
Published as a conference paper at ICLR 2026

TOWARD EFFICIENT EXPLORATION
BY LARGE LANGUAGE MODEL AGENTS

Dilip Arumugam
Department of Computer Science
Princeton University
dilip.a@cs.princeton.edu

Thomas L. Griffiths
Department of Computer Science
Department of Psychology
Princeton University
tomg@princeton.edu

ABSTRACT

A burgeoning area within reinforcement learning (RL) is the design of sequential
decision-making agents centered around large language models (LLMs). While
autonomous decision-making agents powered by modern LLMs could facilitate
numerous real-world applications, such successes demand agents that are capable
of data-efficient RL. One key obstacle to achieving data efficiency in RL is ex-
ploration, a challenge that we demonstrate many recent proposals for LLM agent
designs struggle to contend with. Meanwhile, classic algorithms from the RL
literature known to gracefully address exploration require technical machinery that
can be challenging to operationalize in purely natural language settings. In this
work, rather than relying on finetuning or in-context learning to coax LLMs into im-
plicitly imitating a RL algorithm, we illustrate how LLMs can be used to explicitly
implement an existing RL algorithm (Posterior Sampling for Reinforcement Learn-
ing) whose capacity for statistically-efficient exploration is already well-studied.
We offer empirical results demonstrating how our LLM-based implementation of a
known, data-efficient RL algorithm can be considerably more effective in natural
language tasks that demand prudent exploration.

1 INTRODUCTION

Large language models (LLMs) have rapidly permeated many areas of machine learning, demonstrat-
ing proficiency across a broad range of tasks (Bommasani et al., 2021; Achiam et al., 2023; Touvron
et al., 2023; Team et al., 2023; Hurst et al., 2024; Jaech et al., 2024). This has inspired recent work
studying how LLMs can best be used to solve sequential decision-making problems (Silver & Sutton,
2025). These efforts have led to the introduction of new designs for LLM agents that aim to learn
optimal behavior through trial-and-error interaction within natural language environments (Yao et al.,
2023; Shinn et al., 2024; Monea et al., 2024; Klissarov et al., 2025). While details vary by approach,
broadly speaking these new agent designs involve one or more LLMs that interact to ultimately select
actions within the environment. However, such agents still reside in the classic RL setting (Sutton &
Barto, 1998) and, consequently, must still grapple with the fundamental obstacles to data efficiency
(generalization, exploration, and credit assignment) that the RL literature has studied for decades.

While composing LLMs to arrive at new agent designs is the current norm, we propose that an
alternative strategy is to re-examine existing RL algorithms and consider how LLMs might implement
them in otherwise inaccessible environments. An RL algorithm consists of specifying inputs and
detailing a sequence of steps for determining behavior at each time period. Why should the emergence
and proliferation of LLMs change the fundamental principles of agent design? Instead, as visualized
in Figure 1, perhaps LLMs can be used to create new, potentially-inexact incarnations of existing RL
algorithms via the subroutines needed to implement them.

In this work, we focus on data-efficient RL with LLMs and isolate the key challenge of explo-
ration. We demonstrate how modern LLMs afford a contemporary implementation of an existing
RL algorithm, Posterior Sampling for Reinforcement Learning (PSRL) (Strens, 2000; Osband et al.,
2013), that is both well-studied and whose capacity for good exploration is already known to yield
provably-efficient RL in a number of problem classes. We empirically find that our LLM-based

1

Published as a conference paper at ICLR 2026

Figure 1: Abstractly, an RL algorithm is an ordered sequence of steps. Existing approaches for LLM
agent design (left) orchestrate some number of LLMs to implicitly induce a RL algorithm. In contrast,
this paper advocates for a novel agent design principle (right) whereby an existing RL algorithm is
explicitly implemented by outsourcing individual steps to distinct LLMs.

implementation of PSRL retains the strong exploration properties that, up to this point, have not only
been primarily restricted to tabular domains but also been absent in recent designs for LLM agents.
We further observe that the choice of LLM underlying the PSRL implementation matters and, in
an environment with stochastic transition dynamics, show that upgrading to a more capable model
(GPT-4o to o1-mini) is the difference between incurring linear regret and obtaining cumulative regret
on par with classic PSRL. Altogether, our work underscores the importance of addressing exploration
in the design of LLM agents, illustrates the considerable value that decades of RL research have to
offer data-efficient decision-making with LLMs, and establishes a key distinction between LLMs that
implement a RL algorithm versus a RL algorithm that is implemented with LLMs.

2 PROBLEM FORMULATION

All random variables are defined on a probability space (Ω,F ,P). For any arbitrary set X , we use
∆(X) to denote the set of all probability distributions with support on X . For any N ∈ N, we denote
the index set as [N] = {1, 2, . . . , N}.

We formulate a sequential decision-making problem as a finite-horizon, episodic Markov Decision
Process (MDP) (Bellman, 1957; Puterman, 1994) defined by M = ⟨S,A,R, T , β,H⟩. S is a set of
states, A is a set of actions, R : S ×A → [0, 1] is a reward function providing evaluative feedback
in the unit interval, T : S ×A → ∆(S) is a transition function prescribing distributions over next
states, β ∈ ∆(S) is an initial state distribution, and H ∈ N is the maximum episode length or
horizon. Within each of K ∈ N total episodes, the agent acts for H steps beginning with an initial
state s1 ∼ β(·) and, at each timestep h ∈ [H], observes the current state sh ∈ S, selects an action
ah ∈ A, enjoys a reward rh = R(sh, ah), and transitions to a next state sh+1 ∼ T (· | sh, ah).
An agent is characterized by its non-stationary, stochastic policy π : S × [H] → ∆(A), which
encodes a pattern of behavior by mapping individual states and the current timestep to a probability
distribution over actions. We assess the performance of a policy π in MDP M at timestep h ∈ [H]
when starting at state s ∈ S and taking action a ∈ A by its associated action-value function

Qπ
M,h(s, a) = E

[
H∑

h′=h

R(sh′ , ah′)
∣∣ sh = s, ah = a

]
. Taking the value function as V π

M,h(s) =

Ea∼πh(·|s)

[
Qπ

M,h(s, a)
]
, we define the optimal policy π⋆ as achieving supremal value V ⋆

M,h(s) =

sup
π∈Π

V π
M,h(s) for all s ∈ S, h ∈ [H] where Π denotes the class of all non-stationary, stochastic

policies. For any episode k ∈ [K], we let τk = (s
(k)
1 , a

(k)
1 , r

(k)
1 , . . . , s

(k)
H , a

(k)
H , r

(k)
H , s

(k)
H+1) denote

the random trajectory experienced by the agent executing its policy in the environment. Meanwhile,
Hk = {τ1, τ2, . . . , τk−1} ∈ H is the entire random history of interaction at the kth episode.

Abstractly, a RL algorithm is a sequence {π(k)}k∈[K] where the policy deployed at each
episode π(k) is a function of the current history Hk. We may evaluate the performance
of a RL algorithm on MDP M via its cumulative regret: REGRET({π(k)}k∈[K],M) =

E
[

K∑
k=1

(
V ⋆
M,1(s1)− V π(k)

M,1 (s1)
)
| M

]
, which aggregates performance shortfall between an agent’s

chosen policy and the optimal policy in all episodes. Naturally, an agent designer seeks out a RL
algorithm with minimal cumulative regret.

2

Published as a conference paper at ICLR 2026

3 LLM IMPLEMENTATION OF POSTERIOR SAMPLING FOR REINFORCEMENT
LEARNING

One of the major obstacles to data-efficient RL is exploration, where a learner must determine what
data to collect from the environment to maximize long-term performance. While much of the early
work on addressing exploration in RL (see Appendix A for a detailed review of prior work) adhered
to “optimism in the face of uncertainty,” an alternative is to proceed in a Bayesian fashion.

The Bayesian RL setting (Bellman & Kalaba, 1959; Duff, 2002; Ghavamzadeh et al., 2015) recognizes
that the underlying MDP M is entirely unknown to the agent and, therefore, a random variable. The
agent is thus endowed with a prior distribution P(M) to reflect initial uncertainty in the true MDP.
While the standard RL objective (Sutton & Barto, 1998) calls for an agent to minimize regret, another
performance criterion is the Bayesian regret, which simply integrates out the randomness in M with
respect to an agent’s prior: BAYESREGRET({π(k)}k∈[K]) = E

[
REGRET({π(k)}k∈[K],M)

]
. We

make a standard assumption that the prior is well-specified and the true MDP resides in its support.

Unfortunately, the canonical Bayes-Adaptive MDP (BAMDP) (Bellman & Kalaba, 1959; Duff, 2002)
that encapsulates the full Bayesian RL problem is often computationally-intractable even in the
simplest classes of environments with precious few exceptions (Gittins, 1979). This is a direct
consequence of the intractably-large BAMDP hyperstate space (Duff, 2002; Arumugam & Singh,
2022), in which traditional MDP states are folded in alongside epistemic states (Lu et al., 2023) that
contain an agent’s beliefs and epistemic uncertainty (Der Kiureghian & Ditlevsen, 2009) about the
world. The MDP transition and reward functions are unknown to a RL agent and, with each step
taken in the true environment, the resulting reward and next-state transition provide ground-truth
observations by which the agent may refine posterior beliefs about the underlying MDP M. Even for
a simple finite MDP, the epistemic state space is exponentially-large in the problem horizon H . One
might hope that the epistemic state could be lazily updated while still enabling strategic exploration
by reducing epistemic uncertainty; this insight is the basis of posterior-sampling methods in RL.

3.1 THE CLASSIC APPROACH

The promise of Bayesian RL methods is to facilitate statistically-efficient exploration by reducing an
agent’s epistemic uncertainty about the world. One strategy for reaping the benefits of uncertainty-
based exploration in a computationally-tractable manner is through Posterior Sampling for RL
(PSRL) (Strens, 2000), presented as Algorithm 1. Rather than updating the epistemic state at each
timestep, PSRL holds it fixed during each episode and only updates the posterior at the end using
the full trajectory τk. To govern action selection within each episode based on current knowledge
of the true underlying MDP P(M | Hk), PSRL employs Thompson sampling (TS) (Thompson,
1933; Russo & Van Roy, 2014; 2016; Russo et al., 2018), whereby the agent draws one posterior
sample as a statistically-plausible hypothesis about the true MDP (Line 3) and proceeds to act
optimally with respect to it by executing the sampled MDP optimal policy (Lines 4-5). It has been
shown theoretically that, by iteratively employing TS in this manner, PSRL is able to achieve strong
exploration and satisfy Bayesian regret upper bounds for statistically-efficient RL in tabular MDPs
and beyond (Osband et al., 2013; Osband & Van Roy, 2014; Abbasi-Yadkori & Szepesvari, 2014;
Osband & Van Roy, 2016; Agrawal & Jia, 2017; Ouyang et al., 2017; Osband & Van Roy, 2017; Lu
& Van Roy, 2019; Arumugam & Van Roy, 2022; Xu et al., 2024). A key contribution of this work is
expanding empirical support for PSRL, an algorithm that has largely been a method of theoretical
study up to this point.

While PSRL enjoys nice theoretical guarantees, practical implementations extending beyond tabular
MDPs (Osband et al., 2013) face significant computational hurdles. Representing and maintaining
epistemic uncertainty about the underlying MDP transition and reward functions is an open challenge
in high-dimensional environments. While some work has studied using neural networks to address
the broader problem of uncertainty estimation for guiding exploration in RL (Osband et al., 2016a; Lu
& Van Roy, 2017; Osband et al., 2018; O’Donoghue et al., 2018; Dwaracherla et al., 2020; Osband
et al., 2023; Sasso et al., 2023), the overwhelming majority of these efforts have concentrated on
a model-free analogue of PSRL that maintains a Bayesian posterior over the optimal action-value
function Q⋆ (Osband et al., 2016b; 2019) in lieu of the underlying MDP M. Meanwhile, the minority
of such methods that actually strive to implement PSRL have either been met with mixed results
across hard-exploration problems or have been limited to evaluations in smaller-scale domains.

3

Published as a conference paper at ICLR 2026

Figure 2: The PSRL algorithm with LLM sub-
routines of posterior sampling, optimal behavior
with respect to a sample, and posterior updating
shown. Dotted arrows show data flow.

Figure 3: Examples of a posterior (top) and pos-
terior sample (bottom) generated by our LLM-
based PSRL in Wordle

Among them is a line of work that leans heavily into the use of Langevin dynamics for recovering
the strategic exploration of PSRL (Mazumdar et al., 2020; Karbasi et al., 2023; Ishfaq et al., 2024;
Jorge et al., 2024); in the context of this paper, such technical machinery is incredibly challenging
and nontrivial to combine or even emulate with LLM agents.

In parallel, beyond the difficulties of maintaining a PSRL agent’s posterior distribution over the
true MDP, computing the optimal policy for the posterior sample drawn in each episode constitutes
an additional challenge that requires solving a planning problem. While there has been progress
and even notable successes in this space for deep model-based RL agents (Kaiser et al., 2020), it is
unclear if those methods are readily applicable to the natural language tasks faced by LLM agents.
In our experiments, while we report positive results for our LLM-based PSRL implementation in
MDPs with both deterministic and stochastic transition functions, performance in the latter type of
environment eventually deteriorates as the size of the state-action space increases and exacerbates
poor LLM planning capabilities under stochastic dynamics (see Appendix D).

3.2 A LLM IMPLEMENTATION

The key contribution of this paper is recognizing that LLMs can be operationalized to provide basic,
atomic functions from which PSRL may be implemented. This stands in stark contrast to existing
strides (see Appendix A) towards efficient decision-making with LLM agents (Nie et al., 2024;
Krishnamurthy et al., 2024; Klissarov et al., 2025; Ke et al., 2024), which either leave a LLM to its
own devices for strategizing exploration or expect in-context learning (ICL) (Brown et al., 2020)
to emulate the exploration of an existing RL or bandit algorithm. While future LLMs may become
sufficiently capable to accommodate the former, our experiments today suggest this is not the case
for simple, natural-language tasks where efficient exploration is paramount to success; by the same
token, we anticipate that our proposed LLM-based implementation of PSRL will also benefit and
gracefully extend to more complex natural language tasks as the constituent LLM models become
more capable at performing their requested functions. Indeed, we find this to be the case empirically
when applying our approach to MDPs with stochastic transition functions. LLM agents emulating
the outputs of classic RL methods (Nie et al., 2024) are also bound to the same traditional problem
classes whereas LLM-based implementations of RL algorithms may broaden the footprint of those
classic algorithms to include natural-language domains that would otherwise be entirely infeasible.

