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Abstract 

Large language models (LLMs) are rapidly 

finding their way into automated short-an-

swer grading (ASAG) systems, yet we still 

lack a realistic benchmark for evaluating 

their reliability on Traditional Chinese K-

12 reading-comprehension tasks. Existing 

ASAG benchmarks either emphasize ency-

clopaedic or STEM knowledge, are multi-

ple-choice rather than open-response, or 

target Simplified-Chinese or English, leav-

ing traditional Chinese ASAG task under-

explored. We address this gap with PIRLS-

HK, a dataset distilled from 15 years of 

Hong Kong in International Reading Liter-

acy Study (PIRLS) materials. The first re-

lease contains 2,352 expert-graded ques-

tion–answer pairs (25 questions, 4 passages) 

written in Traditional Chinese by 292 

fourth-grade students, each accompanied 

by the official marking scheme. Using 

PIRLS-HK we benchmark 11 LLMs under 

zero-shot and few-shot settings. Perfor-

mance is measured with Quadratic 

Weighted Kappa (QWK), Tolerance-Ad-

justed Accuracy (TAA) and Relative Merit 

Consensus (RMC). Results show Few-shot 

mid-sized models (e.g. qwq-32b, BM: 

0.674) rival or surpass much larger variants. 

Full-size models show only marginal gains 

across prompting modes. Agreement and 

accuracy with human graders remain mod-

est: the best QWK is 0.383 (deepseek-V3 

few-shot) and the highest TAA (τ = 0) is 

71.71% (deepseek-r1 zero-shot). These 

findings indicate that LLMs that excel on 

mainstream NLP leaderboards may still 

lack consistency and fairness when con-

fronted with authentic, culturally embedded 

assessment data. PIRLS-HK provides the 

first open benchmark for advancing ASAG 

research in Traditional Chinese; dataset and 

code will be released under CC-BY-NC 4.0. 

1 Introduction 

Grading short answer reading comprehension 

questions is a time-consuming and subjective task 

for teachers, requiring careful judgment of factual 

accuracy and reasoning (Sadler, 2009). Study show 

they often devolve into fact recall, with grading re-

liability remaining a challenge (Palmer and Devitt, 

2007). Could LLMs offer a solution? Recent re-

search demonstrates that LLMs like ChatGPT can 

grade university exams with moderate agreement 

to human scores, though inconsistencies and over-

cautious scoring persist (Flodén, 2025). Advances 

in AI-driven grading promise efficiency and con-

sistency, but ethical concerns and domain-specific 

challenges remain (Gnanaprakasam and Lour-

dusamy, 2024). 

For Hong Kong’s K12 teachers, automating Tra-

ditional Chinese short-answer grading is particu-

larly complex due to linguistic and cultural nuances 

(Li, 2017). While LLMs excel in multilingual tasks 

(Hagos et al., 2024), their application to culturally 

sensitive assessments is underexplored. Our study 

bridges this gap by benchmarking 11 LLMs against 

human graders using the PIRLS-HK dataset, evalu-

ating performance across model sizes and prompt 

designs. By addressing these challenges, we aim to 

determine whether LLMs can become reliable, fair, 

and scalable grading assistants for educators (Yan 

et al., 2024; Xie et al., 2024). 

2 Related Work 

2.1 Large Language Models 

Transformer architecture revolutionized NLP with 

self-attention, enabling efficient parallelization & 

superior translation performance (Vaswani et al., 

2017). Building on this, BERT introduced bidirec-

tional pre-training, achieving state-of-the-art re-

sults across tasks like GLUE (80.5%) with minimal 
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fine-tuning (Devlin et al., 2019). GPT-3 scaled this 

further, demonstrating strong few-shot learning, ri-

valing fine-tuned models (Brown et al., 2020). 

These advancements underpin LLMs’ potential for 

automated grading, though their application to cul-

turally sensitive tasks like Traditional Chinese as-

sessments remains underexplored. 

2.2 Automated Short Answer Grading 

ASAG has evolved from early statistical ap-

proaches to advanced transformer-based methods. 

