
Motivations for an Analytical RDF Database System

Christophe Callé1,2, Philippe Calvez2, Olivier Curé1

1 LIGM Univ Paris Est Marne la Vallée, CNRS, F-77454.
{firstname.lastname}@univ-eiffel.fr

2 ENGIE LAB CRIGEN philippe.calvez1@engie.com
{philippe.calvez1}@engie.com

Abstract. In this paper, we claim that by corresponding to an OLTP database
management system, most RDF stores are addressing the wrong users. They
should in fact consider the OLAP market. After motivating this position, we
present a preliminary work toward developing a scalable analytical RDF database
system on top of Apache Spark.

1 Introduction

Most production-ready RDF stores, e.g., AllegroGraph3, GraphDB4, MarkLogic5, AWS
Neptune6, Oracle7, RDFox8, Stardog9, Virtuoso10, are focusing on OLTP (online trans-
action processing) properties, e.g., support for ACID transactions. But their workloads
do not correspond to the processing of high rates of transactions. In fact, according
to the most frequent use cases highlighted by these database management systems
(DBMS), e.g., Advanced search and discovery, Analytics/BI, Fraud detection, Recom-
mendations, they should evolve in an analytical context. This OLAP (online analytical
processing) orientation has been confirmed in [5] where it is considered that graph pro-
cessing at large, i.e., both the Labelled Property Graph and RDF data models, is mainly
concerned with analytics since users are spending most of their time on testing, debug-
ging, maintenance, ETL (Extract, Transform and Load) and cleaning.

One aspect that differentiates these two kinds of DBMS is the rate at which transac-
tions are submitted. In OLTP, this rate is in order of hundreds to millions of transactions
per second while in OLAP large sets of transactions are handled once per day, week or
month. This typically corresponds to what we witness in the Linked Open Data context
where data set updates can be released every month, e.g., DBPedia. As a last argument
toward this OLAP orientation, it is hard to believe that a OLTP database system does
not support declarative update operations for close to 5 years. That is the time elapsed
between the SPARLQ 1.0 and 1.1 which introduced INSERT and DELETE operations.

3 https://allegrograph.com/products/allegrograph/
4 https://graphdb.ontotext.com/
5 https://www.marklogic.com/
6 https://aws.amazon.com/fr/neptune/
7 https://www.oracle.com/
8 https://www.oxfordsemantic.tech/
9 https://www.stardog.com/

10 https://virtuoso.openlinksw.com/



Recently several production-ready systems started to introduce analytical opera-
tions in their offer, e.g., AnzoGraph DB11 and Stardog as pure RDF store players and
SANSA[3] as a library. We consider that most of the aforementioned systems will
rapidly propose analytical features. Obviously, this will help the emergence of inno-
vative functionalities and query processing performance improvements.

In the following, we present an analytical direction and motivate the adoption of a
popular Big data framework for developing an open source, vertically scalable analyti-
cal RDF store. In a preliminary experiment, we outline the storage benefits that Spark
offers for conducting analytical operations.

2 RDF stores and data analytics

Analytic operations in an RDF store, or any graph data model, can take the following
forms: cube-inspired or graph algorithm-based. The former correspond to what one can
find in relational OLAP (ROLAP) systems with their drill-down, roll-up, dice, slice and
pivot SLQ extensions. The integration of such analytical operations has been consid-
ered in [2] where it is assumed that the RDF DBMS manages and stores transactions.
We do not consider that it makes sense and that these data should remain in a real
OTLP DBMS. The latter analytical kind has been confirmed to be the most relevant
for graph stores in [5]’s survey. In fact, the identified top graph computations are find-
ing connected components, neighborhood queries, finding shortest paths, ranking and
centrality scores, reachability queries, triangle count and enumeration.

Out of the three analytical RDF systems that we have previously mentioned, An-
zoGraph DB can be considered as the first and most complete analytical system. This
commercial database system partially proposes both kinds of analytics (cube and graph
algorithms). Stardog is a well-established commercial RDF stores that first started to
propose graph analytics in its latest version (i.e., 7.5 as of march 2021). Finally, SANSA
consists of a set of open-source libraries to perform reasoning, querying and analytic
operations. Considering analytics, it relies on either Apache Spark12 or Apache Flink13

distributed computing frameworks. Some limitations of SANSA is that it requires a
programmer to design an application on top of these libraries. So the system may be
difficult to use out of the box by a data analyst. Moreover, the integration of graph algo-
rithms within SPARQL queries is non declarative and thus requires some programming.

Similarly to SANSA, we are aiming to design our analytical RDF store on top of
Apache Spark. This full-featured open-source parallel computing engine is an interest-
ing platform to implement our system on top of. It proposes mature, extensible query
processing, i.e., SQL and DataFrame (DF) Domain Specific Language (DSL), and op-
timization, i.e., catalyst, components on which SPARQL processing can benefit. More-
over, Spark is evolving toward a data lake and so-called lakehouse[1] approaches by
leveraging from its large machine learning, stream and graph algorithm processing ca-
pacities. It is important to note that apart from SANSA, the Semantic Web community
has already used Spark to implement RDF DBMS, among them [6], [4].
11 https://www.cambridgesemantics.com/anzograph/
12 https://spark.apache.org/
13 https://flink.apache.org/

2



The data storage aspect plays an important role in the design of an OLAP database
system, independently of the underlying data model. Apache Spark is offering many ad-
vantages with the native support of the most popular hybrid columnar storage systems,
namely Apache Parquet14 and Apache ORC15 (Optimized Row Columnar). These two
data formats provide a high compression rate together with efficient compression/de-
compression algorithms which are optimized in Spark, particularly for Parquet which
is the default format for Spark’s main data abstraction, i.e., DF. This is especially im-
portant in a Spark context where the data is supposed to remain in main memory as
much as possible. Thus the more you can fit in the main-memory, the less spill to sec-
ondary storage and thus the less Input/Output. In addition, the application programming
style encouraged in Spark facilitates the creation and manipulation of DF from over DF.
The created can be considered as materialized views which are frequently encountered
in ROLAP systems. The computation cost of these views is largely amortized in an
ecosystem where the rate of transaction is in terms of days to months.