As shown in Algorithm 1, our proposed implementation of PSRL relies on LLMs to play three
distinct roles: (1) an approximate posterior updater, (2) a posterior sampler, and (3) an optimal
policy with respect to a posterior sample. PSRL requires a prior distribution over MDPs as input and,
more generally in any episode, needs a current posterior that accurately reflects the agent’s current
knowledge and uncertainty about the world. For our purposes, such an approximate “posterior”1 is a
textual description that summarizes both the known and uncertain aspects of the true MDP transition
and reward function. More importantly, it also explicitly communicates (in some way) the amount
of uncertainty an agent has about these aspects of the world. As this textual summary amounts
to the PSRL agent’s epistemic state representation (Lu et al., 2023), an agent designer may exert

1For ease of exposition, we will refer to this object as a posterior throughout the remainder of the paper, but
acknowledge the distinction between it and the true, statistical object that is the Bayesian posterior distribution.

4

Published as a conference paper at ICLR 2026

strong influence over this representation through the verbiage and expression of prior knowledge; as a
concrete example, specifying the next-state transition distribution of a tabular MDP in our experiments
as a Dirichlet distribution (in language) naturally encourages the LLM-based implementation of
PSRL to maintain visitation counts. Of course, an advantage is that agent designers may now leverage
the full expressivity and fluidity of natural language for communicating prior knowledge without
restriction to the few statistical distributions that afford the computational conveniences of conjugate
priors.

Given a current posterior reflecting the agent’s knowledge and uncertainty about the world, PSRL
must be able to draw one posterior sample from these beliefs. We implement this as a first LLM
that, given the agent’s current textual posterior (initially set to be the agent designer’s input prior)
is tasked with generating a plausible hypothesis for how transitions and rewards unfold. In some
domains, such as tabular MDPs, it may be natural for this to be an exhaustive list of rewards and
next-state transitions for each state-action pair. For more practical scenarios of interest, however,
it may be beneficial to prompt this posterior sampling LLM so that it can leverage an environment
proxy or lossy surrogate MDP (Lu et al., 2023; Arumugam & Van Roy, 2022) that retains only the
salient details needed to determine (near-)optimal behavior. As a concrete example, one of our natural
language tasks is the game of Wordle (shown in Figure 3) that, as a MDP, has a transition function and
reward function defined entirely around an unknown, five-letter target word. Here, the target word
serves as an environment proxy that our LLM-based PSRL agent may directly monitor uncertainty
over without meticulously maintaining statistics for rewards and transitions of individual state-action
pairs.

With a single posterior sample in hand, a PSRL agent must be able to select actions that would be
considered optimal if the sampled MDP truly reflected reality. We implement this as a second LLM
tasked with executing actions given the current state that maximize value in a way that is consistent
with the natural language hypothesis generated by the posterior sampling LLM. In the simplest case,
this optimal sample policy LLM need only be given the posterior sample along with the current state
and asked directly to generate an action. In more challenging settings, an agent designer may architect
the LLM more carefully via chain-of-thought prompting (Wei et al., 2022; Kojima et al., 2022) to
increase the chance of selecting optimal actions consistent with provided hypothesis. Even when this
policy is only approximately-optimal with respect to the posterior sample in a given episode, classic
PSRL still admits a Bayesian regret bound (see Section 5.4 of Osband (2016a)) and one might hope
to see an LLM-based implementation of PSRL empirically exhibit similar robustness in practice.

Upon the completion of an episode with the optimal sample policy LLM acting with respect to
the hypothesis of the posterior sampling LLM, we task a third and final LLM with updating the
PSRL agent’s knowledge and residual uncertainty about the world, akin to an (approximate) posterior
update. Given a complete trajectory consisting of reward signals and next-state transitions for exactly
H state-action pairs, this posterior LLM must reconcile the agent’s prior knowledge at the start
of the episode against observed interactions from within the environment. With this last piece of
functionality in place, all three LLMs can then be orchestrated to run the PSRL algorithm.

4 EXPERIMENTS & DISCUSSION

The goal of our experiments is assessing the extent to which our proposed LLM-based PSRL
implementation not only retains the desirable exploration properties that PSRL exhibits empirically
within simpler problem domains but also expands the range of problems where these benefits can be
realized. To this end, we focus our evaluation on tasks which demand prudent exploration to achieve
success and where an agent is minimally encumbered by the orthogonal challenges of generalization
and credit assignment. For each task, we present cumulative regret curves (lower, flatter plots indicate
better performance) where any shading denotes one standard error. All agents use GPT-4o (Hurst
et al., 2024) for their constituent LLMs unless otherwise indicated. We let κsampling, κπ⋆ , and
κposterior denote the temperatures of the posterior sampling, optimal sample policy, and posterior
update LLMs, respectively. Due to space constraints, we defer further details of our experiments and
all prompts used in each task to the Appendix.

For natural language tasks, we compare our LLM-based implementation of PSRL against three
baseline LLM agents. In-Context Policy Iteration (ICPI) (Brooks et al., 2023) takes classic policy
iteration (Howard, 1960) and offers an implementation via three LLMs, using ICL to elicit a rollout

5

Published as a conference paper at ICLR 2026

policy; transition function; and reward function respectively. Together, these models allow for policy
improvement via greedy action selection π(k)(sh) = argmax

a∈A
Qπ(k−1)

M (sh, a), with ties broken

randomly. In-Context RL (ICRL) (Monea et al., 2024) aims to explore via the stochasticity in LLM
responses from sensitivity to the input ICL data. Which episodes are included from a replay buffer
for ICL with a LLM policy at each timestep is determined by sampling independent Bernoulli(p)
random variables; we study three distinct values of the keep probability p ∈ {1, 0.5, 0.1}. Finally,
Reflexion (Shinn et al., 2024) passes each full trajectory through a self-reflection LLM that generates
verbal guidance; the total history of verbal guidance is given at each timestep to the LLM policy,
along with the current state, for improving the quality of decision-making.

4.1 MULTI-ARMED BANDITS

4.1.1 BERNOULLI BANDIT

Following prior work studying the exploratory capabilities of LLMs (Coda-Forno et al., 2023; Binz
& Schulz, 2023; Coda-Forno et al., 2024; Krishnamurthy et al., 2024; Nie et al., 2024), we begin the
empirical assessment of our LLM-based PSRL with a multi-armed bandit problem (Lai & Robbins,
1985; Bubeck & Cesa-Bianchi, 2012; Lattimore & Szepesvári, 2020). Readers unfamiliar with multi-
armed bandits may simply observe them as a special case of a MDP with horizon H = 1, singleton
state space |S| = 1, and a stochastic (rather than deterministic) reward function. Our evaluation
follows that of Krishnamurthy et al. (2024) who chose the simple yet challenging case of a five-armed
Bernoulli bandit with independent arms and an action gap of 0.2.2 The version we evaluate has one
randomly-selected optimal arm with rewards drawn from a Bernoulli(0.6) distribution while all other
arms use a Bernoulli(0.4).

Observe that PSRL specialized to a multi-armed bandit problem mirrors classic TS where, at each
timestep, the agent samples one plausible hypothesis for the reward distribution of each arm and
then proceeds to select the optimal action believed to achieve highest mean reward under this
hypothesis. We compare PSRL implemented with LLMs to classic TS for a Bernoulli bandit with
each arm initialized with a Beta(1, 1) prior. Meanwhile, our LLM-based PSRL agent begins with
a prior for each arm specified as a Beta(1,1) in natural language. While we fix temperatures
κπ⋆ = κposterior = 1, we find that the posterior sampling temperature has profound impact on the
performance of our LLM-based PSRL agent. Figure 4 compares TS (run for 1,000 independent trials)
against PSRL with four distinct settings of κsampling (run for 20 independent trials).

Figure 4: Cumulative regret curves for a 5-armed
Bernoulli bandit.

Figure 5: Cumulative regret curves for the real-
world customer service bandit.

We find that our LLM-based PSRL achieves a better cumulative regret curve (with κsampling = 1.2)
than classic TS, for the limited time horizon of T = 100. We find that supplying PSRL with an initial
prior of Beta(1,1) in language automatically encourages the posterior update LLM to update
binary reward observation counts for the chosen arm in each time period. Moreover, we find that the

2The action gap is defined as the difference in expected reward between the best and second best action.
Larger action gaps make it easier to identify the optimal arm with few samples whereas smaller action gaps
demand greater exploration.

6

Published as a conference paper at ICLR 2026

optimal sample policy LLM has little difficulty in examining the sequence of expected reward values
for each arm generated by the posterior sampling LLM and adhering to select the perceived best
action. Manipulating κsampling shows that even values as large as 1 lead to greedy-like exploration in
many trials where the resulting posterior sample favors the action observed to yield the most successes
thus far. For a limited number of trials, this error proves to be not so catastrophic for temperatures of
at least 1, though we would anticipate linear regret after more time periods. We find that increasing
κsampling > 1 yields exploratory behavior more aligned with TS where optimal actions more likely
to be taken in the later time periods and and there is a more gradual reduction of probability mass
from other actions (see Appendix B).

4.1.2 NATURAL LANGUAGE BANDIT

To demonstrate one concrete instance of how our proposed LLM-based PSRL may meet the demands
of a real-world decision-making problem, we adapt the customer service task of Tajwar et al. (2025)
into a multi-armed bandit problem. In each of K = 20 total time periods, the agent may either ask
a question or offer a solution to address a customer issue randomly sampled from the dataset3 of
Tajwar et al. (2025). Similar to Tajwar et al. (2025), we use two additional LLMs to simulate the
customer (who answers the agent’s questions and tries suggested solutions as a non-technical person
would) and to be a judge/reward function who ultimately determines the binary reward indicating
successful resolution of a customer’s issue. All models use GPT-4o as the underlying LLM.

For our LLM-based PSRL, we consider two methods for specifying the prior distribution that PSRL
takes as input. In the first case, we simply ask GPT-4o to provide a prior distribution (a list of
plausible underlying issues for the customer complaint as well as guessed probabilities based on
how likely the model perceives the issue to be) that is given directly as input to our LLM-based
PSRL agent. In preliminary experiments we found that, while this agent is capable of finding success
often, it can suffer from issues of prior misspecification, where the true solution (also given in the
dataset of Tajwar et al. (2025)) is not within the support of the LLM-generated input prior. To
remedy this without giving away the answer, we use a second method of generating an input prior
that guarantees it is well-specified; we provide the dataset solution for the sampled customer service
issue to GPT-4o and indicate that it is one possible resolution but that GPT-4o must itself assign a
probability to it based on how plausible it is perceived to be. We report the results of this latter agent
as “well-specified” in Figure 5, where all agents were run for a total of 20 trials.

In the face of prior misspecification — something that the base PSRL algorithm does not entertain by
assumption and, therefore, has no explicit mechanism to cope with — baseline LLM agent designs
still cannot achieve a statistically-significant improvement over PSRL. Furthermore, once the prior
misspecification is removed (without handing the solution away as the agent must still sift through
other plausible sources of customer issues), PSRL is able to demonstrate strong exploration that far
exceeds baseline methods on a real-world task with a tremendously-large action space.

4.2 TABULAR MDPS

For a tabular MDP widely known as a hard exploration task, we turn our focus to a truncated variant
of the RiverSwim environment (Strehl & Littman, 2008). RiverSwim is a six-state chain where
the agent begins in the leftmost state. The stochastic transition function mimics a water current
that allows an agent to deterministically swim to the left (downstream with the current) but only
stochastically swim to the right (upstream against the current) with a 35% chance of success and
a small 5% chance of being pushed back one state downstream (Osband et al., 2013). Swimming
downstream in the initial state results in a small reward of 0.005. Successfully swimming all the
way upstream allows the agent to reach the rightmost state where it can collect a reward of 1. As all
other rewards are zero, a RiverSwim agent must explore the full length of the river to learn optimal
behavior. To keep financial costs down, we truncate the environment to a river of length 3 (one initial
state, intermediate state, and terminal state) with H = 6.

We compare our LLM-based implementation of PSRL with a vanilla PSRL agent for a tabular
MDP (Osband et al., 2013). The latter models epistemic uncertainty over the transition function
as a collection of |S||A| Dirichlet distributions. This epistemic state representation allows for the

3https://github.com/tajwarfahim/paprika/blob/main/llm_exploration/game/
game_configs/customer_service.json

7

https://github.com/tajwarfahim/paprika/blob/main/llm_exploration/game/game_configs/customer_service.json
https://github.com/tajwarfahim/paprika/blob/main/llm_exploration/game/game_configs/customer_service.json

Published as a conference paper at ICLR 2026

computational conveniences of Dirichlet-multinomial conjugacy. We further model unknown rewards
with a discrete uniform prior over {0, 0.005, 1}. Cumulative regret curves shown in Figure 6 compare
our LLM-based PSRL with a Dirichlet(0.1,0.1,0.1) prior against vanilla PSRL (with the
standard uniform Dirichlet prior initialization of α0 = 1

|S|). We use κπ⋆ = κposterior = κsampling = 1

and all agents are run for 40 independent trials, except the vanilla PSRL agent run for 1,000. We also
compare against the LLM agent baselines of Reflexion and ICRL with p = 1.

Figure 6: Cumulative regret curves for the
RiverSwim environment with 3 states. Labels
show the choice of constituent LLM model
(GPT-4o or o1-mini) in each LLM agent.

Our initial results with RiverSwim were negative (see
Appendix C) as GPT-4o struggled to cope with main-
taining and updating the verbose epistemic state rep-
resentation describing reward information and next-
state transitions across all 12 state-action pairs. Cu-
riously, however, this negative result provided an
opportunity to assess a claim of Section 3.2 that
more-capable LLMs would allow our PSRL imple-
mentation to scale gracefully to more complex tasks.
Indeed, by upgrading from GPT-4o to o1-mini, Fig-
ure 6 shows that our LLM-based PSRL is capable
of achieving sub-linear regret on par with vanilla
PSRL. Reflexion is unable to persevere past failed
attempts to swim upstream before settling for the
smaller downstream reward of 0.005. ICRL has just
over 25% of trials where it stumbles into the optimal
policy and sticks with it while, for 60% of trials, it
too falls back to pursuing the downstream reward.
Moreover, the same LLM upgrade has little impact
on the performance of Reflexion and actually man-
ages to worsen the performance of ICRL; for the latter, we suspect the performance degradation
stems from a combination of the stochastic transition dynamics coupled with the large quantity of
ICL demonstrations that perhaps mesh poorly with the reasoning steps of o1-mini. Nevertheless,
we find that LLM planning issues re-emerge in our LLM-based PSRL upon scaling up to a larger
instance of RiverSwim (see Appendix D).

4.3 NATURAL LANGUAGE MDPS

Figure 7: Cumulative regret curves for the combi-
nation lock environment. The vertical axis shows
turns to identify the unlock code.

Figure 8: Cumulative regret curves for the Wor-
dle environment. Labels show the choice of con-
stituent LLM model (GPT-4o or DeepSeek-R1)
in each LLM agent.

