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Abstract

We propose Grid-like Code Quantization (GCQ), a brain-inspired method for com-
pressing observation—action sequences into discrete representations using grid-like
patterns in attractor dynamics. Unlike conventional vector quantization approaches
that operate on static inputs, GCQ performs spatiotemporal compression through
an action-conditioned codebook, where codewords are derived from continuous
attractor neural networks and dynamically selected based on actions. This enables
GCQ to jointly compress space and time, serving as a unified world model. The
resulting representation supports long-horizon prediction, goal-directed planning,
and inverse modeling. Experiments across diverse tasks demonstrate GCQ’s effec-
tiveness in compact encoding and downstream performance. Our work offers both
a computational tool for efficient sequence modeling and a theoretical perspective
on the formation of grid-like codes in neural systems.

1 Introduction

VQ-VAE [1] introduces discrete latent variables into the autoencoding framework through vector
quantization (VQ) [2], allowing the model to compress high-dimensional continuous inputs into
discrete, tokenized representations. This capability has led to its widespread application across
various domains, including images [3! 4], video [3], speech [6]], actions [7], and multimodal data [8]],
demonstrating its versatility in handling complex, diverse inputs. The success of VQ-VAE under-
scores the utility of compressing inputs into reusable codes as a general computational strategy for
preprocessing and organizing data across a wide range of tasks.

Biological systems face the similar challenge: how to process and represent high-dimensional, contin-
uous inputs arising from multiple sensory and motor modalities. In parallel, the brain exhibits grid-like
codes (GCs), which serve as general-purpose neural patterns for encoding information. GCs are ex-
tensively observed across various brain regions. Initially identified in the medial entorhinal cortex for
spatial navigation [9], GCs have since been observed in the neocortex [10,!11}|12]] and associated with
representing abstract concepts beyond space, such as time and relational knowledge [110, [L1} |13} [14].
This widespread neural activity is characterized by bump-like patterns, periodicity, and typically
disentangled representations.

Building on this insight, we propose a brain-inspired VQ method, Grid-like Code Quantization (GCQ),
which uses the principles of GCs to structure the codebook. Specifically, we use continuous attractor
neural networks (CANNSs) [15] [16} [17] to generate grid-like activity patterns, where each stable
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state—bump—acts as a codeword. Due to the finite number of neurons, these bumps naturally form
a discretized representation [[L8]]. Unlike traditional VQ methods that use a static codebook, GCQ
introduces an action-conditioned codebook: a dynamic set of codewords formed by CANN-generated
bumps whose transitions are modulated by actions. This enables GCQ to perform quantization
not on isolated observations, but on observation—action sequences, allowing the representations to
capture temporal dependencies and behavioral context. Moreover, assigning distinct CANNs to
different action types naturally yields disentangled representations, facilitating generalization and
compositionality.

The overall GCQ pipeline follows an encoder—quantizer—decoder architecture, adapted for action-
conditioned sequence compression (Fig.[2)). Specifically, the model processes an observation—action
sequence, where the action sequence is used to construct an action-conditioned codebook, and the
observation sequence is passed through the encoder to produce a corresponding latent sequence. This
latent sequence is then quantized via template matching with the action-conditioned codebook. The
matched codewords are passed to the decoder, which reconstructs the original observation sequence.
Since the codebook is fixed, training requires only a commitment loss and a reconstruction loss.
To enable gradient flow through the discrete quantization step, we use a straight-through estimator
(STE).

GCQ is a dynamic compression approach that operates on observation—action sequences, and therefore
serves as a form of world model [19} 20]. Unlike prior world models that rely on a two-stage design
to separately compress space and time—typically using models like VQ-VAE for static spatial
observations and autoregressive models [21]] for temporal dynamics—GCQ performs spatial and
temporal compression jointly.

In summary, our contributions are as follows:

* To the best of our knowledge, GCQ is the first model to unify spatial and temporal compres-
sion through an action-conditioned quantization process. This enables direct compression of
observation—action sequences, offering an integrated alternative to conventional two-stage
world models. (Sec.

