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ABSTRACT

We propose a lightweight explainable guardrail (LEG) method for the classifica-
tion of unsafe prompts. LEG uses a multi-task learning architecture to jointly learn
a prompt classifier and an explanation classifier, where the latter labels prompt
words that explain the safe/unsafe overall decision. LEG is trained using synthetic
data for explainability, which is generated using a novel strategy that counteracts
the confirmation biases of LLMs. Lastly, LEG’s training process uses a novel
loss that captures global explanation priors and combines cross-entropy and focal
losses with uncertainty-based weighting. LEG obtains equivalent or better perfor-
mance than the state-of-the-art for both prompt classification and explainability,
both in-domain and out-of-domain on three datasets, despite the fact that its model
size is considerably smaller than current approaches. If accepted, we will release
all models and the annotated dataset publicly.

1 INTRODUCTION

Detecting unsafe prompts is a fundamental requirement for deploying large language models
(LLMs) responsibly. Without robust safeguards, LLMs risk generating harmful or inappropriate out-
puts and could be misused for purposes such as spreading misinformation, promoting hate speech,
enabling illegal activities, or providing self-harm instructions. To mitigate such risks, LLMs are
typically safety-aligned during training using reinforcement learning with human feedback (RLHF)
(Christiano et al., 2017) or direct preference optimization (DPO) (Rafailov et al.,|2023). However,
addressing newly emerging safety concerns with RLHF or DPO is costly because these methods
require retraining the LLM. Moreover, these approaches may reduce the creativity of LLMs and
lack explainability. As a result, they provide only partial solutions, constrained by their limitations
in flexibility, transparency, and computational cost.

In contrast, an increasingly popular alternative is the use of post-training safety methods such as
guardrails. These methods operate externally to the LLM, allowing safety policies to be enforced
without modifying the LLM itself. In this paper, we propose a guardrail-based approach to LLM
safety. We argue that effective guardrails must satisfy the following three core principles:

(1) Explainability: The guardrail should provide interpretable explanations for its decisions. This
capability is essential for ensuring transparency and building trust in the system, particularly in
high-stakes or regulated environments. Safety reviewers, auditors, or domain experts may need to
examine the rationale behind a blocked prompt to verify that it aligns with organizational policies,
ethical guidelines, or legal requirements.

(2) Modularity: The guardrail should be modular and easily integrated into any LL.M pipeline with-
out requiring fine-tuning of the base LLM. Prompt safety is often dependent on culture, region, or
organization, as different legal standards, cultural norms, and internal policies can shape what is
considered appropriate content. A modular and independently deployable guardrail enables flexible
adaptation to diverse safety requirements without modifying the underlying LLM.

(3) Low computational overhead and low latency: A guardrail should impose minimal computa-
tional cost compared to the LLM itself. Prompt safety decisions should be made rapidly without
delaying LLM response time.

Although prior work has explored modular guardrail methods, they remain computationally expen-
sive with high inference times. More recent efforts have investigated lightweight guardrails, but
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their performance remains limited. Most importantly, none of the existing models offer a faithful
and actionable explanation. A detailed comparison of existing guardrail methods is presented in
Section[2] To address this gap, this paper introduces a lightweight explainable guardrail (LEG) with
the following key contributions:

(1) We propose a novel guardrail method that supports explainability and modularity, while main-
taining low computational overhead. Our approach involves a multi-task learning (MTL) architec-
ture with a shared encoder that jointly trains a prompt classifier and an explanation classifier, where
the former determines whether a prompt is safe or unsafe and the latter labels the words in context
that justify this decision.

(2) To mitigate the lack of training data for explainability, we introduce a novel strategy to generate
synthetic explanations using an LLM that counteracts the inherent confirmation biases of the LLMs.

(3) We propose a novel loss for MTL that captures global explanation priors and combines cross-
entropy and focal losses (Lin et al.,[2020) with uncertainty-based weighting (Kendall et al.,[2018).

(4) We present a comprehensive evaluation of our proposed method to support all of our contribu-
tions. Our results show that LEG achieves state-of-the-art (SOTA) or near-SOTA performance on
the prompt classification task in both in-domain and, more importantly, out-of-domain evaluations
across three prompt safety datasets. For explanation classification, LEG achieves SOTA perfor-
mance in both in-domain and out-of-domain settings on the same three datasets, and a faithfulness
evaluation confirms that the generated explanations are faithful. Additionally, we conduct an ab-
lation study of our joint loss function, demonstrating the effectiveness of our design. Finally, a
computational efficiency evaluation demonstrates that LEG is lightweight and faster than existing
guardrails.

2 RELATED WORK

Research on safeguarding large language models (LLMs) has generally followed two directions:
alignment-based training methods and external modular guardrails.

Alignment-based methods: Techniques such as reinforcement learning from human feedback
(RLHF) (Christiano et al., |2017), direct preference optimization (DPO) (Rafailov et al., [2023)),
and related approaches (Ji et al.| 2023} |Li et al., |2024) embed safety behavior directly into LLMs.
These methods enforce safety during generation without added inference cost. Recent advances like
DICE (Chen et al.| 2025) and InfAlign (Balashankar et al.l 2025) aim to reduce reliance on human
data, while Constitutional Al (Bai et al.| 2022) replaces human feedback with written principles.
However, these methods still face notable challenges. They can produce unstable behaviors across
domains and tasks, and reduce creativity and helpfulness by over-constraining responses (Zhang,
2025; [Menke & Tan, 2025)). They are also mostly opaque, hence providing no explainability of why
a prompt is flagged as unsafe.

External guardrails: Industry APIs such as NVIDIA NeMo Guardrails (Rebedea et al., [2023),
Google Gemini Filters, and IBM OneShield (DeLuca et al., | 2025)) provide customizable rule-based
safety layers, but they require complex integration and additional LLM calls for various layers,
which increases latency and engineering costs (Dong et all [2024). Open-source classifiers like
Llama Guard (Inan et al., [2023), AEGIS Guard (Ghosh et al.,[2024), WildGuard (Han et al., 2024),
and ShieldGemma (Zeng et al., 2024) support modularity. However, they are all built on large
backbone LLMs, making them resource-intensive with high inference time, and they don’t provide
built-in explainability. Smaller models such as Llama Prompt Guard 2, ToxicChat-T5 (Lin et al.|
2023)), and DuoGuard (Deng et al.| [2025) are more lightweight and resource-efficient but achieve
weaker performance, and they don’t provide built-in explainability.