Early systems relied on feature engineering, such 

as Bag-of-Words and TF-IDF, achieving moderate 

performance (F1-score: 0.72) but struggling with 

semantic depth (Ripmiatin et al., 2023). Text-min-

ing frameworks incorporated lexical diversity and 

structural features, aiding teachers but requiring 

broader validation (Vairinhos et al., 2022). Later, 

models like CBOW-LSTM improved grading by 

capturing word sequences, though they demanded 

large, labelled datasets (Zhang et al., 2022). The 

shift to transformer-based models, such as BERT, 

marked a breakthrough. Fine-tuning BERT with 

domain-specific textbooks or QA pairs boosted 

performance but limited generalizability (Sung et 

al., 2019). Techniques like Semantic Feature-wise 

Transformation Relation Networks enhanced grad-

ing by modelling question-reference-answer triples, 

achieving up to 11% improvement on benchmarks 

(Li, 2021). Back-translation further refined BERT-

based systems, outperforming state-of-the-art mod-

els (Lun et al., 2020). Hybrid architectures, com-

bining BERT with Bi-LSTM and Capsule networks, 

achieved near-human correlations (Pearson’s r: 

0.897) (Zhu et al., 2022). 

Recent LLMs, such as GPT-4, demonstrate 

near-human grading accuracy (QWK: 0.91) on 

low-resource datasets like ROARS, even with min-

imal prompt engineering (Henkel et al., 2024). 

Similarly, GPT-4 outperformed baselines in Finn-

ish undergraduate grading, though longer answers 

posed challenges (Chang and Ginter, 2024). Multi-

lingual benchmarks like SciEx show LLMs surpas-

sing student performance, with LLM-as-a-judge 

achieving a 0.948 correlation (Dinh et al., 2024). 

Zero-shot analysis of educational feedback further 

highlights LLMs’ versatility (Parker et al., 2024). 

However, ASAG systems face vulnerabilities. 

Adversarial inputs can trick models into accepting 

60% of incorrect answers, necessitating robust 

countermeasures (Ding et al, 2020). Systems like 

AutoSAS and ESAS improved grading by 8–7.8% 

but relied on general datasets (Kumar et al., 2019; 

Goenka et al., 2020). While BERT outperforms 

Word2Vec, non-embedding features (e.g., lexical 

overlap) remain prevalent (Putnikovic and Jo-

vanovic, 2023). Interpretability is another concern; 

methods like InputXGradient are needed to align 

model attention with human judgment (Poulton 

and Eliens, 2021; Zeng et al., 2022). Despite pro-

gress, ASAG systems dominate STEM fields but 

lack support for complex reasoning (Gao et al., 

2024). Template-based systems offer precise feed-

back but require significant setup (Sychev et al., 

2020). Frameworks like AVA, leveraging peer at-

tention, show promise for scalable evaluation (F1: 

74.7%) (Vu and Moschitti, 2020). 

2.3 Related Datasets & Benchmarks 

ASAG systems rely on diverse datasets, from early 

benchmarks like SciEntsBank and Beetle 

(Dzikovska et al., 2017) to modern challenges like 

SQuAD 2.0's unanswerable questions (Rajpurkar et 

al., 2018). Recent surveys highlight the evolution 

from feature-based methods to transformer models 

across these datasets (Haller et al., 2022). For low-

resource languages, ScAA provides Hindi/Marathi 

answers (Agarwal et al., 2020), while CESA and 

ASAP-ZH address Chinese segmentation (Ding et 

al., 2020). Reading comprehension datasets like 

RACE (Lai et al., 2017) and RACE-C (Liang et al., 

2019) test reasoning skills, and vision-language 

benchmarks like VisTW evaluate Traditional Chi-

nese in Taiwanese contexts (Tam et al., 2024). 

Knowledge-focused benchmarks include 

TMMLU+ (Tam et al., 2024) for Traditional Chi-

nese and CMMLU for Mandarin (Li et al., 2023), 

while the multitask suite (Hendrycks et al., 2020) 

spans 57 subjects.  

2.4 Gaps in Current Research 

Existing ASAG datasets largely originate from 

translated English materials, limiting their cultural 

and linguistic authenticity for Chinese assessments, 

motivating our PIRLS-HK dataset. Moreover, vul-

nerabilities to adversarial inputs remain un-

addressed. Addressing these issues is beyond the 

scope of our work, leaving important challenges for 

future research.  

3 Research Objectives & Questions  

Grading short-answer questions in Traditional Chi-

nese reading comprehension is time-consuming for 
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teachers. Our research aims to simplify this by us-

ing LLMs to grade answers automatically. We’ll in-

troduce a new dataset, PIRLS-HK, with answers 

from Hong Kong students in the 2006 PIRLS study. 

We want to see how well different LLMs grade 

compared to human experts do, making grading 

faster and fairer. 

