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Abstract

Multimodal Large Language Models (MLLMs) have achieved notable success in
visual instruction tuning, yet their inference is time-consuming due to the auto-
regressive decoding of Large Language Model (LLM) backbone. Traditional
methods for accelerating inference, including model compression and migration
from language model acceleration, often compromise output quality or face chal-
lenges in effectively integrating multimodal features. To address these issues, we
propose AASD, a novel framework for Accelerating inference with refined KV
Cache and Aligning speculative decoding in MLLMs. Our approach leverages
the target model’s cached Key-Value (KV) pairs to extract vital information for
generating draft tokens, enabling efficient speculative decoding. To reduce the
computational burden associated with long multimodal token sequences, we intro-
duce a KV Projector to compress the KV Cache while maintaining representational
fidelity. Additionally, we design a Target-Draft Attention mechanism that optimizes
the alignment between the draft and target models, achieving the benefits of real
inference scenarios with minimal computational overhead. Extensive experiments
on mainstream MLLMs demonstrate that our method achieves up to a 2× inference
speedup without sacrificing accuracy. This study not only provides an effective
and lightweight solution for accelerating MLLM inference but also introduces a
novel alignment strategy for speculative decoding in multimodal contexts, laying
a strong foundation for future research in efficient MLLMs. Code is availiable at
https://anonymous.4open.science/r/ASD-F571.

1 Introduction

The rapid development of Multimodal Large Language Models (MLLMs) is exerting a profound
impact on the whole world. These models have demonstrated remarkable capabilities in various
domains, including visual understanding, question answering, logical reasoning etc. [1, 3, 31, 32],
and they are expected to further drive artificial intelligence toward Artificial General Intelligence.
However, despite the widespread recognition of MLLMs’ accuracy and versatility, inference speed
remains a significant challenge in practical applications. Current multimodal models generally rely on
autoregressive decoding, which, while ensuring coherent outputs, greatly limits inference speed. As
model size and complexity increase, so do the computational cost and resource demands associated
with their inference [10, 35]. So how to accelerate the inference of the MLLMs is an important
problem, which has both academic value and practical significance.

At present, research focusing on accelerating the inference of MLLMs remains relatively scarce.
Algorithmic research primarily falls into three categories (Figure 1):

• Traditional model compression techniques: such as distillation [28, 34], quantization [16,
23], and pruning [30, 45] aim to reduce model size and computational burden but encounter
issues with fidelity loss and implementation complexity.
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Figure 1: Comparison of mainstream methods and ours.

• Compact architectures: leveraging lightweight models [27, 40, 44] and efficient encoders
such as vision token compression [33, 37]; however, they may sacrifice multimodal align-
ment and overall performance.

• Adaptation of LLM acceleration techniques to MLLMs: such as efficient attention [6, 27]
and MoE [19], offers potential solutions but faces challenges in integrating visual features.

Most of these methods tend to compromise output quality, which is unacceptable for many precision-
demanding applications. Recently, Speculative Decoding (SD) has emerged as a promising approach
for accelerating inference without compromising accuracy, and it has shown effective utility in
(Natural Language Processing) NLP tasks [11, 36, 43]. Recent work has attempted to migrate this
technique to multimodal scenarios. Gagrani et al. (2024) proposes the speculative decoding with a
language-only draft model to improve inference efficiency. However, a language-only draft model
struggles to align closely with MLLMs, leading to limited acceleration benefits that fail to meet
practical demands. On the other hand, speculative decoding usually requires a small model that
has a high acceptance rate and low inference time to achieve an acceleration effect [36, 43]. This
requirement is relatively easy to fulfill in NLP tasks but poses a significant challenge in multimodal
contexts, where tokens are longer and encode more extensive information. Smaller models with
fewer parameters struggle to capture these rich multimodal representations, hindering their ability to
effectively align with the target model. Conversely, using a larger draft model to better capture this
information adds computational overhead, thereby increasing inference latency.

To address these challenges, we proposed AASD: Accelerate the inference with refined KV Cache
and Align Speculative Decoding in Multimodal Large Language Models:

(1) Accelerate the inference with refined KV Cache. Typical speculative decoding uses the draft-
then-verify paradigm. During inference, the draft model first generates multiple draft tokens, which
are then verified in parallel by the target model in a single call. We observed that during inference,
the target model caches Key-Value (KV) pairs, which contain significant information about the
target distribution. Leveraging this insight, we designed a speculating module that utilizes the last
layer’s KV Cache from the target model to extract pertinent information for generating draft tokens.
Considering that the Key and Value of multimodal tokens are relatively long, which increases the
inference costs and the training difficulty of the speculating module, we introduced the KV Projector.
This projector is designed to compress information from the multimodal KV Cache and then calculate
Cross Attention with the Query from the speculating module.