Having verified that our LLM-based PSRL retains efficient exploration in more traditional envi-
ronments, we now turn to tasks entirely inaccessible by classic PSRL. The first of these tasks is a
combination lock environment where an agent must enter H = 3 distinct digits in order to open a
lock and receive a reward of +1. All other rewards are zero and the agent is provided with (verbal)
state information indicating whether the most recently guessed digit is either in the correct position

8

Published as a conference paper at ICLR 2026

for the correct code, present in the correct code but in some other position, or simply not present in
the correct code at all. An agent has K = 8 episodes to identify the correct combination and, with
each one of 20 independent trials having an unlock code sampled uniformly at random from all 720
possible codes, exploration via uniform random code selection has below 0.14% chance of success.

The second task is the challenging web game known as Wordle (Lokshtanov & Subercaseaux, 2022),
where an agent has exactly K = 6 episodes to enter H = 5 distinct letters (which need not be a
dictionary word) that spell a correct target word and receive a reward of +1. Across 40 trials (except
ICPI run for 10 trials due to its significantly higher financial cost and lengthy run times), the target
word is chosen uniformly at random from a filtered corpus of English dictionary words. The agent is
provided verbal feedback in each state indicating whether the most recently guessed letter is in the
correct position for the target word, in the target word but at some other position, or not present in the
target word at all.

Our LLM-based PSRL agent (κsampling = κπ⋆ = κposterior = 1) is given an uninformative prior
which describes all non-repeating codes/English words with the appropriate length as being equiprob-
able; the unlock code/target word is an environment proxy (Lu et al., 2023) such that knowledge of the
proxy is a sufficient statistic for recovering the full MDP. For the combination lock, we also compute
the Bayes-optimal policy with respect to the same uninformative prior and plot its cumulative regret
for comparison. To assess the efficacy of our LLM-based PSRL with another alternative choice of
constituent LLM, we present Wordle results with DeepSeek-R1 (Guo et al., 2025).

The combination lock and Wordle environments represent distinct instances of an exploration problem
at differing scales within a deterministic environment. Notably, the immediate per-digit/letter feedback
eliminates the challenge of credit assignment entirely (as there is no ambiguity in how each decision
impacts delayed rewards) and isolates exploration as the sole data efficiency obstacle. Our results
(Figures 7 and 8) show that the LLM-based PSRL is able to most effectively explore the space of
possible unlock codes/target words relative to the baseline methods. Crucially, none of the three
constituent LLMs used by PSRL are prompted to explicitly encourage exploration. Rather, these
results further illustrate how prompting these LLMs to perform atomic functions of PSRL and allowing
the algorithm to prescribe how those outputs should be orchestrated in the agent design can yield
an effective exploration strategy. In Wordle, we observe that DeepSeek-R1 provides a performance
improvement to all LLM agents; however, we find that its enhanced reasoning capabilities applied to
even our best baseline LLM agent are insufficient to yield a statistically-significant improvement over
our LLM-based PSRL, even when run with a less-capable GPT-4o as the constituent LLM. We invite
readers to see Appendix E for analogous results on combination lock with DeepSeek-R1.

The ICPI paper (Brooks et al., 2023) includes a dataset balancing scheme for ICL, presuming the
requisite data has already been collected. While reasonable for some environments, exploration is
fundamentally about governing data collection to synthesize optimal behavior and, in these domains,
ICPI never observes non-zero reward and collapses to a random policy. For ICRL, using all available
data with p = 1 is equivalent to the “LLM policy” evaluated by Klissarov et al. (2025), who also find
poor performance in Wordle. While results in the combination lock domain are better, we find that
decreasing the keep probability p is detrimental to the “exploratory” ICRL of Monea et al. (2024). In
Reflexion, we observe that self-reflections during the early stages of learning generically encourage
exploration of untested digits/letters, assuming the agent knows how to explore upon simply being
instructed to do so. Only once uncertainty has largely been resolved do reflections become specific
suggestions about how to explore with particular digits/letters and their ordering.

5 CONCLUSION

While much of the burgeoning literature surrounding LLM agents has felt compelled to design new
algorithms for solving RL problems, we here have demonstrated that an existing algorithm, PSRL,
can be implemented with LLMs. The main advantage of our proposed LLM-based implementation
of PSRL is allowing agent designers to leverage the strong generalization and reasoning capabilities
of LLMs in natural-language environments while simultaneously capitalizing on the well-studied
exploration properties of TS. Future work might extend regularization methods (Jiang et al., 2015;
Arumugam et al., 2018; Rathnam et al., 2023) that embrace inaccurate transition models to rectify
deficiencies we observed with LLM planning in stochastic domains. Our preliminary results (see
Appendix F) on recovering information-directed exploration (Russo & Van Roy, 2018) with LLMs

9

https://en.wikipedia.org/wiki/Wordle
https://gist.github.com/slushman/34e60d6bc479ac8fc698df8c226e4264

Published as a conference paper at ICLR 2026

represent what is likely to be another very fruitful direction for future work and further reinforces the
potential benefits of implementing, rather than replacing, existing RL algorithms with LLMs.

ETHICS STATEMENT

The impact of LLMs in recent years has been undeniable and so immense as to extend beyond the
confines of the machine learning community, drawing scrutiny from the broader public. As this
paper studies mechanisms for improving the decision-making capabilities of LLMs that are becoming
increasingly more capable and ubiquitously deployed, there is potential for broad impact stemming
from our work. This impact is amplified by the fact that our contributions for improved exploration in
LLMs center around Thompson sampling (Thompson, 1933), an exploration strategy whose impact
in real-world decision-making problems such as recommendation systems (Chapelle & Li, 2011) and
beyond (Russo et al., 2018) is already well known.

REPRODUCIBILITY STATEMENT

For all LLM agents evaluated in our experiments, the key items needed to reproduce our results are
the system prompts, user prompts, environment descriptions, environment details, and the process by
which constituent LLMs are queried and have their outputs organized. All of these details can be
found across Section 4 and Appendix H along with a rough (anecdotal) estimates of the associated
financial cost of running these experiments in Appendix I. Details of all evaluation domains can
be found in Section 4 and the associated natural language descriptions common to all LLM agents
evaluated in this work can be found in the appropriate sub-sections of Appendix H. As this paper relies
heavily on API access to LLMs, it is impossible to obtain granular details on how much compute was
used by our experiments. Instead, we have included Appendix I with ballpark estimates of how many
tokens were used by our proposed approach in each of our evaluation domains as well as a translation
of those token counts to dollar costs.

ACKNOWLEDGMENTS

This work was supported by ONR MURI N00014-24-1-2748, ONR grant N00014-23-1-2510, and
Azure credits from a Microsoft AFMR grant. We gratefully acknowledge Ilia Sucholutsky for setup
and debugging assistance in our experiments. We thank Ted Sumers for a helpful suggestion to use
XML formatting when processing trajectories with LLMs. Finally, we thank Ilia Sucholutsky and
David Abel for feedback and insightful comments on an early draft of the paper.

REFERENCES

Yasin Abbasi-Yadkori and Csaba Szepesvari. Bayesian Optimal Control of Smoothly Parameterized
Systems: The Lazy Posterior Sampling Algorithm. arXiv preprint arXiv:1406.3926, 2014.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 Technical
Report. arXiv preprint arXiv:2303.08774, 2023.

Shipra Agrawal and Randy Jia. Optimistic Posterior Sampling for Reinforcement Learning: Worst-
Case Regret Bounds. In Advances in Neural Information Processing Systems, pp. 1184–1194,
2017.

Dilip Arumugam and Satinder Singh. Planning to the Information Horizon of BAMDPs via Epistemic
State Abstraction. In Advances in Neural Information Processing Systems, volume 35, 2022.

Dilip Arumugam and Benjamin Van Roy. Deciding What to Model: Value-Equivalent Sampling for
Reinforcement Learning. Advances in Neural Information Processing Systems, 35:9024–9044,
2022.

Dilip Arumugam, David Abel, Kavosh Asadi, Nakul Gopalan, Christopher Grimm, Jun Ki Lee, Lucas
Lehnert, and Michael L Littman. Mitigating Planner Overfitting in Model-Based Reinforcement
Learning. arXiv preprint arXiv:1812.01129, 2018.

10

Published as a conference paper at ICLR 2026

P Auer, Paul Fischer, and N Cesa-Bianchi. Finite-Time Analysis of the Multiarmed Bandit Problem.
Machine Learning, 47(3):235–256, 2002.

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-Optimal Regret Bounds for Reinforcement
Learning. In Advances in Neural Information Processing Systems, pp. 89–96, 2009.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax Regret Bounds for Reinforce-
ment Learning. In International Conference on Machine Learning, pp. 263–272, 2017.

Richard Bellman. A Markovian Decision Process. Journal of Mathematics and Mechanics, pp.
679–684, 1957.

Richard Bellman and Robert Kalaba. On Adaptive Control Processes. IRE Transactions on Automatic
Control, 4(2):1–9, 1959.

Marcel Binz and Eric Schulz. Using Cognitive Psychology to Understand GPT-3. Proceedings of the
National Academy of Sciences, 120(6):e2218523120, 2023.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the Opportuni-
ties and Risks of Foundation Models. arXiv preprint arXiv:2108.07258, 2021.

Ronen I Brafman and Moshe Tennenholtz. R-MAX - A General Polynomial Time Algorithm for
Near-Optimal Reinforcement Learning. Journal of Machine Learning Research, 3(Oct):213–231,
2002.

Ethan Brooks, Logan Walls, Richard L Lewis, and Satinder Singh. Large Language Models Can
Implement Policy Iteration. Advances in Neural Information Processing Systems, 36:30349–30366,
2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language Models are
Few-Shot Learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret Analysis of Stochastic and Nonstochastic
Multi-Armed Bandit Problems. Foundations and Trends in Machine Learning, 5(1):1–122, 2012.

Olivier Chapelle and Lihong Li. An Empirical Evaluation of Thompson Sampling. In Advances in
Neural Information Processing Systems, pp. 2249–2257, 2011.

Julian Coda-Forno, Marcel Binz, Zeynep Akata, Matt Botvinick, Jane Wang, and Eric Schulz. Meta-
In-Context Learning in Large Language Models. Advances in Neural Information Processing
Systems, 36:65189–65201, 2023.

Julian Coda-Forno, Marcel Binz, Jane X Wang, and Eric Schulz. CogBench: A Large Language
Model Walks into a Psychology Lab. In Forty-first International Conference on Machine Learning,
2024.

Thomas M Cover and Joy A Thomas. Elements of Information Theory. John Wiley & Sons, 2012.

Zhenwen Dai, Federico Tomasi, and Sina Ghiassian. In-Context Exploration-Exploitation for
Reinforcement Learning. In The Twelfth International Conference on Learning Representations,
2024.

Christoph Dann and Emma Brunskill. Sample Complexity of Episodic Fixed-Horizon Reinforcement
Learning. In Proceedings of the 28th International Conference on Neural Information Processing
Systems-Volume 2, pp. 2818–2826, 2015.

Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying PAC and Regret: Uniform PAC
Bounds for Episodic Reinforcement Learning. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, pp. 5717–5727, 2017.

Armen Der Kiureghian and Ove Ditlevsen. Aleatory or Epistemic? Does it Matter? Structural Safety,
31(2):105–112, 2009.

11

Published as a conference paper at ICLR 2026

Shi Dong, Benjamin Van Roy, and Zhengyuan Zhou. Simple Agent, Complex Environment: Efficient
Reinforcement Learning with Agent States. Journal of Machine Learning Research, 23(255):1–54,
2022.

Miroslav Dudík, Katja Hofmann, Robert E Schapire, Aleksandrs Slivkins, and Masrour Zoghi.
Contextual Dueling Bandits. In Conference on Learning Theory, pp. 563–587, 2015.

Michael O’Gordon Duff. Optimal Learning: Computational Procedures for Bayes-Adaptive Markov
Decision Processes. PhD thesis, University of Massachusetts Amherst, 2002.

Vikranth Dwaracherla, Xiuyuan Lu, Morteza Ibrahimi, Ian Osband, Zheng Wen, and Benjamin
Van Roy. Hypermodels for Exploration. In International Conference on Learning Representations,
2020.

Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao, and Benjamin Van Roy. Efficient
Exploration for LLMs. In Forty-first International Conference on Machine Learning, 2024.

Jan-Philipp Fränken, Sam Kwok, Peixuan Ye, Kanishk Gandhi, Dilip Arumugam, Jared Moore, Alex
Tamkin, Tobias Gerstenberg, and Noah D Goodman. Social Contract AI: Aligning AI Assistants
with Implicit Group Norms. arXiv preprint arXiv:2310.17769, 2023.

Yoav Freund and Robert E Schapire. A Decision-Theoretic Generalization of On-Line Learning and
an Application to Boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Epproximation: Representing Model
Uncertainty in Deep Learning. In International Conference on Machine Learning, pp. 1050–1059.
PMLR, 2016.

Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, and Aviv Tamar. Bayesian Reinforcement
Learning: A Survey. Foundations and Trends in Machine Learning, 8(5-6):359–483, 2015.

John Gittins. Bandit Processes and Dynamic Allocation Indices. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 41(2):148–164, 1979.

Noah Goodman. Meta-Prompt: A Simple Self-Improving Language Agent. https:
//noahgoodman.substack.com/p/meta-prompt-a-simple-self-improving,
2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentivizing Reasoning Capability in
LLMs via Reinforcement Learning. arXiv preprint arXiv:2501.12948, 2025.

Ronald A Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. GPT-4o System Card. arXiv preprint
arXiv:2410.21276, 2024.

Haque Ishfaq, Qingfeng Lan, Pan Xu, A Rupam Mahmood, Doina Precup, Anima Anandkumar, and
Kamyar Azizzadenesheli. Provable and Practical: Efficient Exploration in Reinforcement Learning
via Langevin Monte Carlo. In The Twelfth International Conference on Learning Representations,
2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. OpenAI o1 System Card. arXiv
preprint arXiv:2412.16720, 2024.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-Optimal Regret Bounds for Reinforcement
Learning. Journal of Machine Learning Research, 11(4), 2010.

Nan Jiang, Alex Kulesza, Satinder Singh, and Richard Lewis. The Dependence of Effective Planning
Horizon on Model Accuracy. In Proceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems, pp. 1181–1189, 2015.

12

https://noahgoodman.substack.com/p/meta-prompt-a-simple-self-improving
https://noahgoodman.substack.com/p/meta-prompt-a-simple-self-improving

Published as a conference paper at ICLR 2026

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-Learning Provably
Efficient? Advances in Neural Information Processing Systems, 31, 2018.

Emilio Jorge, Christos Dimitrakakis, and Debabrota Basu. Isoperimetry is All We Need: Langevin
Posterior Sampling for RL with Sublinear Regret. arXiv preprint arXiv:2412.20824, 2024.

Łukasz Kaiser, Mohammad Babaeizadeh, Piotr Miłos, Błażej Osiński, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model Based
Reinforcement Learning for Atari. In International Conference on Learning Representations,
2020.

Sham Machandranath Kakade. On the Sample Complexity of Reinforcement Learning. PhD thesis,
University of London, University College London (United Kingdom), 2003.