The research objective for the proposed study is 

to create and use PIRLS-HK to test how well LLMs 

can grade Traditional Chinese reading comprehen-

sion answers, and there are 3 research questions for 

the proposed study: 

RQ1) How well do LLMs grade short answers 

in PIRLS-HK? What differences do we see between 

them? 

RQ2) Do small-sized LLMs grade as well as 

medium-sized or large-sized ones? Can smaller 

models work well enough for grading? 

RQ3) How does the design of prompts (e.g., 

zero-shot vs. few-shot) impact the grading accu-

racy of LLMs on PIRLS-HK for Traditional Chi-

nese reading comprehension? 

4 PIRLS-HK Dataset 

4.1 About PIRLS 

PIRLS 1  conducted every five years since 2001, 

evaluates fourth-grade reading comprehension 

globally, assessing literary and informational text 

skills alongside contextual data from students, 

teachers, and schools. 

4.2 Dataset Description 

PIRLS-HK contains 1,282 scanned Traditional Chi-

nese answer booklets (2006–2016). The 2006 sub-

set provides 2,352 expert-graded question–answer 

pairs from 292 students across 25 questions, with 4 

passages that include marking schemes for few-

shot prompt testing. All sensitive personal data 

have been removed; instead, a unique StudentID is 

used to anonymize the data. See Appendix A for de-

tails. Annotators processed and verified OCR out-

puts, ensuring both data reliability and privacy.  

5 Methodology 

5.1 LLMs Selection & Classification 

We selected 11 LLMs from LiveBench based on 

their recent popularity and performance (i.e., 

 
1 https://www.iea.nl/studies/iea/pirls 

global average, reasoning average, language aver-

age, etc.), grouped by parameter size. Hosted as per 

Table 1, the selected LLMs graded PIRLS-HK an-

swers to compare accuracy against human experts. 

Refer to Appendix B for the creator of the artifacts. 

 

5.2 Prompt Design 

Two prompt types were tested: zero-shot (basic in-

structions) and few-shot (including marking 

scheme examples). See Appendix C for details. 

5.3 Evaluation Metrics 

To compare how well LLMs grade short answers 

against human expert in PIRLS-HK, we use 3 met-

rics, inspired by a recent study in Finland (Chang 

and Ginter, 2024): 

1) Quadratic Weighted Kappa (QWK) is a 

standard ASAG metric (Bonthu et al., 2021), which 

ranges from -1 to 1, this measures agreement be-

tween LLM and human scores (1 means perfect 

agreement), giving bigger penalties for larger disa-

greements. The weight matrix 𝑊 is defined as  

 𝑊𝑥,𝑦 = (
𝑥−𝑦

𝑘−1
)

2

 (1) 

where 𝑥 and 𝑦 are the score graded by human and 

LLM respectively, 𝑘 is number of score categories. 

QWK can then be calculated by: 

 𝑄𝑊𝐾 = 1 −
∑ 𝑊𝑥,𝑦𝑂𝑥,𝑦𝑥,𝑦

∑ 𝑊𝑥,𝑦𝐸𝑥,𝑦𝑥,𝑦
 (2) 

where 𝑂 is a matrix contains the scores observed. 

𝑂𝑥,𝑦 corresponds to the adoption records that have 

a rating of 𝑥 and predicted a rating of 𝑦.  

2) Tolerance-Adjusted Accuracy (TAA) 

checks how often LLM scores are close to human 

scores, within a small tolerance 𝜏 . TAA ranges 

from 0 to 100, where 100 means all scores are 

Model GPU Grp Host 

gpt-4o-mini -- A 

 

Microsoft Azure 

gpt-4o -- 

deepseek-r1:671b -- 

deepseek-V3:671b -- 

deepseek-r1:70b ~40hr B ollama hosted by:  

- Mac Mini (M4 

PRO/64GB RAM); 

- NVIDIA 

RTX3050 

(quantized to 4-bit 

precision) 

llama3.3:70b ~10hr 

qwen2.5:72b ~10hr 

qwq:32b ~38hr 

glm4:9b ~4hr C 

deepseek-r1:8b ~6hr 

qwen2.5:7b ~2hr 

Table 1:  LLMs selected for the proposed study. 
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within tolerance. It’s a simple way to see how pre-

cise LLMs are. First, we need to define the correct-

ness of a prediction 𝑐𝑖 as   

 𝑐𝑖 = {
1 if |𝑥𝑖 − 𝑦𝑖| ≤ 𝜏
0 otherwise

 (3) 

TAA is defined as 𝐶, while {𝑐1⋯𝑛} ∈ 𝐶: 

 𝑇𝐴𝐴 = 𝐶  =
1

𝑛
∑ 𝑐𝑖

𝑛
𝑖=1 × 100% (4) 

where 𝑛 is the total number of answers.  