Explainable guardrails: To the best of our knowledge, no guardrail has been designed with ex-
plainability as a core feature. A few recent works make partial attempts, but their effectiveness
is not validated through rigorous experiments, they lack quantitative analysis of explanation qual-
ity, and they provide no faithfulness evaluation. GuardReasoner (Liu et al., [2025) elicits reasoning
steps from an LLM through reasoning SFT and hard-sample DPO. While it improves explainabil-
ity, its reasoning traces lack faithfulness guarantees, the authors do not provide any out-of-domain
evaluation, and the approach is extremely resource-intensive, requiring up to 78 GB of GPU mem-
ory during inference. (Chu et al.[ (2024) propose LLMGuardrail, which employs a “Debias LoRA
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Figure 1: Overview of LEG. (a) The multi-task architecture jointly trains a prompt classifier and
an explanation classifier on top of a shared transformer encoder. (b) Example of an unsafe input
prompt and the structured output produced by LEG, which includes both the safety label and the
corresponding explanation tokens.

Block” for causal explainability. However, they provide no experimental validation, and the method
only outputs latent-space scores that are not human-interpretable. ShieldLM (Zhang et al.| [2024)
provides safety detection with natural language explanations aligned to human-defined rules, but
these explanations are high-level, non-actionable, and not guaranteed to be faithful. R>-Guard relies
on probabilistic graphical models with manually defined safety categories, making it slow, non-
scalable, and offering only limited explainability. Post-hoc methods such as LIME (Ribeiro et al.,
2016) can explain predictions but are not integrated into the guardrail itself and may yield unfaithful
explanations.

Our contribution: Despite progress, no existing guardrail combines explainability, modularity,
and low computational overhead in a single solution. To address this gap, we propose LEG, a
lightweight guardrail that jointly classifies prompt safety and highlights unsafe words or phrases.
LEG supports modularity while maintaining strong in-domain and out-of-domain performance. It
leverages a novel synthetic supervision process and multi-task learning to produce faithful, context-
aware explanations at inference.

3 PROPOSED METHOD

This section presents the architectural design and training setup of LEG. The design choices are
guided by the principles discussed in Section|l| The model is trained to serve two objectives: (1)
accurately and efficiently determine whether a given prompt is unsafe, and (2) provide an explana-
tion by identifying the words in the prompt context that contribute to this judgment. An illustrative
example is shown in Figure[T|(b).

3.1 ARCHITECTURE

Figure Figure presents the architecture of the LEG component, which can be plugged into
any LLM pipeline. The architecture consists of a shared transformer encoder, a simple attention
pooling layer, and two linear classification heads. This simple design makes LEG a very lightweight
system, adding only negligible overhead to the prompt safety checking process when deployed with
an LLM. We trained this architecture using the synthetic data generated in Section [3.2]and the novel
loss discussed in Section [3.3.2] A detailed description of each component of this architecture is
presented in Appendix [A]
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3.2 SYNTHETIC DATA GENERATION FOR EXPLANATIONS

We formulate both prompt-level safety assessment and word-level explanation labeling as super-
vised classification tasks. To formulate both prompt classification and explanation generation as
supervised tasks, we require a dataset that provides binary labels for the prompt as well as for its in-
dividual words. For example, consider the input and expected output shown in Figure[T}[b). To train
a model that predicts both the prompt_label and the explanation, the dataset must include
not only binary label (safe or unsafe) for the prompt, but also annotations indicating which words
contribute to that decision. While several existing datasets provide binary labels for prompt classifi-
cation, by and large they do not indicate which words contribute to that decision. To address the lack
of such labels, we propose a novel method to generate word labels using an LLM. We counteract the
inherent confirmation bias of LLMs to produce consistent and reliable supervised training labels for
our explanation classifier.

Confirmation bias in large language models refers to the tendency to generate responses that align
with the assumptions embedded in the user prompt. The phrasing of the user’s input can subtly steer
the model toward a particular interpretation or belief. For example, if we ask an LLM, “Why is the
statement X true?”, the model is likely to assume the statement is true and provide a justification,
even if the statement is incorrect (Du,, 2025; /0’ Learyl, 2025). This behavior comes from the model’s
goal of being helpful and contextually consistent with the user input, which can lead it to affirm
rather than question the user’s assumptions.

To mitigate this issue, we ask an LLM to evaluate whether a prompt is safe or unsafe, while inten-
tionally embedding confirmation biases in the query. We then assess whether the LLM can overcome
this bias and correctly identify the true label of the prompt. If the LLM successfully overcomes the
induced bias, we consider the word annotations it generates to be reliable. Otherwise, if the LLM
is influenced by the bias, we treat the generated word labels as unreliable. For each prompt in our
dataset, we ask two queries to an LLM, each based on an opposing assumption about the prompt’s
safety:

Query 1: Why is the following prompt considered safe? Provide a list of words or phrases that
made you believe the prompt is safe.

Query 2: Why is the following prompt considered unsafe? Provide a list of words or phrases that
made you believe the prompt is unsafe.

Using these two queries, our goal is to evaluate whether the LLM can correctly identify which query
it should agree with and which it should contradict. For example, if the input prompt is safe, the LLM
should agree with Query 1 and contradict Query 2. If the responses to both queries correctly align
with the true nature of the prompt, we take the intersection of the keywords returned by both queries
as the explanation. However, if the LLM incorrectly aligns with the confirmation bias embedded
in one or both queries, we do not label any words for that prompt. In these cases, only the prompt
classification loss is used to update the model during multitask learning, as explanation supervision
is not available. Through this process, we generate high-quality word labels that reflect the LLM’s
confidence, even in the presence of confirmation bias. We use GPT—-4o0-mini as the LLM to
generate word labels. Appendix [I| presents a human evaluation of this data generation process and
demonstrates that this process can generate high-quality labels that generally align well with human
judgment. Appendix [B] presents the prompts used with GPT-40-mini for Query 1 and Query 2,
outlines the procedure as an algorithm, and illustrates how the responses are processed into word
labels.

3.3 JOINT TRAINING

We train our model using a multitask learning setup that jointly optimizes two classification ob-
jectives. This joint setup is particularly effective for our task, as the two objectives are closely
interrelated. In Section[3.3.T] we describe a new method to capture global explanation priors, and in
Section [3.3.2] we demonstrate how these priors can be incorporated as weak supervision signals in
a novel joint loss.
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3.3.1 AUXILIARY WEAK SUPERVISION GENERATION

Determining whether a prompt is unsafe is a task that benefits from domain-specific priors that
generalize across examples. Certain words or phrases are strong indicators of unsafe intent and
appear frequently in harmful contexts. For example, tokens such as “kill”, “bomb”, or “threaten”
are much more likely to occur in unsafe contexts, while words like “good” or “excellent” tend to
be associated with safe context. These distributional patterns provide implicit signals that can be
leveraged to guide the model beyond the scope of supervised labels.

To incorporate this insight, we propose a novel weak supervision generation method based on sta-
tistical word patterns observed in the training data. Our hypothesis is that the polarization of a word
toward the safe or unsafe class can be used as a weak supervisory signal to guide both prompt-
level and token-level learning. We introduce two new formulations. We define token level weak
supervision signal §,, and prompt level weak supervision signal J; as follows:

safe unsafe safe unsafe —
|Ct — G Zt ’Ct — G | : 1{yp =y}
= safe unsafe + and, 617 = safe unsafe . 1 —
& € Zt (Ct + ¢ ) : {yp = yt} +e€
where ¢ and ci" denote the frequencies of token ¢ in safe and unsafe contexts in the training

data, y,, and y; denote the labels of the prompt and token, respectively, and € is a small constant
added to avoid division by zero.