* GCQ’s spatiotemporal compression yields a cognitive map, which supports long-horizon
prediction, goal-directed planning, and the derivation of an inverse model. In particular,
goal-directed planning becomes computationally simple, as it reduces to finding a sequence
of valid bump transitions on the map. (Sec.[5).

* GCQ offers insights into the formation of GCs in the brain, enhancing our understanding of
neural representations (Sec. [6).

2 Related Work

VQ methods Vanilla VAEs [22] often suffer from posterior collapse in their latent spaces when
compressing high-dimensional data [23], impairing downstream tasks. VQ-VAEs [1] address this by
enforcing a structured latent space through discretization. Due to their superior compression efficiency
and tokenization paradigm, VQ has become a standardized module in single-modal preprocessing
pipelines in machine learning [3| 4]]. In multimodal settings, these compressed tokens further act
as a universal interface across modalities [5]]. Meanwhile, numerous studies have proposed diverse
codebook designs to enhance compression rates [24} 25 26]. Unlike most learnable codebooks, FSQ
uses a predefined codebook. Similarly, our GCQ utilizes a fixed codebook derived from continuous
attractor dynamics. Critically, our method diverges from conventional VQ approaches by performing
sequence-to-sequence template matching rather than single-frame matching.

World models [19} 20]] provide a framework for predicting future observations conditioned on
actions. Most world models based on encoder—decoder architectures first compress observations
using a VAE, and then model temporal dynamics in the latent space using temporal predictors such
as RNNs [27, 28], Transformers [[29], S4 models [30], or continuous Hopfield networks [31]. These
approaches typically follow a two-stage design, with spatial and temporal compression handled
separately. In contrast, GCQ is also an encoder—decoder world model, but it performs spatial and
temporal compression jointly. There also exist decoder-only world models [32] that skip explicit
compression and directly predict future observations. However, these models often struggle with
planning due to the high computational cost of operating in the raw observation space. GCQ, by
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Figure 1: (A) Schematic of a CANN: Each green dot represents a neuron uniformly distributed on a
torus. The neurons receive external input /. (B) Energy landscape of CANN dynamics: Each local
minimum in the energy landscape corresponds to an attractor state, which manifests as a 2D Gaussian
bump on the torus. (C) Template matching via CANN dynamics: The CANN inherently performs
template matching between the external input I and its attractor states. The input I is matched to
the attractor that maximizes their inner product. (D) Attractor transition: Under four distinct actions,
the attractor initially at position (0, 0) stabilizes to four new attractor states. (E) Due to the periodic
boundary conditions of the CANN, bump movements along the two axes naturally form grid-like
patterns.

(D)

compressing both space and time into a compact latent representation, enables more efficient planning
and inference.

Cognitive map with CANNSs Unlike classical attractor networks [33]—which store discrete, un-
structured patterns—CANNSs encode structured patterns organized by metric relationships. This
geometric regularity facilitates flexible state transitions through predefined operators [34]], enabling
operations like metric-based navigation and relational inference. Recent advances [35] have harnessed
predefined CANNS s as structured latent states for representation learning, empirically validating their
ability to model neural population dynamics. Further work [36] proposes that structured latent spaces
can map biologically to the entorhinal-hippocampal loop, a core circuit for spatial and episodic
memory. However, existing implementations rely on biologically constrained online learning, which
limits scalability. Our GCQ framework uses offline learning, enhancing parallelism and enabling
application to large-scale datasets.

3 CANNs and Template Matching

In this section, we will briefly introduce CANNS, explain how they can form bumps as attractor states.
In parallel, for VQ, the latent state obtained by the encoder must undergo template matching with
codewords. We will demonstrate that CANNs inherently implement template matching between rep-
resentations and bump states through their intrinsic dynamics. Finally, we will show how transitions
between distinct attractor states can be mediated by actions.

