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ABSTRACT

A burgeoning area within reinforcement learning (RL) is the design of sequential
decision-making agents centered around large language models (LLMs). While
autonomous decision-making agents powered by modern LLMs could facilitate
numerous real-world applications, such successes demand agents that are capable
of data-efficient RL. One key obstacle to achieving data efficiency in RL is ex-
ploration, a challenge that we demonstrate many recent proposals for LLM agent
designs struggle to contend with. Meanwhile, classic algorithms from the RL
literature known to gracefully address exploration require technical machinery that
can be challenging to operationalize in purely natural language settings. In this
work, rather than relying on finetuning or in-context learning to coax LLMs into im-
plicitly imitating a RL algorithm, we illustrate how LLMs can be used to explicitly
implement an existing RL algorithm (Posterior Sampling for Reinforcement Learn-
ing) whose capacity for statistically-efficient exploration is already well-studied.
We offer empirical results demonstrating how our LLM-based implementation of a
known, data-efficient RL algorithm can be considerably more effective in natural
language tasks that demand prudent exploration.

1 INTRODUCTION

Large language models (LLMs) have rapidly permeated many areas of machine learning, demonstrat-
ing proficiency across a broad range of tasks (Bommasani et al.,|2021}; |Achiam et al.| 2023}, /Touvron
et al., 2023 |Team et al.,|2023} |Hurst et al., 2024} |Jaech et al.,|2024). This has inspired recent work
studying how LLMs can best be used to solve sequential decision-making problems (Silver & Sutton|
2025)). These efforts have led to the introduction of new designs for LLM agents that aim to learn
optimal behavior through trial-and-error interaction within natural language environments (Yao et al.,
2023}, [Shinn et al., [2024; Monea et al., [2024; [Klissarov et al., [2025)). While details vary by approach,
broadly speaking these new agent designs involve one or more LLMs that interact to ultimately select
actions within the environment. However, such agents still reside in the classic RL setting (Sutton &
Bartol [1998)) and, consequently, must still grapple with the fundamental obstacles to data efficiency
(generalization, exploration, and credit assignment) that the RL literature has studied for decades.

While composing LLMs to arrive at new agent designs is the current norm, we propose that an
alternative strategy is to re-examine existing RL algorithms and consider how LLMs might implement
them in otherwise inaccessible environments. An RL algorithm consists of specifying inputs and
detailing a sequence of steps for determining behavior at each time period. Why should the emergence
and proliferation of LLMs change the fundamental principles of agent design? Instead, as visualized
in Figure|l| perhaps LLMs can be used to create new, potentially-inexact incarnations of existing RL
algorithms via the subroutines needed to implement them.

In this work, we focus on data-efficient RL with LLMs and isolate the key challenge of explo-
ration. We demonstrate how modern LLMs afford a contemporary implementation of an existing
RL algorithm, Posterior Sampling for Reinforcement Learning (PSRL) (Strens, [2000; |Osband et al.,
2013), that is both well-studied and whose capacity for good exploration is already known to yield
provably-efficient RL in a number of problem classes. We empirically find that our LLM-based
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Figure 1: Abstractly, an RL algorithm is an ordered sequence of steps. Existing approaches for LLM
agent design (left) orchestrate some number of LLMs to implicitly induce a RL algorithm. In contrast,
this paper advocates for a novel agent design principle (right) whereby an existing RL algorithm is
explicitly implemented by outsourcing individual steps to distinct LLMs.

implementation of PSRL retains the strong exploration properties that, up to this point, have not only
been primarily restricted to tabular domains but also been absent in recent designs for LLM agents.
We further observe that the choice of LLM underlying the PSRL implementation matters and, in
an environment with stochastic transition dynamics, show that upgrading to a more capable model
(GPT-40 to ol-mini) is the difference between incurring linear regret and obtaining cumulative regret
on par with classic PSRL. Altogether, our work underscores the importance of addressing exploration
in the design of LLM agents, illustrates the considerable value that decades of RL research have to
offer data-efficient decision-making with LLMs, and establishes a key distinction between LLMs that
implement a RL algorithm versus a RL algorithm that is implemented with LLMs.

2 PROBLEM FORMULATION

All random variables are defined on a probability space (2, 7, P). For any arbitrary set X, we use
A(X) to denote the set of all probability distributions with support on X'. For any N € N, we denote
the index set as [N] = {1,2,...,N}.

We formulate a sequential decision-making problem as a finite-horizon, episodic Markov Decision
Process (MDP) (Bellman, 1957} [Puterman, [1994) defined by M = (S, A, R, T, 8, H). S is a set of
states, A is a set of actions, R : S x A — [0, 1] is a reward function providing evaluative feedback
in the unit interval, 7 : S x A — A(S) is a transition function prescribing distributions over next
states, 8 € A(S) is an initial state distribution, and H € N is the maximum episode length or
horizon. Within each of K € N total episodes, the agent acts for H steps beginning with an initial
state s; ~ ((-) and, at each timestep h € [H], observes the current state s;, € S, selects an action
ap € A, enjoys areward r, = R(sp, ap), and transitions to a next state sp+1 ~ 7 (- | sp, an).

An agent is characterized by its non-stationary, stochastic policy 7 : S x [H|] — A(.A), which
encodes a pattern of behavior by mapping individual states and the current timestep to a probability
distribution over actions. We assess the performance of a policy = in MDP M at timestep h € [H|
when starting at state s € S and taking action a € A by its associated action-value function

H
Qin(s,a) = E [ > R(sw,an) | sn = s,an = a|. Taking the value function as Viin(s) =
h'=h

Eqrr,(-s) {Q% (s, a)} , we define the optimal policy 7* as achieving supremal value V7, ; (s) =
sup VT ,(s) forall s € S, h € [H] where II denotes the class of all non-stationary, stochastic
nell ’

policies. For any episode k € [K], we let 7, = (sgk), agk), rgk), Sy S (k) a( )7 gf), sggrl) denote
the random trajectory experienced by the agent executing its policy in the env1ronment Meanwhile,

Hy ={r1,72,...,Tk—1} € H is the entire random history of interaction at the kth episode.

Abstractly, a RL algorithm is a sequence {W(k)}ke[K] where the policy deployed at each
episode 7(*) is a function of the current history Hy. We may evaluate the performance
of a RL algorithm on MDP M via its cumulative regret: REGRET({?T(k)}ke[K],M) =

K
E [Z (V&yl(sl) - Vj&( kl) (81)) \ M} , which aggregates performance shortfall between an agent’s

chosen policy and the optimal policy in all episodes. Naturally, an agent designer seeks out a RL
algorithm with minimal cumulative regret.
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3  LLM IMPLEMENTATION OF POSTERIOR SAMPLING FOR REINFORCEMENT
LEARNING

One of the major obstacles to data-efficient RL is exploration, where a learner must determine what
data to collect from the environment to maximize long-term performance. While much of the early
work on addressing exploration in RL (see Appendix [A]for a detailed review of prior work) adhered
to “optimism in the face of uncertainty,” an alternative is to proceed in a Bayesian fashion.

The Bayesian RL setting (Bellman & Kalaba,|1959; Duff] 2002; |(Ghavamzadeh et al., 2015) recognizes
that the underlying MDP M is entirely unknown to the agent and, therefore, a random variable. The
agent is thus endowed with a prior distribution P(M) to reflect initial uncertainty in the true MDP.
While the standard RL objective (Sutton & Barto) [1998) calls for an agent to minimize regret, another
performance criterion is the Bayesian regret, which simply integrates out the randomness in M with
respect to an agent’s prior: BAYESREGRET({m (")} (x)) = E [REGRET({m®} ¢, M)] . We
make a standard assumption that the prior is well-specified and the true MDP resides in its support.

Unfortunately, the canonical Bayes-Adaptive MDP (BAMDP) (Bellman & Kalabal [1959; |Duff} |2002)
that encapsulates the full Bayesian RL problem is often computationally-intractable even in the
simplest classes of environments with precious few exceptions (Gittins|, [1979)). This is a direct
consequence of the intractably-large BAMDP hyperstate space (Duff] 2002; /Arumugam & Singhl
2022), in which traditional MDP states are folded in alongside epistemic states (Lu et al., [2023)) that
contain an agent’s beliefs and epistemic uncertainty (Der Kiureghian & Ditlevsen), 2009) about the
world. The MDP transition and reward functions are unknown to a RL agent and, with each step
taken in the true environment, the resulting reward and next-state transition provide ground-truth
observations by which the agent may refine posterior beliefs about the underlying MDP M. Even for
a simple finite MDP, the epistemic state space is exponentially-large in the problem horizon H. One
might hope that the epistemic state could be lazily updated while still enabling strategic exploration
by reducing epistemic uncertainty; this insight is the basis of posterior-sampling methods in RL.