3) Relative Merit Consensus (RMC) looks at 

whether LLMs rank answers in the same order as 

humans, which is the % of answer pairs where 

LLM scores match human score rankings. It en-

sures LLMs respect the relative quality of answers, 

which is key for fair grading. For a set of answers 

{𝑎1⋯𝑛} ∈ 𝐴  to be evaluated, {𝑥1⋯𝑛} ∈ 𝑋 , and 

{𝑦1⋯𝑛} ∈ 𝑌 are graded score by human and LLM 

respectively. For every pair of answers (𝑎𝑖 , 𝑎𝑗) 

where 𝑖 ≠ 𝑗, there must be at least two distinct val-

ues within 𝑋 and 𝑌. The correctness of the pair of 

scores 𝑠𝑖,𝑗 is defined as: 

 𝑠𝑖,𝑗 = {
1 (𝑥𝑖 ≥ 𝑥𝑗  and 𝑦𝑖 ≥ 𝑦𝑗)

1 𝑥𝑖 < 𝑥𝑗  and 𝑦𝑖 < 𝑦𝑗

0 otherwise

 (5) 

RMC is defined as the fraction of correctly scored 

pairs out of all possible pairs:  

 𝑅𝑀𝐶 =
∑ ∑ 𝑠𝑖,𝑗

𝑛
𝑗=𝑖+1

𝑛
𝑖=1

(
𝑛
2

)
=

2 ∑ ∑ 𝑠𝑖,𝑗
𝑛
𝑗=𝑖+1

𝑛
𝑖=1

𝑛(𝑛−1)
 (6) 

6 Experiments & Results 

6.1 Experimental Setup 

We processed 658 scanned answer booklets from 

the 2006 PIRLS, converting them into an excel file 

with student responses and human-assigned grades. 

4 passages with marking schemes were selected, 

and their 2,352 valid question-answer pairs were 

saved as a JSON file. We tested 11 LLMs, grouped 

by size as suggested by Table 1, using python to run 

zero-shot and few-shot prompts. Each LLM’s out-

put was saved as a JSON file. They were evaluated 

via python using the 3 proposed metrics to compare 

LLMs performance against human. 

6.2 Quantitative Results 

1) QWK: Fig. 2, 3, 4 show how different LLMs 

grade students’ answers are compared to human 

graders using QWK (-1 to 1). Higher QWK means 

better agreement with humans. Solid lines mean 

the model used a marking scheme (/w), dashed 

lines mean it didn’t (w/o). A line that’s higher and 

stretches further right means the model grades 

more like a human. At QWK = 0.8: 

Group A: deepseek_v3(w/) is the best (20.5%), 

deepseek_r1(w/) is the worst (14.5%). 

 
Group B: qwq_32b(w/) is the best (19%), 

deepseek_r1_70b(w/o) is the worst (9.5%). 

 

Fig. 2: % of Questions ≥ QWK (Group A). 

 

Fig. 1: The overview of the experimental setup. 



5 

 
 

  
Group C: glm4_9b(w/) is the best (11%), 

qwen2.5_7b(w/o) is the worst (3%). 

 

 
Fig. 5 used a combination of boxplots, violin 

plots, and scatter points to show how different 

groups (w/ & w/o a marking scheme) grade stu-

dents’ answers compared to human using QWK. 

A(w/ & w/o) have similar median (0.333 & 0.300), 

but A(w/) are slightly more consistent. The median 

of B(w/) is 0.298, but B(w/o) varies more, indicat-

ing less consistency with human grader. C(w/) 

(0.067) performs better when compared with 

C(w/o) (0.030), and more consistency. Overall, us-

ing a marking scheme leads to better and more 

consistent scores, especially for Group B. 

 
The bar chart in Fig. 6 shows the mean QWK for 

each LLM (w/ & w/o). For nearly all models, w/ 

is greater than w/o, meaning with marking 

scheme improves QWK. deepseek_V3 scores 

highest (w/:0.383 & w/o:0.362). deepseek_r1_8b 

scores lowest (w/:0.099 & w/o:0.093). The mark-

ing scheme helps a little across all models, but it 

makes a big difference in Group B (qwq_32b: 

0.215 to 0.363 (+68.9%); deepseek_r1_70b: 0.169 

to 0.259 (+53.2%)). 

