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Abstract
We address the challenge of utilizing large lan-
guage models (LLMs) for complex embodied
tasks, in the environment where decision-making
systems operate timely on capacity-limited, off-
the-shelf devices. We present DEDER, a frame-
work for decomposing and distilling the embod-
ied reasoning capabilities from LLMs to efficient,
small language model (sLM)-based policies. In
DEDER, the decision-making process of LLM-
based strategies is restructured into a hierarchy
with a reasoning-policy and planning-policy. The
reasoning-policy is distilled from the data that
is generated through the embodied in-context
learning and self-verification of an LLM, so it
can produce effective rationales. The planning-
policy, guided by the rationales, can render opti-
mized plans efficiently. In turn, DEDER allows
for adopting sLMs for both policies, deployed on
off-the-shelf devices. Furthermore, to enhance the
quality of intermediate rationales, specific to em-
bodied tasks, we devise the embodied knowledge
graph, and to generate multiple rationales timely
through a single inference, we also use the con-
trastively prompted attention model. Our experi-
ments with the ALFRED benchmark demonstrate
that DEDER surpasses leading language planning
and distillation approaches, indicating the appli-
cability and efficiency of sLM-based embodied
policies derived through DEDER.

1. Introduction
In embodied AI, significant advancements have been made
in applying large language models (LLMs) to task planning.
For example, SayCan (Brohan et al., 2023) combines LLMs’
reasoning capabilities with a reinforcement learning (RL)-
based affordance model to interpret task instructions and
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deduce executable robotic skills in the environment. Sev-
eral works (Huang et al., 2022; Wu et al., 2023; Song et al.,
2023; Singh et al., 2023) explore the grounding of LLMs to
the environment through prompting based on sensory data,
reference trajectories, and available skills. Recently, palm-
e (Driess et al., 2023) expands the embodied reasoning abil-
ities of LLMs to include multimodal data, such as visual ob-
servations of the environment. Yet, these approaches, which
directly rely on LLMs for continual short-term decision-
making, often encounter practical limitations in real-world
applications, particularly when decision-making agents are
required to operate on capacity-constrained, off-the-shelf
devices. The high computational requirements of LLMs
pose a significant challenge in such scenarios.

The direct end-to-end distillation of an LLM into a more
compact, resource-efficient model, while it appears straight-
forward, might not be effective for complex embodied
tasks (Dasgupta et al., 2023). This challenge stems from the
requirements of a deep understanding on embodied task fea-
tures, which inherently demand the long-horizon multi-step
reasoning along with the ability to adapt to time-varying
environment contexts. An embodied agent frequently en-
counters new and unseen environment information through
its interaction with the surroundings. This continual expo-
sure to a diverse range of environment conditions adds layers
of complexity and variability, which in turn complicates the
distillation process.

Our work is focused on the distillation of LLM-based poli-
cies for embodied tasks into off-the-shelf agents that are
only capable of operating small language models (sLMs).
We present DEDER, an innovative embodied distillation
framework, designed to decompose and distill the embodied
reasoning and decision-making procedures of LLM-based
policies into two distinct small, more manageable models:
reasoning-policy and planning-policy. The reasoning-policy
focuses on understanding and interpreting task requirements
and environment contexts, while the planning-policy concen-
trates on generating actionable plans based on the insights
provided by the reasoning-policy. This division allows for
the sophisticated functionalities of LLMs to be leveraged
in a more resource-efficient manner, suitable for embodied
agents with capacity-limited, off-the-shelf devices.

Achieving the reasoning-policy via LLM distillation
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presents a unique challenge due to the hidden nature of
reasoning processes within an LLM. We address this by
employing the embodied Chain-of-Thought (CoT) and in-
context learning, enhanced with self-verification, through
the iterative use of the LLM. For the reasoning-policy, we
employ the embodied knowledge graph (KG)-based prompt-
ing and the contrastively prompted attention model, inte-
grated with an sLM. These two techniques improve the
quality of rationale outcomes from the reasoning-policy, by
integrating the environment information to a KG efficiently
and representing the current context effectively. They also
allow for a parallel structure for multiple rationale genera-
tion, thereby facilitating the timely task planning at runtime.
The planning-policy exploits the distilled rationales to de-
termine executable plans, addressing the practical need for
actionable decision-making for complex tasks.

Using the ALFRED benchmark (Shridhar et al., 2020), our
experiments exhibit the advantages of DEDER. The results
demonstrate that the policy derived through DEDER signifi-
cantly surpasses other baselines such as LLM-planner (Song
et al., 2023) in zero-shot task planning scenarios. DEDER
achieves a substantial improvement of 15.0% in seen task
settings and 21.1% in unseen settings. Considering that
DEDER employs an sLM at runtime instead of LLMs, the
results clearly underline the exceptional adaptability of
DEDER in handling new and unencountered environments.

Note that DEDER is the first framework to achieve sLM-
based policies, which is resource-efficient yet comparable to
LLM-based policies (i.e., the baselines in Section 5.1) in per-
formance, for complex embodied tasks. The contributions
of our work are summarized as follows.

• We present the novel framework DEDER, addressing
the challenges of distilling LLMs’ reasoning capabil-
ities for embodied tasks to a small policy, readily de-
ployed on capacity-limited, off-the-shelf devices.

• We devise the two-tier policy hierarchy in DEDER,
through which the embodied reasoning process is de-
composed and its knowledge can be distilled systemat-
ically to achieve a robust sLM-based policy.

• We develop the data construction process from LLMs
for rationales specific to embodied tasks, exploring
in-context learning and self-verification techniques.

• We implement the embodied KG and prompted atten-
tion model for sLM-based policies, to enhance the
rationale quality across environment changes and facil-
itate rapid task planning.

• Through extensive experiments on ALFRED, we show
DEDER’s effectiveness and efficiency in achieving ro-
bust zero-shot performance for unseen embodied tasks.

2. Related Work
LLM-based Embodied Control. In the field of embodied
control, there is a growing trend of utilizing LLMs for rea-
soning and execution of tasks in real-world settings (Brohan
et al., 2023; Huang et al., 2022; Song et al., 2023). Our work
aligns with this direction but sets itself apart by aiming to
enable off-the-shelf devices to attain comparable embodied
task performance without directly utilizing LLMs at runtime,
instead focusing on tuning a smaller language model.