GCs can naturally be modeled by bumps in CANNs (Fig.[TE). The formation of CANNs does not
require complex optimization but relies on translation-invariant connectivity and periodic boundary
conditions. CANNSs have been widely used as canonical models to elucidate the encoding of features
in neural systems, including, for example, the encoding of orientation [37], head direction [38] and
spatial location [39]. CANNS can be expressed through various mathematical formulations. Here,
we adopt a relatively concise form [16] to demonstrate their principles. We consider N2 neurons
distributed on a toroidal (S* x S*) surface. These neurons are indexed by their posmons on the torus
0 € {0;};L, and ¢ € {@;}I_,, where 0; and y; are uniformly distributed over (—, 7] (Fig.|1 ).
Let Ug,,(t) and 74 ,,(t) denote the synaptic input and firing rate, respectively, of the neuron located



at (0, ) at time ¢. The dynamics of the CANN are governed by:
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where 7 is the synaptic time constant and p is the neuronal density. Wy (¢, ¢) is the recurrent
neuronal connections weights between neuron (6, ) and neuron (6, ¢’),
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The norm || - || s denotes the shortest path between two points on the circle, ensuring periodic boundary
and translation-invariant conditions. The parameters J and a control the strength and width of the
Gaussian connectivity, respectively. The nonlinear relationship between the firing rate ¢ ,(¢) and the
synaptic input Uy ,(¢) is implemented by divisive normalization, which is written as,

_ Ui ,(t)
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where k controls the normalization strength. In reality, divisive normalization could be implemented
by shunting inhibition [40]].

Previous studies [16} 41]] have established that the CANN dynamics governed by Eq. (1) possess N2
stationary states (attractors) when the external input Iy ,(t) = 0 (Fig. ). Each state corresponds to
a 2D Gaussian bump on the torus, centered at coordinates (6, ), with the firing rate of the neuron at
position (¢’, ") given by:
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where A = [1+ (1 — 32ma?k/J?p)/?] /(4ma®kp) is the amplitude. When Iy ,(t) is a constant
input, prior work [42] demonstrated that after its removal, the network converges to an attractor
determined by:

0, " = Helfax Z eo.o (0, Vg o, 5)
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which demonstrates that CANN dynamics effectively perform template matching between the input 7
and the N? attractors according to their inner product. (Fig. ).

The bump in CANNSs exhibit high mobility, enabling controlled movement through mechanisms such
as: anti-symmetric connections [43]], negative feedback [44] 43|, velocity neurons [45]. Such bump
displacements correspond to transitions between attractor states. For the toroidal CANN described
above, each attractor can undergo local two-dimensional displacements in the 6, ¢ plane. We define
two orthogonal action bases aligned with the 6 and ¢ axes (Fig.[ID),

+ +
Ay = €9LA0,p — 0,00 Uy = €0, pLAp — €0,- (6)

where Ay and A denote a small displacement step.

4 Grid-like Code Quantization

In this section, we first introduce the action-conditioned codebook in GCQ and the template matching
process for sequences. We then describe how GCQ enables bidirectional mapping between real-world
actions and latent transitions, and propose a greedy operator for measuring distances on the cognitive
map to support inverse modeling and planning.

4.1 Action-conditioned codebook and sequence matching

We first introduce the key difference between GCQ and VQ from a high-level perspective. In the VQ
method, the encoder first compresses the observation o into s, which is then matched to the closest
codes in the codebook through template matching, producing s. The decoder then reconstructs 6 from
. In GCQ, the input consists of an action-observation sequence {01, a1, 02, as, ..., 0, }. The encoder
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Figure 2: Schematic of GCQ: The action-observation sequence is encoded by the encoder into a latent
state composed of m = 3 codes. Through sequence template matching with the action-conditioned
codebook, the decoder reconstructs the predicted observations. The gray arrows indicate the template
matching process, and the gray dashed boxes represent the matching targets.

compresses the observation sequence 01., = {01, 02, ..., 05, } into s1.,, which is then matched to the
closest codes in the action-conditioned codebook via template matching, yielding $1.,,. The decoder
then reconstructs 01.,, from §1.,,.

In GCQ, each code corresponds to an attractor in the CANN (Fig. [IB). In the previous section,
we used 6 and ¢ to index different attractors; for simplicity, we will now use natural numbers as
attractor indices. Each code consists of d neurons, and the codebook contains K attractors. A
simple implementation sets K = d, where each attractor’s center coincides with a single neuron.
Alternatively, we can set K > d, causing some attractor centers to fall between two neurons. In
practice, different combinations of K and d can be selected. The state representation s; € R™*9,
meaning that s; is composed of m codes.