(2) Align speculative decoding in Multimodal Large Language Models. Utilizing the target
model’s KV Cache during inference allows the draft model to learn representations closer to those of
the target model, but it poses a challenge for training. When generating the k-th draft token at the i-th
step during inference, it requires access to the first i-1 KV pairs from the target model and the i-th to
(i+k-1)-th KV pairs from the draft model. Replicating this scenario exactly in training is complex and
costly. A regular lower triangular causal mask cannot achieve this goal, and accurately mirroring
inference conditions would incur O(n2) computational and memory costs, which is a tough problem.
To overcome this, we developed the Target-Draft Attention (T-D Attn), an optimized mechanism that
achieves the effects of real inference with minimal additional computation, thereby addressing the
challenge of aligning training with the inference scenario in a computationally efficient manner.
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Our extensive experiments on various mainstream MLLMs validate that the proposed method achieves
an effective acceleration for inference (around 2× speedup). Our work not only provides a lightweight
acceleration solution for efficient MLLM inference, but also introduces a novel approach for aligning
SD with multimodal contexts, establishing a solid foundation for future research in efficient MLLM
inference. The main contributions of this study are summarized as follows: i) Lightweight inference
acceleration method: A lightweight, efficient inference acceleration framework specifically designed
for MLLMs, achieving significant speed improvements while maintaining model accuracy, providing
a feasible solution for real-time MLLM applications. ii) Innovative multimodal alignment strategy:
we proposed an innovative strategy to align SD with multimodal contexts, enabling the model to
effectively leverage the synergy between visual and textual information in multimodal input scenarios,
further enhancing decoding efficiency and information fusion. iii) Strong Empirical Evidence of
Acceleration: Through extensive empirical validation, the proposed method achieved up to 2×
speedup in inference, demonstrating its high efficiency and robustness in practical applications.

2 Related Work

2.1 Accelerating Inference of Multimodal Large Language Models

Multimodal Large Language Models (MLLMs) are large language models (LLMs) that integrate
multimodal capabilities, enabling them to receive, interpret, and generate outputs based on multimodal
information [41]. These models are engineered to tackle complex tasks, including image description,
visual question answering (VQA), multimodal translation, and instruction-following by jointly
processing and generating natural language along with visual and other perceptual data.

A typical MLLM architecture comprises three core components: a multimodal encoder, a LLM
backbone, and a multimodal connector to coordinate multiple modalities [9]. The input to an MLLM
often includes raw multimodal data, such as images, audio, and text, which are first processed by
modality-specific encoders and transformed into a standardized format suitable for the model’s
processing. The model’s output depends on the task at hand, for instance, in VQA, the output may be
a text answer to a visual query, while in image description, the output is a textual description of the
image content.

MLLMs usually require significant computational resources for both training and inference. When
handling high-resolution images or performing complex reasoning tasks, the inference latency can
be considerable, which poses challenges for real-time applications [17]. As a result, accelerating
MLLM inference has become an active research area, with key approaches including: i) Vision Token
Compression. Techniques such as token pruning [14, 42] and the design of novel vision-language
bridging modules [2, 8] aim to reduce the number of visual tokens, enhancing computational efficiency.
ii) Bypassing Visual Tokens. Speculative decoding methods enable selective bypassing of image
tokens and associated processing components [7], which reduces computational load by withdrawing
visual tokens at specific layers [21]. iii) Hardware Acceleration. Solutions such as the development of
elastic cache systems have been proposed to improve the inference efficiency of instruction-following
multimodal models [24].