Embodied Policy Distillation. Recently, several works
focused on distilling complex decision-making strategies,
often derived from computationally intensive models, into
compact and efficient ones suitable for resource-constrained
environments. In (Sumers et al., 2023), knowledge is dis-
tilled from pre-trained vision-language models to supervise
the language grounded skills of instruction-following agents.
In (Jain et al., 2021), a two-stage training scheme is adopted
for visual embodied agents. A relevant subset of policy
distillation in RL is transferring the teacher policy in a su-
pervised fashion (Yin & Pan, 2017). In particular, prior
work concentrated on reducing the cross-entropy between
the distributions of teacher and student policies (Parisotto
et al., 2016; Schmitt et al., 2018). Our LLM-based pol-
icy distillation is also to minimize the divergence from the
distribution of a teacher policy, which is an LLM, while
exploring the unique two-tier hierarchy in decomposition
and distillation of the LLM’s reasoning capabilities.

Reasoning Capabilities of LLMs. Numerous studies inves-
tigated the reasoning capabilities of LLMs, exploring meth-
ods like retrieval-augmented in-context examples (Lewis
et al., 2020; Ram et al., 2023), KG integration (Andrus et al.,
2022; Baek et al., 2023), and CoT prompting (Wei et al.,
2022; Wang et al., 2022). Recent research also demonstrated
the effectiveness of distilling CoT processes from LLMs
into sLMs (Wang et al., 2023; Li et al., 2023). Our work is
in the same vein as LLM distillation, but specifically targets
complex embodied tasks and uses decomposed distillation.

3. Problem Formulation
In RL, an environment for embodied agents is modeled as a
Partially Observable Markov Decision Process (POMDP),
represented by a tuple (S,A, P,G,H, R,Ω,O) (Song et al.,
2023; Singh et al., 2023). Here, s ∈ S is a state space,
a ∈ A is an action space, P : S × A × S → [0, 1] is a
transition probability, G ∈ G is a goal space, h ∈ H is a
high-level task description and R : S × A × G → R is a
reward function. The distinct aspect of embodied agents’ en-
vironment lies in its nature of partial observations, featured
as an observation space o ∈ Ω and a conditional observation
probability O : S × A → Ω (Sutton & Barto, 2018). This
aspect accounts for the agents’ limited perception, rendering
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Figure 1. DEDER framework with three phases: (i) In rationale
dataset construction phase, the MDP-featured in-context learning
and self-critic function are employed to extract rationales from
the LLM; (ii) In policy distillation phase, the sLM-based policy
consisting of reasoning-policy and planning-policy is trained using
the extracted rationale data; (iii) In zero-shot deployment, the
distilled sLM-based policy is evaluated in unseen environments.

the decision-making complex and reflective of real-world
situations. Our goal is to achieve a robust sLM-based policy
Φ∗

sLM for capacity-limited, off-the-shelf devices, which is
comparable to the capabilities in embodied task planning
demonstrated by LLM-based policies ΦLLM.

Φ∗
sLM = argmax

ΦsLM

E

[ ∞∑
t=0

γtR(st,ΦsLM(ot, ht), G)

−D(ΦLLM(ot, ht),ΦsLM(ot, ht))

] (1)

Note that D is a distance function such as Kullback-Leibler
divergence (Kullback & Leibler, 1951) and γ is a discount
factor of the environment.

4. Approach
For embodied tasks, it is essential for the agent to have rea-
soning capabilities to understand and interact with complex,
dynamic environments. Yet, the simplification of the rea-
soning process is particularly necessary when employing an

sLM-based policy, given the inherent limitations of sLMs
due to their restricted model capacity. This can be achieved
by integrating Markov Decision Process (MDP) features
such as goal, state, observation, action, return-to-go, and
sub-goal, which RL formulations specify, into the reason-
ing process (Chane-Sane et al., 2021; Hausknecht & Stone,
2015; Chen et al., 2021; Janner et al., 2021).

In this work, we refer to this type of environment informa-
tion and MDP features as rationales, as they can function
as justifications or hints that help to elaborate the reasoning
behind plans. We leverage these rationales as a means to ef-
fectively distill the embodied reasoning capabilities from an
LLM to small models, thereby achieving an sLM-based pol-
icy. For this distillation, we develop the DEDER framework
comprising these phases: (i) rationale dataset construction,
(ii) policy distillation via embodied KG, and (iii) zero-shot
deployment and evaluation, as illustrated in Figure 1.

In the phase of rationale dataset construction, we harness the
CoT scheme inherent in the usage of LLMs to extract ratio-
nales from expert transitions (i.e., series of action plans) in
the environment. This is achieved through MDP-featured in-
context learning, employing RL-specific queries as prompts
that are defined by the properties of the MDP. In the sub-
sequent phase of policy distillation, we establish an sLM-
based policy structured in a two-tier hierarchy based on
an embodied KG. It includes a reasoning-policy, which
is trained to generate rationales in a single-step CoT opti-
mized by behavior-based contrastive learning, as well as
a planning-policy, which is learned to infer action plans
through CoT prompting guided by these rationales. In the
deployment phase, we evaluate distilled sLM-policy in a
zero-shot manner for unseen environments in which task de-
scriptions, object positions, and indoor scenes are changed.

4.1. Rationale Dataset Construction

Consider an expert dataset Dexp = {τi = (oi, ai, hi)}i,
where each transition τi includes an observation oi, action
(plan) ai, and high-level task description hi for timesteps i.
We expand the Dexp dataset to establish a rationale dataset
DRtn = {ci = (oi, ai, hi,Ri)}i, where each transition τi is
supplemented with a rationale setR = {rj}mj=1. To obtain
the rationale set specifically configured for given embodied
tasks, we integrate MDP-featured in-context learning with
the CoT prompting mechanism of an LLM. This involves
iteratively prompting the LLM with a series of RL-specific
queries, exploiting retrieval-augmented examples, similar
to (Ram et al., 2023). Subsequently, the rationale set under-
goes LLM’s assessments, as discussed in (Sun et al., 2023),
to be incorporated into the dataset DRtn.

