) 74.3(1.0) 74.5(3.2) 81.0(2.4)
GAT 70.8(2.0) 74.7(1.4) 77.1(2.8) 83.9(1.7)
dir-SAGE 70.2(2.6) 74.1(1.2) 83.4(2.2) 85.6(1.9)
dir-GAT 70.4(1.6) 74.6(0.6) 85.0(0.9) 86.4(0.7)
MagNet 65.0(1.7) 74.6(1.9) 82.0(1.7) 84.3(1.5)
SigMaNet 63.1(1.3) 68.8(1.0) 82.7(1.0) 83.5(1.2)
DUPLEX* 68.3(1.3) 74.0(0.7) 85.0(2.6) 87.3(2.5)
DUPLEX 71.7(0.7) 75.4(0.5) 85.9(0.8) 87.6(0.9)

of the paper descriptions in these datasets.

Table 6 details the achieved macro and micro F1-scores,
demonstrating DUPLEX’s superior performance. Outper-
forming transductive methods, which benefit from a more
informative training phase, DUPLEX reports increases of at
least 6.7% and 3.2% in terms of macro F1-score. In com-
parison to inductive GNNs, DUPLEX shows enhancements
of at least 1.3% and 0.9% for directed graph methods and at
least 0.9% and 8.8% for undirected graph methods. These
results underscore DUPLEX’s robust inductive capabilities,
adeptly managing unseen nodes and accurately classifying
instances across a spectrum of categories. Furthermore,
DUPLEX’s significant outperformance over baselines on
undirected graphs emphasizes its efficiency in utilizing di-
rectional information, an attribute integral to tasks involving
directed graphs.

4.3. Ablation Study

The results of our ablation study are summarized below,
with comprehensive details provided in Appendix J: (1)
Dual GAT Encoder: The amplitude and phase aggregators
are essential for capturing both the connections and the
directions within the graph. The dual encoder confers a
performance advantage irrespective of the backbone model.
(2) Fusion Layer: The “mid-fusion” approach is preferred
for graphs lacking attributes; “Fusion aggregation” in Eq. (9)
demonstrates superioriority over a strategy that involves two
distinct steps. (3) Sensitivity Analysis: The inclusion of
the connection-aware loss can enhance the performance, but
the enhancement decays when the weight λ increases.

5. Conclusion
We propose DUPLEX for digraph embedding that yields
high-quality embeddings especially for low in/out-degree
nodes, adapts well to diverse downstream tasks, and gen-
eralizes effectively to unseen nodes. DUPLEX achieves
these objectives through a dual encoder, two parameter-free
decoders, and two self-supervised losses. Results show that
it surpasses SOTA methods in link prediction, as well as
transductive and inductive node classification tasks.
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A. Symbols and Notations

Table 7. Symbols and notations used in this paper.

Symbols Notations

G a digraph with nodes and edges
V the set of nodes in the graph
E the set of edges in the graph
u, v two nodes on the graph for illustration
A the adjacency matrix of graph
xu the embedding vector of nodes u
X the embedding matrix of nodes
H the Hermitian adjacency matrix of graph
As the amplitude matrix of HAM
Θ the phase matrix of HAM
au the amplitude embedding of nodes u
θu the phase embedding of nodes u
N (u) the neighbors of node u
σ(·) the sigmoid function
ϕ(·) the activation function
R four relation types of edge
r a certain relation type of edge
q the decay rate of the weight of connection-aware loss
λ the initial weight of the connection-aware loss
d embedding dims

B. Limitations of Dual Embedding Methods: An SVD Perspective
We address a specific challenge that dual embedding methods face with nodes exhibiting low in-/out-degrees and rationalize
this from a Singular Value Decomposition (SVD) standpoint. In this section, we introduce Lemma B.1 (see (Hohn, 2013))
and Lemma B.2, provide a proof of Lemma B.2, and summarize our insights.

Lemma B.1 (Sylvester’s rank inequality). For matrices A ∈ Rm×n and B ∈ Rn×s with AB = 0, it holds that
r(A) + r(B) ≤ n.

In adjacency matrices, nodes with zero out-degree correspond to rows filled with zeros, while zero in-degree nodes match
with columns of zeros. Focusing on the zero out-degree nodes, we establish that:

Lemma B.2. If an asymmetric matrix has several all-zero rows, the corresponding rows in its source embedding matrix are
all-zero.