3 Preliminary experimentation

We are conducting all experimentation with a synthetic Lehigh University Benchmark
(LUBM)16 instance (henceforth denoted LUBM1000) configured with 1.000 univer-
sities, i.e., 1.383 million triples. The computing setting is a single Dell PowerEdge
R740XD equipped with an Intel Xeon Gold 6230. By default, we allocate 16 cores to
each jobs and 64GB of RAM for the Spark’s driver. It runs Apache Spark 3.1.1 with
scala 2.12.9 and Java 11.

The original file size for LUBM1000 is 23GB in the N-Triples syntax. In Table 1,
we compare the two binary data formats previously mentioned (Apache Parquet and
Apache ORC) with a CSV serialization. That table clearly highlights some valuable
properties. Parquet and ORC provide a high compression rate compared to the original
data size (and CSV format), respectively compressing to 6.95% and 7.8%. Moreover,
this high compression does not impact the time performance of writing and reading the
data sets. In fact, considering the writing operation Parquet is 1.15 times faster than
CSV which is itself 1.19 times faster than ORC. Parquet and ORC are both faster to
load than CSV, taking around 41% of the time required by the latter.

Table 1. Storing LUBM1000 (16 partitions)

Serialization Size (GB) Creation duration (ms) Loading duration (ms)

CSV 23 47.287 13.170
Apache Parquet 1,8 40.826 5.407
Apache ORC 1,6 56.275 5.472

14 https://parquet.apache.org/
15 https://orc.apache.org/
16 http://swat.cse.lehigh.edu/projects/lubm/

3



The high compression rate, together with the fast compression/decompression times,
are important properties in Spark where the goal is to keep the data set in main memory
as much as possible. ORC is notoriously recognized to be more compact than Parquet.
Nevertheless, the creation and loading times emphasize the fact Parquet is the preferred
format in Spark, with more optimization being implemented than for ORC. Moreover,
the importance of the number of partitions, of key importance in Spark processing,
also has an impact on Parquet’s storage. Hence, with 4 and 8 partitions, the sizes are
respectively of 1.5GB and 1.6GB (compared to 1.8GB for 16 partitions).

We now consider a naive, i.e., with no specific query optimization, processing of a
simple aggregation queries. In general, OLAP database systems compute materialized
views for frequent queries. The DF DSL enables to create and persist intermediate query
results in a DF which can itself be queried. In the case of our simple query (counting the
number of courses taught by each professor type), we first materialize this DF (view) in
about 9.5 seconds (for over 2.1 million records). Then we compute several aggregations
from this query in about 1 second.

4 Conclusion

In this short paper, we have emphasized that RDF stores should migrate from the OLTP
to the OLAP market. Some innovative systems have recently adopted this trend and
we believe that most database management systems aiming to survive in the RDF and
graph ecosystems will go in this direction. Looking at the craze for data analytics in the
relational data model, where research has been around for a while, we understand that
there is a lot of research to be done towards an analytical RDF store. We presented an
approach based on the Apache Spark engine and provided some encouraging prelimi-
nary results on the data storage aspect. This will lead the way to some future research
and implementation work.

References
1. M. Armbrust, T. Das, S. Paranjpye, R. Xin, S. Zhu, A. Ghodsi, B. Yavuz, M. Murthy, J. Torres,

L. Sun, P. A. Boncz, M. Mokhtar, H. V. Hovell, A. Ionescu, A. Luszczak, M. Switakowski,
T. Ueshin, X. Li, M. Szafranski, P. Senster, and M. Zaharia. Delta lake: High-performance
ACID table storage over cloud object stores. Proc. VLDB Endow., 13(12):3411–3424, 2020.

2. D. Colazzo, F. Goasdoué, I. Manolescu, and A. Roatis. RDF analytics: lenses over semantic
graphs. In C. Chung, A. Z. Broder, K. Shim, and T. Suel, editors, 23rd International World
Wide Web Conference, WWW ’14, April 7-11, 2014, pages 467–478. ACM, 2014.

3. J. Lehmann, G. Sejdiu, L. Bühmann, P. Westphal, C. Stadler, I. Ermilov, S. Bin,
N. Chakraborty, M. Saleem, A.-C. N. Ngonga, and H. Jabeen. Distributed semantic ana-
lytics using the sansa stack. In Proceedings of 16th International Semantic Web Conference -
Resources Track (ISWC’2017), pages 147–155. Springer, 2017.

4. H. Naacke and O. Curé. On distributed SPARQL query processing using triangles of RDF
triples. Open J. Semantic Web, 7(1):17–32, 2020.

5. S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu. The ubiquity of large graphs and
surprising challenges of graph processing. Proc. VLDB Endow., 11(4):420–431, Dec. 2017.

6. A. Schätzle, M. Przyjaciel-Zablocki, S. Skilevic, and G. Lausen. S2RDF: RDF querying with
SPARQL on spark. Proc. VLDB Endow., 9(10):804–815, June 2016.

4