MDP-Featured In-Context Learning. To extract the ra-
tionales from the LLM using the transition τ , we continu-
ally update in-context examples in a retrieval-augmented
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Figure 2. MDP-featured in-context learning in DEDER for ratio-
nale extraction from the LLM: the examples of inputs, queries (in
red), and rationales (in blue) for the desired plan are presented,
wherein MDP-aligned ones are specifically emphasized.

manner from dataset DRtn. We use a retriever function
F : (τ, C) 7→ Ck, as described in (Karpukhin et al.,
2020). It takes a transition τ from Dexp and a set of tu-
ples C = {c1, ..., cn} from DRtn as input, and retrieves the
top-k most semantically relevant tuples from C for given
τ , thus achieving an example set Ck. The semantic rele-
vance is calculated by the inner product between language
embeddings of τ and c through the pre-trained contex-
tual embedding model E. That is, we obtain relevance
S(τ, c) = E(τ)⊤E(c).

With the tuples Ck, we then have the rationale setR sequen-
tially by prompting the LLM ΦLLM with a pre-defined set
of RL-specific queries Q = {q1, ..., qm}.

R = {rl|rl = ΦLLM(Ck, τ, {rj}j<l, ql)} (2)

Here, {rj}j<l denotes a set of previously generated ratio-
nales for the questions preceding rl. In this process, Ck
is used to enhance the in-context learning of the LLM, as
described in (Ram et al., 2023), enabling it to effectively
respond to queries ql. In specific, RL-specific queries are
designed to extract MDP features, which are necessary for
embodied task planning such as a goal, state, plan, obser-
vation, plan history, and sub-goal. The example of these
queries and rationales is shown in Figure 2.

LLM as a Self-Critic Function. To ensure that the rationale
set R aligns with the action plan a, we also use the LLM
as a self-critic function. Specifically, we use a query qcri
to prompt the LLM to check whether the plan a can be
induced solely from the extractedR. In cases whenR does
not provide sufficient information for a, we start over by

retrieving in-context examples. Otherwise, we incorporate
the newly generated tuple c = (o, a, h,R) to the dataset
DRtn. By employing this self-verification, we aim to gather
rationales that encompass sufficient information to deduce
plans in the expert transitions.

DRtn = {ci|ΦLLM(qcri,Ri, ai) = 1, ci ∈ DRtn} (3)

4.2. Policy Distillation via Embodied Knowledge Graph

To distill the reasoning capabilities of the LLM to an sLM-
based policy ΦsLM using the rationale datasetDRtn, we struc-
ture the policy in a two-tier hierarchy. The first tier is a
reasoning-policy ΦR; it is responsible for inferring a ratio-
nale set from a given observation o, a task description h,
and an embodied KG g. The second tier is a planning-policy
ΦP; it generates the plan, guided by the rationales from ΦR.

ΦsLM = ΦP ◦ ΦR : (o, h; g) 7→ a. (4)

The embodied KG is an internal component of the sLM-
based policy, encapsulating the environment information.

In training, we use a fine-tuning method with soft prompts
for the sLM-based policy. This is effective for adopting
sLMs with limited reasoning capabilities, where in-context
learning is not allowed.

Embodied KG. As the agent continuously interacts with
the environment and can accumulate information for task
completion, it is important to represent information effi-
ciently for prompting the sLM-based policy. We employ
an embodied KG, a set of triples g = {xi = (xs

i , x
r
i , x

o
i )}i,

where xs is the subject, xr is the relation, and xo is the
object. For instance, given “an apple is on the table” and
“the agent picks up a knife”, the corresponding triples are
(Apple, On, Table) and (Agent, Pickup, Knife), respectively.
We refine the embodied KG at each planning step t by an
update function U such as

U : (gt−1, at−1, ot) 7→ gt. (5)

To prompt the sLM-based policy, we also use the KG re-
triever function V , which retrieves a subset of triples from
g relevant to observation o and task description h.

V : (o, h; g)→ {x ∈ g|S(x, (h, o)) ≥ δ} (6)

The relevant triples are chosen by the pre-trained semantic
relevance function S between each triple in g and inputs o
and h, where δ is a threshold hyperparameter. Hereafter, g
denotes the graph extracted via the KG retriever function.

Reasoning-Policy Distillation. For the reasoning-policy
ΦR which produces a rationale set, we employ the attention
module with an encoder-decoder architecture.

ΦR = ΦDec ◦Ψ ◦ ΦEnc : g 7→ R (7)
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Figure 3. Distillation procedures in DEDER: During the rationale dataset construction phase, the LLM is iteratively prompted with queries
qi and rationales ri to refine in-context examples Ck through retrieval augmentation. The LLM also serves as a critic, evaluating the
validity of the extracted rationales R. During the policy distillation phase, the embodied KG containing environment information as
well as expert experiences is used as input g to the sLM-based reasoning-policy with the prompted casual attention, which is trained
through behavior-based contrastive learning. The structure of reasoning-policy is specifically designed to produce multiple rationales R in
a single-step CoT process through the integration of the prompted attention Ψ and the encoder-decoder architecture. The reasoning-policy
is distilled from the embodied KG, which is continually updated from the dataset. Subsequently, the planning-policy Φp is trained to
produce a timely action plan a, by immediately using the rationales R at each step.

To facilitate the single-step CoT through the reasoning-
policy ΦR, we also use soft prompt pools θ =
[θ(1), θ(2), ..., θ(m)], θ(i) ∈ Rd, where d is the dimension
of prompt θ(i) (Senadeera & Ive, 2022). The encoder ΦEnc
incorporates two distinct prompt pools: a prefix prompt pool
θPre and a postfix prompt pool θPos.

ΦEnc : (g; θPre, θPos) 7→ z = [z1, ..., zd] (8)

Each prefix prompt θ(i)Pre is initialized based on the language
embedding of the query qi, while each postfix prompt θ(i)Pos
is randomly initialized. Furthermore, for emphasizing in-
formation in each rationale and transferring it sequentially,
in line with the rationale dataset construction, the attention
module Ψ includes a causal attention Ψc (Vaswani et al.,
2017) and gated attention Ψg (Xue et al., 2020), i.e.,

ẑ = [ẑ1, ..., ẑd] = Ψ(z) = z + α(Ψc(z) + Ψg(z)) (9)

where α is a scaling factor that regulates the influence of the
attention mechanisms’ outputs. The decoder ΦDec utilizes a
decoder prompt pool θDec to generate a set of rationalesR.

ΦDec : (ẑ; θDec) 7→ R (10)

With the embodied KG generated by update function U
and KG retriever function V from DRtn, we optimize the
reasoning-policy by the rationale reconstruction loss.

LRtn = E
(o,h,R)∼DRtn

[
m∑
i=1

log ΦR(ri|g)

]
(11)

This loss is calculated as the expected sum of the log-
likelihoods for generating each rationale ri.