Proof. Let A be an asymmetric matrix with several zero rows. We can represent it as follows by renumbering nodes, that is,
by interchanging the rows and columns:

A =

[
A′

0

]
, (13)

where A′ is a submatrix of A consisting of all non-zero rows. We further perform the singular value decomposition (SVD)
on A: [

A′

0

]
=

[
U1

U2

]
ΣV T , (14)

where
A′ = U1ΣV

T , (15)
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and
0 = U2ΣV

T . (16)

It is important to note that A′ is the predominantly optimized component, encompassing the majority of the training samples.
Specifically, our emphasis lies on optimizing Eq. (15) by adjusting its singular values and vectors. In the context of low-rank
decomposition, we consider the first d largest singular values, which are both non-zero and distinct, thus the corresponding
singular vectors are orthogonal.

With Lemma B.1, we have:
r(U2) + r(ΣV ) <= d, (17)

where r(ΣV ) = d as the column vectors of V are orthogonal. Consequently, we deduce that r(U2) = 0, that is,

U2 = 0. (18)

For the dual embedding methods, the source embedding matrix can be written as

Xs =

[
U1

U2

]
Σ1/2 =

[
U1

0

]
Σ1/2, (19)

that is, the corresponding rows in the source embedding matrix are all-zero.

Similarly, it can be shown that an asymmetric matrix with columns of zeros will have target embedding matrix columns
filled with zeros, leading to zero target/source embeddings for nodes with zero in-/out-degrees. Examining nodes with
low in-/out-degrees, and taking low out-degree nodes as an example, the adjacency matrix is divided into high and low
out-degree segments:

A =

[
A′

O

]
, (20)

with A′ representing high out-degree nodes and O for low out-degree nodes. Suppose that errors are uniformly distributed
across both segments during optimization (i.e., reconstruction of A), and these errors set non-zero entries in A to zero. This
affects low-degree nodes more significantly, potentially pushing their embeddings toward zero and causing them to cluster
in the embedding space, as cautioned by Lemma B.2. Although this issue is not rigorously proven for low-degree nodes and
remains a topic for further exploration, we can assert that the HAM does not suffer from this problem as it has all-zero rows
or columns only for isolated nodes with both zero in and out-degree, which are outside the scope of our analysis.

C. Graph Attention Networks
GAT (Velickovic et al., 2018) is a successful practice of incorporating attention mechanisms into graph neural networks.
Specifically, GAT assigns attention coefficients αuv to each connected pair of nodes (u, v) as weights during neighbor
aggregation. In DUPLEX, we use GAT as our backbone model for both amplitude and phase encoders. Taking the amplitude
GAT as an example, we further write Eq. (6) as:∑

v∈N (u)

fa(au,av)ψa(av) =
∑

v∈N (u)

αuvWaav, (21)

where the attention coefficient,

αuv =
exp(LeakyReLU(b⊺a[Waau||Waav]))∑

g∈N (u) exp(LeakyReLU(b⊺a[Waau||Waag]))
. (22)

Here, exp(·) is the exponential operation, LeakyReLU(·) is the activation function, || is the concatenation operation,
ba ∈ R2d×1 is the attention parameters of the amplitude encoder, and Wa ∈ Rd×d is the feature transformation parameters.
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D. Complexity Analysis
Assuming the network has L layers in total, the embedding dimension is d, with |V| nodes and |E| edges in the graph. In our
method, for each head of the attention mechanism, the time complexity of the encoding process is O(L|V|d2 + L|E|d), and
the space complexity is O(|E| + Ld2 + L|V|d + Ld). The time complexity of the decoding process is O(|E|d), and the
space complexity is O(|V|d+ |E|). The total number of parameters in the model is 2Ld2 + 4Ld.

We further compare the dual GAT encoder of DUPLEX with a single GAT encoder that directly produces a d-dimensional
vector of complex numbers for each node in each layer, where the complex vector is often converted to a 2d-dimensional
real-valued vector without separating the amplitude and phase. The complexity of feature transformation in each layer of the
dual GAT encoder, encompassing both amplitude and phase transformations, amounts to 2|V|d2. In contrast, for the single
GAT encoder, the complexity for the |V| × 2d feature matrix is 4|V|d2. This reveals that our dual GAT encoder reduces
feature transformation complexity by half, while maintaining the same complexity for other operations.