Additionally, we manually define a mapping between the action sequence a; € A from the dataset
and the action combinations applied to the CANNSs. For notational simplicity, we hereafter use a; to
refer to an action in either the original space or the CANN space. In the latter context, a; € R™*¢
represents the composite action over m bumps, with its component a] € R? denoting the action
applied to the j-th bump in Eq.(6). Each CANN supports five distinct actions, resulting in up to
5™ possible action combinations across m CANNSs. Since this mapping is injective, the discrete
action space must satisfy |.A| < 5™. For continuous actions, a CANN can define transitions in two
directions, imposing the constraint dim(A) < 2m.

After establishing the mapping, we quantize the latent representatipn S1m = {59, j=1- This

representation consists of a set of m parallel sequences, where each s7.,, corresponds to a sequence
from one of the rn CANNSs (as depicted by the dashed lines in Fig.[2). The quantization process is
performed independently for each of these m sequences. For each latent sequence s{:n, we perform a
template matching procedure. This involves comparing s{n against a set of K candidate trajectories.

Each candidate trajectgry is geperated by applying the known action sequence a{-:nf1 to a base bump
state e;. We denote this operation as:

ei@ajl;nfl = {61',67;-'—04]1,...,61' +a’]1:n71}7 (7)

where e; + a?, 1 = € + Zt 1 al. The index k of the best-matching codeword for the j-th latent
sequence is found by minimizing a distance metric (e.g., the L2 norm) between the latent sequence
and each of the K candidate trajectories:

k] = arg e{mll’l ||S{n - (ei @ a{:n71)|‘ (8)
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Figure 3: (A) Schematic of long-horizon prediction. The figure illustrates the process of initializing
with a sequence of length 3 and predicting two future observations. (B) Schematic of goal-directed
planning. Some gray arrows are omitted for clarity. The blue arrows represent the mapping from
actions in the latent space to real agent actions. Through iterative action generation, environment
interaction, and observation, the agent continues until it outputs a no-op action ag, indicating that the
goal has been reached.

Finally, the quantized sequence §{m is constructed using this optimal codeword ey, . The complete
quantized representation $;., is the collection of these individually quantized sequences:

‘§J1:n = ekj D a{:nflﬂ and <§1:n = {§{n};n:1 (9)

When computing the loss in GCQ using backpropagation (BP), we adopt the same straight-through
estimator (STE) as in the VQ method, copying gradients from the decoder input to the encoder
output to enable gradient flow to the encoder. GCQ uses two loss terms: a reconstruction loss and a
commitment loss:

L= ||01:n_61:n||2+6|‘31:n — sg [§1:n]||2 (10)
where sg[-] denotes the stop-gradient operation and 3 adjusts the strength of the commitment loss.

In GCQ, the encoder and decoder are not designed in the same way as in conventional VQ models.
Traditional VQ architectures often use ResNet-based building blocks, which provide each code with
only a limited receptive field. As a result, modifying a single code typically leads to only local
changes in the reconstructed observation. In contrast, GCQ assigns each code to an action, and
altering the action can result in global changes to the observation. This necessitates that each code
has access to global information during encoding and decoding. To address this, we explore three
architectural variants for the encoder and decoder: (1) ResNet followed by a fully connected layer,
(2) ViT [46], and (3) a hybrid of ResNet and ViT. Among these, ViT achieves the best trade-off in
terms of parameter efficiency, training stability, and overall performance (Table/[T).