Considering that subtle changes in the environment might
lead to inconsistent agent’s plan, we devise the prompted
KG representations, using behavior-based contrastive learn-
ing (Stooke et al., 2021; Zhang et al., 2022; Choi et al.,
2023). The prompted KG representations facilitate the
causal and gated attentions for the reasoning-policy, thus
enabling a single-step inference for multiple rationales.
We sample a batch of embodied KG pairs BCon =
{(gi, g+i ), (gi, g

−
i )}i, where (gi, g+i ) denotes a positive pair,

and (gi, g
−
i ) denotes a negative pair. Specifically, the posi-

tive pair consists of embodied KG executing the same plan,
while the negative pair is defined as consecutive planning
steps. Then, the contrastive learning loss is formulated as

LCon = E
BCon∼DRtn

[max{0, d(ẑ, ẑ+)− d(ẑ, ẑ−) + ϵ}] (12)

where ẑ = Ψ ◦ ΦEnc(g; θPre, θPos), d represents the sum
of a distance metric within the embedding space ẑ ∈ Z
corresponding to an element of the rationale embedding
sequence (Chen et al., 2020; Oord et al., 2018), and ϵ is a
margin parameter.

Planning-Policy Distillation. The planning-policy ΦP
predicts a next plan a based on the rationale set generated
from the reasoning-policy ΦR.

ΦP : (R = ΦR(g)) 7→ a (13)
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Algorithm 1 Policy Distillation
Rationale Dataset DRtn
Initialize reasoning-policy ΦR, and planning-policy ΦP
Initialize prompt pools θPre, θPos, θDec

1: /* Reasoning-Policy Distillation */
2: while not converge do
3: Sample a batch B = {(oi, ai, hi)}i ∼ DRtn
4: Obtain BCon = {(gi, g+i ), (gi, g

−
i )}i using (5), (6)

5: Update ΦR, θPre, θPos, θDec using (11), (12)
6: end while
7: /* Planning-Policy Distillation */
8: while not converge do
9: Sample a batch B = {(oi, ai, hi)}i ∼ DRtn

10: Obtain B = {(ai, gi)}i using (5), (6)
11: CalculateR using ΦR on batch B
12: Update ΦP using (14)
13: end while

We optimize the planning-policy via the reconstruction loss.

LPlan = E
(o,a,h)∼DRtn,R∼ΦR

[log ΦP(a | R)] (14)

Algorithm 1 lists the policy distillation procedures, where
the losses in (11), (12) and the loss in (14) are used for the
reasoning policy and the planning-policy, respectively.

5. Evaluation
5.1. Experiment Setting

Environments. For evaluation, we use the ALFRED (Shrid-
har et al., 2020) environment. For embodied reasoning tasks,
ALFRED features a wide variety of interactive elements
including 58 distinct object types (e.g., bread) and 26 recep-
tacles object types (e.g., plate) across 120 different indoor
scenes (e.g., kitchen). By combining these objects and in-
door scenes with instructions of 7 different types (e.g., pick
& place), 4703 distinct tasks can be configured (e.g., “Put a
keychain in a plate and then put them in a shelf”). This setup
provides a broad spectrum of real-world-like challenges, en-
compassing complex navigation, object manipulation, and
executing sequential operations.

We use 312 trajectories for the expert dataset and organize
the evaluation tasks into 4 categories based on their similar-
ities to the tasks in the expert dataset. For Train category,
the tasks are identical to those in the expert dataset. For
Seen category, the tasks remain the same as those in the
expert dataset, except that the starting positions of the task-
irrelevant objects are placed randomly. For Unseen Spatial
category, all objects in the environment are placed randomly.
The most challenging category Unseen Environment in-
cludes new tasks and indoor scenes not presented in the
expert dataset. The environment details are in Appendix A.

Baselines. For comparison, we implement several language
planning approaches: 1) SayCan (Brohan et al., 2023) is an
embodied planning framework that integrates the probability
from an LLM with affordance scores. For embodied control,
the affordance is based on object presence information. 2)
ZSP (Huang et al., 2022) employs a step-wise planning to
accomplish the embodied tasks. 3) LLM-planner (Song
et al., 2023), directly utilizes an LLM for embodied task
planning, which dynamically re-plans when it fails to gener-
ate an executable plan. In evaluating in off-the-shelf devices,
we adopt sLMs for these language planning baselines (Say-
Can, ZSP, LLM-planner).

We also implement several knowledge distillation algo-
rithms: 4) SCoTD (Li et al., 2023) is a knowledge dis-
tillation algorithm to train an sLM using reasoning samples
derived from an LLM. 5) SCOTT (Wang et al., 2023) is a
knowledge distillation method to train an sLM, which in-
volves self-consistent CoT augmentation from an LLM and
counterfactual reasoning objectives. 6) End2End (Micheli
& Fleuret, 2021) is an embodied task planning method using
a single-tier policy unlike DEDER, which directly generates
a plan from the inputs. To evaluate the task planning perfor-
mance in the environment through generated trajectories, we
also implement an additional rule-based policy that directly
interacts with the environment, following the action plans
from the baselines and our DEDER.

Evaluation metrics. We use two different metrics in AL-
FRED (Shridhar et al., 2020). Task Success Rate (SR) (%)
is the percentage of tasks fully completed, where a task is
regarded as a success if and only if all the sub-goals are
achieved. For example, the task “Slice a heated bread” is
decomposed into individual sub-goals like “slice the bread”
and “heat the bread”. Goal-conditioned Success Rate (GC)
(%) is the percentage of sub-goals that are completed.

5.2. Performance Evaluation

In Table 1, we evaluate the embodied task planning per-
formance, wherein each policy is evaluated in a zero-shot
manner. Our DEDER consistently demonstrates the robust
performance in both SR and GC metrics across all test cate-
gories (Train, Seen, Unseen Spatial, Unseen Environment),
achieving 21.6% higher SR and 12.3% higher GC on aver-
age over the most competitive baseline LLM-planner-PaLM.
Given that LLM-planner-PaLM exploits the PaLM (Chowd-
hery et al., 2023) with 540 billion parameters, 2700 times
larger than DEDER, this performance gain of DEDER is par-
ticularly significant. Moreover, compared to the baselines
that have the same parameter size, we observe that DEDER
outperforms these baselines for all categories up to 27.6%
higher SR and 12.6% higher GC on average.