Amin Karbasi, Nikki Lijing Kuang, Yian Ma, and Siddharth Mitra. Langevin Thompson Sam-
pling with Logarithmic Communication: Bandits and Reinforcement Learning. In International
Conference on Machine Learning, pp. 15828–15860, 2023.

Nan Rosemary Ke, Danny P Sawyer, Hubert Soyer, Martin Engelcke, David P Reichert, Drew A
Hudson, John Reid, Alexander Lerchner, Danilo Jimenez Rezende, Timothy P Lillicrap, Michael
Mozer, and Jane X Wang. Can Foundation Models actively Gather Information in Interactive
Environments to Test Hypotheses? arXiv preprint arXiv:2412.06438, 2024.

Michael Kearns and Satinder Singh. Near-Optimal Reinforcement Learning in Polynomial Time.
Machine Learning, 49:209–232, 2002.

Martin Klissarov, R Devon Hjelm, Alexander T Toshev, and Bogdan Mazoure. On the Modeling
Capabilities of Large Language Models for Sequential Decision Making. In The Thirteenth
International Conference on Learning Representations, 2025.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
Language Models are Zero-Shot Reasoners. Advances in Neural Information Processing Systems,
35:22199–22213, 2022.

Akshay Krishnamurthy, Keegan Harris, Dylan J Foster, Cyril Zhang, and Aleksandrs Slivkins. Can
Large Language Models Explore In-Context? In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. In The Eleventh International Conference on Learning Representations, 2023.

Tze Leung Lai and Herbert Robbins. Asymptotically Efficient Adaptive Allocation Rules. Advances
in Applied Mathematics, 6(1):4–22, 1985.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-Context Reinforcement Learning
with Algorithm Distillation. arXiv preprint arXiv:2210.14215, 2022.

Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Ren Lu,
Colton Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, et al. RLAIF vs. RLHF: Scaling
Reinforcement Learning from Human Feedback with AI Feedback. In International Conference
on Machine Learning, pp. 26874–26901. PMLR, 2024a.

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma
Brunskill. Supervised Pretraining can Learn In-Context Reinforcement Learning. Advances in
Neural Information Processing Systems, 36, 2024b.

Sergey Levine. Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review.
arXiv preprint arXiv:1805.00909, 2018.

Long-Ji Lin. Self-Improving Reactive Agents Based on Reinforcement learning, Planning and
Teaching. Machine Learning, 8:293–321, 1992.

13

Published as a conference paper at ICLR 2026

Yueyang Liu, Adithya M Devraj, Benjamin Van Roy, and Kuang Xu. Gaussian Imagination in Bandit
Learning. arXiv preprint arXiv:2201.01902, 2022.

Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi Ke, Boyi Liu, and Zhaoran Wang. Reason
for Future, Act for Now: A Principled Framework for Autonomous LLM Agents with Provable
Sample Efficiency. arXiv preprint arXiv:2309.17382, 2023.

Daniel Lokshtanov and Bernardo Subercaseaux. Wordle is NP-Hard. In 11th International Conference
on Fun with Algorithms, 2022.

Xiuyuan Lu and Benjamin Van Roy. Ensemble Sampling. Advances in Neural Information Processing
Systems, 30, 2017.

Xiuyuan Lu and Benjamin Van Roy. Information-Theoretic Confidence Bounds for Reinforcement
Learning. Advances in Neural Information Processing Systems, 32, 2019.

Xiuyuan Lu, Benjamin Van Roy, Vikranth Dwaracherla, Morteza Ibrahimi, Ian Osband, and Zheng
Wen. Reinforcement Learning, Bit by Bit. Foundations and Trends in Machine Learning, 16(6):
733–865, 2023.

Eric Mazumdar, Aldo Pacchiano, Yian Ma, Michael Jordan, and Peter Bartlett. On Approximate
Thompson Sampling with Langevin Algorithms. In International Conference on Machine Learning,
pp. 6797–6807, 2020.

David McAllester and Karl Stratos. Formal Limitations on the Measurement of Mutual Information.
In International Conference on Artificial Intelligence and Statistics, pp. 875–884, 2020.

R Thomas McCoy, Shunyu Yao, Dan Friedman, Mathew D Hardy, and Thomas L Griffiths. Embers
of Autoregression Show how Large Language Models are Shaped by the Problem They are Trained
to Solve. Proceedings of the National Academy of Sciences, 121(41):e2322420121, 2024.

Giovanni Monea, Antoine Bosselut, Kianté Brantley, and Yoav Artzi. LLMs Are In-Context Rein-
forcement Learners. arXiv preprint arXiv:2410.05362, 2024.

Allen Nie, Yi Su, Bo Chang, Jonathan N Lee, Ed H Chi, Quoc V Le, and Minmin Chen. EVOLvE:
Evaluating and Optimizing LLMs For Exploration. arXiv preprint arXiv:2410.06238, 2024.

Brendan O’Donoghue. Variational Bayesian Reinforcement Learning with Regret Bounds. Advances
in Neural Information Processing Systems, 34:28208–28221, 2021.

Brendan O’Donoghue, Ian Osband, Remi Munos, and Volodymyr Mnih. The Uncertainty Bellman
Equation and Exploration. In International Conference on Machine Learning, pp. 3836–3845,
2018.

Brendan O’Donoghue, Ian Osband, and Catalin Ionescu. Making Sense of Reinforcement Learning
and Probabilistic Inference. In International Conference on Learning Representations, 2020.

Ian Osband. Deep Exploration via Randomized Value Functions. PhD thesis, Stanford University,
2016a.

Ian Osband. Risk Versus Uncertainty in Deep Learning: Bayes, Bootstrap and the dangers of Dropout.
In NIPS Workshop on Bayesian Deep Learning, 2016b.

Ian Osband and Benjamin Van Roy. Model-Based Reinforcement Learning and the Eluder Dimension.
Advances in Neural Information Processing Systems, 27, 2014.

Ian Osband and Benjamin Van Roy. Posterior Sampling for Reinforcement Learning Without
Episodes. arXiv preprint arXiv:1608.02731, 2016.

Ian Osband and Benjamin Van Roy. Why is Posterior Sampling Better than Optimism for Reinforce-
ment Learning? In International Conference on Machine Learning, pp. 2701–2710, 2017.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (More) Efficient Reinforcement Learning via
Posterior Sampling. Advances in Neural Information Processing Systems, 26:3003–3011, 2013.

14

Published as a conference paper at ICLR 2026

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep Exploration via
Bootstrapped DQN. Advances in Neural Information Processing Systems, 29, 2016a.

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and Exploration via Randomized
Value Functions. In International Conference on Machine Learning, pp. 2377–2386, 2016b.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized Prior Functions for Deep Reinforcement
Learning. Advances in Neural Information Processing Systems, 31, 2018.

Ian Osband, Benjamin Van Roy, Daniel J Russo, and Zheng Wen. Deep Exploration via Randomized
Value Functions. Journal of Machine Learning Research, 20(124):1–62, 2019.

Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi,
Xiuyuan Lu, and Benjamin Van Roy. Approximate Thompson Sampling via Epistemic Neural
Networks. In Uncertainty in Artificial Intelligence, pp. 1586–1595, 2023.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training Language Models to Follow
Instructions with Human Feedback. arXiv preprint arXiv:2203.02155, 2022.

Yi Ouyang, Mukul Gagrani, Ashutosh Nayyar, and Rahul Jain. Learning Unknown Markov Decision
Processes: A Thompson Sampling Approach. Advances in Neural Information Processing Systems,
30, 2017.

Martin L. Puterman. Markov Decision Processes—Discrete Stochastic Dynamic Programming. John
Wiley & Sons, New York, 1994.

Sarah Rathnam, Sonali Parbhoo, Weiwei Pan, Susan Murphy, and Finale Doshi-Velez. The Unin-
tended Consequences of Discount Regularization: Improving Regularization in Certainty Equiv-
alence Reinforcement Learning. In International Conference on Machine Learning, pp. 28746–
28767. PMLR, 2023.

Daniel Russo and Benjamin Van Roy. Learning to Optimize via Posterior Sampling. Mathematics of
Operations Research, 39(4):1221–1243, 2014.

Daniel Russo and Benjamin Van Roy. An Information-Theoretic Analysis of Thompson Sampling.
The Journal of Machine Learning Research, 17(1):2442–2471, 2016.

Daniel Russo and Benjamin Van Roy. Learning to Optimize via Information-Directed Sampling.
Operations Research, 66(1):230–252, 2018.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. A Tutorial on
Thompson Sampling. Foundations and Trends in Machine Learning, 11(1):1–96, 2018.

Remo Sasso, Michelangelo Conserva, and Paulo Rauber. Posterior Sampling for Deep Reinforcement
Learning. In International Conference on Machine Learning, pp. 30042–30061, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language Agents with Verbal Reinforcement Learning. Advances in Neural Information Processing
Systems, 36, 2024.

David Silver and Richard S Sutton. Welcome to the Era of Experience. Google AI, 2025.

Max Simchowitz, Christopher Tosh, Akshay Krishnamurthy, Daniel J Hsu, Thodoris Lykouris,
Miro Dudik, and Robert E Schapire. Bayesian Decision-Making Under Misspecified Priors
with Applications to Meta-Learning. Advances in Neural Information Processing Systems, 34:
26382–26394, 2021.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to Summarize with Human Feedback. Advances
in Neural Information Processing Systems, 33:3008–3021, 2020.

Alexander L Strehl and Michael L Littman. An Analysis of Model-Based Interval Estimation for
Markov Decision Processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

15

Published as a conference paper at ICLR 2026

Alexander L Strehl, Lihong Li, and Michael L Littman. Reinforcement Learning in Finite MDPs:
PAC Analysis. Journal of Machine Learning Research, 10(11), 2009.

Malcolm JA Strens. A Bayesian Framework for Reinforcement Learning. In Proceedings of the
Seventeenth International Conference on Machine Learning, pp. 943–950, 2000.

Richard S Sutton and Andrew G Barto. Introduction to Reinforcement Learning. MIT Press, 1998.

Fahim Tajwar, Yiding Jiang, Abitha Thankaraj, Sumaita Sadia Rahman, J Zico Kolter, Jeff Schneider,
and Russ Salakhutdinov. Training a Generally Curious Agent. In Forty-Second International
Conference on Machine Learning, 2025.

Jean Tarbouriech, Tor Lattimore, and Brendan O’Donoghue. Probabilistic Inference in Reinforcement
Learning Done Right. Advances in Neural Information Processing Systems, 36:33687–33725,
2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: A Family of Highly
Capable Multimodal Models. arXiv preprint arXiv:2312.11805, 2023.

William R Thompson. On the Likelihood That One Unknown Probability Exceeds Another in View
of the Evidence of Two Samples. Biometrika, 25(3/4):285–294, 1933.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Christopher JCH Watkins and Peter Dayan. Q-Learning. Machine Learning, 8:279–292, 1992.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. Advances
in Neural Information Processing Systems, 35:24824–24837, 2022.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An Explanation of In-context
Learning as Implicit Bayesian Inference. In International Conference on Learning Representations,
2022.

Wanqiao Xu, Shi Dong, Dilip Arumugam, and Benjamin Van Roy. Shattering the Agent-Environment
Interface for Fine-Tuning Inclusive Language Models. arXiv preprint arXiv:2305.11455, 2023.

Wanqiao Xu, Shi Dong, and Benjamin Van Roy. Posterior Sampling for Continuing Environments.
In Reinforcement Learning Conference, 2024.

Xue Yan, Yan Song, Xidong Feng, Mengyue Yang, Haifeng Zhang, Haitham Bou Ammar, and Jun
Wang. Efficient Reinforcement Learning with Large Language Model Priors. In The Thirteenth
International Conference on Learning Representations, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao.
ReAct: Synergizing Reasoning and Acting in Language Models. In The Eleventh International
Conference on Learning Representations, 2023.

Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-Armed Dueling Bandits
Problem. Journal of Computer and System Sciences, 78(5):1538–1556, 2012.

Andrea Zanette and Emma Brunskill. Tighter Problem-Dependent Regret Bounds in Reinforcement
Learning without Domain Knowledge Using Value Function Bounds. In International Conference
on Machine Learning, pp. 7304–7312. PMLR, 2019.

Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and How Does In-Context
Learning Learn? Bayesian Model Averaging, Parameterization, and Generalization. arXiv preprint
arXiv:2305.19420, 2023.

Qinqing Zheng, Mikael Henaff, Amy Zhang, Aditya Grover, and Brandon Amos. Online Intrinsic
Rewards for Decision Making Agents from Large Language Model Feedback. arXiv preprint
arXiv:2410.23022, 2024.

16

Published as a conference paper at ICLR 2026

A RELATED WORK

While our primary focus in this paper is on efficient exploration for LLM agents, the broader challenge
of efficient exploration for RL agents is a long-studied topic. One route to achieving statistically-
efficient exploration relies on the use of “optimism in the face of uncertainty,” where approaches
either implicitly or explicitly maintain over-inflated value function estimates for all state-action
pairs (Kearns & Singh, 2002; Brafman & Tennenholtz, 2002; Kakade, 2003; Auer et al., 2009; Strehl
et al., 2009; Jaksch et al., 2010; Dann & Brunskill, 2015; Azar et al., 2017; Dann et al., 2017; Jin et al.,
2018; Zanette & Brunskill, 2019; Dong et al., 2022). These optimistic biases are calibrated by an agent
designer to incentivize agent visitation of each state-action pair sufficiently many times and eventually
result in accurate value estimates that give rise to optimal behavior. Nie et al. (2024) attempt to realize
such an optimistic exploration strategy with LLMs (specifically, combining UCB (Auer et al., 2002)
with Gemini (Team et al., 2023)) for multi-armed bandit problems and demonstrate the difficulty in
coupling statistical machinery like confidence intervals with LLMs outright. While our proposed
implementation relies on an equally (if not more) complex statistical object, the Bayesian posterior,
our experiments suggest that LLMs in certain cases may maintain an approximation sufficient for
guiding exploration.

Existing designs for LLM agents either do not explicitly engage with the challenge of exploration
or do so with complete reliance on in-context learning (ICL) (Brown et al., 2020). One of the most
popular LLM agent designs is Reflexion (Shinn et al., 2024) where the policy LLM charged with
selecting actions is informed at each episode by a “self-reflection” generated from another LLM given
the previous episode trajectory. While suitable for some tasks, we observe in our experiments that
the self-reflection LLM often “passes the buck” and encourages exploration generically in language
without providing a clear strategy for the downstream policy LLM to do so. By relying on LLMs
to provide the requisite functions for implementing a prudent choice of existing RL algorithm, we
encounter strategic exploration without needing to explicitly instruct any of the involved LLMs to
explore.