3.1 THE CLASSIC APPROACH

The promise of Bayesian RL methods is to facilitate statistically-efficient exploration by reducing an
agent’s epistemic uncertainty about the world. One strategy for reaping the benefits of uncertainty-
based exploration in a computationally-tractable manner is through Posterior Sampling for RL
(PSRL) (Strens, [2000), presented as Algorithm E} Rather than updating the epistemic state at each
timestep, PSRL holds it fixed during each episode and only updates the posterior at the end using
the full trajectory 7. To govern action selection within each episode based on current knowledge
of the true underlying MDP P(M | H}), PSRL employs Thompson sampling (TS) (Thompson),
1933 Russo & Van Roy, 2014} 2016; |Russo et al., [2018)), whereby the agent draws one posterior
sample as a statistically-plausible hypothesis about the true MDP (Line 3) and proceeds to act
optimally with respect to it by executing the sampled MDP optimal policy (Lines 4-5). It has been
shown theoretically that, by iteratively employing TS in this manner, PSRL is able to achieve strong
exploration and satisfy Bayesian regret upper bounds for statistically-efficient RL in tabular MDPs
and beyond (Osband et al.} 2013} |Osband & Van Roy, [2014; |/Abbasi- Yadkori & Szepesvaril, [2014;
Osband & Van Roy, 2016} |Agrawal & Jial [2017;|Ouyang et al., 2017;|Osband & Van Roy,|2017; |Lu
& Van Royl |2019; |Arumugam & Van Royl 2022; Xu et al.;2024)). A key contribution of this work is
expanding empirical support for PSRL, an algorithm that has largely been a method of theoretical
study up to this point.

While PSRL enjoys nice theoretical guarantees, practical implementations extending beyond tabular
MDPs (Osband et al.| 2013) face significant computational hurdles. Representing and maintaining
epistemic uncertainty about the underlying MDP transition and reward functions is an open challenge
in high-dimensional environments. While some work has studied using neural networks to address
the broader problem of uncertainty estimation for guiding exploration in RL (Osband et al., [ 2016a;|Lu
& Van Roy, |2017;|Osband et al.,|2018;|0’Donoghue et al.||2018; [Dwaracherla et al., |2020; |Osband
et al., 2023} Sasso et al., 2023)), the overwhelming majority of these efforts have concentrated on
a model-free analogue of PSRL that maintains a Bayesian posterior over the optimal action-value
function Q* (Osband et al.,[2016b} 2019)) in lieu of the underlying MDP M. Meanwhile, the minority
of such methods that actually strive to implement PSRL have either been met with mixed results
across hard-exploration problems or have been limited to evaluations in smaller-scale domains.
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Algorithm 1 Posterior Sampling for Reinforcement Learning
(PSRL) (Strens, 2000) ord s Inthe English di cty fve distint etters. The
1: Input: Prior P(M € )
2: fork e [K]do
3:  [(Sample My ~P(M € - [ Hp ).
[Obtain optimal policy 7¥) = 73, "}

4
5 Execute 7(F) and get trajectory: s .. -,
6:  Update history Hyyq = Hp Uy,
7
8:

(Induce posterior P(M € - | Hy11)
end for

Figure 2: The PSRL algorithm with LLM sub- Figure 3: Examples of a posterior (top) and pos-
routines of posterior sampling, optimal behavior ~ terior sample (bottom) generated by our LLM-
with respect to a sample, and posterior updating ~ based PSRL in Wordle

shown. Dotted arrows show data flow.

Among them is a line of work that leans heavily into the use of Langevin dynamics for recovering
the strategic exploration of PSRL (Mazumdar et al., [2020; [Karbasi et al.,[2023}; shfaq et al.| 2024}

Jorge et al.| [2024); in the context of this paper, such technical machinery is incredibly challenging
and nontrivial to combine or even emulate with LLM agents.

In parallel, beyond the difficulties of maintaining a PSRL agent’s posterior distribution over the
true MDP, computing the optimal policy for the posterior sample drawn in each episode constitutes
an additional challenge that requires solving a planning problem. While there has been progress
and even notable successes in this space for deep model-based RL agents (Kaiser et al.| [2020), it is
unclear if those methods are readily applicable to the natural language tasks faced by LLM agents.
In our experiments, while we report positive results for our LLM-based PSRL implementation in
MDPs with both deterministic and stochastic transition functions, performance in the latter type of
environment eventually deteriorates as the size of the state-action space increases and exacerbates
poor LLM planning capabilities under stochastic dynamics (see Appendix [D).

3.2 A LLM IMPLEMENTATION

The key contribution of this paper is recognizing that LLMs can be operationalized to provide basic,
atomic functions from which PSRL may be implemented. This stands in stark contrast to existing
strides (see Appendix [A)) towards efficient decision-making with LLM agents
[Krishnamurthy et al.} 2024} Klissarov et al.| 2025} [Ke et al., [2024)), which either leave a LLM to its
own devices for strategizing exploration or expect in-context learning (ICL) (Brown et al, 2020)
to emulate the exploration of an existing RL or bandit algorithm. While future LLMs may become
sufficiently capable to accommodate the former, our experiments today suggest this is not the case
for simple, natural-language tasks where efficient exploration is paramount to success; by the same
token, we anticipate that our proposed LLM-based implementation of PSRL will also benefit and
gracefully extend to more complex natural language tasks as the constituent LLM models become
more capable at performing their requested functions. Indeed, we find this to be the case empirically
when applying our approach to MDPs with stochastic transition functions. LLM agents emulating
the outputs of classic RL methods 2024) are also bound to the same traditional problem
classes whereas LLM-based implementations of RL algorithms may broaden the footprint of those
classic algorithms to include natural-language domains that would otherwise be entirely infeasible.

As shown in Algorithm [T} our proposed implementation of PSRL relies on LLMs to play three
distinct roles: (1) an approximate posterior updater, (2) a posterior sampler, and (3) an optimal
policy with respect to a posterior sample. PSRL requires a prior distribution over MDPs as input and,
more generally in any episode, needs a current posterior that accurately reflects the agent’s current
knowledge and uncertainty about the world. For our purposes, such an approximate “posterior’ﬂ isa
textual description that summarizes both the known and uncertain aspects of the true MDP transition
and reward function. More importantly, it also explicitly communicates (in some way) the amount
of uncertainty an agent has about these aspects of the world. As this textual summary amounts
to the PSRL agent’s epistemic state representation 2023)), an agent designer may exert

'For ease of exposition, we will refer to this object as a posterior throughout the remainder of the paper, but
acknowledge the distinction between it and the true, statistical object that is the Bayesian posterior distribution.
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strong influence over this representation through the verbiage and expression of prior knowledge; as a
concrete example, specifying the next-state transition distribution of a tabular MDP in our experiments
as a Dirichlet distribution (in language) naturally encourages the LLM-based implementation of
PSRL to maintain visitation counts. Of course, an advantage is that agent designers may now leverage
the full expressivity and fluidity of natural language for communicating prior knowledge without
restriction to the few statistical distributions that afford the computational conveniences of conjugate
priors.

Given a current posterior reflecting the agent’s knowledge and uncertainty about the world, PSRL
must be able to draw one posterior sample from these beliefs. We implement this as a first LLM
that, given the agent’s current textual posterior (initially set to be the agent designer’s input prior)
is tasked with generating a plausible hypothesis for how transitions and rewards unfold. In some
domains, such as tabular MDPs, it may be natural for this to be an exhaustive list of rewards and
next-state transitions for each state-action pair. For more practical scenarios of interest, however,
it may be beneficial to prompt this posterior sampling LLM so that it can leverage an environment
proxy or lossy surrogate MDP (Lu et al., 2023; /Arumugam & Van Royl 2022) that retains only the
salient details needed to determine (near-)optimal behavior. As a concrete example, one of our natural
language tasks is the game of Wordle (shown in Figure[3) that, as a MDP, has a transition function and
reward function defined entirely around an unknown, five-letter target word. Here, the target word
serves as an environment proxy that our LLM-based PSRL agent may directly monitor uncertainty
over without meticulously maintaining statistics for rewards and transitions of individual state-action
pairs.

With a single posterior sample in hand, a PSRL agent must be able to select actions that would be
considered optimal if the sampled MDP truly reflected reality. We implement this as a second LLM
tasked with executing actions given the current state that maximize value in a way that is consistent
with the natural language hypothesis generated by the posterior sampling LLM. In the simplest case,
this optimal sample policy LLM need only be given the posterior sample along with the current state
and asked directly to generate an action. In more challenging settings, an agent designer may architect
the LLM more carefully via chain-of-thought prompting (Wei et al.| 2022} [Kojima et al.,[2022) to
increase the chance of selecting optimal actions consistent with provided hypothesis. Even when this
policy is only approximately-optimal with respect to the posterior sample in a given episode, classic
PSRL still admits a Bayesian regret bound (see Section 5.4 of |Osband|(2016a)) and one might hope
to see an LLM-based implementation of PSRL empirically exhibit similar robustness in practice.