The language planning baselines (SayCan, LLM-Planner,
ZSP), which are configured to adopt sLMs (LLaMA2,
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Table 1. Performance of embodied task planning in ALFRED with 4 different task categories

Method Train Seen Unseen Spatial Unseen Environment

SR GC SR GC SR GC SR GC

LLM-based policy: PaLM (540B), LLaMA2 (7B)

SayCan-PaLM 34.1±0.0 68.8±0.0 37.6±0.0 66.8±0.0 26.5±0.0 66.5±0.0 29.3±0.0 68.8±0.0
LLM-planner-PaLM 70.9±0.0 86.6±0.0 66.8±0.0 84.3±0.0 33.6±0.0 67.6±0.0 17.2±0.0 54.3±0.0
ZSP-PaLM 73.8±0.0 89.2±0.0 59.6±0.0 80.7±0.0 28.8±0.0 66.5±0.0 6.9±0.0 36.5±0.0
SayCan-LLaMA2 0.0±0.0 10.6±0.0 0.3±0.0 9.6±0.0 0.0±0.0 10.3±0.0 0.0±0.0 2.2±0.0
LLM-planner-LLaMA2 1.8±0.0 19.6±0.0 2.0±0.0 22.7±0.0 0.8±0.0 19.6±0.0 0.0±0.0 15.8±0.0
ZSP-LLaMA2 54.3±0.0 76.5±0.0 26.7±0.0 59.9±0.0 6.7±0.0 46.9±0.0 0.0±0.0 26.6±0.0
sLM-based policy: GPT2-large (0.8B), GPT2 (0.2B)

SayCan-GPT2-large 0.2±0.0 14.7±0.0 0.5±0.0 17.1±0.0 0.5±0.0 17.6±0.0 0.0±0.0 18.1±0.0
LLM-planner-GPT2-large 0.0±0.0 3.43±0.0 0.0±0.0 4.0±0.0 0.0±0.0 2.0±0.0 0.0±0.0 1.8±0.0
ZSP-GPT2-large 1.8±0.0 3.6±0.0 0.8±0.0 3.4±0.0 0.3±0.0 4.3±0.0 0.0±0.0 0.4±0.0
End2End-GPT2-large 41.1±12.2 63.5±11.6 25.2±7.0 54.3±10.9 11.4±4.5 50.1±9.2 5.7±1.0 53.8±25.3
SCoTD-GPT2 55.8±4.2 82.7±1.5 51.8±5.2 79.0±2.3 29.3±2.1 70.4±0.9 27.6±1.7 59.8±1.7
SCOTT-GPT2 62.2±1.6 85.6±0.1 57.2±4.0 81.3±1.6 32.7±2.1 72.0± 0.1 24.1± 7.9 60.3±1.6
End2End-GPT2 33.1±4.6 46.6±8.1 17.6±2.6 38.8±8.0 8.5±6.3 36.3±9.1 3.4±0.9 34.6±9.0
DEDER-GPT2 100.0±0.0 100.0±0.0 81.8±0.5 92.2±0.2 52.7±1.0 81.2±0.4 40.3±0.9 68.7±0.6

GPT2-large), exhibit low performance. This is due to sLMs’
limited reasoning capabilities. Meanwhile, the knowledge
distillation baselines (SCoTD, SCOTT) maintain decent per-
formance. While they use distillation from an LLM via
few-shot prompting, their distilled knowledge is somewhat
limited by the conventional CoT mechanism. This limitation
arises because they do not employ multi-step prompting and
self-verification, unlike DEDER. Furthermore, the End2End
baseline exhibits significantly low performance in directly
conducting embodied task planning with the expert dataset,
due to the limited reasoning capability of the sLM.

In contrast, our framework employs the rationale dataset and
the sLM-based policy with a two-tier hierarchy structure.
This enables the effective distillation of the LLM’s reasoning
capabilities, specifically tailored for embodied task planning
based on MDP-featured in-context learning.

5.3. Ablation Studies

In the ablation studies, the performance metrics for all test
categories (Train, Seen, Unseen) are reported in SR.

Rationale Dataset Construction. For extracting rationales
and constructing the dataset in Section 4.1, we test several
language models, including sLMs such as GPT2-large (Rad-
ford et al., 2019) denoted as GPT2, and LLMs such as
PaLM and GPT3 (Chowdhery et al., 2023; Brown et al.,
2020). We also evaluate the dataset construction process
without employing MDP-featured in-context learning and
self-verification; This ablated method is denoted as Few-
shot, as described in (Wei et al., 2022), where a fixed set of
examples is used for prompting rationale extraction.

In Table 2, there is a notable performance drop across the

task categories when employing GPT2. These results are
consistent with our motivation to harness the reasoning ca-
pabilities of LLMs for rationale extraction, which in turn
contributes to the effective distillation into the sLM-based
policy. Moreover, DEDER yields better performance com-
pared to Few-shot by an average of 5.35% in the Unseen
settings, excluding GPT2 results. This improvement indi-
cates the benefits of our MDP-featured in-context learning
and self-verification methods.

Table 2. Ablation on rationale dataset construction

Method LM Train Seen Unseen

Few-shot GPT2 41.9±19.3 2.4±0.5 0.3±0.1
DEDER GPT2 60.8±4.0 53.5±2.2 23.4±8.2
Few-shot GPT3 100.0±0.0 72.8±0.1 38.6±1.5
DEDER GPT3 100.0±0.0 72.8±0.1 42.2±1.2
Few-shot PaLM 100.0±0.0 76.9±0.3 39.6±0.1
DEDER PaLM 100.0±0.0 81.8±0.5 46.5±1.0

Rationale Structure. We analyze the effect of individual
queries designed for rationale extraction. In Figure 4(a), we
evaluate the rationale set generated by the reasoning-policy
involving the LLM’s self-critic function in (3). The dot-
ted line denotes the performance achieved by employing
all 7 queries, whereas each bar along the x-axis indicates
the performance when the i-th query is excluded during
the dataset construction. Since each query is specifically
designed to capture unique features in MDPs, such as goals,
state, and return-to-go (illustrated in Figure 2), the exclusion
of any one of these queries leads to a performance decline.
In Figure 4(b), each bar along the x-axis represents the
performance achieved when the rationale set is formulated
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with the queries up to the i-th. In the rationale generation
process, the 1st and 2nd queries encapsulate general infor-
mation that is applicable to any of the tasks. From the 3rd
query onwards, the reasoning becomes increasingly specific
to a given task. Thus, we observe the best performance
when all queries are used, building upon the comprehensive
information generated in the earlier steps.