The token-level weak supervision signal §; quantifies how strongly a token is polarized toward either
the safe or unsafe class based on its frequency distribution in the training data. A higher J; value
indicates that the token consistently appears in one class more than the other, making it a strong
candidate for weak supervision.

The prompt-level signal d,, aggregates the d; values of all tokens in a prompt that align with the
prompt’s label. This score reflects how strongly the prompt, as a whole, is supported by tokens that
are predictive of its class. As a result, §, captures the global explanatory strength of the prompt
based on known class-token associations to provides a prompt-specific weak supervision signal that
guides learning when such associations are present.

3.3.2 JOINT LOSS FUNCTION

To jointly train the prompt classifier and the explainability classifier, we introduce a novel multitask
loss function that leverages weak supervision from the training data. The joint loss is defined as

follows: . 1

£=ﬁ-ﬁpﬁ@-cewlogoﬁlogoz (1)
Each component of the loss is discussed in the following three sections, along with the rationale
behind each of them.

Prompt classification loss: We define prompt classification loss as:
Ly =CE, +6,-FL, 2)

where C'E}, is the standard cross-entropy loss for the prompt classifier, d,, is a penalty weight derived
from the domain-aware weak supervision method introduced in Section[3.3.1} and F'L,, is the focal
loss (Lin et al., |2020) computed from the same classifier output.

The inclusion of ¢, allows the model to incorporate global explanation priors derived from the
training data. Prompts containing words that are strong indicators of safety or harm should have a
greater impact on learning when misclassified. To reflect this, d,, selectively upweights the loss when
the model incorrectly classifies prompts with such clearly indicative terms, encouraging it to avoid
repeating these mistake. To ensure that this penalty is applied only when necessary, we modulate
dp using focal loss (Lin et al., [2020). Focal loss introduces a dynamic scaling factor that reduces
the influence of ¢, to near zero when the model is correct and confident, while allowing the full
penalty to take effect when the model is incorrect and confident. It also applies a substantial penalty
when the model is both incorrect and uncertain. Also, this formulation ensures that the resulting loss
remains continuous and differentiable for a stable and effective gradient-based optimization.

Given the predicted probability for the true class py, the focal loss is defined as:
FL = —(1 —p;)"log(ps) = (1 —py)" - CE (3)
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where v > 0 is a tunable focusing parameter. So, focal loss is just a cross entropy loss with a
modulating factor (1 — p;)?. If we substitute this in the equation[2] we get:

Lo =CEp+6,-(1—p)?"-CE, =[1+6,-(1—-p)"]-CE, “4)

This formulation ensures that when the model is confident and correct (p; ~ 1), the modulating
factor (1 — p;)” becomes very small, effectively down-weighting J,,. Conversely, when the model
is uncertain or incorrect (p; < 1), the factor remains close to 1, preserving nearly the full penalty
from J,. This design ensures that while the model learns from strong supervision in the form of
prompt labels, the weak supervision provides soft and adaptive guidance to further learning the
global explanations.

Explainability classification loss: We define explainability classification loss as:
s
1 i i i
Lec_S;<CE§)+5§)-FL§>) (5)

where S is the number of tokens in the prompt. CE;, F'L; are the token level loss, ¢; is the token
label weak supervision penalty. The design justification of equation 2] also applies here.

Uncertainty-based weighting: In our joint loss function (equation[I)) o and o5 are learnable uncer-
tainty parameters that dynamically balance the contribution of each task during training. Effective
loss weighting is essential in multi-task learning to balance the contribution of each task, preventing
dominant or noisy tasks from skewing the optimization process. We adopt the uncertainty-based
weighting method proposed by |[Kendall et al.| (2018)), where the loss of each task is scaled by a
learnable parameter o.

4 EXPERIMENT SETUP

Dataset description: We evaluate LEG on three prompt safety datasets: AEGIS2.0 (Ghosh et al.,
2025), WildGuardMix (Han et al., |2024), and Toxic-Chat0124 (Lin et al., |2023). Each dataset
originally provides binary prompt-level safety labels, which we extend with word-level explana-
tion labels using the procedure described in Section Detailed dataset descriptions are included
in Appendix [C] Appendix [D] further presents a lexical similarity analysis, showing low similarity
between all combinations of training and test sets in both in-domain and out-of-domain settings,
underscoring the effectiveness of these datasets for evaluating model robustness in both in-domain
and out-of-domain scenarios.

Baselines: We include several LLM-based guardrail systems as external baselines. Llama Guard
(Inan et all 2023) is designed for real-time moderation of conversational inputs and outputs.
LLAMA3.1 AEGISGUARD (Ghosh et al., 2025)) uses an ensemble of expert classifiers to provide
robust online content filtering. ToxicChat-T5-Large (Lin et al.,2023)) is fine-tuned specifically on ad-
versarial and toxic prompts to improve classification in real-world dialogue systems. WILDGURD
(Han et al., [2024) is another recent LLM-based classifier that trained using WildGuardMix dataset.
We also report OpenAl Moderation API result. These systems provide strong baselines for prompt-
level classification, although they do not support integrated explanation generation.

In addition to these existing baselines, we develop a set of baselines that mirror the components
of LEG but exclude multi-task learning setup. Prompt Baseline: A single-task classifier trained
solely to predict whether a prompt is safe or unsafe. It uses the same backbone architecture as LEG
but does not include any explanation mechanism. Word Baseline: A token-level classifier trained
independently to label each word as safe or unsafe. It receives only word-level supervision and is
not influenced by the overall prompt label. LIME baseline: A post-hoc explanation baseline in
which we apply LIME (Ribeiro et al., 2016)) to the Prompt Baseline model to generate word-level
explanations after training. This setup allows us to compare our joint training approach with a com-
monly used interpretability method. The detailed working mechanism of this baseline is provided in
Appendix [E] We implement two variants of Prompt Baseline, Word Baseline, and LIME baseline:
a base version using the DeBERTa-v3-base backbone, and a large version using the DeBERTa-v3-
large backbone.

Our models (LEG): For our experiments, we implement three versions of LEG: xs, base, and large.
All three share the same architecture described in Section [3] but differ in the choice of encoder.