E. More Details on Datasets
We perform our experiments on five open-source digraph datasets, including Cora-ml, Citeseer, Cora, Epinions and Twitter.
Citeseer and Cora are two popular citation networks, Cora-ml is a subset of Cora dataset in the field of machine learning.
The Cora-ml and Citeseer datasets provide meaningful node features, with the node labels corresponding to scientific
subareas. Epinions and Twitter are two social networks. We use the version of Citeseer and Cora-ml dataset provided
by (Zhang et al., 2021), Cora dataset provided by (Šubelj & Bajec, 2013) and other two datasets from the Stanford Large
Network Dataset Collection2. The overview of the datasets is shown in Table 2. The graph datasets used in our study are
unweighted and directed. These datasets encompass a wide range of graph sizes, with the number of nodes varying from
3K to 465K, and the number of edges ranging from 4K to 834K.

The direction information is quite important in these datasets. For example, consider two nodes in a citation network. Node a
has many in-neighbors, indicating that it is a popular paper cited by many other papers. On the other hand, node b has many
out-neighbors, indicating that it is a knowledgeable paper that cites many other papers. These two papers have completely
different characteristics. However, when using undirected graph embedding methods, as both nodes are connected to many
other nodes, they would be considered to have similar structural features in the graph, which can mislead downstream tasks.
Similarly, in a social network, if A follows several people who all follow B, it is more likely that A will follow B rather than
the other way around. Undirected graph embedding methods would consider A and B to have similar structural features and
fail to distinguish their asymmetrical relationship, leading to potential errors in recommendations and other tasks.

F. Implementation Details
We compare DUPLEX with several SOTA models, where NERD, DGGAN, DiGAE and ODIN learn a dual embedding
while DUPLEX, MagNet and SigMaNet learn a single embedding for each node. During experiments, the dual embedding
methods learn two 128-dimensional real-valued embeddings for each node, while the single embedding methods learn a
128-dimensional complex embedding for each node.

We implemented DUPLEX using DGL and PyTorch, employing Adam optimizer with a learning rate of 1e-3. DUPLEX
consists of two 3-layer GATs with attention head 1, one for the amplitude embedding and the other for the phase embedding.
We sampled four types of node pairs (forward edge, reverse edge, bidirectional edge, and no edge) at a ratio 1:1:1:x for
self-supervised loss computation, where x tends to be small due to fewer bidirectional edges, and in our experiments we just
control x ≤ 1. We set the hidden dim to 128 and the dropout rate to 0.5. We tuned the initial loss weight λ in {0.1,0.3} and
the decay rate q in {0,1e-4,1e-2}. We ran our model with maximum 3000 epochs with early stopping for all experiments.

For the baseline methods, we utilize the publicly available code repositories, and tune the hyperparameters as follows.

• NERD is a random-walk based model, for which we tune the walk size in {1, 4, 7}, the start learning rate in {0.001, 0.01,
0.1} and the negative samples in {1, 4, 7}.

• DGGAN is a GAN-based model, for which we set the default parameters as the paper.

• ODIN is a shallow method incorporating multiple losses with distinct objectives, where we tune the disentangling loss

2https://snap.stanford.edu/data/
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weights in {0.3, 0.5, 0.7} and the negative sampling rates in {1, 4, 7}.

• MagNet is a GCN-based model, where we set the GCN layer as 3, hidden dim as 128, and tune the parameter q, which
controls the importance of directed information, in {0.05, 0.1, 0.15, 0.2, 0.25}.

• DiGAE is a digraph autoencoder model which set directed GCN as the encoder, for which we tune the hyperparameter
α, β in {0.3, 0.5, 0.7}.

• SigMaNet is a GCN-based model, where we set the GCN layer as 3 and the hidden dim as 128.

G. Link Prediction Set-up
In Section 4.2.1, we assess the model’s ability to discriminate between different edge types and consider four commonly-used
subtasks. We list the details of each subtask here.

1. Existence Prediction (EP) (Zhu et al., 2020): This subtask involves predicting whether a specific edge exists in the graph
or not. In the testing sets, the ratio of edges belonging to the two types is 1:1. Note that both reverse and non-existent
edges are categorized as non-existence (Zhu et al., 2020), and their ratio is also 1:1 in the testing set.