(a) Rationale omission (b) Incomplete rationales

Figure 4. Ablation on each rationale

Reasoning-policy structure. Table 3 shows the effect of our
embodied KG and contrastive learning scheme LCon. The
results indicate that DEDER, when utilizing both KG and
LCon, achieves the highest performance. This is attributed to
our embodied KG, which efficiently encapsulates both the
evolving embodied information and the agent’s interaction
experiences. Additionally, in the absence of contrastive
learning, the reasoning-policy struggles to extract precise
features for the next plan, leading to a performance drop.
We also measure the inference time of DEDER and DEDER
without embodied KG on off-the-shelf devices such as RTX
3090 and 3050 GPUs. As the use of embodied KG allows for
more efficient representation, DEDER achieves a reduction
in inference time by 0.3 second on average.

Table 3. Ablation on embodied KG and contrastive learning

Method Inference Time Seen Unseen
RTX 3090 RTX 3050

DEDER 0.65±0.01 1.16±0.01 81.8±0.5 46.5±1.0
− LCon - - 77.2±0.5 42.5±1.5
− KG 0.72±0.01 1.68±0.01 71.0±6.3 42.0±6.4
− KG & LCon - - 73.2±0.5 43.3±0.8

Table 4 shows the effect of our attention structure Ψ consist-
ing Ψc and Ψg, which are used in the reasoning-policy ΦR.
In the table, Iterative specifies that ΦR is inferred m times
sequentially to generate the rationale set without using the
attention mechanism. Ψa denotes the basic attention struc-
ture (Vaswani et al., 2017). Considering both the success
rate and inference time, DEDER not only efficiently distills
rationales but also offers an effective inference framework
for off-the-shelf agents. This is significant when consid-
ering that LLM-planner-LLaMA2 reaches 9.37 seconds at
maximum resource usage on an RTX 3090, as in Table 1.

Table 4. Ablation on attention structure in reasoning-policy

Method Inference Time Seen Unseen
RTX 3090 RTX 3050

Iterative 2.92±0.02 3.08±0.01 76.0±0.7 44.6±1.2
DEDER 0.65±0.01 1.16±0.01 81.8±0.5 46.5±1.0
− Ψc 0.63±0.01 1.16±0.01 75.9±0.3 40.6±0.6
− Ψg 0.63±0.01 1.16±0.01 76.8±0.3 40.7±1.4
− Ψc & Ψg 0.60±0.01 1.00±0.01 63.3±0.1 34.1±0.1

DEDER w Ψa 0.63±0.01 1.17±0.01 74.7±0.4 43.6±0.1

sLM Capacity. Table 5 shows the performance of DEDER
with respect to the variations in network parameter sizes for
the reasoning-policy ΦR and the planning-policy ΦP. In our
default framework implementation, we utilize the t5-small
and gpt2 models for ΦR and ΦD, respectively. The results
indicate that the performance improvement is not signif-
icant when the parameter size of the planning-policy ΦP
increases. In contrast, enhancing the parameter size of the
reasoning-policy ΦR results in performance gains, showing
an average increase of 6.57% when comparing the t5-small
and the t5-large used for ΦR in unseen settings. Specifically,
the smaller sLM (t5-small) tends to overfit on the training
datasets, which might yield better performance in the Seen
category compared to the mid-sized sLM (t5-base). For the
larger sLM (t5-large), a performance improvement is noted
in the Seen category, attributed to its enhanced reasoning
capabilities. In contrast, the Unseen settings demonstrate
a linear performance increase as the parameter size of the
reasoning policy grows, suggesting that a larger parameter
size significantly boosts the generalization ability of the
model. This indicates the benefits of distilling rationales
from LLMs, which plays a crucial role in establishing a
robust sLM-based policy.

Table 5. DEDER performance w.r.t. policy network sizes

ΦR ΦP Parameter Size Seen Unseen

t5-small gpt2 0.06B+0.1B 81.8±0.5 46.5±1.0
t5-small gpt2-medium 0.06B+0.4B 81.4±0.1 46.1±0.5
t5-small gpt2-large 0.06B+0.8B 81.8±0.1 46.1±1.1
t5-base gpt2 0.2B+0.1B 79.4±0.5 48.5±1.2
t5-base gpt2-medium 0.2B+0.4B 78.8±0.6 48.6±0.6
t5-base gpt2-large 0.2B+0.8B 80.0±1.3 49.0±1.5
t5-large gpt2 0.7B+0.1B 82.1±1.0 52.5±0.7
t5-large gpt2-medium 0.7B+0.4B 81.8±0.6 52.9±0.9
t5-large gpt2-large 0.7B+0.8B 81.2±0.4 53.3±0.7

6. Conclusion
We introduced DEDER, a novel framework that effectively
distills the reasoning capabilities of LLMs into more com-
pact sLMs for executing complex embodied tasks in device-
constrained environments. The framework operates in a
strategic distillation process, involving embodied rational
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data construction from an LLM, data-driven embodied pol-
icy distillation to an sLM, and task planning with the sLM.
This allows for the efficient use of LLM-powered complex
task planning functions in real-world time-constrained set-
tings while ensuring the adaptability to resource-constrained
agent conditions through two-step distillation into reasoning
and decision-making.

Limitation. As DEDER employs pre-trained sLMs, there
is a potential dependency on the pre-trained knowledge em-
bedded in the sLMs. In Table 5, we observe that a reduced
network capacity of sLMs leads to decreased performance
in unseen settings. This indicates that the limited network
capacity of the sLM hinders the distillation of reasoning
capabilities, consequently affecting the zero-shot adaptation
in environments with significant domain shifts.