Under review as a conference paper at ICLR 2026

Train Model Test sets
dataset Model size
AEGIS- Wild- Toxic-
2.0 GuardMix Chat0124
OPENAI MOD API (2024) t * - 37.8 12.1 61.41
LLAMAGUARD? f 8B 76.8 70.9 -
9 LLAMAGUARD3 f 1B 49.6 47.2 -
LLAMAGUARD3 f 8B 713 76.8 -
Llama Prompt Guard 2 70M 7.69 3291 32.13
Llama Prompt Guard 2 276M 8.5 41.24 34.16
LLAMA3.1 AEGISGUARD f 8B 86.8 82.1 -
AEGIS- Prompt Baseline base 184M ~ 87.37£0.40 7496 £ 1.11 57.14+1.21
2.0 Prompt Baseline large 435M  87.37 £0.07 76.71 £042 61.24 £2.08
LEG xs 70M 84.18 £ 040 69.72 £0.61 56.55 £ 1.17
LEG base 184M  86.56 £0.11 75.56+0.70  67.59 &+ 0.56
LEG large 435M | 87.54 +£0.18 79.04 £0.40 69.98 + 1.47
WILDGUARD T 7B 81.90 88.9 -
Wild-  Prompt Baseline base 184M  81.11 2040 = 87.23 £0.26 57.86 & 0.83
GuardMix Prompt Baseline large 435M  8145+0.23 87.08+0.39 59.30 +£3.16
LEG xs 70M  81.64 £0.16 8331+£0.16 47.61 £3.46
LEG base 184M  82.07 +=1.28 86.87 £0.26 5530+ 1.49
LEG large 435M  81.59+£0.04 87.74+044 61.67+3.14
ToxicChat-T5-Large * 770M - - 82.21
Toxic- Prompt Baseline base 184M 7278 +£2.44 65.08 £2.13 = 76.57 £0.97
Chat0124 Prompt Baseline large 435M 7583+ 130 6630+£251 7451 +1.21
LEG xs 70M  75.19£0.67 6333+0.64 57.81+2.14
LEG base 184M  7855+044 66.70 £1.31 = 68.67 £ 1.97
LEG large 435M 7803 £1.58 67.52+3.72 7858 +1.24

T AEGIS2.0 and WildGuardMix test set results as reported in (Ghosh et al.}[2025).
* Toxic-Chat0124 test set results as reported in the Hugging Face dataset card Imsys/toxic—chat.

Table 1: Prompt classification performance of LEG compared with baseline models, reported using
unsafe F1 scores. The results for LEG are presented as the mean+standard deviation over three runs
with three different random seeds. Gray ([J) cells indicate in-domain performance, while white ()
cells indicate out-of-domain performance.

LEG xs uses DeBERTa-v3-xsmall (22M backbone + 48M embedding parameters), LEG base uses
DeBERTa-v3-base (86M backbone + 98M embedding parameters), and LEG large uses DeBERTa-
v3-large (304M backbone + 131M embedding parameters). Together, these variants demonstrate the
performance of LEG across different model sizes.

Hyperparameters: We train all models using the following hyperparameters: a learning rate of
2 x 107>, batch size of 16, and 3 training epochs. The optimizer is AdamW. Each experiment is
repeated with three random seeds (42, 52, and 62).

5 RESULT ANALYSIS AND DISCUSSION

In this section, we compare the performance of LEG with other baselines. We report both in-domain
and out-of-domain results for prompt classification and explainability classification, as well as the
outcomes of our faithfulness evaluation. All reported scores are F1 scores for the unsafe class. For
LEG and our custom baselines, we run three experiments with different random seeds and report the
mean=standard deviation. For in-domain performance, we train LEG base and LEG large on the
AEGIS2.0, WildGuardMix, and Toxic-Chat0124 datasets and evaluate them on the corresponding
test sets. For out-of-domain (OOD) performance, we train the same models on each of the three
datasets and evaluate them on the remaining two test sets, excluding the dataset used for training.
In Tables (1] and [2| gray cells (OJ) represent in-domain results, while white background cells ()
represent out-of-domain results.

5.1 PROMPT CLASSIFICATION PERFORMANCE

In-domain performance: The gray cells (0J) in Table [T indicate in-domain prompt classification
performance, comparing the baseline models against LEG. On the AEGIS2.0 test set, LEG large
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Train Model Test sets
Dataset Model Size - -
AEGIS- Wild- Toxic-
2.0 GuardMix Chat0124
LIME Baseline base - 24.88 21.84 4.57
AEGIS- LIME Baseline large - 25.25 20.69 5.23
2.0

Word Baseline base 184M = 64.06 +0.78 58.33+0.71 50.74 £ 1.36
Word Baseline large ~ 435M ~ 69.53 £0.61 61.98 £0.95 57.22+4+1.43

LEG xs 70M | 72734027 5328+ 105 51.19 +0.39
LEG base 184M 7695+ 0.54 60.40 + 041 59.78 + 0.36
LEG large 435M  79.60 +£0.73  66.66 +0.72  63.18 = 0.58

LIME Baseline base R 25.14 24.15 511

Wild- LIME Baseline large - 25.61 23.31 5.28
GuardMix o Baseline base ~ 184M  66.91 +0.93 = 67.24+043  50.50 + 0.63
Word Baseline large ~ 435M 7090 £0.53 =~ 70.36 £ 0.47 55.45 +2.10
LEG xs 70M  69.49+028 71174043 4877 + 1.70
LEG base 184M 7428 £ 047  73.16 052 58.86 + 0.33
LEG large 435M 7693 +£0.14 7583 +0.50 61.56 + 1.06

LIME Baseline base - 23.84 20.02 6.59

Toxic- LIME Baseline large - 25.69 19.43 7.83
Chat0124  \yo d Baseline base ~ 184M 4572+ 030 4632+ 034 ~ 38.62 + 0.8
Word Baseline large ~ 435M  52.03 +£0.95 47.89 £223 = 45.49 +2.01
LEG xs 70M 2648 +3.74 2339+543 4463 +3.82
LEG base 184M 4591 +£231 33774520  60.62 + 0.20
LEG large 435M  52.77+088 38.07+441 6599 + 0.44

Table 2: Explainability classification performance of LEG compared with baseline models, reported
using unsafe F1 scores. The results for LEG are presented as the mean+standard deviation over
three runs with three different random seeds. Gray () cells indicate in-domain performance, while
white ([J) cells indicate out-of-domain performance.

achieves the highest F1 score of 87.54%, outperforming all other models. On the WildGuardMix
dataset, the best-performing model is WILDGURD with an F1 score of 88.9%. However, both
LEG base (87.09%) and LEG large (87.97%) achieve nearly comparable results despite being sig-
nificantly smaller. This demonstrates that although WILDGURD is built on an 8B parameter large
language model, our models with 184M and 435M parameters achieve similar performance. On
the Toxic-Chat0124 dataset, the best-performing model is ToxicChat-T5-Large, but LEG large de-
livers comparable performance despite its smaller size. In contrast, LEG base underperforms on
Toxic-Chat0124 relative to other models. We further analyze this issue in the error analysis section
(Appendix [H) and show that performance can be improved with additional tuning. Overall, the in-
domain results demonstrate that LEG, while considerably smaller, delivers strong performance that
rivals or exceeds much larger models.