4.2 OQOperations on cognitive map

GCQ uses a structured latent space, allowing an agent’s actions in the real environment to correspond
to simple movements of bumps within the latent space. In effect, GCQ constructs a space defined by
bump dynamics, which can be interpreted as a cognitive map. By establishing a mapping between
observations and this map, actions in the real space can be projected onto the map to determine
position changes, and conversely, movements within the map can be mapped back to real-space
actions. This bidirectional mapping enables GCQ to support both inverse modeling and goal-directed
planning. Specifically, to compute the distance between two states s; and s;, we define an operation
on the cognitive map. Since bump movements are action-driven and only valid actions produce
feasible transitions, we introduce the following operation:

si@sj:argrréiﬁ\sj+a—si|. (11)

This operation represents a greedy step: it selects the best valid action a that moves s; one step closer
to s;.
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Figure 4: (A)(B) Reconstruction FID and prediction FID for GCQ and VQ+UNet across different
model sizes. (C) Prediction FID of GCQ varies with changes in the initialization length. (D)
Prediction FID of GCQ (#Para:112M), VQ+UNet (96M) and VQ+Transformer (121M) changes as
the prediction length increases. (E) Predictions on GSV dataset. The first patch in each row represents
the trajectory drawn by the action. The first three rows correspond to movement actions, while the
last two rows correspond to rotation actions. In practice, different actions are encoded within a single
GCQ, enabling their use. For visualization convenience, they are plotted separately here. Rows
1, 2, and 4 show GCQ predictions with different initialization lengths (orange frames), predicting
subsequent observations (blue frames). Rows 3 and 5 show VQ+UNet predictions under the same
conditions. As the prediction length increases, the images become blurry.

S Experiment

As a spatiotemporal compression model, GCQ is first evaluated in ablation studies to demonstrate its
ability to compress and reconstruct observations. We then show that GCQ, when used as a world
model, supports long-horizon prediction, goal-directed planning, and inverse modeling. Compared to
traditional two-stage models, GCQ exhibits superior performance in long-range prediction tasks.

Datasets. We evaluate GCQ on four datasets, all of which contain image-based observations. The
2DMaze [47] dataset is a virtual environment where actions correspond to the agent’s movements.
Each observation contains a full view of the maze, providing complete information. The Google
Street View (GSV) dataset represents real-world environments with partial observations; the actions
include both translational movements and rotational head turns in two directions. In the MPI3D [48]]
and 3DShapes [49] datasets, actions are defined as abstract feature-level changes.

Baselines. We compare GCQ with traditional two-stage world models. VQ-VAE is used in the first
stage for spatial compression. The codebook size in GCQ and VQ-VAE is kept the same for a fair
comparison. For modeling temporal relationships, we use a UNet that predicts the next latent state
s¢+1 based on the current latent state s; and action a;. We refer to this baseline as "VQ+UNet.” For
action embedding in the UNet, we follow the approach from LAPO [7]. To further model temporal
dependencies, we also adopt a Transformer-based architecture following TransDreamer [29]. We
refer to this baseline as *VQ+Transformer.’

Evaluation Metrics. To evaluate the quality of the model-generated observations, we report peak
signal-to-noise ratio (PSNR) for pixel-level reconstruction fidelity, and use the Fréchet Inception
Distance (FID) [50] to assess the quality of generated images.

Ablations We first conducted ablation experiments on the GSV dataset. Table [I] presents the
performance of three different encoder-decoder network building blocks. It can be observed that
the ViT and Hybrid models achieve better performance with fewer parameters. However, during the



experiments, we found that the Hybrid model was less stable in training and converged more slowly
than ViT. Therefore, unless otherwise specified, all subsequent experiments utilized the ViT-structured
network. The GCQ exhibits scalability with model size similar to VQ+UNet, both in reconstruction
and prediction. (Fig.[dA,B).

Model type Image size #Para. FIDr] FIDp] PSNRrt PSNRpt
Resnet 3 x 80 x 40 330M  48.05  48.57 25.70 25.59

3 x 80 x 40 64M 2129 2231 29.07 28.54
3 x 128 x 128 140M  41.55 4191 26.31 25.59

3 x 80 x 40 90M 1327 13.92 31.32 31.34
3x 128 x 128 112M 4256 4341 27.82 27.77

Hybrid

ViT

Table 1: Model comparisons on the Street View dataset. FIDr, FIDp, PSNRr, and PSNRp represent
the FID and PSNR scores for reconstruction and prediction, respectively. | and 1 indicate that lower
or higher values are better. The ResNet model was not trained on higher resolution images because
its architecture includes a fully connected layer after the convolutional backbone, resulting in an
excessively large number of parameters.