2. Direction Prediction (DP) (Zhu et al., 2020; Zhang et al., 2021): The objective of this subtask is to predict the direction of
unidirectional edges (i.e., forward or reverse), with a ratio of 1:1 in the testing sets.

3. Three-type Classification (TP) (Zhang et al., 2021): This subtask involves classifying edges into three types: positive,
reverse, or non-existent, with a ratio of 1:1:1 in the testing set.

4. Four-type Classification (FP): In this subtask, the goal is to classify edges into four categories: positive, reverse,
bidirectional, or non-existent. The ratio for the four types of edges in the testing set is set to 1:1:1:1. In cases where the
number of bidirectional edges is smaller than the other types in certain datasets, we utilize all available bidirectional edges
in the testing set.

H. Node Classification Performance
The ease of classifying nodes is closely tied to their degrees. It is widely acknowledged that nodes with ample accessible
information, whether emanating from structural linkages or intrinsic nodal attributes, are typically more amenable to effective
classification. When nodes are bolstered by reliable attributes, these specific individualistic features can significantly diminish
the relative importance of structural information in achieving separability between different node classes. Consequently, even
nodes with a low degree have the potential to be accurately classified based solely on their distinctive attributes. In contrast,
when such nodal attributes are absent or lack distinctive information, the graph’s structural properties gain prominence as a
critical discriminative element. In this context, nodes characterized by a scant number of connections, or a low in/out degree,
inherently face challenging classification scenarios attributed to their sparse connectivity within the overall graph structure.

Addressing these challenges, DUPLEX brings forth a flexible encoding approach that dynamically assimilates information
within the graph. Recall that one common embedding method for directed graphs employs the source and target embed-
dings (Khosla et al., 2019; Kollias et al., 2022; Yoo et al., 2023). To finish the node classification task, the concatenation
of the source and target embeddings is used, that is, [s, t]. We notice that typically s = f(xout) and t = f(xin). In
other words, the source embeddings only aggregate information from the out-neighbors, while the target embeddings only
aggregate information from the in-neighbors. Information from both types of neighbors can only be exchanged in the
final concatenation stage. By contrast, DUPLEX’s design innovatively facilitates information fusion between both types
of neighbors at every layer. This occurs through the coordinated use of its amplitude encoder with an undirected graph
aggregator and its phase encoder with a directed graph aggregator, circumventing the information bottleneck commonly
found in previous approaches.

Furthermore, since we employ the attention mechanism for the sake of aggregation, it can learn the attention score between
two nodes adaptively from the data. When this score approaches zero, the information exchange is blocked. For graphs with
reliable attributes, DUPLEX possesses the capability to truncate the exchange of information between nodes by modulating
attention scores that approach zero and sorely relies on the node attributes to achieve good classification performance.
Conversely, in the case when the graph structure plays a more important role, DUPLEX can aggregate information from
both in and out neighbors by maintaining higher attention scores, aiding low-degree nodes in overcoming their inherent
informational disadvantage.
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I. The Convergence of Self-supervised Training
The training of DUPLEX via self-supervised loss relies on the principles of stochastic gradient descent (SGD), a well-
established optimization method with established theoretical foundations ensuring convergence under mild conditions.
Specifically, based on the theory of stochastic gradient descent (Robert et al., 1999), using a schedule of the learning rates ρt
such that

∑
ρt = ∞ and

∑
ρ2t <∞, the training process will converge to a local minimum of the DUPLEX loss function.

In addition to this theoretical assurance, we capture and illustrate the progression of the loss function’s convergence over the
course of the training period through visual plots. Likewise, we track the mean square error between the HAM approximated
by DUPLEX and the actual ground truth HAM, with these findings detailed in Figure 4. The graphical representations
of these metrics clearly depict the effective convergence of the model during training, which corroborates the theoretical
underpinnings of our approach.
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Figure 4. (a) Loss curve. (b) Mean square error between approximated HAM and the ground truth.

J. Ablation Study
In this section, we perform ablation studies to delve into analyzing the role of each component in DUPLEX.