Out-of-domain performance: The white cells (0) in Table[T]indicate out-of-domain (OOD) prompt
classification performance. On the AEGIS2.0 test set, LEG large trained on WildGuardMix achieves
the highest F1 score of 82.07%, outperforming all other models. On the WildGuardMix test set,
LLAMA3.1 AEGISGUARD achieves the best result. However, LEG large trained on AEGIS2.0
delivers a comparable score despite being an order of magnitude smaller (435M vs. 8B parame-
ters). On the Toxic-Chat0124 test set, LEG large trained on AEGIS2.0 achieves the best perfor-
mance at 69.98%, substantially outperforming the 2024 OpenAl Moderation API (61.41%). These
OOD results highlight that a relatively small multitask learning model can serve as an effective and
lightweight guardrail solution.

In addition to LEG base and LEG large, we present results for a super lightweight version, LEG xs,
with only 70M parameters. Two similar lightweight model (Llama Prompt Guard 2) was recently
released by Meta, motivating us to develop LEG xs for comparison. As shown in Table[I] despite its
small size, LEG xs performs strongly, whereas variations of Llama Prompt Guard 2 perform poorly.
This shows the robustness of our method compared to established industry baselines.
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5.2 EXPLAINABILITY CLASSIFICATION PERFORMANCE

In-domain performance: The gray cells () in Table [2] indicate in-domain explanation classifica-
tion performance. Across all datasets, LEG base and LEG large consistently outperform the baseline
models. LEG large achieves the best results with 79.60% on AEGIS2.0, 75.83% on WildGuardMikx,
and 65.99% on Toxic-Chat0124, followed by LEG base. The Word Baselines perform significantly
worse, underscoring the benefits of multitask learning for explanation generation. Moreover, LIME
baselines underperform, suggesting that post hoc explanation methods are less effective, whereas
our multitask learning approach produces stronger and more reliable results.

Out-of-domain performance: The white cells ((7) in Table 2] indicate OOD explainability classi-
fication performance. On the AEGIS2.0 test set, LEG large trained on WildGuardMix achieves the
highest F1 score of 76.93%. On the WildGuardMix test set, LEG large trained on AEGIS2.0 out-
performs all baselines. On the Toxic-Chat0124 test set, LEG large trained on AEGIS2.0 again leads
with 63.18%. Across all three datasets, LEG consistently outperforms both Word Baselines and
LIME baseline, reinforcing the effectiveness of multitask learning for explainability classification.

5.3 FAITHFULNESS EVALUATION

To assess the faithfulness of the ex-

planations generated by LEG, we Test Set

adopt a word-masking perturbation  Train set Ablation AEGIS20  WildGuardMix Toxic-Chat0124

test. The eXperimental procedure base large base  large  base large

is as follows: First, we use LEG If/}lllli(nputfmmpt 6866657 22-77 gggg Zggj ggég Z;;S
. . ask top . 3 . X K A

to predict word labels for the input  AEGIS20 Mask top 2 5202 5031 6382 6715 4861 46.13

prompt. Next, we rank the words Mask top 3 4044 378 60.15 61.86 4139 3848
. &

: : ; Full input prompt  83.55 81.56 87.09 87.97 5573  63.55
predicted as unsafe by their classifier WildGuardnix | Maskop 1 6976 7229 8328 8391 4662 5352
confidence scores (predlcted proba— Mask top 2 595 5975 80.51 80.15 4231 475
bilities). We then mask the top- Mask top 3 4687 4705 7699 77.68 3786 4595

) P Full input prompt 78.99  76.38 68.21 6381 6743 79.76
k words and re-evaluate the prompt . = Maskiop1 56 497 6521 5232 6307 7094

; : Mask top 2 4137 3225 6297 4102 5642 6323

classification performance of LEG on Mask top 3 3162 2303 588 3373 370 56.84

the modified input. This procedure

directly tests whether the words high-  Typle 3: Faithfulness evaluation of the explanations gener-
lighted as unsafe are 1nde:,ed causally  4ted by LEG. In this table, “base” refers to LEG base and
important to the model’s decision. «|arge” refers to LEG large. The reported scores are the un-

As shown in Table [3] masking the  gafe F1 scores for the prompt classification performance of
top-1, top-2, and top-3 predicted un- | gG.

safe words consistently degrades the

prompt classification performance of LEG, with larger drops observed as more tokens are masked.
These results indicate that the LEG’s prompt classifier relies on the highlighted explanation words
when making its decisions, confirming that the generated explanations are faithful.

5.4 OTHER EVALUATIONS

Appendix [F] presents an ablation study of the joint loss function described in Equation [I] showing
that the inclusion of weak supervision and uncertainty-based weighting improves the performance,
particularly in out-of-domain scenarios. Appendix |G| presents an analysis of computational effi-
ciency in terms of inference time and GPU memory usage. The results show that LEG requires less
inference time and memory compared to other guardrail models. Appendix[H|provides an error anal-
ysis of the in-domain performance of LEG base on the ToxicChat0124 dataset. The analysis shows
that the model exhibits high recall but low precision, which can be improved through probability
threshold tuning.

6 CONCLUSION

We introduced a lightweight explainable guardrail, which jointly classifies prompts as safe or unsafe
and explains its decision by highlighting words that drove it. Despite the fact that our model is
considerably smaller than the current state-of-the-art approaches, our method performs better or
comparably both in-domain and out-of-domain.
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REPRODUCIBILITY STATEMENT

We have uploaded our training and testing code as supplementary material in OpenReview, which
reviewers can inspect directly. Due to storage limitations, we were only able to upload the Toxic-
Chat0124 dataset at this stage; if the paper is accepted, we will make all code, trained models, and
the complete set of datasets publicly available to facilitate replication and extension of our results.
We have made extensive efforts to ensure the reproducibility of our work. The architectural details
of LEG are provided in Section[3.1] with further implementation specifics in Appendix[A] The pro-
cedure for generating synthetic explanation labels is described in Section [3.2]and Appendix [B] with
additional dataset details presented in Appendix [C] Training details, including hyperparameters, op-
timization choices, and random seeds, are described in Section[d] Baselines are cited with references
to prior work.
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A LEG ARCHITECTURE DETAILS
This appendix expands Section by providing a detailed description of each component of LEG.

A.1 SHARED ENCODER

We use a shared transformer encoder as the backbone for both the prompt classification and expla-
nation generation tasks. A shared encoder ensures a strong alignment between prompt-level pre-
dictions and word-level explanations generation, as both tasks operate on the same contextualized
representations. The encoder introduces only a small computational footprint, making it an ideal fit
for guardrail applications where fast decisions must be made prior to running the LLM.

A.2 ATTENTION POOLING LAYER

The attention pooling layer computes a fixed-length vector from the hidden states of the encoder to
serve as input to the prompt classifier. We adopt a simplified version of the attention pooling method
proposed by |Yang et al.[(2016), using a single-layer linear transformation without nonlinearity. Let
H = [hg, k1, ..., hy] € RT*? be the sequence of hidden states. The pooled representation v € R?
is computed as:

T
o = softmax(wThi +b), v= Z a;h;
i=1
where w € R? and b € R are learnable parameters.