2.2 Speculative Decoding

Speculative Decoding uses the idea of draft-then-verify to fully leverage the parallel processing
capabilities of GPU [18]. Specifically, this method initially utilizes a draft model, typically a small
and rapidly executing model, to generate multiple draft tokens. Subsequently, the target model verifies
these draft tokens in a single, parallel operation, reducing the number of auto-regressive decoding
steps of the target model, thereby accelerating the overall inference process [36]. The speedup
provided by speculative decoding mainly depends on the acceptance of the draft tokens [18, 38]. In
other words, the alignment of the draft model and the target model largely determines the upper limit
of acceleration.
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3 Method

3.1 Preliminaries

Below we use lowercase letters for vectors and uppercase letters for matrices except X , which
represents model inputs. For ease of reading, all vectors default to row vectors for ease of reading
and the representation of the partitioned matrix does not clearly distinguish the column and column
directions, such as Kn = (K1∼i,Ki+1∼n), where Kn ∈ Rn×d, K1∼i ∈ Ri×d and Ki+1∼n ∈ Ri×d.

3.1.1 Multimodal Large Language Models

A typical MLLM comprises 3 modules: a modality encoder to encode visual inputs, a connector
to map the visual encodings to text embeddings, and a LLM backbone to generate response. In
inference, inputting an image XI and a prompt text XT , the modality encoder converts the image
XI to visual encodings, which is then transformed into embeddings EI in the text embedding space.
Meanwhile, LLM’s encoder converts the prompt text into text embeddings ET . And then LLM
backbone autoregressively generates tokens using these embeddings. The whole process can be
expressed by the following formula:

x ∼ p(x|XI ,XT ) = M(XI ,XT ) (1)

where x denotes the token sampled from the probability space p generated by the model M condi-
tioning on the input image XI and prompt text XT .

3.1.2 Speculative Decoding

Speculative decoding is a lossless approach to accelerate the inference of autoregressive models,
adopting a draft-then-verify paradigm. To expedite inference of a large model, commonly referred
to as the target model (MT ), this method employs a small auxiliary model, referred to as the draft
model (MD), which is typically obtained through fine-tuning or distillation.

3.1.3 KV Cache

The core of LLM is the attention computing mechanism:

O = AV = Softmax(
QKT

√
d

)V (2)

where O ∈ Rn×d is the attention output, A ∈ Rn×n is the attention weight, Q,K,V ∈ Rn×d

correspond to query states, key states, and value states respectively. n denotes the sequence length,
and d denotes the hidden dimension. Typically, the computation of A incorporates a lower triangular
matrix known as a causal mask to prevent subsequent tokens from attending to preceding tokens,
thereby maintaining the autoregressive property of the model. For ease of reading, we use simplified
symbols (QKT ) to represent Softmax(QKT

√
d

) below.

Due to the nature of autoregressive generation, where each computation step utilizes the K and V
representations of preceding tokens, it is common practice to cache K and V at each inference step
for subsequent use. This caching strategy is crucial for maintaining the efficiency of the generation
process. The procedure in MLLMs can be detailed as follows:

(1) Prefilling stage. An input image XI token sequence XT is processed to compute the attention
output. Concurrently, the key representations K = (KI ,KT ) and value representations V =
(V I ,V T ) derived from this sequence are cached. This initial computation establishes the foundational
context for the autoregressive generation process.

(2) Decoding stage. For each subsequent token input x, its corresponding query q, key k, and value
v are computed. These are then concatenated with the previously cached K and V to calculate the
attention outputs. That is o = (qK̃)Ṽ , where K̃ = Concat(K,k), Ṽ = Concat(V ,v).

3.2 Accelerated Inference with Refined KV Cache

Our inference framework, shown in Figure 2a, addresses the unique challenges of applying Speculative
Decoding (SD) in multimodal tasks. Unlike NLP tasks, achieving satisfactory performance with a
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(a) Overview of the inference framework (Accelerated Inference
with Refined KV Cache).

(b) Overview of the training approach
(Aligned Training by Target-Draft At-
tention).

Figure 2: Overview of our method.

smaller draft model in multimodal settings is significantly more difficult. Current relatively compact
models, such as KarmaVLM with a 0.4B vision encoder and a 0.5B LLM backbone [29], DeepSeek-
VL with a 0.4B vision encoder and a 1.3B LLM backbone [25], and MiniCPM-V 2.0 with a 0.4B
vision encoder and a 2.7B LLM backbone [40], still have a huge number of parameters. Moreover,
it has been pointed out that a small MLLM as a draft model brings limited acceleration gain to SD,
sometimes even worse than a draft model with language-only LLM [7]. This is most likely because
learning directly from multimodal data is too difficult for small models. This motivated us to design
AASD: An approach that accelerate the inference by effectively refining KV Cache generated by the
target model to better align the draft model outputs with the target model. We structure our method in
two key stages: Prefilling and Decoding.