We also make the bump-like codes in the codebook learnable by using the following loss function:

L - Holzn - 61:n||2 + B ||51:n - Sg [élzn]HQ + Y ||Sg [Slzn} - <§1:n||2 (12)

However, our experiments show that making the codes learnable actually degrades performance.
We attribute this to the fact that, unlike the relatively simple codes in VQ, our codes exhibit more
complex dynamic relationships. Allowing the codes themselves to be trained may therefore reduce
training stability.

Model FIDp, PSNRpt

GCQ (fixed) 4341 2777
GCQ (learnable)  47.76  24.48

Table 2: Effect of learnable vs. fixed codes in GCQ.

Long-horizon prediction. After being initialized with an observation-action sequence, GCQ can
perform actions directly in the latent space to predict future observations (Fig. BJA). Notably, its
prediction performance remains stable regardless of the length of the initialization sequence (Fig. [C;
Fig. BE, rows 1-2). As shown in Fig. @D, the performance of the VQ method degrades as the
prediction horizon increases, whereas GCQ maintains robust predictive quality due to its stable latent
structure (Fig. BE, rows 2-3). This is a key advantage of GCQ: by constructing a consistent cognitive
map, it effectively addresses the instability issues commonly seen in current world models [S1]—such
as inaccurate predictions after completing a full rotation in the environment (Fig. BE, rows 4-5). GCQ
also demonstrates strong zero-shot prediction capabilities on relatively simple datasets. As shown in
Fig. 5] rows 1-2, the model produces reasonable predictions in environments it has never encountered
during training. Furthermore, by treating abstract feature transitions as a form of action, GCQ can
also be used to predict observation changes driven by abstract-level variations. These predictions
likewise exhibit long-range stability (Fig.[5] rows 3—4).

Goal-directed planning. Given a goal and an initial position, the GCQ can utilize the distance in the
cognitive map to generate the most desirable action for the current step. After executing the action, a
new observation is obtained, and this process is iterated, continuously reducing the distance to the
goal in the cognitive map until the goal is reached (Fig. BB, Fig. [6|rows, 1-2). The computation of
the action at each step is of constant complexity.

Inverse model. Given a sequence of observations, the GCQ can first map them onto the cognitive
map and then use goal-directed planning to determine the action or sequence of actions between
adjacent observations, thus implementing the inverse model. The corresponding action sequence can
be applied to the latent representation of another observation, and using the prediction capability, the
generated sequence under this set of actions can be obtained (Fig. [6]rows, 3—4).
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Figure 5: With the same setup as Fig.EE, Rows 1-2: Prediction on the 2DMaze dataset. Rows 3—4:
Prediction on the 3DShapes dataset.
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Figure 6: Rows 1-2: Goal-directed planning. The first patch shows the trajectory after planning, with
orange indicating the starting point, red indicating the endpoint, and blue representing the planned
route. The subsequent red-framed patches represent the endpoint, orange-framed patches represent
the starting point, and blue-framed patches represent intermediate observations encountered during
the process. Rows 3—4: Inverse modeling. The top row displays the given observation sequence. The
bottom row starts with the first patch showing the action trajectory inferred from the observation
sequence, with orange indicating the given initial observation, followed by the sequence generated
based on the action trajectory.

6 Discussion

In this work, we introduced GCQ, a brain-inspired framework for compressing observation—action
sequences into discrete, structured representations. GCQ uses continuous attractor dynamics to
generate grid-like codewords, and selects them in an action-conditioned manner to capture both
spatial and temporal dependencies. This spatiotemporal quantization process produces compact
latent representations that serve as cognitive maps, enabling long-horizon prediction, goal-directed
planning, and inverse modeling. Our experiments demonstrate that GCQ supports generalization
across tasks while offering interpretability through its structured latent space.