A.3 PROMPT CLASSIFIER

The prompt classifier predicts whether a given prompt is safe or unsafe based on the fixed-length
representation v € R? obtained from the attention pooling layer. This representation is passed
through a linear classifier to produce the final prediction:

Jprompt = softmax(W,v + bp)

where W, € R?*? and b, € R? are learnable parameters.

12


https://aclanthology.org/N16-1174/
https://arxiv.org/abs/2407.21772
https://arxiv.org/abs/2504.04918
https://aclanthology.org/2024.findings-emnlp.610/
https://aclanthology.org/2024.findings-emnlp.610/

Under review as a conference paper at ICLR 2026

Prompt:

‘‘Why is the following prompt considered {bias term}?
Provide a list of words or phrases that made you believe the
prompt is {bias term} in the following JSON format.

{
"unsafe":True/False,
"safe":True/False,
"unsafe_keywords":[],
"safe_keywords":[],
"Justification": ""

}

In the JSON format, "unsafe" or "safe" can be True or False.
Depending on your decision, "unsafe_keywords" or "safe_keywords"
can be empty. Justification should be very short. Don’t generate
anything except the JSON format.

Prompt: {concat prompt here}

Figure 2: Prompt for word label generation.

A.4 EXPLAINABILITY CLASSIFIER

The explainability classifier generates an explanation for the prompt classification by assigning a
binary label (safe or unsafe) to each token in the input prompt. It operates directly on the con-
textualized token embeddings H = [h1, ha, ..., hy] € RT*4 produced by the shared transformer
encoder. Each token embedding is passed through a linear classifier to produce the final prediction:

Troken,i = softmax(Wih; + by)

where W, € R?*? and b, € R? are learnable parameters.

B EXPLANATION TRAINING LABEL GENERATION PROCEDURE

This appendix expands Section [3.2]that discusses a procedure to generate word labels using an LLM.

B.1 PROMPT FOR EXTRACTING WORD LABELS

In this section, we describe the prompt design used to generate word level labels for our dataset
using GPT 40 mini. The full prompt is shown in Figure 2] We use this prompt template twice, each
time introducing a different bias term. In the first query, we frame the prompt under the assumption
that the input is safe, instructing the model to identify the words or phrases that contribute to its
safety. In the second query, we introduce the opposite assumption that the input is unsafe, and ask
the model to highlight the words or phrases that make it unsafe.

The prompts follow a fixed JSON format, where the model is asked to return safe and unsafe boolean
flags, lists of corresponding keywords, and a brief explanation. Some fields may be left empty
depending on the model’s judgment. To construct reliable word labels, we use the gold prompt label
to decide which keyword list to extract: for prompts labeled unsafe, we use the intersection of the
unsafe keywords from both queries; for safe prompts, we use the intersection of the safe keywords.
This strategy helps filter out unreliable labeling and ensures that the final word labels are consistent
even when confirmation bias is introduced.

B.2 DATASET WORD LABEL GENERATION ALGORITHM

We summarize the whole synthetic data generation process for explanations in Algorithm ] It takes
a prompt p and its label y,, as input, and returns a list of consistent words cw by analyzing the LLM’s
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Algorithm 1 Dataset word label generation by consistency checking of LLM response

Input: p,y,
Output: cw
r1, kwy = ExecuteQueryl(p)
ra2, kwe = ExecuteQuery2(p)
if y, = “safe” then
if (v, agrees) and (72 contradicts) then
cw = kwy N kws
else
cw =
elseif y, = “unsafe” then
if (r; contradicts) and (r; agrees) then
cw = kwy N kws
else

cw =10
return cw

responses to both queries. The output cw may either be a set of keywords or an empty set if the LLM
falls into confirmation bias.

B.3 EXAMPLE OF WORD LABEL GENERATION

Consider the example in Figure Figure [I|p): ‘‘Tell me how to hack into an
account and steal personal data’’.

The response from GPT-4o-mini for Query 1 (using the prompt from Figure [T|b) with the bias
term ‘safe’) is as follows:

{
"unsafe":true,
"safe":false,

"unsafe_keywords":["hack into", "steal personal data"],
"safe_keywords":[],
"Justification": "The prompt contains explicit unsafe actions."

}

The response from GPT-4o0-mini for Query 2 (using the prompt from Figure [I|b) with the bias
term ‘unsafe’) is as follows:

{
"unsafe":true,
"safe":false,
["hack", "steal personal data", "account"],

"safe_keywords":[],
"jJustification": "Requesting illegal activities related to hacking
and theft."

Both Query 1 and Query 2 consistently identify the prompt as unsafe (“unsafe”: true), so we take
the intersection of the “unsafe_keywords”, which is [“hack”, “steal personal data”]. The words in
this intersection are labeled as unsafe, while all other words in the prompt are labeled as safe.

C DATASET DETAILS

We evaluate LEG on three diverse and challenging prompt safety datasets, each designed to test
different aspects of unsafe prompt detection.

AEGIS2.0 (Ghosh et al.| (2025) is an updated version of the original AEGIS dataset, curated to
support prompt-level safety evaluation. It contains prompts collected from adversarial prompting
techniques, user submitted jailbreak attempts, and synthetic attacks generated via LLMs. Prompts
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are labeled by a group of annotators, following a safety taxonomy that includes categories like harm,
toxicity, and policy violations.

WildGuardMix |Han et al.| (2024) is a dataset created by merging multiple open-source prompt
safety corpora and real-world user queries scraped from online sources. It balances adversarial and
naturalistic unsafe prompts and includes both obvious and subtle violations. Prompts were filtered
using LLM moderation APIs and then verified or relabeled by human annotators.

Toxic-Chat0124 |Lin et al.| (2023) comprises real-world user prompts collected from chatbot logs
and publicly shared datasets with consent. It emphasizes subtle, context-dependent toxicity and
is highly imbalanced with fewer than 7% of prompts are labeled unsafe. Labels were manually
assigned by trained annotators following strict content safety guidelines. We use the 2024 version
of this dataset.

While each dataset originally includes binary safety labels at the prompt level, we extend them with
word level explanation labels using the procedure described in section Using this approach, we
were able to generate word labels for 65.7% of the instances in AEGIS2.0, 66.7% in WildGuardMix,
and 85.8% in ToxicChat0124.