Upon the completion of an episode with the optimal sample policy LLM acting with respect to
the hypothesis of the posterior sampling LLLM, we task a third and final LLM with updating the
PSRL agent’s knowledge and residual uncertainty about the world, akin to an (approximate) posterior
update. Given a complete trajectory consisting of reward signals and next-state transitions for exactly
H state-action pairs, this posterior LLM must reconcile the agent’s prior knowledge at the start
of the episode against observed interactions from within the environment. With this last piece of
functionality in place, all three LLMs can then be orchestrated to run the PSRL algorithm.

4 EXPERIMENTS & DISCUSSION

The goal of our experiments is assessing the extent to which our proposed LLM-based PSRL
implementation not only retains the desirable exploration properties that PSRL exhibits empirically
within simpler problem domains but also expands the range of problems where these benefits can be
realized. To this end, we focus our evaluation on tasks which demand prudent exploration to achieve
success and where an agent is minimally encumbered by the orthogonal challenges of generalization
and credit assignment. For each task, we present cumulative regret curves (lower, flatter plots indicate
better performance) where any shading denotes one standard error. All agents use GPT-40 (Hurst
et al., 2024) for their constituent LLMs unless otherwise indicated. We let Ksampling, Kr*, and
Kposterior denote the temperatures of the posterior sampling, optimal sample policy, and posterior
update LLMs, respectively. Due to space constraints, we defer further details of our experiments and
all prompts used in each task to the Appendix.

For natural language tasks, we compare our LLM-based implementation of PSRL against three
baseline LLM agents. In-Context Policy Iteration (ICPI) (Brooks et al.| 2023) takes classic policy
iteration (Howard, |1960) and offers an implementation via three LLMs, using ICL to elicit a rollout
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policy; transition function; and reward function respectively. Together, these models allow for policy
improvement via greedy action selection 7(%)(s;,) = argmax Qﬁk_l) (sn,a), with ties broken
€A

randomly. In-Context RL (ICRL) (Monea et al.,[2024)) aims to explore via the stochasticity in LLM
responses from sensitivity to the input ICL data. Which episodes are included from a replay buffer
for ICL with a LLM policy at each timestep is determined by sampling independent Bernoulli(p)
random variables; we study three distinct values of the keep probability p € {1,0.5,0.1}. Finally,
Reflexion (Shinn et al., [2024)) passes each full trajectory through a self-reflection LLM that generates
verbal guidance; the total history of verbal guidance is given at each timestep to the LLM policy,
along with the current state, for improving the quality of decision-making.

4.1 MULTI-ARMED BANDITS
4.1.1 BERNOULLI BANDIT

Following prior work studying the exploratory capabilities of LLMs (Coda-Forno et al.| 2023} Binz
& Schulz, 2023; (Coda-Forno et al., [2024; [Krishnamurthy et al.| [2024; [Nie et al., 2024])), we begin the
empirical assessment of our LLM-based PSRL with a multi-armed bandit problem (Lai & Robbins,
1985} Bubeck & Cesa-Bianchil, |2012} Lattimore & Szepesvari, [2020). Readers unfamiliar with multi-
armed bandits may simply observe them as a special case of a MDP with horizon H = 1, singleton
state space |S| = 1, and a stochastic (rather than deterministic) reward function. Our evaluation
follows that of |Krishnamurthy et al.|(2024)) who chose the simple yet challenging case of a five-armed
Bernoulli bandit with independent arms and an action gap of 0.2E] The version we evaluate has one
randomly-selected optimal arm with rewards drawn from a Bernoulli(0.6) distribution while all other
arms use a Bernoulli(0.4).

Observe that PSRL specialized to a multi-armed bandit problem mirrors classic TS where, at each
timestep, the agent samples one plausible hypothesis for the reward distribution of each arm and
then proceeds to select the optimal action believed to achieve highest mean reward under this
hypothesis. We compare PSRL implemented with LLMs to classic TS for a Bernoulli bandit with
each arm initialized with a Beta(1, 1) prior. Meanwhile, our LLM-based PSRL agent begins with
a prior for each arm specified as a Beta (1, 1) in natural language. While we fix temperatures
Kxx = Kposterior = 1, we find that the posterior sampling temperature has profound impact on the
performance of our LLM-based PSRL agent. Figure [ compares TS (run for 1,000 independent trials)
against PSRL with four distinct settings of Kgampling (run for 20 independent trials).

5-Armed Bernoulli Bandit (Action Gap = 0.2) Customer Service Bandit

16 —— PSRL+ LLMs (ours)
PSRL + LLMs (ours; well-specified prior)
14 —— Reflexion
— ICRL(p=1.0)

— TS
PSRL + LLMS (Ksampiing = 0.5)
—— PSRL +LLMs (Ksampiing = 1)
—— PSRL +LLMs (Ksampiing = 1.1) 2
—— PSRL + LLMs (Ksampiing = 1.2)

Cumulative Regret
Cumulative Regret
®

0 20 ] 60 80 100 00 25 50 75 100 125 150 175 200
Time Period Episode

Figure 4: Cumulative regret curves for a 5-armed  Figure 5: Cumulative regret curves for the real-
Bernoulli bandit. world customer service bandit.

We find that our LLM-based PSRL achieves a better cumulative regret curve (with Kgampling = 1.2)
than classic TS, for the limited time horizon of 7" = 100. We find that supplying PSRL with an initial
prior of Beta (1, 1) in language automatically encourages the posterior update LLM to update
binary reward observation counts for the chosen arm in each time period. Moreover, we find that the

The action gap is defined as the difference in expected reward between the best and second best action.
Larger action gaps make it easier to identify the optimal arm with few samples whereas smaller action gaps
demand greater exploration.
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optimal sample policy LLM has little difficulty in examining the sequence of expected reward values
for each arm generated by the posterior sampling LLM and adhering to select the perceived best
action. Manipulating K¢ampling Shows that even values as large as 1 lead to greedy-like exploration in
many trials where the resulting posterior sample favors the action observed to yield the most successes
thus far. For a limited number of trials, this error proves to be not so catastrophic for temperatures of
at least 1, though we would anticipate linear regret after more time periods. We find that increasing
Ksampling > 1 yields exploratory behavior more aligned with TS where optimal actions more likely
to be taken in the later time periods and and there is a more gradual reduction of probability mass
from other actions (see Appendix B).

4.1.2 NATURAL LANGUAGE BANDIT

To demonstrate one concrete instance of how our proposed LLM-based PSRL may meet the demands
of a real-world decision-making problem, we adapt the customer service task of Tajwar et al.| (2025)
into a multi-armed bandit problem. In each of K = 20 total time periods, the agent may either ask
a question or offer a solution to address a customer issue randomly sampled from the datase of
Tajwar et al.|(2025)). Similar to Tajwar et al.| (2025)), we use two additional LLMs to simulate the
customer (who answers the agent’s questions and tries suggested solutions as a non-technical person
would) and to be a judge/reward function who ultimately determines the binary reward indicating
successful resolution of a customer’s issue. All models use GPT-40 as the underlying LLM.

For our LLM-based PSRL, we consider two methods for specifying the prior distribution that PSRL
takes as input. In the first case, we simply ask GPT-40 to provide a prior distribution (a list of
plausible underlying issues for the customer complaint as well as guessed probabilities based on
how likely the model perceives the issue to be) that is given directly as input to our LLM-based
PSRL agent. In preliminary experiments we found that, while this agent is capable of finding success
often, it can suffer from issues of prior misspecification, where the true solution (also given in the
dataset of |Tajwar et al.| (2025))) is not within the support of the LLM-generated input prior. To
remedy this without giving away the answer, we use a second method of generating an input prior
that guarantees it is well-specified; we provide the dataset solution for the sampled customer service
issue to GPT-40 and indicate that it is one possible resolution but that GPT-40 must itself assign a
probability to it based on how plausible it is perceived to be. We report the results of this latter agent
as “well-specified” in Figure 5] where all agents were run for a total of 20 trials.

In the face of prior misspecification — something that the base PSRL algorithm does not entertain by
assumption and, therefore, has no explicit mechanism to cope with — baseline LLM agent designs
still cannot achieve a statistically-significant improvement over PSRL. Furthermore, once the prior
misspecification is removed (without handing the solution away as the agent must still sift through
other plausible sources of customer issues), PSRL is able to demonstrate strong exploration that far
exceeds baseline methods on a real-world task with a tremendously-large action space.