2) TAA: Fig. 7, 8, 9 evaluates how different 

LLMs score students’ answers compared to TAA (0 

to 100), with higher value means better perfor-

mance. A line that stays higher and stretches fur-

ther right shows more questions scored accu-

rately. At TAA(τ=0) = 80: 

Group A: deepseek_r1(w/o) is the best (44%), 

gpt_4o (w/o) is the worst (21.5%). 

  

 

Fig. 3: % of Questions ≥ QWK (Group B). 

 

Fig. 4: % of Questions ≥ QWK (Group C). 

 

Fig. 5: QWK distribution by group. 

 

Fig. 6: Mean QWK: w/ vs w/o marking scheme. 

 

Fig. 7: % of Questions ≥ TAA(τ=0) (Group A). 
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Group B: qwq_32b(w/) is the best (28%), 

deepseek_r1_70b (w/o) is the worst (9.7%). 

 
Group C: glm4_9b(w/) is the best with 24%, 

deepseek_r1_8b (w/o) is the worst with 5%. 

 

 
Fig. 10 illustrates the distribution of TAA (τ=0) 

across different groups (w/ & w/o a marking 

scheme). A(w/ & w/o) exhibits median 71.4 & 66.7, 

though A(w/) shows slightly greater consistency 

with a narrower interquartile range, while A(w/o) 

displays more variability. Group B reveals a stark 

contrast: B(w/) maintains a median TAA of 66.7, 

but B(w/o) is far less consistent, with scores rang-

ing widely, indicating significant divergence. 

Group C demonstrates the most pronounced im-

provement with a marking scheme, as C(w/) 

achieves a higher median TAA of 57.1 and greater 

consistency, while C(w/o) drops to a median of 

32.9 with more spread. Overall, the use of a 

marking scheme consistently enhances TAA 

performance and reduces variability across all 

groups, particularly for Group C. 

 
The bar chart in Fig. 11 presents the mean TAA 

(τ=0) for individual LLM (w/ & w/o). Across 

nearly all models, w/ surpasses w/o, indicating that 

the marking scheme consistently enhances TAA. 

deepseek_V3(w/o) model achieves the highest 

score at 71.71, outperforming its w/ counterpart at 

69.49. In contrast, qwen2.5_7b records the lowest 

scores (w/:46.16 & w/o:38.8). The marking scheme 

provides modest improvement for most models, 

but its impact is particularly notable in certain cases 

(glm4_9b: 47.5 to 58.8 (+32%); deepseek_r1_8b: 

44.6 to 55.4 (+24.1%). These results highlight the 

marking scheme's overall benefit, especially for 

medium-sized models in Group C. 

3) RMC: Fig. 12, 13, 14 illustrate how well dif-

ferent LLMs maintain the relative ranking of stu-

dents’ answers compared to human graders using 

the RMC (0 to 1), with higher values indicating bet-

ter alignment with human rankings. A line that re-

mains higher and stretches further right shows 

the model consistently ranks answers like a hu-

man across more questions. At RMC=0.6: 

Group A: deepseek_V3(w/) is the best (68%), 

gpt_4o_mini (w/o) is the worst (37%). 

 

Fig. 8: % of Questions ≥ TAA(τ=0) (Group B). 

 

Fig. 9: % of Questions ≥ TAA(τ=0) (Group C). 

 

Fig. 10: TAA (τ=0) distribution by group. 

 

Fig. 11: Mean TAA (τ=0): w/ vs w/o. 
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Group B: llama3.3_70b(w/) is the best (56%), 

deepseek_r1_70b (w/o) is the worst (20%).

 
Group C: qwen2.5_7b(w/o) is the best (25%), 

deepseek_r1_8b (w/o) is the worst (6%).

 
Fig. 15 illustrates the distribution of RMC across 

different groups (w/ & w/o a marking scheme). 

A(w/ & w/o) exhibit median at 0.611 & 0.600, 

though A(w/) shows slightly greater consistency 

with a narrower interquartile range, while A(w/) 

has more variability. Group B demonstrates the 

most significant improvement with a marking 

scheme, as B(w/) achieves a higher median (0.602) 

than B(w/o) (0.505) with more spread. C(w/) 

achieves a higher median of 0.492, while C(w/o) 

drops to a median of 0.449. Overall, the use of a 

marking scheme consistently enhances RMC 

and reduces variability across all groups, partic-

ularly for Group B. 