(1) Prefilling stage. During the Prefilling stage, the target model processes the input image XI and
prompt text XT to generate the initial KV Cache KI ,V I ,KT ,V T and the probability distribution
over the next token. Although these KV Caches contain valuable information, the image KV Cache
tends to be particularly large, creating both a learning barrier and a computational burden for the
draft model. To address this, we introduce two feature projectors that compress the target model’s
KV Cache, enabling the draft model to better align with the target model during draft generation.
Mathematically, this compression is represented as:

K∗
I = WKKI ,V

∗
I = W V VI (3)

where
WK ,W V ∈ Rk×n,KI ,V I ∈ Rn×d,K∗,V ∗ ∈ Rk×d

This operation compresses the lengthy sequence of visual key and value states into k tokens, here set
to k = 64, effectively reducing approximately 90% of the redundant information. The target model
then passes the compressed KV pairs, K∗

I , V ∗
I , KT , and V T , to the draft model to generate the draft

tokens.

(2) Decoding stage.

(2.1) Draft process. First, the draft model builds upon foregoing KV Cache generated by the target
model to produce a sequence of candidate tokens. Specially, the draft model MD receives token
xi from the target model and computes corresponding q′

i,k
′
i,v

′
i, which are then combined with the

target model’s key states Ki−1 = k≤i−1 and value states V i−1 = v≤i−1 up to the previous token,
namely

K̂i = (Ki−1, k
′
i), V̂ i = (V i−1,v

′
i) (4)

The draft model computes the attention using q′
i, K̂i, V̂ i, and generated next draft token x′

i+1. Then
draft model continues to generate subsequent tokens by incorporating the newly generated tokens
into the KV Cache, namely

x′
i+k+1 = MD(q′

i+k, K̂i+k, V̂ i+k) (5)
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where
K̂i+k = (Ki−1,K

′
i∼i+k), V̂ i+k = (V i−1,V

′
i∼i+k)

(2.2) Verify process. The Verify process involves the target model validating the draft tokens. This
validation is done by once forwarding on draft tokens of the target model, which computes the true
token probabilities.

The target model receives the sequence of draft tokens X ′
i∼i+γ = (x′

i+1, · · · , x′
i+γ) , and computes

the true token probabilities P i∼i+γ = (pi+1, · · · ,pi+γ) , where

pi+k+1 = MT (xi+k,Ki+k−1,V i+k−1) (6)

. Then get true tokens Xi∼γ = (xi, · · · , xi+λ) and additional next token xi+γ+1, by strictly match
when doing greed decoding or speculative sampling when doing sampling decoding.

The process is recursively repeated until the entire generation is complete.

3.3 Aligned Training by Target-Draft Attention

The method outlined above offers improvements in inference efficiency but introduces challenges
in training. A critical issue is the discrepancy between the training and inference phases. If we rely
solely on the target model’s KV Cache during training, a gap emerges during inference because the
draft model’s KV Cache also plays a role. Utilizing both the target and draft model’s KV Caches
during training is not straightforward. A naive approach would be to directly incorporate the target
KV Cache into the training process, replacing the last KV with that from the draft model. However,
due to the mask attention’s matrix operations, this approach only accounts for the generation of the
last draft token and fails to consider the preceding tokens. To address this, we designed Target-Draft
Attention to simulate the actual inference scenario more accurately. To implement Target-Draft
Attention, we modify the training procedure to blend the KV Caches from both the target and draft
models, ensuring that the draft model learns to align with the target model’s context while still
leveraging its own contributions. Figure 2b shows our training framework.

First let’s recall the draft process of inference procedure. Assuming that now it will generate the k-th
draft token

x′
i+k+1 = MD(q′

i+k, K̂i+k, V̂ i+k) (7)
which involves the calculation of attention weights

âi+k = (q′
i+kK̂

T

i+k) (8)

and subsequently, the cattention output

ôi+k = âi+kV̂ i+k = (q′
i+kK̂

T

i+k)V̂ i+k (9)

In training, we have the inputs Kn,V n,Q
′
n,K

′
n,V

′
n. For γ = 1, a natural idea to do this

is to replace kn,vn in Kn,V n with k′
n,v

′
n from the draft model, but it yields (Q′

nK̂
T

n )V̂ n,

where Q′
nK̂

T

n = [Q′
n−1K̂

T

n , q
′
nK̂

T

n ] After masking, the result becomes [Q′
n−1K

T
n−1, q

′
nK̂

T

n ],

where only the last vector q′
nK̂

T

n is what we need. To achieve accurate inference reproduction,
construction n sets of qKV pairs {(q′

i, K̂i, V̂ i), i = 1, · · · , n} is necessary, but this approach
imposes substantial memory overhead and inefficient resource usage.