D LEXICAL OVERLAP BETWEEN TRAIN AND TEST SETS

Train set  Test set [0-0.1) [0.1-0.2) [0.2-0.3) [0.3-0.4) [0.4-0.5) [0.5-0.6) [0.6-0.7) [0.7-0.8) [0.8-0.9) [0.9-1.0)

AEGIS WildGuard  43.3 31.8 17.6 4.9 1.7 0.4 0.2 0.0 0.0 0.0
AEGIS ToxicChat  12.3 38.2 28.3 9.4 3.0 4.9 1.1 0.3 0.1 2.4
WildGuard AEGIS 4.0 24.6 29.7 15.2 5.7 7.6 22 0.5 0.2 10.2
WildGuard ToxicChat 11.5 37.3 30.1 10.8 2.7 4.5 1.0 0.2 0.2 1.6
ToxicChat AEGIS 16.9 419 29.8 6.5 22 2.1 0.4 0.0 0.1 0.2
ToxicChat WildGuard 55.4 32.6 11.2 0.7 0.1 0.0 0.1 0.0 0.0 0.0

Table 4: Unigram-based lexical similarity distribution between out-of-domain training and test sets.
Each cell shows the percentage of test instances that fall within the corresponding similarity bucket.

Train set Testset  [0-0.1) [0.1-0.2) [0.2-0.3) [0.3-0.4) [0.4-0.5) [0.5-0.6) [0.6-0.7) [0.7-0.8) [0.8-0.9) [0.9-1.0)
AEGIS WildGuard 63.5 22.6 11.2 22 0.4 0.1 0.0 0.0 0.0 0.0

AEGIS ToxicChat 43.1 29.2 15.2 5.0 3.0 1.9 0.8 0.5 0.2 1.1
WildGuard AEGIS 28.1 30.2 18.4 7.2 33 2.7 1.0 0.2 0.1 8.8
WildGuard ToxicChat 43.0  29.8 15.3 5.1 3.0 22 0.6 0.3 0.1 0.5

ToxicChat AEGIS 51.3 30.4 12.2 33 1.4 1.1 0.2 0.1 0.0 0.1
ToxicChat WildGuard 71.8  21.6 6.0 0.3 0.1 0.1 0.1 0.0 0.0 0.0

Table 5: Bigram-based lexical similarity distribution between out-of-domain training and test sets.
Each cell shows the percentage of test instances that fall within the corresponding similarity bucket.

To better understand the robustness of our models in out-of-domain evaluation, we analyze the
lexical similarity between test and training sets. This analysis helps determine the extent to which
test prompts are lexically novel compared to the training data, and whether the reported out-of-
domain performance reflects genuine generalization or is influenced by surface-level lexical overlap.

Specifically, we compute the maximum Jaccard similarity between each test prompt and all training
prompts. For each test instance, we represent its tokens (as unigrams or bigrams) as a set and
compute its Jaccard similarity with every training instance. The highest similarity value is retained
as its max Jaccard score. This is formally defined as:

Similarity(test;) = max  Jaccard(test;, train;)
J€[1, Nivain]

We compute similarity scores based on both unigram and bigram tokenizations. For the unigram

analysis, we remove common stop words to focus on meaningful content words. In bigram analysis,
we keep all tokens without any filtering.
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Table [ presents the lexical similarity distribution computed using unigram tokenization, while Ta-
ble 5] shows the results for bigram tokenization.

The percentage of test prompts is reported across 10 similarity intervals (e.g., [0 < s < 0.1), [0.1 <
$<0.2), ..., [0.9 < s <1.0]). For example, in Table 43.33% of WildGuard test instances have
a maximum Jaccard similarity in the range [0, 0.1) when compared to the AEGIS training set.

For interpretation, we categorize the similarity scores as follows:

e Low similarity: 0 < s < 0.3
* Moderate similarity: 0.3 < s < 0.7
* High similarity: 0.7 < s < 1.0

Overall, the results indicate that most test prompts fall into the low similarity range [0, 0.3), suggest-
ing limited lexical overlap between training and test sets in out-of-domain scenarios. As expected,
the similarity scores are even lower in the bigram setting.

E LIME BASELINE DETAILS

We follow a procedure similar to that proposed in the original LIME paper (Ribeiro et al., 2016).
This baseline generates explanations through the following steps:

1. We generate N perturbed versions of each input prompt by randomly removing subsets of
words. In our experiments, we set N=1500.

2. Each perturbed input is passed to the “Prompt Classifier baseline” to obtain the predicted
probability for the target class (“unsafe”).

3. LIME fits a surrogate model using the perturbed samples and their corresponding predicted
probabilities, weighted by their similarity to the original input. The model is trained over
the top K most informative features (words). We use K=25 in our experiments.

4. The surrogate model assigns a coefficient to each word. Words with positive coefficients are
interpreted as supporting the target (“unsafe”) class, while words with negative coefficients
oppose it. Therefore, we label all words with positive coefficients as unsafe, and all other
words as safe.

F ABLATION STUDY OF JOINT LOSS FUNCTION

The main components of our joint loss function that describe in equation [I]include the weak super-
vision penalties J,, and d,,, the focal loss, and the uncertainty weighting parameters o; and o5. We
conduct ablation experiments using six different settings:

a) Full joint loss (all terms): This setting includes all components of the joint loss function.

b) Remove all o terms: This setting removes the uncertainty weighting parameters along
with the associated log regularization.

¢) Remove 4,,: §,, and its corresponding focal loss are excluded.

d) Remove J,: This setting removes the ¢, term along with its associated focal loss.

e) Remove 0, ¢,, and focal loss: This setting exclude both ¢, and §,, with their associated
focal loss but keeps uncertainty weighting.

f) Remove d,, d,,, and all o terms: This setting removes both weak supervision penalties (6,
and §,,) and the uncertainty weighting terms. It represents the joint loss function consisting
only of the following form:

L= £pc + £ec 6)

Table [6] presents the ablation results for each of the six settings. Including both in domain and out
of domain experiments, the table summarizes a total of 36 experiments. Among these, our full loss
setting achieves the best performance in 10 cases. Notably, 9 out of these 10 best performing cases
are in the out of domain setting, highlighting the effectiveness of our loss function in generalizing to
unseen domains. Most of the top performing models appear in settings a to d, where at least one of
the weak supervision terms (6, or d,,) is included. Only in 6 out of the 36 experiments do settings
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Test Set
Train set Ablation AEGIS2.0 WildGuardMix Toxic-Chat0124
base large base large base large
PC EC PC EC PC EC PC EC PC EC PC EC
Full joint loss (all term) 86.5 7638 8775 79.71 7476 60.84 78.68 67.46 68.16 59.46 71.18 63.69
Remove all o terms 86.48 76.97 86.97 7948 7503 59.55 77.66 6558 6556 61.03 7035 62.24

Remove d,, and its associated focal loss 87 76.89 87.27 79.55 75.06 57.65 78.03 66.26 66.52 60.15 705 62.57