Future Work. Future directions for our research include
enhancing the framework’s ability for few-shot optimiza-
tion, especially in scenarios with significant domain shifts,
aiming to explore the versatility of LLMs.
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A. Environment settings
A.1. ALFRED

We utilize ALFRED (Shridhar et al., 2020), which provides comprehensive vision-and-language navigation and rearrange-
ment tasks for embodied AI. This environment requires an agent to follow language formatted instructions to accomplish
real-world-like household tasks. ALFRED features 58 different object types (e.g., bread) and 26 receptacle types (e.g.,
plate) across 120 various indoor scenes (e.g., kitchen). It supports 4703 unique tasks, each configured by combining these
elements with one of 7 instruction types (e.g., pick & place), such as “Put a keychain in a plate and then put them on a
shelf”. This complexity and diversity makes ALFREDD an ideal benchmark for evaluating models that emphasize hierarchy,
modularity, and advanced reasoning and planning capabilities. The detail of instructions and excutable plans are listed in
Table A.6. Furthermore, the visualizations of various indoor scenes and observations in ALFRED are shown in Figure A.1

Table A.6. Instructions and executable plans in ALFRED environment

Type Example

Instructions

Pick & Place Put a watch on a table.
Stack & Place Put a bowl with a spoon in it on the table.
Pick Two & Place Put two pencils in a drawer.
Clean & Place Put a clean rag on the top shelf of a barred rack.
Heat & Place Put a cooked potato slice on the counter
Cool & Place Put a slice of cold lettuce on a counter.
Examine & in Light Pick up a book and turn on a lamp.

Plans

OpenObject [Object] OpenObject GarbageCan
CloseObject [Object] CloseObject GarbageCan
ToggleObject [Object] ToggleObject FloorLamp
SliceObject [Object] SliceObject Potato
GotoLocation [Receptacle Object] GotoLocation SideTable
PickupObject [Object] [Receptacle Object] PickupObject ButterKnife SideTable
PutObject [Object] [Receptacle Object] PutObject Pan DiningTable
CoolObject [Object] [Receptacle Object] CoolObject Apple Fridge
HeatObject [Object] [Receptacle Object] HeatObject Mug Microwave
CleanObject [Object] [Receptacle Object] CleanObject Tomato Sink
End End

A.2. Expert Dataset

Expert Dataset and Evaluation Task Settings. To generate an expert dataset, we use planning domain definition language
rules (Aeronautiques et al., 1998). For implementation, we use the open source project1. We collect 312 expert trajectories
in a variety of tasks varying the starting positions of the agent and objects as well as the indoor scenes.

We organize the evaluation tasks into 4 distinct categories based on task similarities with the expert dataset: Train, Seen,
Unseen Spatial, and Unseen Environment. For the Train category, the tasks are identical to those tasks in the expert
dataset. The Seen category maintains the same tasks as in the expert dataset, but task-irrelevant objects are randomly
positioned at the start. For this, we evaluate 528 tasks. In the Unseen Spatial category, all objects are placed randomly, and
tasks are either defined by new task descriptions or optimal planning sequences not included in the Train category. For this,
we evaluate 1415 tasks. Lastly, for the most challenging category Unseen Environment where all objects are randomly
placed, and the task or indoor scenes are not presented in the Train category. We utilize 58 tasks for evaluating the Unseen
Environment category. For all models that require training, we conduct evaluations using three distinct seeds and report their
average performance, along with the associated variances.

B. Implementation Details
In this section, we provide the implementation details of our proposed framework DEDER and each comparison. Our
framework is implemented using Python v3.9 and PyTorch v2.0.1, trained on a system of an Intel(R) Core (TM) i9-10980XE
processor and an NVIDIA RTX A6000 GPU. For comparisons, we implement 3 types of widely used approaches: language

1https://github.com/askforalfred/alfred
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Kitchen Environment Observation

Task: put a hot slice of apple in sink Task: put two remotecontrol in armchair

Livingroom Environment Observation

Bedroom Environment Observation

Task: look at pencil under the desklamp

Bathroom Environment Observation

Task: put some toiletpaper on cabinet(a) Example of Heat & Place task.

Kitchen Environment Observation

Task: put a hot slice of apple in sink

Task: put two remotecontrol in armchair

Livingroom Environment Observation

Bedroom Environment Observation

Task: look at pencil under the desklamp

Bathroom Environment Observation

Task: put some toiletpaper on cabinet(b) Example of Pick Two & Place task.

Kitchen Environment Observation

Task: put a hot slice of apple in sink

Task: put two remotecontrol in armchair

Livingroom Environment ObservationBedroom Environment Observation

Task: look at pencil under the desklamp

Bathroom Environment Observation

Task: put some toiletpaper on cabinet(c) Example of Examine & in Light task.

Kitchen Environment Observation

Task: put a hot slice of apple in sink

Task: put two remotecontrol in armchair

Livingroom Environment Observation

Bedroom Environment Observation

Task: look at pencil under the desklamp
Bathroom Environment Observation

Task: put some toiletpaper on cabinet

(d) Example of Pick & Place task.

Figure A.5. Task examples set within different indoor scenes. The observation includes a variety of objects with which the agent can
interact and alter states to complete the given task.

planning, knowledge distillation, and end-to-end methodologies.

B.1. Language Planning Approach

For the language planning approaches, we employ 3 different methodologies: SayCan, LLM-planner, and ZSP (Brohan
et al., 2023; Song et al., 2023; Huang et al., 2022). For generating high-level plans, we utilize various LMs like PaLM,
LLAMA, and GPT2-large.

SayCan (Brohan et al., 2023) integrates pretrained skills with language models, generating plans that are feasible to the
context. SayCan achieves this by combining affordance scores derived from the LM with the agent’s experiences. In
line with SayCan’s methodology, we calculate embodied affordance scores by utilizing object presence information. For
implementation, we refer to the open source project2.

ZSP (Huang et al., 2022) leverages the capabilities of the LLMs for embodied task planning by interpreting high-level task
descriptions and formulating sequential strategies, thus efficiently performing embodied tasks. ZSP accomplishes this by
crafting step-by-step prompts based on examples of similar successful tasks, followed by sampling executable plans using
the LLM in conjunction with these provided examples. For implementation, we refer to the open source project3.

LLM-planner (Song et al., 2023) leverages the LLMs for few-shot planning, empowering embodied agents to perform
complex tasks in environments with observed information, guided by natural language instructions. For implementation, we

2https://github.com/google-research/google-research/tree/master/saycan
3https://github.com/huangwl18/language-planner
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refer to the open source4.

In text generation configuration, temperature controls the degree of randomness in the generation process. A lower
temperature results in more predictable and consistent text, while a higher temperature can produce more diverse and
sometimes unexpected outcomes. Top k sampling limits the model to consider only the top k most probable next words
when choosing the next word in the sequence. This method helps to constrain randomness, thereby enhancing the quality of
the generated text. Top p involves selecting the smallest set of words whose cumulative probability exceeds p for choosing
the next word.

The hyperparameter settings for language planning approaches are summarized in Table A.7.