J.1. Dual GAT Encoder

We consider two variants of the DUPLEX: DUPLEX-am, which employs the undirected graph aggregator ⊕ (see Eq. (6))
for both amplitude and phase embeddings, and DUPLEX-ph, which instead utilizes the digraph aggregator ⇀⊕ (see Eq. (7))
for both types of embeddings. We conduct the four subtasks of link prediction on the Citeseer and Cora datasets, following
the same settings in Section 4.2.1. As shown in Table 8, DUPLEX outperforms both DUPLEX-am and DUPLEX-ph,
underscoring the necessity of using the directed and undirected graph aggregator respectively for phase and amplitude
embeddings. DUPLEX-am performs poorly in all tasks due to the omission of direction. Interestingly, DUPLEX-ph
performs well in the direction prediction subtask, suggesting the effectiveness of the proposed directed aggregator for
capturing the direction information.

Table 8. Link prediction ACC and AUC (%) of four subtasks. The best results are in bold and the second are underlined.

Dataset Method
EP DP TP FP

AUC ACC AUC ACC ACC ACC

Citeseer
DUPLEX-am 86.2(3.9) 79.3(5.1) 93.2(1.1) 88.4(1.9) 73.4(2.7) 67.7(3.0)
DUPLEX-ph 93.7(1.2) 91.8(1.2) 99.8(0.0) 99.0(0.1) 82.9(1.0) 80.8(1.0)
DUPLEX 98.6(0.4) 95.7(0.5) 99.7(0.2) 98.7(0.4) 94.8(0.2) 91.1(1.0)

Cora
DUPLEX-am 89.5(0.2) 87.0(0.2) 88.8(0.8) 86.7(0.3) 85.1(1.3) 81.8(1.8)
DUPLEX-ph 95.2(0.1) 91.2(0.1) 98.4(0.2) 97.2(0.2) 88.3(0.2) 83.7(0.7)
DUPLEX 95.9(0.1) 93.2(0.1) 97.2(0.2) 95.9(0.1) 92.2(0.1) 88.4(0.4)

Moreover, to demonstrate the robustness of the dual encoder design with respect to different backbone GNNs, we replace
the GAT backbone with the spatial GCN (Kipf & Welling, 2017; Hamilton et al., 2017), where the aggregation function is:

⊕
(
{av,∀v ∈ N (u)}

)
=

∑
v∈N (u)

ψa(av), (23)
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and
⇀⊕

(
{θv,∀v ∈ N (u)}

)
=

∑
v∈Nin(u)

ψθ(θv)−
∑

v∈Nout(u)

ψθ(θv). (24)

The difference is that there is no need for computation of attention coefficients.

We repeat our experiments concerning link prediction, transductive and inductive node classification. The experiment results
are shown in Table 9-11. It can be observed that DUPLEX with a GAT backbone consistently outperforms the counterpart
with a GCN backbone, due to the higher flexibility of GAT. However, even with the GCN backbone, DUPLEX still surpasses
other SOTA methods across various tasks, highlighting the advantage of the dual encoder design regardless of the backbone.

Table 9. Link prediction ACC (%) for four subtasks. The best results are in bold and the second are underlined. Note that ‘EP’
represents the ‘Existence Prediction’ subtask, while ‘DP’ for direction Prediction, ‘TP’ for three-type classification and ‘FP’ for four-type
classification.

Method
Cora Epinions

EP DP TP FP EP DP TP FP

DUPLEX*(GCN) 92.2(0.3) 95.2(0.2) 90.8(0.2) 86.8(0.0) 83.3(0.2) 91.8(0.1) 87.3(0.5) 73.1(0.1)
DUPLEX*(GAT) 93.1(0.1) 95.5(0.3) 92.1(0.1) 88.3(0.2) 84.5(0.5) 92.2(0.0) 88.9(0.1) 74.9(0.6)

DUPLEX(GCN) 93.0(0.1) 95.6(0.1) 91.9(0.3) 88.1(0.4) 84.7(0.2) 92.5(0.0) 87.6(0.3) 75.2(0.2)
DUPLEX(GAT) 93.2(0.1) 95.9(0.1) 92.2(0.1) 88.4(0.4) 85.5(0.0) 92.6(0.1) 88.9(0.0) 76.4(0.2)

Table 10. Transductive Node classification result (%) with self-
supervised training.