Insights for Neuroscience. Beyond its practical performance, GCQ also offers a new computational
hypothesis for the emergence of GCs in the brain. Traditionally, the formation of neurons with
structured tuning properties was approached through handcrafted models [52], which provided
only limited explanatory power. In contrast, the machine learning paradigm offers a data-driven
framework: artificial neural networks are optimized to perform cognitive tasks, and their internal
representations are analyzed to reveal emergent coding principles. Following this approach, prior
studies have shown that GCs can arise when networks are trained to perform path integration under
biologically constraints [53} 54} 53]. Subsequent work has emphasized the importance of predictive
rather than reconstructive objectives [56] and extended the analysis to more general frameworks such
as world models and predictive learning [57]. Efforts to induce disentangled representations through
architectural or loss function constraints have further refined these insights [38,[59]]. However, the
robustness of grid-like pattern emergence remains debated [60], with some studies [61] suggesting
that specific architectural features (e.g., one-hot inputs) are necessary.



Recent developmental findings add a new dimension to this discussion. Experiments show that
toroidal activity patterns emerge in the medial entorhinal cortex even before sensory experience [62].
Intriguingly, such toroidal structures can be naturally modeled by bump attractors in CANNs. This
suggests that the brain may possess preconfigured low-dimensional structures capable of bump
activity, even prior to learning. Consistent with this, recent work has argued that GCs likely emerge
from internal CANN mechanisms rather than from purely feedforward architectures [63]].

This leads us to a novel hypothesis inspired by GCQ: GCs may arise not from optimizing networks,
but from learning to map sensory experience onto a set of preexisting bump-based activity patterns.
In GCQ, the codebook is defined by CANN-generated bumps before learning begins. The learning
process then consists of associating observation—action sequences with combinations of these fixed
codewords. Similarly, we speculate that the brain may use a fixed set of toroidal patterns—produced
by CANNs—as a biological codebook. Through experience, the brain learns to map external sensory
inputs onto these internal structures, endowing them with meaning and interpretability, allowing for
the decoding of grid-like patterns. This perspective suggests a unified model of how the brain may
simultaneously achieve compression and semantic organization of sensory information.

Static Setting. We also evaluated GCQ in a static setting, where the sequence length is 1. In this case,
we compared GCQ with VQ-VAE on ImageNet [64]], finding that GCQ suffered minimal performance
degradation. This suggests that the use of a fixed codebook does not significantly harm performance
on static tasks. For further details, refer to Appendix [A]

Scalability of Action. Our current work utilizes 2D attractors, where each has 5 potential transitions
(four shifts and one stationary). With such m CANNSs, the model can represent 5”* distinct actions. If
we use P-dimensional attractors, the number of states per CANN will become 2P + 1, yielding a total
action space of (2P + 1)5. Therefore, GCQ can be scaled to higher-dimensional action spaces by
adjusting both m and P. For the experiments in this paper, which involve relatively low-dimensional
actions, 2D attractors are sufficient.

Future Work. A promising direction for advancing GCQ lies in enabling the encoder and decoder
to process entire sequences holistically, rather than treating each sequence element independently.
Incorporating ViTs with spatial-temporal attention could serve as an effective approach toward
this goal. Moreover, scaling GCQ to larger and more diverse datasets would facilitate a deeper
investigation into its generalization capabilities and robustness across a broader range of tasks and
domains.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction accurately reflect the paper’s contributions and
scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 6l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Sectior[3

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Section[5]and the code in supplementary material.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We have included the code for reproducing the main results in supplementary
material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section[3

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We used fid and PSNR to evaluate our work.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Section [Bl
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our work conform with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the related paper.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: See the documentation in supplementary material.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: LLM is used only for writing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Static Setting
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Figure 7: To evaluate the performance of GCQ in a static setting, we conducted experiments on the
CIFAR-10 and ImageNet datasets. Figures (A) and (B) show that, for both GCQ and VQ, the FIDr
decreases as the codebook size K increases. At 20 training epochs, GCQ outperforms VQ, whereas at
50 epochs VQ achieves better results. Figure (C) compares the reconstructions produced by GCQ
and VQ on ImageNet: the first row shows the original images, the second row the reconstructions
obtained with GCQ, and the third row those obtained with VQ.