 
The bar chart in Fig. 16 illustrates the mean 

RMC for individual LLMs (w/ & w/o). For most 

models, w/ is slightly greater than w/o, indicating 

that the marking scheme generally improves RMC. 

The deepseek_V3 achieves the highest score 

(w/:0.674 & w/o:0.662). In turn, deepseek_r1_8b 

records the lowest scores (w/:0.415 & w/o:0.390). 

The marking scheme’s impact is most pronounced 

in models like qwq_32b (0.559 to 0.655 (+17.1%)), 

and deepseek_r1_70b (0.507 to 0.589 (+16.2%)). 

These results underscore the marking scheme’s 

consistent, though sometimes modest, benefit 

across models, particularly for Group B. 

 

 

Fig. 12: % of Questions ≥ RMC (Group A). 

 

Fig. 13: % Questions ≥ RMC (Group B). 

 

Fig. 14: % Questions ≥ RMC (Group C). 

 

Fig. 15: RMC distribution by group. 

 

Fig. 16: Mean RMC: w/ vs w/o marking scheme. 
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7 PIRLS-HK Benchmark 

The PIRLS-HK benchmark with or without mark-

ing scheme is defined as follows:  

 (
𝑄𝑊𝐾̅̅ ̅̅ ̅̅ ̅＋1

2
+

𝑇𝐴𝐴̅̅ ̅̅ ̅̅

100
+ 𝑅𝑀𝐶̅̅ ̅̅ ̅̅ ) ÷ 3 (7) 

The overall benchmark is defined as follows: 

 𝐵𝑀 = (𝐵𝑀𝑤/ + 𝐵𝑀𝑤/𝑜) ÷ 2 (8) 

 
Refer to Appendix D for the benchmark details. 

8 Discussion 

Our study used the PIRLS-HK dataset to test how 

well LLMs grade Traditional Chinese reading com-

prehension answers compared to human experts. 

Results directly address our 3 research questions, 

offering clear insights into LLMs’ potential as 

grading tools for K12 teachers. 

RQ1: How well do LLMs grade short answers 

in PIRLS-HK? What differences do we see between 

them? 

The results show that LLMs can grade short an-

swers with varying success. deepseek_V3 per-

formed best (BM=0.6833). deepseek_r1_8b scored 

much lower (BM=0.4836). This gap highlights 

that even top-performing LLMs are not reliable, 

not all models are equally effective, likely due to 

differences in training data and model design. 

RQ2: Do small-sized LLMs grade as well as 

medium-sized or large-sized ones? Can smaller 

models work well enough for grading? 

Model size matters, but smaller models can still 

perform well. Medium-sized models like qwq_32b 

(BMw/=0.6742) outperformed some large models 

with a marking scheme, suggesting that efficiency 

doesn’t always require massive models. Small 

models like glm4_9b (BMw/= 0.5722) also showed 

promise, particularly in Group C, but struggled 

without a marking scheme (BMw/o=0.5049). This 

indicates that smaller models can be practical 

for grading if paired with good prompt design, 

making them a cost-effective option for schools. 

RQ3: How does the design of prompts (e.g., 

zero-shot vs. few-shot) impact the grading accu-

racy of LLMs on PIRLS-HK? 

Prompt design significantly boosts LLM perfor-

mance. Across all groups, few-shot prompts with 

marking schemes improved scores compared to 

zero-shot prompts. For example, qwq_32b jumped 

7.72% (from 0.5841 to 0.6742), and qwen2.5_72b 

rose 7.22% (from 0.5745 to 0.6575). Figures 5, 10, 

and 15 show that few-shot prompts led to higher 

medians and less variability, especially for Group 

B. This suggests that providing examples in 

prompts helps LLMs better understand cul-

tural and linguistic nuances, leading to fairer 

and more accurate grading. 

Interestingly, deepseek_r1 performed better 

without a marking scheme than with one (0.6566 

vs. 0.6825). This may reflect an optimal chain-of-

thought (CoT) length, where zero-shot prompts al-

low natural reasoning without rubric constraints, 

avoiding error accumulation from overly long CoT 

processes (Wu et al., 2025). Few-shot prompts 

might enforce suboptimal CoT lengths, reducing 

accuracy for nuanced grading tasks. 