4.2 TABULAR MDPs

For a tabular MDP widely known as a hard exploration task, we turn our focus to a truncated variant
of the RiverSwim environment (Strehl & Littman, [2008). RiverSwim is a six-state chain where
the agent begins in the leftmost state. The stochastic transition function mimics a water current
that allows an agent to deterministically swim to the left (downstream with the current) but only
stochastically swim to the right (upstream against the current) with a 35% chance of success and
a small 5% chance of being pushed back one state downstream (Osband et al., [2013)). Swimming
downstream in the initial state results in a small reward of 0.005. Successfully swimming all the
way upstream allows the agent to reach the rightmost state where it can collect a reward of 1. As all
other rewards are zero, a RiverSwim agent must explore the full length of the river to learn optimal
behavior. To keep financial costs down, we truncate the environment to a river of length 3 (one initial
state, intermediate state, and terminal state) with H = 6.

We compare our LLM-based implementation of PSRL with a vanilla PSRL agent for a tabular
MDP (Osband et al., |2013). The latter models epistemic uncertainty over the transition function
as a collection of |S||.A| Dirichlet distributions. This epistemic state representation allows for the

3https ://github.com/tajwarfahim/paprika/blob/main/llm_exploration/game/
game_configs/customer_service. json
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computational conveniences of Dirichlet-multinomial conjugacy. We further model unknown rewards
with a discrete uniform prior over {0, 0.005, 1}. Cumulative regret curves shown in Figure@compare
our LLM-based PSRL withaDirichlet (0.1,0.1,0.1) prior against vanilla PSRL (with the
standard uniform Dirichlet prior initialization of avg = ‘%). We use Kr+ = Kposterior = Ksampling = 1
and all agents are run for 40 independent trials, except the vanilla PSRL agent run for 1,000. We also
compare against the LLM agent baselines of Reflexion and ICRL with p = 1.

Our initial results with RiverSwim were negative (see
Appendix [C) as GPT-4o struggled to cope with main-

taining and updating the verbose epistemic state rep- RiverSwim (Length 3)
resentation describing reward information and next- e

state transitions across all 12 state-action pairs. Cu- B et S

riously, however, this negative result provided an e —— Fl e

—— ICRL, p=1.0 (GPT-40)

opportunity to assess a claim of Section [3.2] that g b

more-capable LLMs would allow our PSRL imple-
mentation to scale gracefully to more complex tasks.
Indeed, by upgrading from GPT-40 to ol-mini, Fig- ,
ure [6] shows that our LLM-based PSRL is capable ’ /

of achieving sub-linear regret on par with vanilla o A

PSRL. Reflexion is unable to persevere past failed °o 5w B ™ Bm D >
attempts to swim upstream before settling for the e

smaller downstream reward of 0.005. ICRL has just
over 25% of trials where it stumbles into the optimal  RiverSwim environment with 3 states. Labels
policy and sticks with it while, for 60% of trials, it show the choice of constituent LL.M model
too falls back to pursuing the downstream reward. (GPT-4o or ol-mini) in each LLM agent.
Moreover, the same LLM upgrade has little impact

on the performance of Reflexion and actually man-

ages to worsen the performance of ICRL; for the latter, we suspect the performance degradation
stems from a combination of the stochastic transition dynamics coupled with the large quantity of
ICL demonstrations that perhaps mesh poorly with the reasoning steps of ol-mini. Nevertheless,
we find that LLM planning issues re-emerge in our LLM-based PSRL upon scaling up to a larger
instance of RiverSwim (see Appendix D).
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Figure 8: Cumulative regret curves for the Wor-
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stituent LLM model (GPT-40 or DeepSeek-R1)
in each LLM agent.

Figure 7: Cumulative regret curves for the combi-
nation lock environment. The vertical axis shows
turns to identify the unlock code.

Having verified that our LLM-based PSRL retains efficient exploration in more traditional envi-
ronments, we now turn to tasks entirely inaccessible by classic PSRL. The first of these tasks is a
combination lock environment where an agent must enter 4 = 3 distinct digits in order to open a
lock and receive a reward of +1. All other rewards are zero and the agent is provided with (verbal)
state information indicating whether the most recently guessed digit is either in the correct position
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for the correct code, present in the correct code but in some other position, or simply not present in
the correct code at all. An agent has K = 8 episodes to identify the correct combination and, with
each one of 20 independent trials having an unlock code sampled uniformly at random from all 720
possible codes, exploration via uniform random code selection has below 0.14% chance of success.

The second task is the challenging web game known as Wordle (Lokshtanov & Subercaseaux} [2022),
where an agent has exactly K = 6 episodes to enter H = 5 distinct letters (which need not be a
dictionary word) that spell a correct target word and receive a reward of +1. Across 40 trials (except
ICPI run for 10 trials due to its significantly higher financial cost and lengthy run times), the target
word is chosen uniformly at random from a filtered corpus| of English dictionary words. The agent is
provided verbal feedback in each state indicating whether the most recently guessed letter is in the
correct position for the target word, in the target word but at some other position, or not present in the
target word at all.

Our LLM-based PSRL agent (Ksampling = Kx* = Kposterior = 1) i given an uninformative prior
which describes all non-repeating codes/English words with the appropriate length as being equiprob-
able; the unlock code/target word is an environment proxy (Lu et al.;[2023)) such that knowledge of the
proxy is a sufficient statistic for recovering the full MDP. For the combination lock, we also compute
the Bayes-optimal policy with respect to the same uninformative prior and plot its cumulative regret
for comparison. To assess the efficacy of our LLM-based PSRL with another alternative choice of
constituent LLM, we present Wordle results with DeepSeek-R1 (Guo et al.| 2025)).

The combination lock and Wordle environments represent distinct instances of an exploration problem
at differing scales within a deterministic environment. Notably, the immediate per-digit/letter feedback
eliminates the challenge of credit assignment entirely (as there is no ambiguity in how each decision
impacts delayed rewards) and isolates exploration as the sole data efficiency obstacle. Our results
(Figures[7]and [8)) show that the LLM-based PSRL is able to most effectively explore the space of
possible unlock codes/target words relative to the baseline methods. Crucially, none of the three
constituent LL.Ms used by PSRL are prompted to explicitly encourage exploration. Rather, these
results further illustrate how prompting these LLMs to perform atomic functions of PSRL and allowing
the algorithm to prescribe how those outputs should be orchestrated in the agent design can yield
an effective exploration strategy. In Wordle, we observe that DeepSeek-R1 provides a performance
improvement to all LLM agents; however, we find that its enhanced reasoning capabilities applied to
even our best baseline LLM agent are insufficient to yield a statistically-significant improvement over
our LLM-based PSRL, even when run with a less-capable GPT-40 as the constituent LLM. We invite
readers to see Appendix [E] for analogous results on combination lock with DeepSeek-R1.

The ICPI paper (Brooks et al., [2023) includes a dataset balancing scheme for ICL, presuming the
requisite data has already been collected. While reasonable for some environments, exploration is
fundamentally about governing data collection to synthesize optimal behavior and, in these domains,
ICPI never observes non-zero reward and collapses to a random policy. For ICRL, using all available
data with p = 1 is equivalent to the “LLM policy” evaluated by Klissarov et al.|(2025)), who also find
poor performance in Wordle. While results in the combination lock domain are better, we find that
decreasing the keep probability p is detrimental to the “exploratory” ICRL of Monea et al.|(2024). In
Reflexion, we observe that self-reflections during the early stages of learning generically encourage
exploration of untested digits/letters, assuming the agent knows how to explore upon simply being
instructed to do so. Only once uncertainty has largely been resolved do reflections become specific
suggestions about how to explore with particular digits/letters and their ordering.

5 CONCLUSION

While much of the burgeoning literature surrounding LLM agents has felt compelled to design new
algorithms for solving RL problems, we here have demonstrated that an existing algorithm, PSRL,
can be implemented with LLMs. The main advantage of our proposed LLM-based implementation
of PSRL is allowing agent designers to leverage the strong generalization and reasoning capabilities
of LLMs in natural-language environments while simultaneously capitalizing on the well-studied
exploration properties of TS. Future work might extend regularization methods (Jiang et al., 2015
Arumugam et al},2018; Rathnam et al.,|2023) that embrace inaccurate transition models to rectify
deficiencies we observed with LLM planning in stochastic domains. Our preliminary results (see
Appendix |F) on recovering information-directed exploration (Russo & Van Royl |[2018)) with LLMs
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represent what is likely to be another very fruitful direction for future work and further reinforces the
potential benefits of implementing, rather than replacing, existing RL algorithms with LLMs.

ETHICS STATEMENT

The impact of LLMs in recent years has been undeniable and so immense as to extend beyond the
confines of the machine learning community, drawing scrutiny from the broader public. As this
paper studies mechanisms for improving the decision-making capabilities of LLMs that are becoming
increasingly more capable and ubiquitously deployed, there is potential for broad impact stemming
from our work. This impact is amplified by the fact that our contributions for improved exploration in
LLMs center around Thompson sampling (Thompson, |1933)), an exploration strategy whose impact
in real-world decision-making problems such as recommendation systems (Chapelle & Li, 2011) and
beyond (Russo et al., [2018)) is already well known.