B Experiment Details

Here are the hyperparameters used in the experiment. All programs run on an NVIDIA A100-SXM4-
80GB. The experiments reported in this paper, including the ViT, ResNet, and Hybrid networks,
required 8-12 hours of training each. For ViT and hybrid architectures, we trained for 40 epochs with
a learning rate of le-4; for the ResNet network, we trained for 100 epochs with a learning rate of
3e-4. All training runs used the Adam optimizer.

C Python Implementation

Our Python implementation of GCQ is fully vectorized, relying exclusively on matrix operations
without any for loops. This design makes it highly amenable to parallelization.

def forward(self, latents: Tensor, label: Tensor) -> Tuple[Tensor,
Tensor]:
nnnn
Vector quantization for sequence data with parallel processing
support for batch dimensions

Args:

latents: Tensor of shape [B x S x D x H x W]

label: Tensor of shape [B x S x 4] representing the change
from current frame to next frame

Returns:

quantized: Quantized tensor of shape [B x S x D x H x W]
vq_loss: Vector quantization loss
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B, S, D, H, W = latents.shape
N =H=xW// 4
device = latents.device

# Reshape to processable form

latents = latents.view(B, S, D, 4, N).permute(O0, 3, 4, 1, 2).
contiguous() # [B, 4, N, S, DI

factor_latents = latents.view(B, 4, N, S * D)

# Construct expanded embeddings without loops
# label: [B, S, 4] -> rearrange to [B, 4, S]

shift_amounts = (label.permute(0, 2, 1).long() * self.step) # [B,
4, sl

# Construct indices for rolling: for each shift_amount against
self .embedding_weight

# First generate indices [K], then calculate new indices via
broadcasting: new_idx = (arange(K) - shift) % K

k_idx = torch.arange(self.K, device=device).view(1l, 1, 1, self.K)
# [1,1,1,K]

# After expanding shift_amounts: [B,4,S,1]

rolled_indices = (k_idx - shift_amounts.unsqueeze(-1)) 7 self.K #

(B, 4, S, K]
# Using rolled_indices to extract new embeddings from
embedding_weight , resulting shape [B,4,S,K,D]

expanded_embed = self.embedding_weight[rolled_indices] # [B,4,S,K

’D]

# Adjust dimensions: exchange [K] and [S] positions before merging
S and D

expanded_embed = expanded_embed.permute(0, 1, 3, 2, 4).contiguous

O # [B,4,K,s,D]
# Finally reshape to [B, 4, K, Sx*D]
expanded_embedding = expanded_embed.view(B, 4, self.K, S * D)

# Calculate nearest neighbor indices

# factor_latents: [B,4,N,S*D]; expanded_embedding: [B,4,K,S*D]
A = factor_latents # [B,4,N,S%*D]

B_expand = expanded_embedding # [B,4,K,S*D]

A_sq = (A *x 2).sum(dim=-1, keepdim=True) # [B,4,N,1]

B_sq = (B_expand ** 2).sum(dim=-1).unsqueeze(-2) # [B,4,1,K]
cross = 2 * torch.matmul (A, B_expand.transpose(-1, -2)) # [B,4
K]

dist = A_sq + B_sq - cross # [B,4,N,K]

encoding_inds = dist.argmin(dim=-1) # [B,4,N]

# Sample vectors from expanded_embedding according to indices
using torch.gather

# expanded_embedding shape [B,4,K,S*D], sampling on dim=2
encoding_inds_exp = encoding_inds.unsqueeze(-1).expand (-1, -1,
S *x D) # [B,4,N,S*D]

embedding_results = torch.gather (expanded_embedding, 2,
encoding_inds_exp) # [B,4,N,Sx*D]

commitment_loss = F.mse_loss (embedding_results.detach(),
factor_latents)
embedding_results = factor_latents + (embedding_results -

factor_latents) .detach() # [B,4,N,S*D]

embedding_results = embedding_results.view(B, 4, N, S, D)
embedding_results = embedding_results.permute(0, 3, 4, 1, 2).
contiguous () .view(B, S, D, H, W)

return embedding_results, commitment_loss

:Ns

-1,
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