So we need to optimize the calculation. From alignment purposes, we want to end up with

Ôn = {(q′
iK̂

T

i )V̂ i, i = 1, · · · , n} (10)

when the number of generated tokens is 1. To generate (k+1)-th token, we have

x′
i+k+1 = MD(q′

i+k, K̂i+k, V̂ i+k) (11)

where
K̂i+k = (Ki−1,K

′
i∼i+k), V̂ i+k = (V i−1,V

′
i∼i+k)

Because of the softmax, we must first compute the attention weights,

âi+k = (q′
i+kK̂

T

i+k) = (q′
i+kK

T
i−1, q

′
i+kK

′T
i∼i+k) (12)
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then compute
ôi+k = âi+kV̂ i+k

= âi+k(V i−1,V
′
i∼i+k)

= âi+kV i−1 + âi+kV
′
i∼i+k

(13)

Here, Ân = {âi+k, i = 1, · · · , n− k} is formed by Q′
nKn and (Q′

nK
′
n), while Ôn is formed

by A′
nV n and A′

nV
′
n. To avoid redundant calculations, we precompute these matrices and index

relevant values to construct the target matrix, which greatly reduced training time and memory
overhead.

4 Experiments

4.1 Experimental setup

Models, datasets and tasks. We conducted experiments on LLaVA-7B and LLaVA-13B [22], encom-
passing the common sizes of current mainstream MLLMs. We evaluated our method across multiple
tasks including mixed generic tasks (conversation, detailed description, and complex reasoning) on
LLaVA-Bench In-the-Wild [22] dataset, Image captioning task on images from coco [20] dataset,
and chain-of thought (CoT) reasoning on Science QA [26] dataset.

Metrics. Like other work about speculative decoding [5, 18, 39], we assess acceleration effects using
the following metrics:

• Walltime speedup ω: The actual test speedup ratio relative to auto-regressive decoding.
• Acceptance rate α: The average of the ratio between the number of accepted tokens and the

number of speculative tokens.
• Block efficiency τ : The average number of generated tokens per block (or target model

forward) for a block size γ (or speculative steps).
• Decoding speed δ: The average number of generated tokens per second.

Table 1: Comparison with usual methods (the mean of different metrics across 3 datasets). Note: FT
refers to the finetuned, and DT refers to the distilled.