REPRODUCIBILITY STATEMENT

For all LLM agents evaluated in our experiments, the key items needed to reproduce our results are
the system prompts, user prompts, environment descriptions, environment details, and the process by
which constituent LLMs are queried and have their outputs organized. All of these details can be
found across Section[dand Appendix [H|along with a rough (anecdotal) estimates of the associated
financial cost of running these experiments in Appendix [l Details of all evaluation domains can
be found in Section[]and the associated natural language descriptions common to all LLM agents
evaluated in this work can be found in the appropriate sub-sections of Appendix[H] As this paper relies
heavily on API access to LLMs, it is impossible to obtain granular details on how much compute was
used by our experiments. Instead, we have included Appendix [ with ballpark estimates of how many
tokens were used by our proposed approach in each of our evaluation domains as well as a translation
of those token counts to dollar costs.
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A RELATED WORK

While our primary focus in this paper is on efficient exploration for LLM agents, the broader challenge
of efficient exploration for RL agents is a long-studied topic. One route to achieving statistically-
efficient exploration relies on the use of “optimism in the face of uncertainty,” where approaches
either implicitly or explicitly maintain over-inflated value function estimates for all state-action
pairs (Kearns & Singh, [2002; Brafman & Tennenholtz, 2002; |Kakade, [2003; |Auer et al., 2009; |Strehl
et al., 2009; Jaksch et al., 2010; |Dann & Brunskill, 2015} /Azar et al.,[2017;Dann et al.| 2017; Jin et al |
2018 [Zanette & Brunskill,2019; Dong et al.,2022)). These optimistic biases are calibrated by an agent
designer to incentivize agent visitation of each state-action pair sufficiently many times and eventually
result in accurate value estimates that give rise to optimal behavior. Nie et al.|(2024) attempt to realize
such an optimistic exploration strategy with LLMs (specifically, combining UCB (Auer et al., 2002)
with Gemini (Team et al., |2023))) for multi-armed bandit problems and demonstrate the difficulty in
coupling statistical machinery like confidence intervals with LLMs outright. While our proposed
implementation relies on an equally (if not more) complex statistical object, the Bayesian posterior,
our experiments suggest that LLMs in certain cases may maintain an approximation sufficient for
guiding exploration.

Existing designs for LLM agents either do not explicitly engage with the challenge of exploration
or do so with complete reliance on in-context learning (ICL) (Brown et al.,2020). One of the most
popular LLM agent designs is Reflexion (Shinn et al.| |2024) where the policy LLM charged with
selecting actions is informed at each episode by a “self-reflection” generated from another LLM given
the previous episode trajectory. While suitable for some tasks, we observe in our experiments that
the self-reflection LLM often “passes the buck” and encourages exploration generically in language
without providing a clear strategy for the downstream policy LLM to do so. By relying on LLMs
to provide the requisite functions for implementing a prudent choice of existing RL algorithm, we
encounter strategic exploration without needing to explicitly instruct any of the involved LLMs to
explore.

LLM agents that rely on ICL to enable exploration follow suit with a line of work that examines
Transformer-based RL agents in non-natural-language tasks (Laskin et al., [2022; [Liu et al.} 2023} [Lee
et al.,|2024b; |Dai et al., 2024} |Yan et al.,[2025)). These methods often rely on casting ICL as either
implicit, approximate Bayesian inference (Xie et al.,[2022}; [Zhang et al.| |2023)) or within the “control
as inference” framework (Levinel [2018); one key challenge with the former is that such implicit
posterior knowledge cannot be flexibly and explicitly leveraged to guide exploration, whereas the
latter suffers from not capturing epistemic uncertainty at all (O’Donoghue et al.l2020; [Tarbouriech
et al.| 2023). Very close to the spirit of our work is the in-context policy iteration (ICPI) method of
Brooks et al.| (2023), who take the classic RL algorithm of policy iteration (PI) (Howard,|1960) and
implement it with LLMs and ICL. Unfortunately, the original PI algorithm is oriented towards tabular
MDPs that allow for iterating over all state-action pairs simultaneously. While the ICPI algorithm
forgoes this in favor of online data collection and resampling via experience replay (Lin, [1992), the
authors find it necessary to sample with a dataset balancing scheme to ensure the accuracy of ICL;
this presumes that the “right” data is already present or easily acquired from the environment. In
larger environments where data must be judiciously acquired, we find that ICPI is never able to
collect the data needed for ICL to exhibit any kind of performant behavior. Monea et al.|(2024) study
a selective “dropout” strategy for the ICL demonstrations used by a policy LLM. However, such a
strategy mirrors e-greedy exploration (Watkins & Dayan, |1992) without making a concerted effort to
strategically guide decision-making, much like how classic dropout in deep RL (Gal & Ghahramani,
2016) is a poor proxy for uncertainty-based exploration (Osband, 2016b). In contrast to ICL, the
core idea studied in this work is conceptually similar to meta-prompting (Goodman, |2023)), where
an agent incrementally accumulates salient environmental knowledge within its system prompt to
refine behavior in each episode; while prior work has suggested that meta-prompting is an implicit
approximation of posterior sampling (Franken et al., [2023)), we here are exclusively concerned with
the explicit implementation of PSRL.

A related line of approaches examines using classic (deep) RL methods in tandem with LLM reward
functions (Klissarov et al.,|2025; [Kwon et al., 2023; Zheng et al.| 2024). These approaches, while
interesting, largely focus on non-linguistic domains whereas our goal is to bring ideas on data-
efficient RL to bear on the natural language domains where LL.Ms stand to have the most impact.
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The posterior-sampling-based exploration strategy we consider in this work connects more broadly to
initial investigations surrounding the information gathering capabilities of LLMs (Ke et al., | 2024)).

Lastly, we note that the Reinforcement Learning from Human Feedback (RLHF) pipeline (Stiennon
et al.| 2020; Ouyang et al.,|2022)) used to explicitly optimize LLMs also faces an underlying sequen-
tial decision-making problem (in the original formulation, a contextual dueling bandit (Yue et al.,
2012; Dudik et al., | 2015)) and, as such, may greatly benefit from mechanisms to facilitate efficient
exploration (Xu et al [2023; Dwaracherla et al., |2024)). Concretely, at any point in the fine-tuning
process either by RLHF or Reinforcement Learning from Al Feedback (RLAIF) (Lee et al., [20244al),
there will be preference data that offer very little utility or change in LLM responses and those that
stand to dramatically improve response quality. By actively exploring for the latter kind of prompts
and responses, one stands to arrive at a more proficient LLM with fewer iterations of RLHF or RLAIF.
While such work is nascent, our results may offer a promising new pathway for LLMs to achieve the
strategic exploration that could reduce these significant data burdens.

B MULTI-ARMED BANDIT RESULTS

B.1 BERNOULLI BANDIT

As noted by |[Krishnamurthy et al.[(2024), the financial and temporal costs of running LLM agents
can be quite significant. With only 20 trials, it would be presumptuous to make any sweeping claims
about superior performance of one method relative to others. Fortunately, the goal of our multi-armed
bandit experiment is aimed at at a relativistic comparison in the quality of exploration with our
LLM-based PSRL relative to classic TS. To this end, we borrow the surrogate statistics employed
by Krishnamurthy et al.|(2024) to provide deeper insight into the long-term exploratory behavior of
LLM-based PSRL. Figure 9|reports the suffix failure frequency, where a suffix failure at time period ¢
is a binary statistic defined as 1 if the optimal action A* is never chosen in time periods [¢, 7] and 0
otherwise. Clearly, an agent experiencing a large number of suffix failures early on in learning would
be unlikely to identify A* when run for a larger number of time periods. Figure[I0|reports the (scaled)
minimum action frequency, which reports at time period ¢ the frequency of the least-chosen action

in the first ¢ time periods: 1 - min [{Aw | t' € [t], Ay = a}|. The statistic is scaled by |.A| to reside
ac

in [0, 1]. As an agent’s knowledge of the world accumulates, one would naturally expect an agent
to gradually cease selection of some (ideally, sub-optimal) actions and incur lower minimum action
frequencies. Together, these two surrogate statistics paint a picture of whether or not the exploration
of a LLM bandit agent gravitates toward A* over time.

Notably, we find that increasing the temperature Kgsampling Of the posterior sampling LLM has
profound impact on how well our LLM-based PSRL explores according to these metrics. In particular,
we find that increasing Ksampling leads to exploratory behavior more closely aligned with that of
classic TS compared to lower temperatures values.