Method
Citeseer Cora-ml

mac. F1 mic. F1 mac. F1 mic. F1

DUPLEX*(GCN) 49.0(1.3) 52.1(1.1) 73.9(0.3) 76.2(0.3)
DUPLEX*(GAT) 51.2(0.1) 54.3(2.0) 76.0(1.3) 77.8(1.6)

DUPLEX(GCN) 51.2(1.0) 54.0(1.0) 75.5(0.7) 77.7(0.5)
DUPLEX(GAT) 53.0(2.5) 56.2(1.7) 77.9(0.6) 79.8(0.7)

Table 11. Inductive node classification macro F1 (%) and micro
F1 (%) with supervised training.

Method
Citeseer Cora-ml

mac. F1 mic. F1 mac. F1 mic. F1

DUPLEX*(GCN) 70.9(0.6) 74.9(0.9) 82.2(1.5) 84.8(1.1)
DUPLEX*(GAT) 68.3(1.3) 74.0(0.7) 85.0(2.6) 87.3(2.5)

DUPLEX(GCN) 68.9(2.7) 74.7(0.9) 82.6(2.1) 85.0(1.1)
DUPLEX(GAT) 71.7(0.7) 75.4(0.5) 85.9(0.8) 87.6(0.9)

J.2. Fusion Layer

We can tell that the fusion layer can enhance the performance of DUPLEX across all tasks and datasets by comparing
DUPLEX with DUPLEX* in Tables 3-6, implying the importance of utilizing the complementary information in the
amplitude and phase encoder. Despite this, DUPLEX* still achieves commendable results, competing favorably against
benchmark methods. This empirical outcome underscores the robustness of DUPLEX’s design, even when the encoders
operate in isolation without information fusion.

We further investigate the impact of the placement of the fusion layer on the performance of DUPLEX, considering four
strategies: early-fusion, mid-fusion, late-fusion, and all-fusion. These strategies involve applying the fusion operation
defined in Eq. (9) at the input, middle, output, and all layers, respectively. Our investigation includes both non-attributed
and attributed graphs, focusing on the task of node classification. Notably, in non-attributed graphs, the node embeddings
are randomly initialized and trained in a self-supervised manner, while in attributed graphs, they are initialized using the
node attributes and trained in a fully supervised manner. The results are shown in Figs. 5-6. For non-attributed graphs,
the mid-fusion strategy achieves the best performance, in agreement with the analysis discussed in Section 3.2.3. On the
other hand, for attributed graphs, the all-fusion strategy yields the highest performance. In this scenario, early-fusion
does not introduce noise, as the node attributes hold meaningful information. Similarly, late-fusion does not compromise
performance, given that the model is fully supervised for node classification, and the independence of amplitude and phase
embeddings is not necessary. Consequently, fusion at all layers effectively integrates the valuable node attributes with the
graph structure, resulting in improved performance.

Additionally, to see whether integrating fusion with aggregation behaves better than separating fusion and aggregation
operations, we explore another commonly-used fusion approach, known as the element-wise sum (Wu & Han, 2018; Yu
et al., 2017). This approach computes a weighted combination of the amplitude embedding and phase embedding of each
layer: a′u = ϕ

(
au + ψaθ(θu

)
). Unlike our fusion method, this approach is independent of the graph structure and fuses
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Figure 5. Node classification macro F1 (%) and micro F1 (%) with self-supervised training on randomly initialized graphs. The ‘early’
represent for the ‘early-fusion’ strategy, ‘mid’ for ‘mid-fusion’, ‘late’ for ‘late-fusion’, ‘all’ for ‘all-fusion’. The dashed line is the baseline
result with no fusion layer.
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Figure 6. Node classification macro F1 (%) and micro F1 (%) with supervised training on feature-initialized graphs. The ‘early’ represent
for the ‘early-fusion’ strategy, ‘mid’ for ‘mid-fusion’, ‘late’ for ‘late-fusion’, ‘all’ for ‘all-fusion’. The dashed line is the baseline result
with no fusion layer.

the amplitude and phase embeddings of the same node after aggregation in each layer. The results for both transductive
and inductive node classification can be found in Table 12-13. We can see that DUPLEX with the proposed fusion method
consistently outperforms the element-wise sum approach. This superiority arises from its ability to better exploit the graph
structure during fusion, facilitating a more effective exchange of information.