9 Conclusion & Future Work 

Our study demonstrated that LLMs cannot effec-

tively grade Traditional Chinese reading compre-

hension answers using the PIRLS-HK dataset. Top 

performers like deepseek_V3 with few-shot 

prompts barely matched human graders 

(QWK=0.383, TAA=71.71, RMC= 0.674). Me-

dium-sized models like qwq_32b and smaller ones 

like glm4_9b when guided by marking schemes 

can perform like large-sized models, offering cost-

effective solutions K12 teachers. Few-shot 

prompts significantly improved accuracy, high-

lighting the importance of prompt design. 

For future work, we plan to expand the PIRLS-

HK dataset to include more years and diverse ques-

tion types, enhancing its robustness. We will fine-

tune small- and medium-sized LLMs using this da-

taset to boost their grading performance. Addition-

ally, we aim to identify which models excel at spe-

cific question types, paving the way for a multi-

agent LLM-based ASAG platform that ensures re-

liable, efficient, and fair grading for educators. 

# Model BMw/ BMw/o BM 

1 deepseek-V3 0.6891 0.6775 0.6833 

2 deepseek-r1 0.6566 0.6825 0.6696 

3 gpt-4o-mini 0.6567 0.6302 0.6435 

4 gpt-4o 0.6543 0.6308 0.6426 

5 qwq_32b 0.6742 0.5841 0.6292 

6 qwen2.5_72b 0.6575 0.5745 0.6160 

7 llama3.3_70b 0.6539 0.5755 0.6147 

8 deepseek-r1_70b 0.6232 0.5470 0.5851 

9 glm4_9b 0.5722 0.5049 0.5386 

10 qwen2.5_7 0.5277 0.4830 0.5054 

11 deepseek-r1_8b 0.5062 0.4610 0.4836 

Table 2:  PIRLS-HK benchmark. 
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Limitations 

While our study provides valuable insights into the 

performance of LLMs on Traditional Chinese 

short-answer grading using the PIRLS-HK dataset, 

several limitations must be acknowledged: 

1) Evaluation Limitations: We did not report 

key evaluation metrics for the human expert inter-

rater reliability, such as kappa statistics. Although 

the experts involved in our study were well trained 

by PIRLS standards, including such measures 

could further strengthen the findings by quantify-

ing the consistency among human graders. 

2) Temporal Limitations: The current dataset is 

derived solely from the 2006 PIRLS assessments. 

Consequently, our evaluation reflects the perfor-

mance of LLMs on reading comprehension tasks 

from that period. Future steps include extending the 

dataset to incorporate data from subsequent cohorts 

(2011, 2016, 2021), which will not only broaden 

the temporal scope but also serve as benchmarks 

for progressive iterations of the model. This study 

should thus be seen as an initial benchmark and 

baseline for further work. 

3) Sampling Bias: The dataset comprises re-

sponses from 292 students, which may not fully 

represent the diversity of Hong Kong's student pop-

ulation. Any sampling bias present could limit the 

generalizability of our results, suggesting that fur-

ther research is needed to ensure the dataset cap-

tures a wider range of student abilities and back-

grounds. 

4) Explainability and Feedback Evaluation: 

Our evaluation focused exclusively on the grading 

accuracy of LLMs and did not consider the quality 

of feedback or explanations provided alongside 

scores. As such, the study does not address the ex-

plainability of the grading decisions—an important 

factor for educators and students alike. Future work 

should explore methods that incorporate and eval-

uate the reasoning behind automated scores to en-

sure transparent and constructive feedback. 

By elaborating on these limitations, we aim to 

provide a balanced view of the study's contribu-

tions while outlining clear pathways for future re-

search. 

Ethics Statement 

All student identifiers––including names, school 

badges, and handwritten metadata––were removed 

from the PIRLS-HK dataset to ensure the privacy 

and confidentiality of all participants. In addition, 

all participants have provided consent for their data 

to be used for research purposes, and no personally 

identifiable information will appear in any pub-

lished materials. 

For non-commercial research or educational use 

of PIRLS 2006 data and related materials, all pub-

lications and released items by PIRLS and IEA are 

explicitly made available only for these purposes. 