B.2 CUSTOMER SERVICE BANDIT & PRIOR (MIS)SPECIFICATION

To demonstrate one concrete instance of how our proposed LLM-based PSRL might meet the demands
of a real-world decision-making problem, we adapt the customer service task of [Tajwar et al.| (2025)
into a multi-armed bandit problem. In each of K = 20 total time periods, the agent may either ask
a question or offer a solution to address a customer issue randomly sampled from the dataseﬂ of
Tajwar et al.|(2025). Similar to Tajwar et al.| (2025)), we use two additional LLMs to simulate the
customer (who answers the agent’s questions and tries suggested solutions as a non-technical person
would) and to be a judge/reward function who ultimately determines the binary reward indicating
successful resolution of a customer’s issue. All models use GPT-40 as the underlying LLM.

For our LLM-based PSRL, we consider two methods for specifying the prior distribution that PSRL
takes as input. In the first case, we simply ask GPT-4o to provide a prior distribution (a list of
plausible underlying issues for the customer complaint as well as guessed probabilities based on
how likely the model perceives the issue to be) that is given directly as input to our LLM-based

4https ://github.com/tajwarfahim/paprika/blob/main/llm_exploration/game/
game_configs/customer_service. json
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Figure 11: A scatter plot of suffix failure frequency vs. minimum action frequency for Thompson
sampling and our LLM-based PSRL with varying Ksampling-

PSRL agent. In preliminary experiments we found that, while this agent is capable of finding success
often, it can suffer from issues of prior misspecification, where the true solution (also given in the
dataset of [Tajwar et al.|(2025)) is not within the support of the LLM-generated input prior. To remedy
this without giving away the solution, we use a second method of generating an input prior that
guarantees it is well-specified; we provide the dataset solution for the sampled customer service
issue to GPT-40 and indicate that it is one possible resolution but that GPT-40 must itself assign a
probability to it based on how plausible it is perceived to be. We report the results of this latter agent
as “well-specified” in Figure[5] All agents were run for a total of 20 trials.

In the face of prior misspecification, something that the base PSRL algorithm does not entertain by
assumption and therefore has no explicit mechanism to cope with, baseline LLM agent designs still
cannot achieve a statistically significant improvement over PSRL. While theory is not a focus of
this work, we simply note in passing that prior misspecification of posterior-sampling methods is a
well-studied topic in bandit learning (Russo & Van Royl, 2014; [Simchowitz et al. 2021} Liu et al.,
2022)), where one can provably expect a graceful degradation in performance commensurate with
the degree of misspecification; colloquially, similar results are expected for the full RL setting as
discussed, for instance, in the introduction of |O’Donoghue] (2021)). Future work may greatly benefit
from expanding on our results to more carefully examine how PSRL can remain robust in the face of
such misspecified priors. Moreover, once the prior misspecification is removed (without handing the
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Figure 12: Cumulative regret curves for the real-world customer service bandit task. All LLM agents
use GPT-4o.

solution away as the agent must still sift through other plausible sources of customer issues), PSRL is
able to demonstrate strong exploration that far exceeds baseline methods on a real-world task with a
tremendously large action space.

C EARLY FAILURES WITH GPT-40 IN RIVERSWIM

As RiverSwim is a stochastic environment, even a limited number of states may still demand a
significant episode horizon in order to provide even a chance of learning progress. To keep the
financial costs of our RiverSwim experiments down with horizons as small as 6 and as large as 50, we
employ a policy caching scheme that capitalizes on the underlying tabular MDP that is RiverSwim.
In particular, the policy LLM of all LLM agents (ours and baselines) used in each episode only makes
one API call per novel state visited and the resulting selected action is cached for that state; if a state
is ever revisited within the same episode, then this cached action is automatically reused without
making an additional policy LLM call. After an episode is completed, this cache is then cleared and
reset for the next episode. Notably, as the optimal policy for RiverSwim is non-stationary (since,
if the agent is unsuccessful in swimming upstream towards the end of the episode, it is optimal to
turn around and collect the smaller downstream reward), this means that the cumulative regret curves
across all agents are potentially worse than what they would have been if the agents were allowed to
act in a non-stationary fashion. Nevertheless, as there are only two actions in the MDP, we anticipate
that the impact of this cost-saving measure on our results is minimal and equitable across all evaluated
agents.

In Section[d.2] we reported positive results in a truncated (length-3) variant of the classic RiverSwim
environment (Strehl & Littman, 2008)) upon switching from GPT-40 to ol-mini as the underlying
LLM for our PSRL implementation. For clarity, we use this section to detail the initial failures
we encountered with GPT-40 in RiverSwim. Figure (13| shows the associated cumulative regret
curves adhering to the same setup as outlined in Sectic@@ except We USe Kp+ = Kposterior = O
and Keampling = 0.5. Despite achieving the best regret curve out of all presented LLM agents in
RiverSwim, both of our LLM-based PSRL variants with GPT-40 incur near-linear regret while most
instances of classic PSRL are able to achieve optimal behavior.

We also report both vanilla and LLM-based PSRL run with prior distributions where all deterministic
RiverSwim transitions (only those where the agent swims downstream) are given as prior knowledge.
We posited that supplying all deterministic transitions as prior knowledge would fare better against
classic PSRL. While this does allow LLM-based PSRL to exhibit optimal behavior in many trials,
far too many still fail as the optimal policy LLM struggles to select optimal actions, even when
supplied with posterior samples that have high fidelity to the true environment. Reasons for this
include misread transition probabilities (such as swapping numerical values of the input posterior
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Figure 13: Cumulative regret curve for the RiverSwim environment with 3 states. Algorithms with
knowledge of all deterministic transitions supplied a priori are labeled.

sample) as well as a lack of understanding for long-term planning. Additionally, we observe a rare
occurrence where posterior updates can be prone to catastrophically forgetting a single transition,
thereby halting learning progress entirely should the omitted transition be essential to reaching the
upstream reward.

D LIMITATION: SCALING UP STOCHASTIC ENVIRONMENTS

While the success of our LLM-based PSRL in RiverSwim after upgrading to ol-mini from GPT-40
is encouraging, we find that the scalability of such a substitution is short-lived. Recall that our
version of RiverSwim used in the preceding section is a truncated variant down to a length-3 river.
Unfortunately, as seen in Figure [I4] just increasing the river by one additional intermediate state
to obtain a length-4 RiverSwim environment (H = 20) causes the performance of our LLM-based
PSRL to degrade into linear regret.

This negative result underscores a crucial distinction in the choice of epistemic state between agents;
that is, the statistical object Dirichlet(0.1,0.1, 0.1, 0.1) used by classic PSRL and the natural language
stringDirichlet (0.1,0.1,0.1,0.1) usedin LLM-based PSRL. For deterministic transitions
in RiverSwim, classic PSRL is able to see eventual concentration to a Dirac delta distribution.
Meanwhile the LLM-based PSRL agent, while successful at maintaining visitation counts, is slow to
achieve the same convergence and, across many posterior samples, leaves non-negligible probability
mass on non-existent transitions with fictitious rewards. One plausible explanation would be that such
concentration errors stem from a lack of familiarity by the LLMs, given that Dirichlet distributions
with fractional parameters are encountered with less frequency (McCoy et al.,|2024); however, our
preliminary experiments witha Dirichlet (1,1, 1, 1) prior showed no significant improvement.

Issues with posterior concentration notwithstanding, we also find that far too many episodes fail as
the optimal sample policy LLM struggles to select optimal actions, even when supplied with posterior
samples that have high fidelity to the true environment. Even with chain-of-thought prompting, we
find a clear lack of understanding for long-term, value-based planning; the preliminary success with
length-3 RiverSwim suggests that this failure is connected to the increased verbosity of the epistemic
state that, in turn, compromises the optimal sample policy LLM’s ability to account for the value of
traversing the full river over collecting the small downstream reward repeatedly. Altogether, while the
overall result is negative, we anticipate that these issues may resolve organically in a manner similar
to our early challenges with GPT-40 in length-3 RiverSwim; that is, by leveraging a more advanced
alternative LLM. Even if recent open-source reasoning models (Jaech et al.;,2024; Guo et al., 2025)
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Figure 14: Cumulative regret curves for the RiverSwim environments with 3 (solid lines) and 4
(dashed lines) states, respectively. ol-mini is used exclusively with our LLM-based PSRL.

prove ineffective at fulfilling this purpose, one might still naturally anticipate that such deficiencies
will disappear with time assuming future LLM capabilities continue to expand.

E ADDITIONAL DEEPSEEK-R1 RESULTS

While our experiments with RiverSwim (Figure [6)) confirm the benefits of reasoning models that
invest additional computational effort to produce so-called “reasoning” tokens prior to emitting
response tokens, models such as ol-mini can be prohibitively expensive. To reduce these financial
burdens and assess the efficacy of our proposed LLM-based PSRL with an alternative choice of
constituent LLM, we present results for the combination lock (Figure [I5]- 20 trials) and Wordle
(Figure [§]— 40 trials) environments with DeepSeek-R1 (Guo et al.| [2025).