Target Model γ Draft Model ω α τ δ

FT-LLaMA 1.39 0.35 1.93 46.13
DT-LLaMA 1.33 0.34 1.96 45.00

LLaVA-7B 3 FT-LLaVA 1.27 0.28 1.68 40.57
DT-LLaVA 1.25 0.27 1.69 39.50

Ours 2.02 0.62 2.72 63.59

FT-LLaMA 1.37 0.34 2.55 42.77
DT-LLaMA 1.37 0.34 2.54 43.71

LLaVA-7B 5 FT-LLaVA 1.21 0.28 2.22 38.35
DT-LLaVA 1.21 0.28 2.21 38.34

Ours 2.06 0.62 3.92 65.02

FT-LLaMA 1.46 0.35 1.89 46.06
DT-LLaMA 1.44 0.34 1.87 45.20

LLaVA-13B 3 FT-LLaVA 1.36 0.30 1.75 42.46
DT-LLaVA 1.35 0.29 1.71 41.83

Ours 2.14 0.63 2.74 67.78

FT-LLaMA 1.44 0.35 2.60 45.29
DT-LLaMA 1.44 0.35 2.61 45.66

LLaVA-13B 5 FT-LLaVA 1.32 0.30 2.35 42.20
DT-LLaVA 1.31 0.29 2.37 41.64

Ours 2.24 0.62 3.99 70.45

4.2 Main Results

4.2.1 Comparison with Usual Methods

Drawing on common practices from NLP tasks, we selected different small draft models as baselines.
Since there are no small models suitable for rapid draft generation included in the LLaVA suite,
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we trained a series of small models to support our experiments, including finetuned-LLaMA (FT-
LLaMA in Table 1), distilled-LLaMA (DT-LLaMA), finetuned-LLaVA (FT-LLaVA), distilled-LLaVA
(DT-LLaVA). All these small LLaMA model and the language model part of LLaVA is of 112M
parameters. Specially, first, following Gagrani et al. (2024), we trained a small LLaMA-2 model
from scratch (pretrained on RedPajama-Data-1T-Sample [4], then finetuned [12] on OIG-small-chip2
[15] and OpenAssistant [13], and distilled by seq-level distillationn. Furthermore, we use the small
LLaMA model above as the language backbone of the LLaVA model. As shown in Table 1, our
method exhibits superior performance across several key metrics, significantly surpassing traditional
draft models. Overall, our model showed significant walltime speedup on multiple datasets such as
LLava bench in the wild, coco caption, and SQA. For instance, with a γ = 3 configuration, it achieved
a speedup of 2.02 (mean of 3 datasets), far exceeding other baseline methods by 45.3%−61.6%. This
indicates our method’s efficiency in reducing actual processing time relative to the target model. In
terms of acceptance rate, our model also achieved outstanding results across datasets, notably reaching
rates of 0.62, clearly outperforming baseline models like finetuned-LLaMA and distilled-LLaVA.

Our approach also excels in block efficiency, with the value up to 2.72, demonstrating robust capability
in generating tokens. In decoding speed, our method stands out with speed reaching up to 64 token/s,
exceeding the baseline by 37.8%− 61.0%, indicating its suitability for real-time applications where
quick response is crucial. In summary, the data in Table 1 convincingly demonstrates that our method,
which integrates the strengths of enhanced speculative decoding and visual processing techniques,
outperforming conventional methods across multiple performance metrics, thereby constituting an
effective strategy for accelerating the inference of MLLMs.

Table 2: Ablation on vision projector (the mean of different metrics across 3 datasets).
Target Model γ Vsion Projector ω α τ δ

LLaVA-7B 3 w/o 1.64 0.49 2.33 51.48
w/ 2.02↑ 0.62↑ 2.72↑ 63.59↑

LLaVA-7B 5 w/o 1.56 0.47 3.21 48.98
w/ 2.06↑ 0.62↑ 3.92↑ 65.02↑

LLaVA-13B 3 w/o 1.72 0.49 2.30 54.27
w/ 2.14↑ 0.63↑ 2.74↑ 67.78↑

LLaVA-13B 5 w/o 1.70 0.48 3.26 53.69
w/ 2.24↑ 0.62↑ 3.99↑ 70.45↑

Figure 3: Ablation on target model’s KV Cache. Figure 4: Ablation on vision KV Cache.

4.3 Ablation study

4.3.1 Effectiveness of Target Model’s KV Cache

To evaluate the impact of using the KV Cache from the target model, we conducted experiments
comparing the inference performance with and without using the target model’s cache. KV Cache
provides valuable contextual information accumulated in previous steps, which can be leveraged
by the draft model in speculative decoding. By accessing the cached information directly from the
target model, the draft model can achieve better alignment with the target’s state, thus enhancing the
acceptance rate and speedup.
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As shown in Figure 3, our experimental results indicate that using the target model’s KV Cache leads
to a significant improvement in walltime speedup. Specifically, KV Cache of the target model is
directly related to the final output results, enabling the draft model to make more accurate predictions.
This reuse of context not only improves the overall coherence of generated sequences but also speeds
up the speculative decoding process. In contrast, models without access to the KV Cache are prone
to deviate from the target distribution, resulting in a lower acceptance rate and slower inference.
Therefore, KV Cache from the target model plays a crucial role in improving the efficiency of
speculative decoding in multimodal large language models.

4.3.2 Effectiveness of Vision KV Projector

To evaluate the impact of the Vision KV Projector module, we conducted experiments that compared
the model’s performance with and without this module. The Vision KV Projector is designed to
selectively compress and extract relevant vision key-value pairs, enabling the model to efficiently
leverage visual context in speculative decoding. By employing Vision KV Projector, our method
enables the draft model to align more closely with the target model on visual tasks, thereby enhancing
the effectiveness of speculative decoding.