Users can confidently utilize the data and materials 

for non-commercial, educational, and research ac-

tivities without concern for unauthorized commer-

cial exploitation. Detail can refer to this website: 
https://tims-

sandpirls.bc.edu/pirls2006/intl_rpt.h

tml 

This work adheres to the highest ethical stand-

ards by ensuring data anonymization and restrict-

ing use to non-commercial, academic contexts, 

thereby protecting the rights and privacy of all in-

volved. 
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 1 

Original Version (Zero-shot): 

你是一名小學教師，請根據以下考試問題進行評分。你需要基於你的專業知識和對小學教育的理解來

評估學生的回答。 

[閱讀文章] {passage_content} [/閱讀文章]   

[問題] {question_content} [/問題] 

[學生答案] {answer_content} [/學生答案] 

[滿分] {full_mark} [/滿分] 

分數必須是整數，評分範圍在[0, {full_mark}] 

請嚴格按照以下格式生成 JSON響應，僅輸出 JSON格式，不要添加額外的說明或解釋： 

{ 

  "評分理由": "<評分理由>", 

  "得分": "<得分>" 

} 

Translated Version (Zero-shot): 

You are a primary school teacher. Please grade the following exam question 

based on your professional knowledge and understanding of primary education. 

[Reading Passage] {passage_content} [/Reading Passage] 

[Question] {question_content} [/Question] 

[Student Answer] {answer_content} [/Student Answer] 

[Full Mark] {full_mark} [/Full Mark] 

The score must be an integer, within the range [0, {full_mark}]. 

Please strictly follow the format below to generate a JSON response, output-

ting only the JSON format without additional explanations or comments: 

{ 

   "Reason for the grade": "<Reason for the grade>", 

   "Grade": "<Grade>" 

} 

Fig. 17: Original and translated versions of the zero-shot grader prompt. 
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 2 

3 

 4 

Original Version (Few-shot): 

你是一名小學教師，請根據以下考試問題進行評分。你需要基於你的專業知識和對小學教育的理解來

評估學生的回答。 

[閱讀文章] {passage_content} [/閱讀文章]   

[問題] {question_content} [/問題] 

[學生答案] {answer_content} [/學生答案] 

[評分標準] {rubric} [/評分標準] 

[滿分] {full_mark} [/滿分] 

分數必須是整數，評分範圍在[0, {full_mark}] 

請嚴格按照以下格式生成 JSON響應，僅輸出 JSON格式，不要添加額外的說明或解釋： 

{ 

  "評分理由": "<評分理由>", 

  "得分": "<得分>" 

} 

Translated Version (Few-shot): 

You are a primary school teacher. Please grade the following exam question 

based on your professional knowledge and understanding of primary education. 

[Reading Passage] {passage_content} [/Reading Passage] 

[Question] {question_content} [/Question] 

[Grading Standard] {rubric} [/Grading Standard] 

[Student Answer] {answer_content} [/Student Answer] 

[Full Mark] {full_mark} [/Full Mark] 

The score must be an integer, within the range [0, {full_mark}]. 

Please strictly follow the format below to generate a JSON response, output-

ting only the JSON format without additional explanations or comments: 

{ 

   "Reason for the grade": "<Reason for the grade>", 

   "Grade": "<Grade>" 

} 

Fig. 18: Original and translated versions of the few-shot grader prompt. 

  Few-Shot Zero-Shot Overall 

# Model QWK TAA RMC BM QWK TAA RMC BM BM Diff 

1 deepseek-V3 0.383 70.19 0.674 0.6891 0.362 68.95 0.662 0.6775 0.6833 0.86% 

2 deepseek-r1 0.306 69.49 0.622 0.6566 0.355 71.71 0.653 0.6825 0.6696 -1.90% 

3 gpt-4o-mini 0.355 67.57 0.617 0.6567 0.305 64.81 0.590 0.6302 0.6435 2.11% 

4 gpt-4o 0.368 65.09 0.628 0.6543 0.329 62.40 0.604 0.6308 0.6426 1.86% 

5 qwq_32b 0.363 68.62 0.655 0.6742 0.215 58.57 0.559 0.5841 0.6292 7.72% 

6 qwen2.5_72b 0.348 65.24 0.646 0.6575 0.239 53.71 0.567 0.5745 0.6160 7.22% 

7 llama3.3_70b 0.306 66.47 0.644 0.6539 0.214 55.96 0.560 0.5755 0.6147 6.81% 

8 deepseek-r1_70b 0.259 65.10 0.589 0.6232 0.169 54.94 0.507 0.5470 0.5851 6.97% 

9 glm4_9b 0.195 58.82 0.531 0.5722 0.110 44.57 0.514 0.5049 0.5386 6.67% 

10 qwen2.5_7 0.163 46.16 0.540 0.5277 0.128 38.80 0.497 0.4830 0.5054 4.63% 

11 deepseek-r1_8b 0.099 55.41 0.415 0.5062 0.093 44.65 0.390 0.4610 0.4836 4.90% 

Table 4:  PIRLS-HK benchmark in detail. 

 

 