Table 12. Transductive Node classification result (%) with self-
supervised training. The DUPLEX(EMS) represents DUPLEX
with element-wise sum fusion.

Method
Citeseer Cora-ml

mac. F1 mic. F1 mac. F1 mic. F1

DUPLEX* 51.2(0.1) 54.3(2.0) 76.0(1.3) 77.8(1.6)
DUPLEX(EWS) 52.7(1.1) 56.1(2.0) 74.6(2.9) 76.7(2.5)
DUPLEX 53.0(2.5) 56.2(1.7) 77.9(0.6) 79.8(0.7)

Table 13. Inductive node classification macro F1 (%) and micro
F1 (%) with supervised training. The DUPLEX(EMS) represents
DUPLEX with element-wise sum fusion.

method
Citeseer Cora-ml

mac. F1 mic. F1 mac. F1 mic. F1

DUPLEX* 68.3(1.3) 74.0(0.7) 85.0(2.6) 87.3(2.5)
DUPLEX(EMS) 57.1(1.0) 62.7(1.0) 66.6(2.4) 67.8(1.8)
DUPLEX 71.7(0.7) 75.4(0.5) 85.9(0.8) 87.6(0.9)

J.3. Sensitivity Analysis

To check the sensitivity of the initial loss weight λ and the decay rate q in the loss function (see Section 3.3.3), we conduct
experiments by varying the loss weight λ from 0.0 to 1.0 and the decay rate q in the set {0, 1e-4, 1e-2}. The results for link
prediction and transductive node classification are presented in Figure 7-8. Our findings indicate that incorporating a non-
zero weight λ > 0 for the connection-aware loss results in improved performance compared to having no connection-aware
loss (λ = 0). However, as the initial weight λ increases, the performance of DUPLEX begins to decrease. Additionally,
increasing the decay rate q reduces the influence of different initial weights on the model’s performance. These observations
suggest that the connection-aware loss aids in the learning of superior embeddings. However, setting the initial loss weight
too high can interfere with the primary classification tasks, as the optimization objectives for the two losses are not entirely
aligned.
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Figure 7. Link prediction accuracy (%) under different initial loss weights and decay rates.
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Figure 8. Self-supervised node classification macro F1 (%) and micro F1 (%) under different initial loss weights and decay rates.

J.4. Distance Metrics

In Eq. (10), we employ the L1 distance as a measure to quantify the difference between the reconstructed matrix element
and the corresponding element in the ground truth Hermitian adjacency matrix. However, it is worth noting that DUPLEX is
robust to different distance metrics. In this section, we specifically utilize the L2 distance as an alternative distance metric
and conduct link prediction experiments to compare the performance of DUPLEX using L2 distance. Table 14 illustrates
the link prediction performance of DUPLEX utilizing L1 distance and L2 distance. From our observations, we find that
DUPLEX with L1 distance generally performs slightly better than DUPLEX with L2 distance in most of the experiments
conducted. Nevertheless, DUPLEX with L2 distance consistently demonstrates superior performance compared to other
methods across all the experiments conducted.

Table 14. Link prediction ACC (%) for four subtasks. Note that ‘EP’ represents the ‘Existence Prediction’ subtask, while ‘DP’ for
direction Prediction, ‘TP’ for three-type classification and ‘FP’ for four-type classification.

Distance
Metric

Citeseer Cora
EP DP TP FP EP DP TP FP

DUPLEX(L1) 95.7(0.5) 98.7(0.4) 94.8(0.2) 91.1(1.0) 93.2(0.1) 95.9(0.1) 92.2(0.1) 88.4(0.4)
DUPLEX(L2) 95.0(0.6) 98.6(0.5) 95.4(0.6) 89.5(1.7) 92.6(0.1) 95.2(0.2) 92.1(0.1) 84.6(0.2)

Distance
metric

Epinions Twitter
EP DP TP FP EP DP TP FP

DUPLEX(L1) 85.5(0.0) 92.6(0.1) 88.9(0.0) 76.4(0.2) 98.7(0.1) 99.8(0.0) 99.2(0.1) 98.1(0.2)
DUPLEX(L2) 86.5(0.1) 92.1(0.0) 88.8(0.1) 76.7(0.1) 98.9(0.1) 99.6(0.0) 99.2(0.2) 98.8(0.2)
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