As shown in Table 2, our experiments indicate that Vision KV Projector significantly improves both
acceptance rate and walltime speedup. With Vision KV Projector enabled, the model demonstrates
faster decoding, particularly in tasks with high visual complexity, as irrelevant visual data is filtered
out. Additionally, we observed that the Vision KV Projector helps maintain coherence in multimodal
contexts by preserving only the most relevant visual cues, allowing the model to align visual informa-
tion more effectively with textual context. In contrast, without this module, the model processes a
larger volume of visual data, resulting in slower decoding and reduced alignment between the draft
model and the target model. In summary, Vision KV Projector enhances the efficiency of speculative
decoding by focusing on essential visual elements. This approach not only optimizes resource usage
but also improves the alignment between the draft model and the target model in multimodal tasks.

4.3.3 Do Vision Information Really Important?

To investigate the relative importance of vision and text information in the KV cache, we conducted
experiments by selectively disabling either the image KV cache or the text KV cache. This comparison
allows us to analyze the impact of each modality on the performance of the draft model during
speculative decoding.

As shown in Figure 4, our experimental results reveal that disabling the text KV cache has a
more substantial negative effect on block efficiency compared to disabling the image KV cache.
Specifically, without the text KV cache, the model experiences a significant drop in block efficiency.
This is because text information provides a critical sequential context that is essential for accurate
token prediction and verification. In contrast, while image information contributes to the overall
context, it does not require the same level of sequential dependency as text, making it relatively
less crucial for maintaining the flow of decoding. In summary, text information plays a important
role, but uncompressed visual information may impair the performance of the draft model. This
finding emphasizes that in speculative decoding of multimodal large models, textual information is a
necessity, while visual information is a bonus that needs to be effectively utilized to be effective.

5 Conclusion

In this study, we introduced an innovative approach to accelerate the inference processes of MLLMs,
focusing on the synergistic integration and information reuse of image and text modalities within
MLLMs. This method makes efficient use of KV Cache and aligns the draft model and the target
model for speculative decoding in multimodal scenario, greatly increasing the inference speed of
MLLMs. Our experimental results demonstrate that this approach can achieve up to a 2x speedup
across a variety of multimodal tasks, from visual question answering to complex reasoning, fully
validating the effectiveness and potential of our method.

9



References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

[2] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for
few-shot learning. Advances in neural information processing systems, 35:23716–23736, 2022.

[3] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe Taylor,
Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video generation models as
world simulators. 2024.

[4] Together Computer. Redpajama: An open source recipe to reproduce llama training dataset, 2023.

[5] Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu, Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu, Liqiang
Nie, Zhaopeng Tu, et al. Glide with a cape: A low-hassle method to accelerate speculative decoding. arXiv
preprint arXiv:2402.02082, 2024.

[6] Mohsen Fayyaz, Soroush Abbasi Koohpayegani, Farnoush Rezaei Jafari, Sunando Sengupta, Hamid
Reza Vaezi Joze, Eric Sommerlade, Hamed Pirsiavash, and Jürgen Gall. Adaptive token sampling for
efficient vision transformers. In European Conference on Computer Vision, pages 396–414. Springer, 2022.

[7] Mukul Gagrani, Raghavv Goel, Wonseok Jeon, Junyoung Park, Mingu Lee, and Christopher Lott. On
speculative decoding for multimodal large language models. arXiv preprint arXiv:2404.08856, 2024.

[8] Ziyuan Huang, Kaixiang Ji, Biao Gong, Zhiwu Qing, Qinglong Zhang, Kecheng Zheng, Jian Wang,
Jingdong Chen, and Ming Yang. Accelerating pre-training of multimodal llms via chain-of-sight. arXiv
preprint arXiv:2407.15819, 2024.

[9] Yizhang Jin, Jian Li, Yexin Liu, Tianjun Gu, Kai Wu, Zhengkai Jiang, Muyang He, Bo Zhao, Xin Tan,
Zhenye Gan, et al. Efficient multimodal large language models: A survey. arXiv preprint arXiv:2405.10739,
2024.

[10] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

[11] Mahsa Khoshnoodi, Vinija Jain, Mingye Gao, Malavika Srikanth, and Aman Chadha. A comprehensive
survey of accelerated generation techniques in large language models. arXiv preprint arXiv:2405.13019,
2024.

[12] Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pages 1317–1327, 2016.

[13] Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens,
Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, et al. Openassistant conversations-
democratizing large language model alignment. Advances in Neural Information Processing Systems, 36,
2024.
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