LLM agents that rely on ICL to enable exploration follow suit with a line of work that examines
Transformer-based RL agents in non-natural-language tasks (Laskin et al., 2022; Liu et al., 2023; Lee
et al., 2024b; Dai et al., 2024; Yan et al., 2025). These methods often rely on casting ICL as either
implicit, approximate Bayesian inference (Xie et al., 2022; Zhang et al., 2023) or within the “control
as inference” framework (Levine, 2018); one key challenge with the former is that such implicit
posterior knowledge cannot be flexibly and explicitly leveraged to guide exploration, whereas the
latter suffers from not capturing epistemic uncertainty at all (O’Donoghue et al., 2020; Tarbouriech
et al., 2023). Very close to the spirit of our work is the in-context policy iteration (ICPI) method of
Brooks et al. (2023), who take the classic RL algorithm of policy iteration (PI) (Howard, 1960) and
implement it with LLMs and ICL. Unfortunately, the original PI algorithm is oriented towards tabular
MDPs that allow for iterating over all state-action pairs simultaneously. While the ICPI algorithm
forgoes this in favor of online data collection and resampling via experience replay (Lin, 1992), the
authors find it necessary to sample with a dataset balancing scheme to ensure the accuracy of ICL;
this presumes that the “right” data is already present or easily acquired from the environment. In
larger environments where data must be judiciously acquired, we find that ICPI is never able to
collect the data needed for ICL to exhibit any kind of performant behavior. Monea et al. (2024) study
a selective “dropout” strategy for the ICL demonstrations used by a policy LLM. However, such a
strategy mirrors ϵ-greedy exploration (Watkins & Dayan, 1992) without making a concerted effort to
strategically guide decision-making, much like how classic dropout in deep RL (Gal & Ghahramani,
2016) is a poor proxy for uncertainty-based exploration (Osband, 2016b). In contrast to ICL, the
core idea studied in this work is conceptually similar to meta-prompting (Goodman, 2023), where
an agent incrementally accumulates salient environmental knowledge within its system prompt to
refine behavior in each episode; while prior work has suggested that meta-prompting is an implicit
approximation of posterior sampling (Fränken et al., 2023), we here are exclusively concerned with
the explicit implementation of PSRL.

A related line of approaches examines using classic (deep) RL methods in tandem with LLM reward
functions (Klissarov et al., 2025; Kwon et al., 2023; Zheng et al., 2024). These approaches, while
interesting, largely focus on non-linguistic domains whereas our goal is to bring ideas on data-
efficient RL to bear on the natural language domains where LLMs stand to have the most impact.

17

Published as a conference paper at ICLR 2026

The posterior-sampling-based exploration strategy we consider in this work connects more broadly to
initial investigations surrounding the information gathering capabilities of LLMs (Ke et al., 2024).

Lastly, we note that the Reinforcement Learning from Human Feedback (RLHF) pipeline (Stiennon
et al., 2020; Ouyang et al., 2022) used to explicitly optimize LLMs also faces an underlying sequen-
tial decision-making problem (in the original formulation, a contextual dueling bandit (Yue et al.,
2012; Dudík et al., 2015)) and, as such, may greatly benefit from mechanisms to facilitate efficient
exploration (Xu et al., 2023; Dwaracherla et al., 2024). Concretely, at any point in the fine-tuning
process either by RLHF or Reinforcement Learning from AI Feedback (RLAIF) (Lee et al., 2024a),
there will be preference data that offer very little utility or change in LLM responses and those that
stand to dramatically improve response quality. By actively exploring for the latter kind of prompts
and responses, one stands to arrive at a more proficient LLM with fewer iterations of RLHF or RLAIF.
While such work is nascent, our results may offer a promising new pathway for LLMs to achieve the
strategic exploration that could reduce these significant data burdens.

B MULTI-ARMED BANDIT RESULTS

B.1 BERNOULLI BANDIT

As noted by Krishnamurthy et al. (2024), the financial and temporal costs of running LLM agents
can be quite significant. With only 20 trials, it would be presumptuous to make any sweeping claims
about superior performance of one method relative to others. Fortunately, the goal of our multi-armed
bandit experiment is aimed at at a relativistic comparison in the quality of exploration with our
LLM-based PSRL relative to classic TS. To this end, we borrow the surrogate statistics employed
by Krishnamurthy et al. (2024) to provide deeper insight into the long-term exploratory behavior of
LLM-based PSRL. Figure 9 reports the suffix failure frequency, where a suffix failure at time period t
is a binary statistic defined as 1 if the optimal action A⋆ is never chosen in time periods [t, T] and 0
otherwise. Clearly, an agent experiencing a large number of suffix failures early on in learning would
be unlikely to identify A⋆ when run for a larger number of time periods. Figure 10 reports the (scaled)
minimum action frequency, which reports at time period t the frequency of the least-chosen action
in the first t time periods: 1

t ·min
a∈A

∣∣{At′ | t′ ∈ [t], At′ = a}
∣∣. The statistic is scaled by |A| to reside

in [0, 1]. As an agent’s knowledge of the world accumulates, one would naturally expect an agent
to gradually cease selection of some (ideally, sub-optimal) actions and incur lower minimum action
frequencies. Together, these two surrogate statistics paint a picture of whether or not the exploration
of a LLM bandit agent gravitates toward A⋆ over time.

Notably, we find that increasing the temperature κsampling of the posterior sampling LLM has
profound impact on how well our LLM-based PSRL explores according to these metrics. In particular,
we find that increasing κsampling leads to exploratory behavior more closely aligned with that of
classic TS compared to lower temperatures values.

B.2 CUSTOMER SERVICE BANDIT & PRIOR (MIS)SPECIFICATION

To demonstrate one concrete instance of how our proposed LLM-based PSRL might meet the demands
of a real-world decision-making problem, we adapt the customer service task of Tajwar et al. (2025)
into a multi-armed bandit problem. In each of K = 20 total time periods, the agent may either ask
a question or offer a solution to address a customer issue randomly sampled from the dataset4 of
Tajwar et al. (2025). Similar to Tajwar et al. (2025), we use two additional LLMs to simulate the
customer (who answers the agent’s questions and tries suggested solutions as a non-technical person
would) and to be a judge/reward function who ultimately determines the binary reward indicating
successful resolution of a customer’s issue. All models use GPT-4o as the underlying LLM.

For our LLM-based PSRL, we consider two methods for specifying the prior distribution that PSRL
takes as input. In the first case, we simply ask GPT-4o to provide a prior distribution (a list of
plausible underlying issues for the customer complaint as well as guessed probabilities based on
how likely the model perceives the issue to be) that is given directly as input to our LLM-based

4https://github.com/tajwarfahim/paprika/blob/main/llm_exploration/game/
game_configs/customer_service.json

18

https://github.com/tajwarfahim/paprika/blob/main/llm_exploration/game/game_configs/customer_service.json
https://github.com/tajwarfahim/paprika/blob/main/llm_exploration/game/game_configs/customer_service.json

Published as a conference paper at ICLR 2026

Figure 9: Suffix failure frequency for a 5-armed
Bernoulli bandit with ∆ = 0.2. A suffix failure
occurs at time t if A⋆ is never chosen in time
periods [t, T].

Figure 10: Scaled minimum action frequency for
a 5-armed Bernoulli bandit with ∆ = 0.2. At
time period t, this is the average frequency of the
least-chosen action in time periods [1, t].

Figure 11: A scatter plot of suffix failure frequency vs. minimum action frequency for Thompson
sampling and our LLM-based PSRL with varying κsampling.

PSRL agent. In preliminary experiments we found that, while this agent is capable of finding success
often, it can suffer from issues of prior misspecification, where the true solution (also given in the
dataset of Tajwar et al. (2025)) is not within the support of the LLM-generated input prior. To remedy
this without giving away the solution, we use a second method of generating an input prior that
guarantees it is well-specified; we provide the dataset solution for the sampled customer service
issue to GPT-4o and indicate that it is one possible resolution but that GPT-4o must itself assign a
probability to it based on how plausible it is perceived to be. We report the results of this latter agent
as “well-specified” in Figure 5. All agents were run for a total of 20 trials.

In the face of prior misspecification, something that the base PSRL algorithm does not entertain by
assumption and therefore has no explicit mechanism to cope with, baseline LLM agent designs still
cannot achieve a statistically significant improvement over PSRL. While theory is not a focus of
this work, we simply note in passing that prior misspecification of posterior-sampling methods is a
well-studied topic in bandit learning (Russo & Van Roy, 2014; Simchowitz et al., 2021; Liu et al.,
2022), where one can provably expect a graceful degradation in performance commensurate with
the degree of misspecification; colloquially, similar results are expected for the full RL setting as
discussed, for instance, in the introduction of O’Donoghue (2021). Future work may greatly benefit
from expanding on our results to more carefully examine how PSRL can remain robust in the face of
such misspecified priors. Moreover, once the prior misspecification is removed (without handing the

19

Published as a conference paper at ICLR 2026

Figure 12: Cumulative regret curves for the real-world customer service bandit task. All LLM agents
use GPT-4o.

solution away as the agent must still sift through other plausible sources of customer issues), PSRL is
able to demonstrate strong exploration that far exceeds baseline methods on a real-world task with a
tremendously large action space.

C EARLY FAILURES WITH GPT-4O IN RIVERSWIM

As RiverSwim is a stochastic environment, even a limited number of states may still demand a
significant episode horizon in order to provide even a chance of learning progress. To keep the
financial costs of our RiverSwim experiments down with horizons as small as 6 and as large as 50, we
employ a policy caching scheme that capitalizes on the underlying tabular MDP that is RiverSwim.
In particular, the policy LLM of all LLM agents (ours and baselines) used in each episode only makes
one API call per novel state visited and the resulting selected action is cached for that state; if a state
is ever revisited within the same episode, then this cached action is automatically reused without
making an additional policy LLM call. After an episode is completed, this cache is then cleared and
reset for the next episode. Notably, as the optimal policy for RiverSwim is non-stationary (since,
if the agent is unsuccessful in swimming upstream towards the end of the episode, it is optimal to
turn around and collect the smaller downstream reward), this means that the cumulative regret curves
across all agents are potentially worse than what they would have been if the agents were allowed to
act in a non-stationary fashion. Nevertheless, as there are only two actions in the MDP, we anticipate
that the impact of this cost-saving measure on our results is minimal and equitable across all evaluated
agents.

In Section 4.2, we reported positive results in a truncated (length-3) variant of the classic RiverSwim
environment (Strehl & Littman, 2008) upon switching from GPT-4o to o1-mini as the underlying
LLM for our PSRL implementation. For clarity, we use this section to detail the initial failures
we encountered with GPT-4o in RiverSwim. Figure 13 shows the associated cumulative regret
curves adhering to the same setup as outlined in Section 4.2, except we use κπ⋆ = κposterior = 0
and κsampling = 0.5. Despite achieving the best regret curve out of all presented LLM agents in
RiverSwim, both of our LLM-based PSRL variants with GPT-4o incur near-linear regret while most
instances of classic PSRL are able to achieve optimal behavior.

We also report both vanilla and LLM-based PSRL run with prior distributions where all deterministic
RiverSwim transitions (only those where the agent swims downstream) are given as prior knowledge.
We posited that supplying all deterministic transitions as prior knowledge would fare better against
classic PSRL. While this does allow LLM-based PSRL to exhibit optimal behavior in many trials,
far too many still fail as the optimal policy LLM struggles to select optimal actions, even when
supplied with posterior samples that have high fidelity to the true environment. Reasons for this
include misread transition probabilities (such as swapping numerical values of the input posterior

20

Published as a conference paper at ICLR 2026

Figure 13: Cumulative regret curve for the RiverSwim environment with 3 states. Algorithms with
knowledge of all deterministic transitions supplied a priori are labeled.

sample) as well as a lack of understanding for long-term planning. Additionally, we observe a rare
occurrence where posterior updates can be prone to catastrophically forgetting a single transition,
thereby halting learning progress entirely should the omitted transition be essential to reaching the
upstream reward.

D LIMITATION: SCALING UP STOCHASTIC ENVIRONMENTS

While the success of our LLM-based PSRL in RiverSwim after upgrading to o1-mini from GPT-4o
is encouraging, we find that the scalability of such a substitution is short-lived. Recall that our
version of RiverSwim used in the preceding section is a truncated variant down to a length-3 river.
Unfortunately, as seen in Figure 14, just increasing the river by one additional intermediate state
to obtain a length-4 RiverSwim environment (H = 20) causes the performance of our LLM-based
PSRL to degrade into linear regret.

This negative result underscores a crucial distinction in the choice of epistemic state between agents;
that is, the statistical object Dirichlet(0.1, 0.1, 0.1, 0.1) used by classic PSRL and the natural language
string Dirichlet(0.1,0.1,0.1,0.1) used in LLM-based PSRL. For deterministic transitions
in RiverSwim, classic PSRL is able to see eventual concentration to a Dirac delta distribution.
Meanwhile the LLM-based PSRL agent, while successful at maintaining visitation counts, is slow to
achieve the same convergence and, across many posterior samples, leaves non-negligible probability
mass on non-existent transitions with fictitious rewards. One plausible explanation would be that such
concentration errors stem from a lack of familiarity by the LLMs, given that Dirichlet distributions
with fractional parameters are encountered with less frequency (McCoy et al., 2024); however, our
preliminary experiments with a Dirichlet(1,1,1,1) prior showed no significant improvement.

Issues with posterior concentration notwithstanding, we also find that far too many episodes fail as
the optimal sample policy LLM struggles to select optimal actions, even when supplied with posterior
samples that have high fidelity to the true environment. Even with chain-of-thought prompting, we
find a clear lack of understanding for long-term, value-based planning; the preliminary success with
length-3 RiverSwim suggests that this failure is connected to the increased verbosity of the epistemic
state that, in turn, compromises the optimal sample policy LLM’s ability to account for the value of
traversing the full river over collecting the small downstream reward repeatedly. Altogether, while the
overall result is negative, we anticipate that these issues may resolve organically in a manner similar
to our early challenges with GPT-4o in length-3 RiverSwim; that is, by leveraging a more advanced
alternative LLM. Even if recent open-source reasoning models (Jaech et al., 2024; Guo et al., 2025)

21

Published as a conference paper at ICLR 2026

Figure 14: Cumulative regret curves for the RiverSwim environments with 3 (solid lines) and 4
(dashed lines) states, respectively. o1-mini is used exclusively with our LLM-based PSRL.

prove ineffective at fulfilling this purpose, one might still naturally anticipate that such deficiencies
will disappear with time assuming future LLM capabilities continue to expand.

E ADDITIONAL DEEPSEEK-R1 RESULTS

While our experiments with RiverSwim (Figure 6) confirm the benefits of reasoning models that
invest additional computational effort to produce so-called “reasoning” tokens prior to emitting
response tokens, models such as o1-mini can be prohibitively expensive. To reduce these financial
burdens and assess the efficacy of our proposed LLM-based PSRL with an alternative choice of
constituent LLM, we present results for the combination lock (Figure 15 – 20 trials) and Wordle
(Figure 8 – 40 trials) environments with DeepSeek-R1 (Guo et al., 2025).