Our results aggregated across both domains yield two key observations. At the highest level, we
observe that R1 provides a performance improvement to all LLM agents (both ours and baselines).
Curiously, we find that this performance improvement varies by model and domain; across both
environments, we see very small improvements in Reflexion. Meanwhile, performance improvements
for ICRL in the combination lock task and our LLM-based PSRL in Wordle are significant. More
importantly, we find that the enhanced reasoning capabilities of DeepSeek-R1 applied to our best
baseline LLM agents is not sufficient to yield a statistically-significant improvement over our proposed
LLM-based PSRL, even when run with a “weaker” or less-capable GPT-40 as the constituent LLM.
Such a result is somewhat reminiscent of classic boosting (Freund & Schapirel [1997)), wherein an
ensemble of weak learners are composed together into a strong (supervised) learner. Furthermore,
these empirical results might (loosely) suggest that the strategic exploration strategy (specifically,
Thompson Sampling) forged into the design and structure of the PSRL algorithm offers something
beyond what a current strong reasoning model is capable of today, especially when given the freedom
in action selections afforded by a LLM agent design like ICRL.

F LIMITATION: BEYOND THOMPSON SAMPLING

While PSRL, through the use of TS, is known to yield a strong exploration strategy, it is by no
means perfect. In the bandit literature, shortcomings of TS are well-known and naturally become
more salient in the full RL problem (Russo & Van Royl, 2018 [Lu et al.,[2023). By only executing
actions with some probability of being optimal, TS will never take sub-optimal actions that may
yield tremendous information gain. Figure [3|already illustrates how a PSRL agent’s uncompromising
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Figure 15: Cumulative regret curves for the combination lock environment. Labels show the choice
of constituent LLM model (GPT-40 or DeepSeek-R1) in each LLM agent.

execution of potentially-optimal policies cripples exploration and solely allows for the testing of two
unknown letters at a time.

One remedy is to seek out instantiations of information-directed sampling (IDS) (Russo & Van Royj,
2018). IDS is an algorithmic design principle that advocates for using a policy which balances
between performance shortfall and information gain. While supported by a rigorous corroborating
theory in both bandits and RL (Lu et al., [2023)), concrete and practical instantiations of IDS are
difficult to come by on account of the challenges surrounding information gain estimation (McAllester
& Stratos}, 2020). Moreover, the temporally-delayed consequences absent from bandits but present in
RL problems pose an additional challenge as a proper IDS agent must forecast future opportunities
for knowledge acquisition several steps into the future when evaluating current actions.

We present an initial design for a IDS agent with LLMs. Our proposed LLM-IDS agent is myopic
in that it only takes immediate information gain about optimal behavior at the next timestep into
account. Nevertheless, the feedback structure of the combination lock environment allows such an
agent to be unconcerned with temporally-delayed information. For a current state s, € S, we define

two |.A|-dimensional vectors, p and Z, where p(a) = E [VXA,h(Sh) — Q.1 (5h, a)} is the expected

regret of taking action a € A in s, under the agent’s current posterior and Z(a) = I(7*; Ry, Sh11 |
Ay = a, Sy, = sp,) is the information gained (formally, the conditional mutual information (Cover &
Thomas| |2012)) about the optimal policy by taking action a from state s;,. IDS calls for sampling
an action from the distribution that minimizes the information ratio: min W

rea(A) BamrlZ(@)]
computation of the p and Z vectors would be done directly with the current posterior. Instead,
we recycle the same posterior update LLM from our LLM-based PSRL but incorporate two new
LLMs for the provision of p and Z; each of these LLMs is prompted on a per-action basis to assess
the expected regret or information gain, respectively, from each action in the current state. With
these 2|.4| LLM-generated numerical values, the convex optimization problem of minimizing the
information ratio is solved to compute the policy for action selection.

. Normally,

We offer two empirical evaluations to highlight the limitations of LLM-based PSRL exploration
inherited from TS while also underscoring the future potential of our LLM-IDS. The first is a contrived
but transparent multi-armed bandit problem given as Example 2 of Russo & Van Roy|(2018). In this
(K + 1)-armed informative action bandit problem, there is a unique optimal action A* € [K] that
yields a deterministic reward of 1 while all other arms yield a reward of 0; additionally, there is an
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Figure 16: Cumulative regret curves for the 11- Figure 17: Episodic regret curves for the 11-

armed informative action bandit (Example 2) of armed informative action bandit (Example 2) of
Russo & Van Roy|(2018). Russo & Van Roy|(2018).
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Figure 18: Cumulative regret curves for the combination lock environment including LLM-IDS.

action 0 that deterministically provides a reward equal to (2 - A*)~!. Naturally, an agent willing
to deliberately select sub-optimal actions to gain information would take action 0 immediately and
then produce optimal behavior thereafter with the identity of A* in hand. Figures[T6]and[T7)show
across 10 trials that LLM-IDS succeeds in recovering this optimal exploration strategy exactly for the
K = 10 instance whereas LLM-based PSRL is incapable of doing so while exploring via TS. This
result also highlights one simple instance of the flexibility that specifying natural-language priors to
LLM-based PSRL affords as encoding prior knowledge about the informative action might prove
difficult when limited to classic statistical distributions. Extending past this contrived yet transparent
bandit example, Figure [I8] shows that LLM-IDS is able to outperform LLM-based PSRL in the
combination lock task by more quickly testing for unknown digits while remaining unencumbered by
known digits already discovered.

G TOKEN EFFICIENCY

In this section, we give a brief glimpse into the token efficiency of our proposed LLM-based PSRL
agent relative to our two strongest baseline LLM agents, Reflexion and ICRL (p = 1.0), using
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GPT-40 for all constituent LLMs. Notably, our focus in this work has been exclusively on data
efficiency through prudent exploration and, as such, no concerted effort has been made in either our
proposed agent or baseline agents towards optimizing for token efficiency explicitly (by selecting
shorter prompts as inputs to the constituent LLMs) or implicitly (by encouraging LLMs to maintain
brevity in their responses). With that said, Figures [T9)and 20| illustrate token efficiency of these LLM
agents in the combination lock and Wordle environments by plotting cumulative regret as a function
of total tokens processed (on average).

Combination Lock Envirenment Wordle Environment

—— PSRL * LLMs (ours) & —— PSRL+LLMs (ours)
Reflexion Reflexion

— ICRL(p=1.0) 5 — ICRL(p=1.0)
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Figure 19: Cumulative regret curves for the com-  Fjgure 20: Cumulative regret curves for the Wor-
bination lock environment as a function of total  {le environment as a function of total tokens

tokens processed (on average). processed (on average).

In Figure[I9] we see that, despite improved performance and actual convergence towards the optimal
policy, our proposed PSRL-LLM consumes more tokens (on average) than Reflexion and ICRL in the
combination lock environment. We suspect the primary driver behind the excess tokens comes from
the tendency of GPT-4o to fully enumerate all possible correct codes in the “posterior” — something
that neither baseline agent does thereby allowing them to be more economical with respect to the total
number of tokens processed. Despite that, however, we see that our LLM-based PSRL does achieve
better cumulative regret even if truncated to the same number of tokens processed by either baseline
agent. In Figure 20} we see that LLM-based PSRL displays token efficiency that is comparable
to Reflexion and superior to ICRL in Wordle, eventually able to more consistently identify target
words in fewer turns than Reflexion, resulting in lower cumulative regret. Unlike in the combination
lock environment, there are far too many possibilities for possible target words and GPT-40 never
even attempts to enumerate these candidates, instead opting to maintain information about candidate
correct letters and positions.

H EXPERIMENT PROMPTS

In this section, we outline all LLM prompts used in our experiments. We will present all

in orange and all user prompts in red. It is important to note that prompts are to LLM
agents what typical hyperparameters (entropy regularization coefficient, PPO clip factor, batch size,
etc.) are to deep RL agents. In that sense, prompt optimization/hyperparameter tuning of baselines
is an important facet of evaluation. As is often the case when dealing with vast hyperparameter
spaces, however, an exhaustive search for the best hyperparameter settings of each method evaluated
would be far too onerous. Thus, while we include our prompts for all agents in our evaluation to
foster reproducibility and encourage extensions of our work, we note that future work may find
performance improvements with any of these LLM agents through simple refinements of these
prompts for particular models and/or downstream applications.

Each LLM used in this work (both for our and baseline agents) was prompted to perform its
designated function in the context of a broader agent design/algorithm (PSRL, Reflexion, ICRL,
or ICPI). Thus, our prompt iteration process simply consisted of manually adjusting prompts until
preliminary experiments showed the desired functionality being achieved. For baseline agents,
especially those using ICL, this required few iterations; for some elements of PSRL that involve
slightly more complicated entities than a policy; transition function; reward function; or evaluator,
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additional iterations were needed to weed out edge cases and tack on further constraints into the
initial prompt used in the first iteration. For any given domain, the ability to successfully realize the
desired functionality in each of the three LLMs should serve as “unit tests” signaling to an agent
designer whether or not it is sensible to run our proposed PSRL agent. More generally, we make no
claim that these prompts are optimal in any sense (a claim that likely no LLM agent paper can make
in good faith). Investigating these choices in prompt iteration and downstream LLM agent robustness
are important areas of future research.