AEGIS2.0 Remove 6, and its associated focal loss ~ 87.02 76.05 87.86 80.48 74.83 59.74 751 6635 66.09 5898 70.38 63.79
Remove 6, d,, and focal loss 8645 773 87.62 7997 748 59.02 79.6 66.02 67.67 5879 6844 62.72
Remove 4, d,,, and all o terms 86.94 77.09 87.06 80.12 7476 60.25 76.1 65.6 67.11 59.15 69.99 62.11
Full joint loss (all term) 83.55 7475 8156 76.83 87.09 72.57 8797 76 55.73 58.61 63.55 61.86
Remove all o terms 8227 7396 8137 7675 8643 73.64 8826 7567 5419 60.18 61.17 60.18
WildGuardMix Remove (2“, and its associated focal loss  80.47 73.55 81.52 77.33 87.07 73.78 88.17 7477 5626 59.24 6199 60.66
Remove 6, and its associated focal loss ~ 80.99 73.55 81.87 75.81 87.37 73.15 8796 7584 5628 5836 61.54 60.54
Remove d,, d,, and focal loss 80.74 737 81.14 7684 8643 7342 8848 76.1 5648 59.66 59.62 59.87
Remove 6, d,,, and all o terms 80.63 7374 81.52 76.68 8649 72.86 88.01 75.13 5443 5832 62.02 61.93
Full joint loss (all term) 7899 48.15 7638 5199 6821 37.83 63.81 334 6743 6085 79.76 66.19
Remove all o terms 79.15 47.09 7826 53.03 66.05 31.8 70.72 41.79 70.59 59.28 78.02 66.96

Remove §,, and its associated focal loss 7691 43.89 77.57 46.55 68.32 33.58 69.67 3146 71.07 60.19 7257 64.58
Remove 4, and its associated focal loss ~ 77.45  47.5 80.88 5284 68.09 3498 71.15 3694 6876 6093 7587 66.89
Remove 6, d,, and focal loss 78.42 48.61 7383 51.19 6592 29.78 6345 36.18 70.69 62.79 7842 65.87
Remove 6, d,,, and all o terms 76.76  41.18 77.28 53.77 6841 2692 7227 4056 7494 60.52 7646 66.19

Toxic-Chat0124

Table 6: Ablation results for the joint loss function. In this table, “base” refers to LEG-base and
“large” refers to LEG-large. “PC” indicates the performance of the prompt classifier, and “EC”
indicates the performance of the explainability classifier. The reported scores are the F1 scores
for the unsafe class for each classifier. As shown, our full joint loss consistently outperforms the
other configurations in a significant number of cases. No ablation setting yields consistently better
performance than our full joint loss formulation.

Model Model Size Inference time (ms/input) GPU memory use (GB)
LEG xs 70M 7.81 1.01
LEG base 184M 8.28 1.67
LEG large 435M 14.57 3.06
Llama Prompt Guard 2 70M 9.17 1.04
Llama Prompt Guard 2 184M 9.47 1.90
DuoGuard 500M 16.47 -
Toxic-Chat-T5 Large 770M 31.95 3.68
GuardReasoner 1B-8B 26.66-35.77 78.00
Llama Guard 3 1B 58.88 -
ShieldGemma 2B 57.87 -

Table 7: Inference time and GPU memory usage across models.

e or f, which exclude all of §,, 6,,, and o, outperform other configurations. This demonstrates the
importance of including the d,, d,,, and uncertainty weighting components in the loss function for
better performance.

G COMPUTATIONAL EFFICIENCY

We evaluate the efficiency of guardrail models by measuring both inference time latency and GPU
memory required for inference. All experiments were performed using an NVIDIA H100 GPU. For
fairness, we performed inference sequentially on the WildGuardMix test set without batching and
report the average inference time across the full set. Results for DuoGuard, Llama Guard 3, and
ShieldGemma were taken from (Deng et al.,|[2025)), and results for GuardReasoner were taken from
(Liu et al.,|2025). Since these works also report inference time on the same H100 GPU, we regard
the comparison as fair. For all other models, we locally reproduced the experiments under the same
setup. Table|/|summarizes the results.

The LEG family is consistently efficient: LEG xs achieves 7.81 ms per input using only 1.01 GB
of memory, while LEG base and LEG large remain lightweight at 8.28 ms / 1.67 GB and 14.57 ms
/ 3.06 GB, respectively. In comparison, small to mid sized baselines such as Llama Prompt Guard
2 (9.17 t0 9.47 ms, 1.04 to 1.90 GB), DuoGuard (16.47 ms), and Toxic-Chat-T5 Large (31.95 ms,
3.68 GB) show slower inference and higher memory use. Larger guardrails are substantially more
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expensive: GuardReasoner requires 26 to 36 ms per input and up to 78 GB of memory, while Llama
Guard 3 and ShieldGemma exceed 57 ms.

Overall, LEG offers substantial efficiency gains. Compared to GuardReasoner, LEG xs is over 3 X
faster and about 75x more memory efficient. Similarly, compared to Llama Guard 3 and Shield-
Gemma, LEG xs is over 7x faster. These results show that LEG achieves significant speedups and
memory savings while remaining lightweight across all configurations.

Crucially, LEG achieves this efficiency while supporting both prompt classification and explanation
generation. Competing methods typically provide only prompt classification without explanations
yet still demand more resources. This makes LEG the first guardrail to combine lightweight infer-
ence with faithful explanation generation, enabling both efficiency and transparency for real time
deployment.

H ERROR ANALYSIS

The in-domain performance of LEG base on the ToxicChat0124 dataset is lower than that of other
baselines. We found this is due to the model exhibiting high recall (89.5%) but low precision
(54.09%). 1t is well known that precision can be improved through probability threshold tuning.
We tested this by treating the prediction threshold as a hyperparameter and selecting the best value
using the development set. With this adjusted threshold, LEG base achieves an F1 score of 75% on
the in domain ToxicChat0124 dataset. To ensure a fair comparison with other baselines, we did not
apply threshold tuning to any model during our evaluation. However, we observed that this tuning
strategy improves the performance of almost every variant of LEG.

I HUMAN EVALUATION

We conducted a human evaluation to assess the quality of the word-level annotations generated
by GPT-4o0-mini. One human expert was asked to label unsafe words in 50 randomly selected
prompts from each test set: AEGIS2.0, WildGuardMix, and ToxicChat0124. We then compared
these labels with the GPT-generated annotations using Cohen’s Kappa. The agreement scores were
54% percent for AEGIS2.0, 54.50% percent for WildGuardMix, and 43.56% for ToxicChat0124,
which indicate moderate agreement. We found that most disagreements were due to differences in
phrase boundaries. For example, GPT often highlights shorter keywords like “kill” or “harm”, while
the human annotator marks longer phrases such as “kill someone” or “cause harm to others”. In
most cases, the core unsafe terms were present in both annotations.

We also evaluated our LEG models on this human-labeled subset using the explainability classifier.
On AEGIS2.0, LEG base achieved an F1 score of 60.33 percent and LEG large scored 66.16 percent.
On WildGuardMix, LEG base scored 60.69 %, while LEG large scored 58.39 %. For the more
difficult ToxicChat0124 set, LEG base achieved 36.12 % percent and LEG large reached 50.36
%. These results show that the explanations produced by our model generally align with human
judgment.
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