Our results aggregated across both domains yield two key observations. At the highest level, we
observe that R1 provides a performance improvement to all LLM agents (both ours and baselines).
Curiously, we find that this performance improvement varies by model and domain; across both
environments, we see very small improvements in Reflexion. Meanwhile, performance improvements
for ICRL in the combination lock task and our LLM-based PSRL in Wordle are significant. More
importantly, we find that the enhanced reasoning capabilities of DeepSeek-R1 applied to our best
baseline LLM agents is not sufficient to yield a statistically-significant improvement over our proposed
LLM-based PSRL, even when run with a “weaker” or less-capable GPT-4o as the constituent LLM.
Such a result is somewhat reminiscent of classic boosting (Freund & Schapire, 1997), wherein an
ensemble of weak learners are composed together into a strong (supervised) learner. Furthermore,
these empirical results might (loosely) suggest that the strategic exploration strategy (specifically,
Thompson Sampling) forged into the design and structure of the PSRL algorithm offers something
beyond what a current strong reasoning model is capable of today, especially when given the freedom
in action selections afforded by a LLM agent design like ICRL.

F LIMITATION: BEYOND THOMPSON SAMPLING

While PSRL, through the use of TS, is known to yield a strong exploration strategy, it is by no
means perfect. In the bandit literature, shortcomings of TS are well-known and naturally become
more salient in the full RL problem (Russo & Van Roy, 2018; Lu et al., 2023). By only executing
actions with some probability of being optimal, TS will never take sub-optimal actions that may
yield tremendous information gain. Figure 3 already illustrates how a PSRL agent’s uncompromising

22

Published as a conference paper at ICLR 2026

Figure 15: Cumulative regret curves for the combination lock environment. Labels show the choice
of constituent LLM model (GPT-4o or DeepSeek-R1) in each LLM agent.

execution of potentially-optimal policies cripples exploration and solely allows for the testing of two
unknown letters at a time.

One remedy is to seek out instantiations of information-directed sampling (IDS) (Russo & Van Roy,
2018). IDS is an algorithmic design principle that advocates for using a policy which balances
between performance shortfall and information gain. While supported by a rigorous corroborating
theory in both bandits and RL (Lu et al., 2023), concrete and practical instantiations of IDS are
difficult to come by on account of the challenges surrounding information gain estimation (McAllester
& Stratos, 2020). Moreover, the temporally-delayed consequences absent from bandits but present in
RL problems pose an additional challenge as a proper IDS agent must forecast future opportunities
for knowledge acquisition several steps into the future when evaluating current actions.

We present an initial design for a IDS agent with LLMs. Our proposed LLM-IDS agent is myopic
in that it only takes immediate information gain about optimal behavior at the next timestep into
account. Nevertheless, the feedback structure of the combination lock environment allows such an
agent to be unconcerned with temporally-delayed information. For a current state sh ∈ S , we define
two |A|-dimensional vectors, ρ and I, where ρ(a) = E

[
V ⋆
M,h(sh)−Q⋆

M,h(sh, a)
]

is the expected
regret of taking action a ∈ A in sh under the agent’s current posterior and I(a) = I(π⋆;Rh, Sh+1 |
Ah = a, Sh = sh) is the information gained (formally, the conditional mutual information (Cover &
Thomas, 2012)) about the optimal policy by taking action a from state sh. IDS calls for sampling
an action from the distribution that minimizes the information ratio: min

π∈∆(A)

Ea∼π [ρ(a)]
2

Ea∼π [I(a)] . Normally,

computation of the ρ and I vectors would be done directly with the current posterior. Instead,
we recycle the same posterior update LLM from our LLM-based PSRL but incorporate two new
LLMs for the provision of ρ and I; each of these LLMs is prompted on a per-action basis to assess
the expected regret or information gain, respectively, from each action in the current state. With
these 2|A| LLM-generated numerical values, the convex optimization problem of minimizing the
information ratio is solved to compute the policy for action selection.

We offer two empirical evaluations to highlight the limitations of LLM-based PSRL exploration
inherited from TS while also underscoring the future potential of our LLM-IDS. The first is a contrived
but transparent multi-armed bandit problem given as Example 2 of Russo & Van Roy (2018). In this
(K + 1)-armed informative action bandit problem, there is a unique optimal action A⋆ ∈ [K] that
yields a deterministic reward of 1 while all other arms yield a reward of 0; additionally, there is an

23

Published as a conference paper at ICLR 2026

Figure 16: Cumulative regret curves for the 11-
armed informative action bandit (Example 2) of
Russo & Van Roy (2018).

Figure 17: Episodic regret curves for the 11-
armed informative action bandit (Example 2) of
Russo & Van Roy (2018).

Figure 18: Cumulative regret curves for the combination lock environment including LLM-IDS.

action 0 that deterministically provides a reward equal to (2 · A⋆)−1. Naturally, an agent willing
to deliberately select sub-optimal actions to gain information would take action 0 immediately and
then produce optimal behavior thereafter with the identity of A⋆ in hand. Figures 16 and 17 show
across 10 trials that LLM-IDS succeeds in recovering this optimal exploration strategy exactly for the
K = 10 instance whereas LLM-based PSRL is incapable of doing so while exploring via TS. This
result also highlights one simple instance of the flexibility that specifying natural-language priors to
LLM-based PSRL affords as encoding prior knowledge about the informative action might prove
difficult when limited to classic statistical distributions. Extending past this contrived yet transparent
bandit example, Figure 18 shows that LLM-IDS is able to outperform LLM-based PSRL in the
combination lock task by more quickly testing for unknown digits while remaining unencumbered by
known digits already discovered.

G TOKEN EFFICIENCY

In this section, we give a brief glimpse into the token efficiency of our proposed LLM-based PSRL
agent relative to our two strongest baseline LLM agents, Reflexion and ICRL (p = 1.0), using

24

Published as a conference paper at ICLR 2026

GPT-4o for all constituent LLMs. Notably, our focus in this work has been exclusively on data
efficiency through prudent exploration and, as such, no concerted effort has been made in either our
proposed agent or baseline agents towards optimizing for token efficiency explicitly (by selecting
shorter prompts as inputs to the constituent LLMs) or implicitly (by encouraging LLMs to maintain
brevity in their responses). With that said, Figures 19 and 20 illustrate token efficiency of these LLM
agents in the combination lock and Wordle environments by plotting cumulative regret as a function
of total tokens processed (on average).

Figure 19: Cumulative regret curves for the com-
bination lock environment as a function of total
tokens processed (on average).

Figure 20: Cumulative regret curves for the Wor-
dle environment as a function of total tokens
processed (on average).

In Figure 19, we see that, despite improved performance and actual convergence towards the optimal
policy, our proposed PSRL-LLM consumes more tokens (on average) than Reflexion and ICRL in the
combination lock environment. We suspect the primary driver behind the excess tokens comes from
the tendency of GPT-4o to fully enumerate all possible correct codes in the “posterior” — something
that neither baseline agent does thereby allowing them to be more economical with respect to the total
number of tokens processed. Despite that, however, we see that our LLM-based PSRL does achieve
better cumulative regret even if truncated to the same number of tokens processed by either baseline
agent. In Figure 20, we see that LLM-based PSRL displays token efficiency that is comparable
to Reflexion and superior to ICRL in Wordle, eventually able to more consistently identify target
words in fewer turns than Reflexion, resulting in lower cumulative regret. Unlike in the combination
lock environment, there are far too many possibilities for possible target words and GPT-4o never
even attempts to enumerate these candidates, instead opting to maintain information about candidate
correct letters and positions.

H EXPERIMENT PROMPTS

In this section, we outline all LLM prompts used in our experiments. We will present all system
prompts in orange and all user prompts in red. It is important to note that prompts are to LLM
agents what typical hyperparameters (entropy regularization coefficient, PPO clip factor, batch size,
etc.) are to deep RL agents. In that sense, prompt optimization/hyperparameter tuning of baselines
is an important facet of evaluation. As is often the case when dealing with vast hyperparameter
spaces, however, an exhaustive search for the best hyperparameter settings of each method evaluated
would be far too onerous. Thus, while we include our prompts for all agents in our evaluation to
foster reproducibility and encourage extensions of our work, we note that future work may find
performance improvements with any of these LLM agents through simple refinements of these
prompts for particular models and/or downstream applications.

Each LLM used in this work (both for our and baseline agents) was prompted to perform its
designated function in the context of a broader agent design/algorithm (PSRL, Reflexion, ICRL,
or ICPI). Thus, our prompt iteration process simply consisted of manually adjusting prompts until
preliminary experiments showed the desired functionality being achieved. For baseline agents,
especially those using ICL, this required few iterations; for some elements of PSRL that involve
slightly more complicated entities than a policy; transition function; reward function; or evaluator,

25

Published as a conference paper at ICLR 2026

additional iterations were needed to weed out edge cases and tack on further constraints into the
initial prompt used in the first iteration. For any given domain, the ability to successfully realize the
desired functionality in each of the three LLMs should serve as “unit tests” signaling to an agent
designer whether or not it is sensible to run our proposed PSRL agent. More generally, we make no
claim that these prompts are optimal in any sense (a claim that likely no LLM agent paper can make
in good faith). Investigating these choices in prompt iteration and downstream LLM agent robustness
are important areas of future research.

H.1 LLM-BASED PSRL

In our experiments, depending on the particular environment, we consider two different forms of
posterior LLM prompting. For sufficiently short horizons, the posterior LLM is given the entire
trajectory in a single prompt and is expected to produce the updated posterior. For longer horizons or
whenever concerns about context buffer length come into play, the posterior LLM is prompted with
one full (s, a, r, s′) experience tuple at a time and each successive posterior becomes the prior for the
subsequent update. Empirically, we find that whole trajectory updates may be more likely to result
in erroneous updates where certain pieces of information may be mistakenly updated or forgotten
entirely. While this becomes far less likely with per-step experience updates, the associated financial
costs and time spent running the PSRL agent scale unfavorably with the horizon of the problem.
We use whole trajectory observations for all LLM-based PSRL posterior updates in the RiverSwim,
Combination Lock, and Wordle environments. For LLM-based PSRL multi-armed bandit results and
LLM-IDS, we use per-step posterior updates.

For whole trajectory posterior updates, the approximate posterior LLM uses the following system
prompt and user prompt:

You are a Bayesian posterior distribution for a real-world sequential decision-making problem.
Given a current prior belief about the environment and single trajectory observation, you
should produce the posterior distribution that accurately reflects knowledge about possibly
stochastic environment transitions and environment rewards based on the observed trajectory.
A trajectory observation is a sequence of experiences, where each experience consists of
a state, action, reward, and next state. Each unit of experience will be separated by XML
<EXPERIENCE> </EXPERIENCE> tags. The posterior distribution must always be
complete and describe all sources of uncertainty the agent has about the world. There can be
uncertainty about a stochastic transition or reward. The posterior distribution should take into
account all information provided in the observed trajectory to update the prior belief about
the environment. Be direct and don’t show your work. You cannot make any assumptions
about the agent and the action selections used to generate the trajectory observation. Never
try to model beliefs about the agent. Do not say anything beyond providing the posterior
distribution. The agent’s interactions with the environment will generate rewards and the
posterior distribution should keep track of how any and all rewards are generated. Information
and knowledge in the current prior belief about the environment should never be discarded
from the posterior distribution. If there is knowledge in the current prior belief about the
environment that is unaffected by the trajectory observation, then this knowledge should not
be changed and must be repeated exactly in the posterior distribution. Do not say anything
to distinguish between old knowledge that is being retained and updated knowledge. The
environment was described to the agent like this: <Environment Description>

Your current prior is as follows: <Input prior/LLM-generated posterior>. A
trajectory observation is a sequence of experiences, where each experience consists of
a state, action, reward, and next state. Each unit of experience will be separated by
XML <EXPERIENCE> </EXPERIENCE> tags. Here is an observed trajectory:<Full
trajectory>. Remember that knowledge in the current prior must only be updated but
can never be discarded, forgotten, or removed. Do not say anything about which information
in the posterior is new and updated or old and remains the same from the prior.

26

Published as a conference paper at ICLR 2026

For per-step posterior updates, the approximate posterior LLM uses the following system prompt and
user prompt:

You are a Bayesian posterior distribution generator for a real-world sequential decision-making
problem. A sequential decision-making problem is represented by an environment that, to
each current state and action, produces a next state transition and a reward based on that
transition. Transitions and rewards observed from the environment may be stochastic or may
be deterministic. Given a current prior belief about the environment and single observation
consisting of a next state transition and reward from the environment, you should generate the
posterior distribution that accurately reflects knowledge about possibly stochastic environment
transitions and environment rewards. The posterior distribution should be a complete and
accurate description of all uncertainty the agent has about the world. Information from
the prior belief can never be discarded, only updated to be more consistent with the given
observation. The posterior distribution should take into account all information provided in
the observed next state transition and reward to update the prior belief about the environment.
You cannot make any assumptions about the agent and the action selections used to generate
the next state transition and reward observation. Never try to model beliefs about the agent.
The world may be stochastic and random such that the prior knowledge may need to be
updated in the posterior distribution to be consistent with an observed transition or reward.
Any knowledge in the prior belief about the environment that is not affected by the observed
transition and reward should be retained in full by your posterior distribution. The environment
was described to the agent like this: <Environment Description>

Your current prior is as follows:<Input prior/LLM-generated posterior>. Here
is an observed environment transition and reward:<Single next-state transition
and reward>. Do not say anything about which information in the posterior is new and
updated or old and remains the same from the prior. Whenever possible you must maintain
exact, numerical probabilities.

The optimal sample policy LLM simply takes the current observation as the user prompt while using
the following system prompt:

<Environment Description>. Always select optimal actions that maximize value
across all future states and all remaining timesteps according to the following hypothesis:
<LLM-generated posterior sample>. You must select actions that are optimal for
and perfectly consistent with the above hypothesis. For each action, you must consider its
immediate expect reward as well as the expected value of future states that can be visited by
selecting the action. Always select from one of the available actions to take in the environment.
Just say the action after "Action: " and nothing else.

As generating a posterior sample requires specifying a full MDP, we find that the posterior sampling
LLM in PSRL benefits from having distinct prompts that cater to salient aspects of generating an
instance of each environment. We organize the associated environment descriptions as well as
posterior sampling system prompts and user prompts by task in the following sub-sections. We also
include a sub-section for all prompts used by LLM-IDS.

H.2 MULTI-ARMED BANDITS

H.2.1 BERNOULLI BANDIT

The environment description for the Bernoulli bandit task was given as:

27

Published as a conference paper at ICLR 2026

You are an agent interacting with a 5-armed Bernoulli bandit problem. You have exactly 5
actions available labeled as <List of randomly generated letters> and each
action has an independent Bernoulli distribution. When you select an action, you will receive
a binary reward sampled from the associated Bernoulli distribution.