H.1 LLM-BASED PSRL

In our experiments, depending on the particular environment, we consider two different forms of
posterior LLM prompting. For sufficiently short horizons, the posterior LLM is given the entire
trajectory in a single prompt and is expected to produce the updated posterior. For longer horizons or
whenever concerns about context buffer length come into play, the posterior LLM is prompted with
one full (s, a,r, s") experience tuple at a time and each successive posterior becomes the prior for the
subsequent update. Empirically, we find that whole trajectory updates may be more likely to result
in erroneous updates where certain pieces of information may be mistakenly updated or forgotten
entirely. While this becomes far less likely with per-step experience updates, the associated financial
costs and time spent running the PSRL agent scale unfavorably with the horizon of the problem.
We use whole trajectory observations for all LLM-based PSRL posterior updates in the RiverSwim,
Combination Lock, and Wordle environments. For LLM-based PSRL multi-armed bandit results and
LLM-IDS, we use per-step posterior updates.

For whole trajectory posterior updates, the approximate posterior LLM uses the following system
prompt and user prompt:
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For per-step posterior updates, the approximate posterior LLM uses the following system prompt and
user prompt:

The optimal sample policy LLM simply takes the current observation as the user prompt while using
the following system prompt:

As generating a posterior sample requires specifying a full MDP, we find that the posterior sampling
LLM in PSRL benefits from having distinct prompts that cater to salient aspects of generating an
instance of each environment. We organize the associated environment descriptions as well as
posterior sampling system prompts and user prompts by task in the following sub-sections. We also
include a sub-section for all prompts used by LLM-IDS.

H.2 MULTI-ARMED BANDITS

H.2.1 BERNOULLI BANDIT

The environment description for the Bernoulli bandit task was given as:
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The posterior sampling LLM system prompts and user prompts were:

H.2.2 CUSTOMER SERVICE BANDIT

The environment description for the customer service bandit was given as:

The posterior sampling LLM system prompts and user prompts were:
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Additionally, the respective system prompts used for the environment, judge/reward function, and
prior-generator LLMs are as follows:
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You are the judge of a customer service agent trying to help a customer in a particular scenario.
You will be given the agent’s response, and you have to verify whether the agent has been
able to successfully solve the problem of the customer correctly. You must adhere to the
following guidelines: 1. If the agent provides a solution that is well aligned with the true
solution, you must reply with <VALID>. 2. If the agent’s proposed solution does not align
well with the true solution, then you must reply with <NOTVALID>. 3. The agent doesn’t
need to match the solution word for word to be considered correct. The agent should be
considered correct as long as their solution or question clearly demonstrates that the agent has
correctly discovered the source of the customer’s issue. 4. Prior to returning your judgement
of <VALID> or <NOTVALID> think about the agent solution and true solution and provide a
brief justification of why they do or do not align well. The particular scenario the customer
is facing is: <Customer service issue sampled from dataset>,and the true
solution to their problem is: <Solution to sampled dataset issue>.

—

You are the generator of a prior distribution for a Bayesian decision-making agent. The agent
is faced with a customer service task described as follows: <Customer service issue
sampled from dataset>. The agent will be given an broad initial prior as follows:
You know that rewards are binary and you will only receive a reward of 1 once the customer’s
issue has been resolved. If you knew all the relevant details about the source of the customer’s
issue, there would be no uncertainty about what correct solution to offer and obtain a reward
of 1. You think that all common, reasonable issues based on the observations the customer has
given are plausible. You think that more common and more realistic issues are more likely
than uncommon and less realistic issues.

Your job is to provide an additional supplement to this prior that is specific to the issue
the customer is facing. Give a probability distribution for the possible underlying issue a
customer could be faced along with the probabilities or relative likelihood for each issue you
list based on which of them are more or less likely to be the culprit. (The next line
is included if the prior is designed to be well-specified.) Be
aware that one possible issue could be <Solution to sampled dataset issue>
and include it in your prior with a probability the appropriately reflects how plausible it is to
be the issue.

—

H.2.3 INFORMATIVE ACTION BANDIT

The environment description for the informative action bandit was given as:

The posterior sampling LLM system prompts and user prompts were:
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H.3 RIVERSWIM

The environment description for RiverSwim was given as:

The posterior sampling LLM system prompts and user prompts were:
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H.4 COMBINATION LOCK

The environment description for CombinationLock was given as:

The posterior sampling LLM system prompts and user prompts were:
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The environment description for Wordle was given as:

The posterior sampling LLM system prompts and user prompts were:
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H.6 LLM-IDS

H.6.1 BANDIT VERSION

As the bandit setting does not require handling of temporally delayed consequences or the provision
of a current state, it is appropriate to have a separate prompting scheme for LLM-IDS.

The expected regret LLM used the following system prompt and user prompt:

The information gain LLM used the following system prompt and user prompt:
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H.6.2 MDP VERSION

As previously mentioned, LLM-IDS retains the approximation posterior LLM for performing posterior
updates given agent interactions with the environment. Instead of having two posterior sampling
and optimal sample policy LLMs, LLM-IDS employs two LLMs for computing the expected regret
and the information gain about optimal behavior, respectively, of each action in a given state. The
current posterior is supplied to both LLMs as input along with the current state and the candidate
action being evaluation, thereby requiring a total of 2|.4| API calls to obtain the two | A|-dimensional
vectors needed to solve the information-ratio optimization problem.

Using the fact that finding the distribution over actions which minimizes the information ratio is a
convex optimization problem that places probability mass on at most two actions (Russo & Van Roy|
[2018; [Lu et al.} 2023)), we solve the optimization problem near-optimally by discretizing the unit
interval and searching over all pairs of actions.

For the combination lock environment, we know that the value of the optimal policy is exactly 1.
Consequently, we charged the expected regret LLM with simply computing the expected return
E [@Q*(st, a)] and used one minus this output value as the expected regret. The expected regret LLM
used the following system prompt and user prompt:
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The information gain LLM used the following system prompt and user prompt:

H.7 BASELINE PROMPTS

H.7.1 IN-CONTEXT REINFORCEMENT LEARNING

The ICRL policy LLM uses the following system prompt and user prompt:
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H.7.2 REFLEXION

The Reflexion policy LLM uses the following system prompt and user prompt:

The Reflexion self-reflection LLM uses the following system prompt and user prompt:

H.7.3 IN-CONTEXT POLICY ITERATION

The ICPI transition function LLM uses the following system prompt and user prompt:
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The ICPI reward function LLM uses the following system prompt and user prompt:

The ICPI rollout policy LLM uses the following system prompt and user prompt:

I EXPERIMENT COSTS

In this section, we give rough estimates of the total API calls, dollar cost (according to current GPT-40
pricing), and average as well as maximum tokens used in our main evaluation domains.

Starting with API calls, we recall that we consider a finite-horizon MDP with K episodes, each with
a horizon of H. At the start of each episode, our LLM-based PSRL makes one API call to draw
a “posterior” sample. At each timestep of the episode, there are exactly H API calls made by the
optimal sample policy LLM. Finally, at the end of the episode, there is exactly one API call made to
perform the posterior update. All together, this yields a total of K (H + 2) API calls.
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Under current GPT-40 pricing, the total cost of a single trial in each of our evaluation domains is as
follows:

Domain Number of Episodes (K) | Single-Trial Dollar Cost
5-Armed Bernoulli Bandit 100 $1
Combination Lock 8 $0.11
Wordle 5 $0.11
RiverSwim 35 $0.90

For ol-mini in RiverSwim, the single trial cost increases to $7.50.

The average and maximum token counts per-LLM are as follows:

Posterior Sampling LLM
Domain Average Tokens | Maximum Tokens
5-Armed Bernoulli Bandit 1000 1500
Combination Lock 700 800
Wordle 800 1000
RiverSwim 1500 1700
Optimal Sample Policy LLM
Domain Average Tokens | Maximum Tokens
5-Armed Bernoulli Bandit 400 500
Combination Lock 400 600
Wordle 450 650
RiverSwim 1000 1400
Posterior Update LLM
Domain Average Tokens | Maximum Tokens
5-Armed Bernoulli Bandit 900 1100
Combination Lock 1200 1400
Wordle 1500 1700
RiverSwim 1700 1900
Per-Episode Tokens
Domain Input Tokens | Output Tokens | Total Tokens
5-Armed Bernoulli Bandit 1500 800 2300
Combination Lock 4000 1100 5100
Wordle 3700 850 4550
RiverSwim 4700 1500 6200
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