The posterior sampling LLM system prompts and user prompts were:

You are a generator of Bernoulli bandit problems. A Bernoulli bandit problem is a collection
of mean reward values, one for each available action. Knowledge about the reward of each
available action will be given to you in the form of a Beta distribution representing beliefs
about the mean reward of each arm. This knowledge will constrain the Bernoulli bandit
problems you are allowed to generate. For each action, return one plausible hypothesis for the
mean reward an agent will observe when taking that action. Each mean reward you return
should be consistent with the knowledge you are given about the observed rewards of each
action. Each action is independent and so each hypothesis you return for the mean reward
of each action will be independent of all others. You must return real, numerical values
starting with the phrase "You think " and do not say anything beyond providing the mean
rewards of each action. You cannot just return the mean value of the Beta distribution as your
guess for the mean reward. You must return a sample from each Beta distribution as your
hypothesis. Before you return your mean reward values, describe how each one obeys all
constraints and knowledge provided to you. The environment was described to the agent like
this: <Environment Description>

Your current knowledge about the mean reward of each action is as follows:<Input
prior/LLM-generated posterior>. You must carefully read through this infor-
mation to generate a Bernoulli bandit problem consistent with this knowledge.

H.2.2 CUSTOMER SERVICE BANDIT

The environment description for the customer service bandit was given as:

You are going to role-play as a customer service agent and you have to help a customer resolve
their issue. Your goal is to gather enough information to diagnose the problem and provide
a correct solution. Your instructions are the following: 1.You may either ask the customer
questions or suggest particular actions to the customer. 2. The customer may not be technically
inclined, so keep your language simple and clear. 3.Avoid making assumptions — ask specific
questions to determine the potential causes. You should guide the customer through basic
troubleshooting steps and gather data on the situation. 4. You should try to make the customer
satisfied and resolve their problem as quickly as possible. You should also keep your responses
short and concise. 5. If the customer mentions a specific product they are using (for example,
ABC electronics), then you are the customer support agent for that product/company, i.e.,
you represent that product or company and have to take appropriate actions without referring
the customer to somewhere else. You will receive a reward of 1 if you succeed in resolving
the customer’s issue and all other rewards are 0. The specific scenario the customer faces is
this:<Troubleshooting task sampled from dataset>.

The posterior sampling LLM system prompts and user prompts were:

28

Published as a conference paper at ICLR 2026

You are a troubleshooting hypothesis generator for a customer service agent. The ini-
tial issue faced by the customer was described to the customer service agent as follows:
<Environment Description>. The customer service agent is trying to generate hy-
potheses for what the customer’s underlying issue really is. Given all knowledge the agent
currently has currently obtained thus far about the customer’s issue, you must generate a single
plausible hypothesis for what the customer issue is so the agent can correctly provide the
solution to the customer. Current knowledge about the customer’s underlying issue will be
given as a probability distribution listing possible underlying issues and the probability of
those issues being accurate for the customer. The hypothesis you generate must be a sample
from this distribution. While it is perfectly fine to return a sample that represents the element
of the distribution with highest probability, you cannot just return the most likely hypothesis
from this distribution simply because it has the highest probability. You must actually sample
the distribution to generate your hypothesis. If the probabilities do not sum to 1 to form a
valid probability distribution, sample a hypothesis based on what seems plausible using the
knowledge available. Be as specific as possible when describing your hypothesis for the
customer’s issue. You cannot just vaguely state that the customer’s item or some component
of their item has an issue. You must be more precise than that. When you return your sample
for the customer’s issue, start with the phrase "You think " and do not say anything beyond
providing your hypothesis.

All current knowledge about the customer’s issue is as follows: <Input
prior/LLM-generated posterior>. You must carefully read through this
knowledge. Never say anything about the agent or tell the agent what to do.

Additionally, the respective system prompts used for the environment, judge/reward function, and
prior-generator LLMs are as follows:

You are going to role-play as a customer experiencing a specific issue and interacting with a
customer service agent. You must adhere to the following guidelines: 1. Only respond to the
agent’s questions and provide relevant information when prompted. 2.Your responses should
be concise and reflect a typical, non-technical customer’s knowledge level. 3. You are going
to know what the solution for the specific issue is, but do not give away this information at
any point. Your goal is to observe if the customer service agent can ask relevant questions
and arrive at the specific issue. 4.When the agent asks you about a potential solution, you
should determine what the outcome would be immediately (no asking the agent to wait or
hold on) based on your knowledge about the true underlying problem, and let the agent know
the result. For example, if your car is not starting because of lack of fuel, and the agent
suggests you to check the fuel level in your car, it should fix your issue. Use your reasoning
ability to decide whether the suggested solution works, given that the solution to your problem
is: <Solution to sampled dataset issue>. 5. Reply with ’Goal reached’ (and
nothing more) if the agent has reached or solved your particular issue. If your issue is solved,
you must reply with ’Goal reached’. Your role-play starts now. The particular problem
you, as the customer, are facing is: <Customer service issue sampled from
dataset>, and the solution to this problem is: <Solution to sampled dataset
issue>. Note that you should never give away or tell the agent what will solve your particular
problem, your goal is to see if the agent can come up with the potential solution themselves
by asking relevant questions and obtaining accurate information from you.

29

Published as a conference paper at ICLR 2026

You are the judge of a customer service agent trying to help a customer in a particular scenario.
You will be given the agent’s response, and you have to verify whether the agent has been
able to successfully solve the problem of the customer correctly. You must adhere to the
following guidelines: 1. If the agent provides a solution that is well aligned with the true
solution, you must reply with <VALID>. 2. If the agent’s proposed solution does not align
well with the true solution, then you must reply with <NOTVALID>. 3. The agent doesn’t
need to match the solution word for word to be considered correct. The agent should be
considered correct as long as their solution or question clearly demonstrates that the agent has
correctly discovered the source of the customer’s issue. 4. Prior to returning your judgement
of <VALID> or <NOTVALID> think about the agent solution and true solution and provide a
brief justification of why they do or do not align well. The particular scenario the customer
is facing is: <Customer service issue sampled from dataset>, and the true
solution to their problem is: <Solution to sampled dataset issue>.

You are the generator of a prior distribution for a Bayesian decision-making agent. The agent
is faced with a customer service task described as follows: <Customer service issue
sampled from dataset>. The agent will be given an broad initial prior as follows:
You know that rewards are binary and you will only receive a reward of 1 once the customer’s
issue has been resolved. If you knew all the relevant details about the source of the customer’s
issue, there would be no uncertainty about what correct solution to offer and obtain a reward
of 1. You think that all common, reasonable issues based on the observations the customer has
given are plausible. You think that more common and more realistic issues are more likely
than uncommon and less realistic issues.
Your job is to provide an additional supplement to this prior that is specific to the issue
the customer is facing. Give a probability distribution for the possible underlying issue a
customer could be faced along with the probabilities or relative likelihood for each issue you
list based on which of them are more or less likely to be the culprit. (The next line
is included if the prior is designed to be well-specified.) Be
aware that one possible issue could be <Solution to sampled dataset issue>
and include it in your prior with a probability the appropriately reflects how plausible it is to
be the issue.

H.2.3 INFORMATIVE ACTION BANDIT

The environment description for the informative action bandit was given as:

You are an agent interacting with a <Number of actions>-armed bandit problem. You
have exactly <Number of actions> actions available labeled by number as <List
of action IDs>. When you select an action, you will receive a deterministic reward
associated with that selected action.

The posterior sampling LLM system prompts and user prompts were:

30

Published as a conference paper at ICLR 2026

You are a generator of a special class of bandit problems. A bandit problem in this class only
has a deterministic reward associated with each arm. There is exactly one optimal action
which yields a reward of 1. For whichever index the optimal action has, the action with index
0 must produce a reward equal to 1 divided by 2 times the optimal action index or, in other
words, the reciprocal of twice the optimal action index. All other actions must produce a
reward equal to 0. Knowledge about the optimal action will constrain the instance of this
special bandit class that you are allowed to generate. Based on the knowledge of which actions
cannot be optimal, choose one of the remaining actions to be optimal uniformly at random.
Then, assign deterministic rewards to all of the actions so the bandit problem you generate
belongs to the special class exactly as described. You must return real, numerical values
for the deterministic action of each action starting with the phrase "You think " and do not
say anything beyond providing the reward of each action. Before you return all the special
bandit problem reward values, describe how each one obeys all constraints and knowledge
provided to you. The environment was described to the agent like this: <Environment
Description>

Your current knowledge about the rewards is as follows:<Input
prior/LLM-generated posterior>. You must carefully read through this in-
formation to generate a bandit problem consistent with this knowledge that must belong to the
described special class.

H.3 RIVERSWIM

The environment description for RiverSwim was given as:

You are an agent swimming in a network of three underwater caves connected by tunnels.
Each cave is labeled by its number and always has two tunnels labeled A and B that you can try
to swim through. Swimming through tunnels allows you to stochastically move between the
caves. There is a strong current in the water which can affect how difficult it is to successfully
swim through certain tunnels. Some tunnels may be easier to swim through than others.
Successfully swimming through a tunnel once in any cave does not guarantee that it will
always be successful. Conversely, failing to swim through a tunnel once does not mean it is
impossible and you may have to try again a few times before successfully making it through
and swimming into a different cave. Swimming through specific tunnels from certain caves to
reach other caves may yield scalar rewards between zero and one.

The posterior sampling LLM system prompts and user prompts were:

31

Published as a conference paper at ICLR 2026

You are a map generator for an agent navigating an environment. The environment was
described to the agent as follows:<Environment Description>. A map must specify
exactly two pieces of information for each possible combination of current cave, tunnel,
and next cave. The first piece of information is a transition probability that represents the
probability of being in a specific cave, swimming through a particular tunnel, and ending up
in a specific next cave. Knowledge about next cave transitions will be provided to you as a
collection of Dirichlet distributions. Sampling these distributions will allow you to generate
next cave transition probabilities for each cave and tunnel combination. The second piece of
information is a deterministic reward that an agent will receive when being in a specific cave,
swimming through a particular tunnel, and ending up in a specific next cave. You will be given
knowledge about known rewards and rewards that are still unknown and uncertain. If a reward
is known, you must repeat its numerical value exactly in the map you generate. If a reward
is unknown, knowledge about what it could be will be given to you as a discrete uniform
distribution over possible values. You will sample this distribution for each cave, tunnel,
and next cave combination and include the concrete, numerical reward value in the map you
generate. The input knowledge will constrain the maps you are allowed to generate and the
map you generate must be consistent with the input knowledge. Any input knowledge that is
known with certainty must be repeated exactly in the map you generate without modification.
All transition probabilities and all rewards must be concrete, numerical values. You must
sample the distributions you are given and cannot just return the mean value of any input
distribution for transition probabilities or rewards. Generate the map using complete sentences
starting with the phrase "You think " and do not say anything else. Do not say anything about
the input knowledge from the agent including the Dirichlet and uniform distributions.

Current knowledge about the next cave transitions and rewards is as follows: <Input
prior/LLM-generated posterior>. You must carefully read through this knowl-
edge. Never say anything about the agent or tell the agent what to do.

H.4 COMBINATION LOCK

The environment description for CombinationLock was given as:

You are a helpful assistant trying to guess the correct code to a combination lock as quickly as
possible. The combination lock requires a three-digit code. You will incrementally construct
your guess for the code that unlocks the lock by selecting one digit between 0 and 9 at each
timestep. The correct code that opens the lock contains no repeated numbers. For each digit
you guess, you will be given feedback indicating if the guessed digit is either in the correct
position for the unlocking code, in the wrong position for the unlocking code, or does not
appear in the combination lock code at all. You will receive a final reward of one if your
guessed code correctly unlocks the combination lock. Otherwise, rewards will always be zero.
Your only available actions are the digits from 0 to 9.

The posterior sampling LLM system prompts and user prompts were:

32

Published as a conference paper at ICLR 2026

You are a helpful assistant trying to aid an agent in guessing an unknown code that will unlock
a lock. Given all knowledge the agent currently has about the correct code, you must generate
a single guess at what the correct code could be. You must read through the input information
provided by the agent very carefully to produce a good, accurate guess for the correct code.
The agent’s current knowledge about the correct code establishes specific constraints on what
your guess can be. You must generate a guess for the correct code that is consistent with these
constraints. Before you return your guess, provide a short justification for each individual
digit of your guess that describes how the digit is consistent with the input knowledge from
the agent. When you return your guess, start with the phrase "You think " and do not say
anything beyond providing your guess for the correct code. The environment was described to
the agent like this: <Environment Description>

The agent’s current knowledge about the correct code is the following:<Input
prior/LLM-generated posterior>. You must carefully read through all informa-
tion the agent has provided. Never say anything about the agent or tell the agent what decisions
to make.

H.5 WORDLE

The environment description for Wordle was given as:

You are an agent playing a customized version of the game Wordle. There is a five-letter target
word from the English dictionary which you must try to guess as quickly as possible. The
target word does not contain any repeated letters. You will incrementally construct your guess
for this target word by selecting one letter of the alphabet at each timestep. For each letter
you guess, you will be given feedback indicating if the guessed letter is either in the correct
position for the target word, in the wrong position for the target word, or does not appear in the
target word at all. You will receive a reward of one if your guessed word correctly matches the
target word. Otherwise, rewards will always be zero. Your only available actions are letters of
the alphabet.

The posterior sampling LLM system prompts and user prompts were:

You are a helpful assistant trying to aid an agent in guessing an unknown target word without
any repeated letters from the English dictionary. Given all knowledge the agent currently has
about the target word, you must generate a single guess at what the target word could be. You
must read through the input information provided by the agent very carefully to produce a
realistic, plausible guess for the target word. The agent’s current knowledge about the target
word establishes specific constraints on what your guess can be. You must generate a guess
without repeated letters from the English dictionary for the target word that is consistent with
these constraints. Before you return your guess, describe how it obeys all constraints and
knowledge provided by the agent. When you return your guess from the English dictionary,
start with the phrase "You think " and do not say anything beyond providing your guess for
the target word. The environment was described to the agent like this: <Environment
Description>

The agent’s current knowledge about the target word is the following:<Input
prior/LLM-generated posterior>. You must carefully read through all informa-
tion the agent has provided. Never say anything about the agent or tell the agent what decisions
to make.

33

Published as a conference paper at ICLR 2026

H.6 LLM-IDS

H.6.1 BANDIT VERSION

As the bandit setting does not require handling of temporally delayed consequences or the provision
of a current state, it is appropriate to have a separate prompting scheme for LLM-IDS.

The expected regret LLM used the following system prompt and user prompt:

You are a pessimistic expected regret estimator for helping an agent interacting with a multi-
armed bandit environment. The bandit environment was described to the agent as follows:
<Environment Description>. You will be give the agent’s current posterior distribu-
tion over the world and will also be given a candidate action. With these two inputs, you
must provide a pessimistic estimate of the expected regret an agent will incur by taking the
proposed action in the bandit environment. Recall that the regret of an action is the difference
in the value or expected reward of the optimal policy and the value of the policy that takes
the given action. The expected regret is computed by taking an expectation over the regret
using the agent’s current posterior distribution. Remember that the optimal policy always
selects the optimal action with probability one and so you know that the value of the optimal
policy is equal to 1. You must take an expectation with respect to the agent’s current posterior
distribution to compute expected regret. Your estimate of the expected regret incurred by
taking this action in the environment must be pessimistic, which means that it is okay if the
estimate you return is larger than the true expected regret but it absolutely cannot be smaller
than the true expected regret. Naturally, you are being the most helpful when the expected
regret estimate you provide is as close to the true expected regret as possible without going
below it. You must produce a real and concrete numerical value as your estimate and say it as
a decimal (no fractions) after "Final expected regret: ". Whenever possible, show calculations
with concrete numbers before you give your estimate to justify it. Say nothing after "Final
expected regret: " other than your estimate.

The agent’s posterior distribution reflecting knowledge and uncertainty about the world is as fol-
lows: <Input prior/LLM-generated posterior>. Please produce a pessimistic
expected regret estimate for the following candidate action: <Candidate action>. If
needed, round your answer to no more than three decimal places.

The information gain LLM used the following system prompt and user prompt:

You are a conservative information gain estimator for helping an agent interacting with
a multi-armed bandit environment. The bandit environment was described to the agent as
follows: <Environment Description>. You will be given the agent’s current posterior
distribution over the world and will also be given a candidate action. With these two inputs,
you must provide a conservative estimate of how much information the agent will gain about
the optimal action of the bandit environment by taking the proposed action. Remember
that information gain is computed as mutual information or the reduction between prior and
posterior entropy, which is measured in bits. Your estimate of the information gained about
the optimal action by taking the input candidate action in the bandit environment must be
conservative, which means that it is okay if the estimate you return is smaller than the true
information gain but it absolutely cannot be larger than the true information gain. Naturally,
you are being the most helpful when the information gain estimate you provide is as close
to the true information gain about the optimal action as possible without going over it. You
must produce a real and concrete numerical value as your estimate and say it as a decimal (no
fractions) after "Final information gain: ".Whenever possible, show brief calculations with
concrete numbers before you give your estimate to quickly justify it. Say nothing after "Final
information gain: " other than your estimate.

34

Published as a conference paper at ICLR 2026

The agent’s posterior distribution reflecting knowledge and uncertainty about the world is
as follows: <Input prior/LLM-generated posterior>. Please produce a con-
servative information gain estimate (measured in bits) for the following candidate action:
<Candidate action>. If needed, round your answer to no more than three decimal
places. Remember that sub-optimal or incorrect actions can be informative and information
can be gained about the optimal action without actually selecting the optimal action. Also
remember that, once the optimal action is known under the agent’s posterior distribution,
information gain must be equal to 0 for all actions.

H.6.2 MDP VERSION

As previously mentioned, LLM-IDS retains the approximation posterior LLM for performing posterior
updates given agent interactions with the environment. Instead of having two posterior sampling
and optimal sample policy LLMs, LLM-IDS employs two LLMs for computing the expected regret
and the information gain about optimal behavior, respectively, of each action in a given state. The
current posterior is supplied to both LLMs as input along with the current state and the candidate
action being evaluation, thereby requiring a total of 2|A| API calls to obtain the two |A|-dimensional
vectors needed to solve the information-ratio optimization problem.

Using the fact that finding the distribution over actions which minimizes the information ratio is a
convex optimization problem that places probability mass on at most two actions (Russo & Van Roy,
2018; Lu et al., 2023), we solve the optimization problem near-optimally by discretizing the unit
interval and searching over all pairs of actions.

For the combination lock environment, we know that the value of the optimal policy is exactly 1.
Consequently, we charged the expected regret LLM with simply computing the expected return
E [Q⋆(st, a)] and used one minus this output value as the expected regret. The expected regret LLM
used the following system prompt and user prompt:

You are a conservative expected optimal action-value function estimator for helping an agent
interacting with a sequential decision-making environment. The environment was described
to the agent as follows:<Environment Description>. You will be give the agent’s
current posterior distribution over the world and will also be given a current state and a
candidate action. With all of these inputs, you must provide a conservative estimate of the
expected cumulative return an agent will observe by taking the proposed action from the
current state and then following the optimal policy thereafter. Recall that the optimal-value
function (also denoted as Q*) is the value obtained from being in a particular state, taking
a particular action, and following the optimal policy thereafter. So, in other words, you are
meant to evaluate the expected optimal-value function for the current state and candidate
action while taking an expectation with respect to the agent’s current posterior distribution.
Remember that you are estimating value by taking the candidate action in the current state and
then having all future actions selected by the optimal policy. The optimal policy will only make
future action selections at future states but will not be able to reverse or change the use of the
candidate action in the current state. You must take an expectation with respect to the agent’s
current posterior distribution to compute the expected optimal action-value function. Your
estimate of the expected optimal action-value function must be conservative, which means
that it is okay if the estimate you return is smaller than the true expected optimal action-value
function but it absolutely cannot be larger than the true expected optimal action-value function.
Naturally, you are being the most helpful when the estimate you provide is as close to the true
expected optimal action-value function as possible while still being a lower bound and not
going over it. You must produce a real and concrete numerical value as your estimate and say
it as a decimal (no fractions) after "Final expected optimal action-value: ". Whenever possible,
show brief calculations with concrete numbers before you give your estimate to quickly justify
it. Say nothing after "Final expected optimal action-value: " other than your estimate.

35

Published as a conference paper at ICLR 2026

The agent’s posterior distribution reflecting knowledge and uncertainty about the world is
as follows:<Input prior/LLM-generated posterior>. The current state is as
follows:<Current state>. Please produce a conservative expected action-value function
estimate for the following candidate action:<Candidate action>. If needed, round your
answer to no more than three decimal places.

The information gain LLM used the following system prompt and user prompt:

You are a conservative information gain estimator for helping an agent interacting with a
sequential decision-making environment. The environment was described to the agent as
follows:<Environment Description>. You will be given the agent’s current posterior
distribution over the world and will also be given a current state and a candidate action. With
all of these inputs, you must provide a conservative estimate of how much information the
agent will gain about optimal behavior in the environment by taking the proposed action from
the current state. Remember that information gain is computed as mutual information or the
reduction between prior and posterior entropy, which is measured in bits. Your estimate of the
information gained about optimal behavior by taking this action in the environment must be
conservative, which means that it is okay if the estimate you return is smaller than the true
information gain but it absolutely cannot be larger than the true information gain. Naturally,
you are being the most helpful when the information gain estimate you provide is as close
to the true information gain as possible without going over it. You must produce a real and
concrete numerical value as your estimate and say it as a decimal (no fractions) after "Final
information gain: ".Whenever possible, show brief calculations with concrete numbers before
you give your estimate to quickly justify it. Say nothing after "Final information gain: " other
than your estimate.

The agent’s posterior distribution reflecting knowledge and uncertainty about the world is
as follows:<Input prior/LLM-generated posterior>. The current state is as
follows: <Current state>. Please produce a conservative information gain estimate
(measured in bits) for the following candidate action:<Candidate action>. If needed,
round your answer to no more than three decimal places. Remember that sub-optimal or
incorrect actions can be informative and information can be gained about optimal behavior
without taking an optimal action.

H.7 BASELINE PROMPTS

H.7.1 IN-CONTEXT REINFORCEMENT LEARNING

The ICRL policy LLM uses the following system prompt and user prompt:

You are a useful assistant who is supposed to select actions within a sequential decision-making
environment. Your goal is to maximize expected total reward obtained from the environment
through your actions. When given any history of previous interactions and the current state
of the world, you will provide a single action to execute in the environment. Choose actions
wisely to maximize expected total reward based on your history of previous interactions with
the environment. Say nothing besides your choice from the available actions. The task is
described as follows: <Environment Description>

36

Published as a conference paper at ICLR 2026

The history of interactions you should use to guide your decisions is as fol-
lows:<(Potentially sub-sampled) history of past episodes>. The
current state of the world is as follows:<Current state>. Please select one of the
available actions by saying it directly and without saying anything else.

H.7.2 REFLEXION

The Reflexion policy LLM uses the following system prompt and user prompt:

You are the policy for a real-world sequential decision-making problem. The environment rep-
resenting the decision-making problem is as follows: <Environment Description>.
When given a current observation you will choose an action to execute in order to maximize
expected cumulative reward. Do not say anything beyond providing a single, valid action. You
will also be provided with some guidance and advice which you should use to help you make
good action selections.

To help you select actions, you will be given some guidance and advice. Here is your guid-
ance:<(Potentially sub-sampled) history of past reflections>.
Please select one action among the available actions to execute from the current observation.
Say nothing else besides your choice of action. The current observation is: <Current
state>.

The Reflexion self-reflection LLM uses the following system prompt and user prompt:

You are a helpful assistant who is tasked with providing guidance and useful advice to
a decision-making agent trying to complete a task by maximizing expected cumulative
reward. The environment representing the decision-making problem is described as follows:
<Environment Description>. Given a trajectory representing the agent’s behavior
unfolding in the environment, provide some guidance and advice to help the agent make better
decisions to complete the task. Please be helpful while remaining concise and do not say
anything other than the specific advice you think the agent should follow.

A trajectory observation is a sequence of encountered state, action, reward, and next state
experiences. Here is an observed trajectory generated by the agent interacting with the
environment in an attempt to solve the task:<Full trajectory>.

H.7.3 IN-CONTEXT POLICY ITERATION

The ICPI transition function LLM uses the following system prompt and user prompt:

You are the transition function for the simulator of a real-world sequential decision-making
problem. The environment you are simulating is: <Environment Description>.
When given a current observation and an action the agent has chosen to execute, you will pro-
vide a next observation which represents how the world has changed in response to executing
the agent’s action. Do not say anything beyond providing the next observation. To help you
generate the next observation accurately, you will be provided with examples of observation,
action, and next-observation data sampled from the true environment. Use the examples you
are given to accurately simulate the environment.

37

Published as a conference paper at ICLR 2026

To help you accurately model the environment transition function, you will be given
a sequence of observation, action, and next-observation experiences sampled from the
true environment. Each unit of experience is separated by XML <EXPERIENCE>
</EXPERIENCE> tags. Here are the transition function experiences: <Sampled state,
action, next-state triples>. Please generate a next observation for the current
observation and current action. The current observation is: <Current state>. The
current action is: <Current action>.

The ICPI reward function LLM uses the following system prompt and user prompt:

You are the reward function for the simulator of a real-world sequential decision-making prob-
lem. The environment you are simulating is: <Environment Description>. When
given a current observation and an action the agent has chosen to execute, you will provide a
scalar reward signal conveying the agent’s progression through the task. Do not say anything
beyond providing the reward signal. To help you generate the reward accurately, you will
be provided with examples of observation, action, and reward data sampled from the true
environment. Use the examples you are given to accurately simulate the environment.

To help you accurately model the environment reward function, you will be given a sequence
of observation, action, and reward experiences sampled from the true environment. Each unit
of experience is separated by XML <EXPERIENCE> </EXPERIENCE> tags. Here are
the reward function experiences: <Sample state, action, reward triples>.
Please generate a reward for the current observation and current action. The current observation
is: <Current state>. The current action is: <Current action>.

The ICPI rollout policy LLM uses the following system prompt and user prompt:

You are the policy for a real-world sequential decision-making problem. The environment
representing the decision-making problem is as follows:<Environment Description>.
When given a current observation you will choose an action to execute. Do not say anything
beyond providing a single, valid action. You should select actions in a manner that is consistent
with provided examples of observation and action pairs sampled from the true environment.
Be consistent with the examples you are given to behave in the simulated environment.

To help you select actions, you will be given a sequence of observation ad action ex-
periences sampled from the true environment. Each unit of experience is separated by
XML <EXPERIENCE> </EXPERIENCE> tags. Here are the experiences:<Sampled
state-action pairs>. Please select one action among the available actions to execute
from the current observation. The current observation is: <Current state>.

I EXPERIMENT COSTS

In this section, we give rough estimates of the total API calls, dollar cost (according to current GPT-4o
pricing), and average as well as maximum tokens used in our main evaluation domains.

Starting with API calls, we recall that we consider a finite-horizon MDP with K episodes, each with
a horizon of H . At the start of each episode, our LLM-based PSRL makes one API call to draw
a “posterior” sample. At each timestep of the episode, there are exactly H API calls made by the
optimal sample policy LLM. Finally, at the end of the episode, there is exactly one API call made to
perform the posterior update. All together, this yields a total of K(H + 2) API calls.

38

Published as a conference paper at ICLR 2026

Under current GPT-4o pricing, the total cost of a single trial in each of our evaluation domains is as
follows:

Domain Number of Episodes (K) Single-Trial Dollar Cost
5-Armed Bernoulli Bandit 100 $1

Combination Lock 8 $0.11
Wordle 5 $0.11

RiverSwim 35 $0.90

For o1-mini in RiverSwim, the single trial cost increases to $7.50.

The average and maximum token counts per-LLM are as follows:

Posterior Sampling LLM
Domain Average Tokens Maximum Tokens

5-Armed Bernoulli Bandit 1000 1500
Combination Lock 700 800

Wordle 800 1000
RiverSwim 1500 1700

Optimal Sample Policy LLM
Domain Average Tokens Maximum Tokens

5-Armed Bernoulli Bandit 400 500
Combination Lock 400 600

Wordle 450 650
RiverSwim 1000 1400

Posterior Update LLM
Domain Average Tokens Maximum Tokens

5-Armed Bernoulli Bandit 900 1100
Combination Lock 1200 1400

Wordle 1500 1700
RiverSwim 1700 1900

Per-Episode Tokens
Domain Input Tokens Output Tokens Total Tokens

5-Armed Bernoulli Bandit 1500 800 2300
Combination Lock 4000 1100 5100

Wordle 3700 850 4550
RiverSwim 4700 1500 6200

39

	Introduction
	Problem Formulation
	LLM Implementation of Posterior Sampling for Reinforcement Learning
	The Classic Approach
	A LLM Implementation

	Experiments & Discussion
	Multi-Armed Bandits
	Bernoulli Bandit
	Natural Language Bandit

	Tabular MDPs
	Natural Language MDPs

	Conclusion
	Related Work
	Multi-Armed Bandit Results
	Bernoulli Bandit
	Customer Service Bandit & Prior (Mis)specification

	Early Failures with GPT-4o in RiverSwim
	Limitation: Scaling Up Stochastic Environments
	Additional DeepSeek-R1 Results
	Limitation: Beyond Thompson Sampling
	Token Efficiency
	Experiment Prompts
	LLM-Based PSRL
	Multi-Armed Bandits
	Bernoulli Bandit
	Customer Service Bandit
	Informative Action Bandit

	RiverSwim
	Combination Lock
	Wordle
	LLM-IDS
	Bandit Version
	MDP Version

	Baseline Prompts
	In-Context Reinforcement Learning
	Reflexion
	In-Context Policy Iteration

	Experiment Costs