Table A.7. Hyperparamer settings for language planning approaches

Hyperparameters Value

LLM Configuration
PaLM text-bison-001
LLaMA2 llama-2-7b
GPT2 gpt2-large

In-Context Example Retriever paraphrase-MiniLM-L6-v2 (LLM-Planner)
stsb-roberta-large (ZSP)

Number of Prompts 4 (LLM-Planner, ZSP)

Text Generation Configuration
Sampling Method beam search
Beam Size 3
Temperature 0.01
Top k 5
Top p 0.3
Maximum New Tokens 40

B.2. Knowledge Distillation Approach

For the knowledge distillation approaches, we employ two different algorithms: SCoTD and SCOTT (Li et al., 2023; Wang
et al., 2023). For distilling the reasoning-policy to produce MDP-featured rationales, we implement each method to create
the rationale dataset accordingly.

SCoTD (Li et al., 2023) is a CoT distillation method to train an sLM. It utilizes a LLM to generate a variety of rationales
with answers, which are then used to educate the sLM. We employ SCoTD to generate and train rationale data for the
reasoning-policy, and then utilize the distilled rationales to further train the planning-policy.

SCOTT (Wang et al., 2023) is a consistency knowledge distillation method to train a smaller, self-consistent CoT model from
a much larger teacher model. SCOTT uses contrastive decoding to elicit better rationale supervision and a counterfactual
reasoning objective to align the student model’s predictions with these rationales. We utilize SCOTT for creating rationale
data and subsequently training the reasoning-policy. The learned rationales from reasoning-policy are then applied to train
the planning-policy. For implementation, we refer to the open source project5.

The hyperparameter settings for knowledge distillation approaches are summarized in Table A.8.

4https://github.com/OSU-NLP-Group/LLM-Planner/
5https://github.com/wangpf3/consistent-CoT-distillation
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Table A.8. Hyperparamer settings for knowledge distllation approaches

Hyperparameters Value

Source LLM
PaLM text-bison-001
Temperature 0.7 (SCoTD), 0.1 (SCOTT)
Return samples 3 (SCoTD), 1 (SCOTT)

Reasoning-policy
sLM t5-small
Train epochs 100
Batch size 1
Optimizer SGD
Learning rate 5e−5
Planning-policy
sLM gpt2
Train epochs 20
Batch size 2
Optimizer SGD
Learning rate 3e−5
Text Generation Configuration
Sampling Method beam search
Beam Size 3
Temperature 0.01
Top k 5
Top p 0.3
Maximum New Tokens 40

B.3. End2End

End2End (Micheli & Fleuret, 2021) is a method for embodied task planning that specifically utilizes the GPT-2 model,
trained with direct supervision on expert data. This approach forms the foundational backbone for our planning policy ΦP
implementation. For implementation, we refer to the open source project6. The hyperparameter settings for End2End are
summarized in Table A.9.

Table A.9. Hyperparamer settings for End2End

Hyperparameters Value

sLM gpt2
Train epochs 100
Batch size 1
Optimizer SGD
Learning rate 3e−5

B.4. DEDER

The entire procedure of our DEDER consists of rationale dataset construction and policy distillation via embodied knowledge
graph phases.

6https://github.com/vmicheli/lm-butlers
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Algorithm 2 Rationale Dataset Construction
Expert Dataset Dexp = {τi}i, LLM ΦLLM

1: Initialize rationale dataset, DRtn ← ∅
2: for τi = (o, a, h) in Dexp do
3: while true do
4: Sample a set of tuples, C = {c1, ..., cn} ∼ DRtn
5: Retrieve in-context example set, Ck = F (τ, C)
6: Initialize rationale set,R ← ∅
7: for j = 1, ...,m do
8: Generate rationale rj given query qj and (2)
9: UpdateR ← R∪ {rj}

10: end for
11: Construct new tuple c = (o, a, h,R)
12: if c passes the self-critic using (3) then
13: DRtn ← DRtn ∪ {c}
14: break
15: end if
16: end while
17: end for
18: return DRtn = {ci}i

B.4.1. RATIONALE DATASET CONSTRUCTION

In the rationale dataset construction phase, we use PaLM (Chowdhery et al., 2023) as the source LLM, exploiting its
reasoning capabilities. We formulate 7 queries to extract rationales from the LLM and manually design 9 initial examples of
query-rationale pairs for each expert transition. To calculate similarity between language embeddings of τ and c, we use
contextual embedding model, To utilize the LLM as a critic function, we query the LLM to assess whether the generated
rationales are sufficient to generate the plan. For instance, we ask, ‘Can the rationale {rationale} lead to the next plan
{plan}? Answer with yes or no.’. To ensure accurate evaluations, we pose several variations on the critic prompt and
determine the final critic score based on majority voting.

Algorithm 2 lists the dataset construction procedures.

B.4.2. POLICY DISTILLATION VIA EMBODIED KNOWLEDGE GRAPH

In the policy distillation phase, we distill the reasoning capabilities from the LLM into an sLM-based policy ΦsLM, which is
structured with a two-tier hierarchy consisting of the reasoning-policy ΦR and the planning-policy ΦP.

Reasoning-policy. For the reasoning-policy ΦR, we utilize a pre-trained language model with an encoder-decoder structure,
specifically t5-small (Raffel et al., 2020), as our default setting. The dimension of prefix prompts θ(i)Pre, postfix prompts θ(i)Pos

and decoder prompts θ(i)Dec are set to be 20. Our implementation of the attention module Ψ incorporates two distinct attention
mechanisms: causal attention and gated attention, each comprising a single attention layer. The causal attention module uses
a causal mask, while the gated attention module includes an additional learnable gate function. ΦR is optimize by (11) and
(12).

Planning-policy. For the planning-policy ΦP, we utilize a pre-trained language model with a decoder structure, specifically
gpt2 (Radford et al., 2019), as our default setting. ΦP is optimize by (14).

The hyperparameter settings are summarized in Table A.10.

C. Additional Experiments
For further investigation, we report additional experimental results.
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Table A.10. Hyperparamer settings for DEDER

Hyperparameters Value Hyperparameters Value

Source LLM Planning-policy
PaLM text-bison-001 sLM gpt2
Temperature 0.1 Train epochs 20
Return samples 1 Batch size 2

Reasoning-policy Optimizer SGD
sLM t5-small Learning rate 3e−5

Encoder prompt length 20 (θ(i)Pre), 20 (θ(i)Pos) Text Generation Configuration
Decoder prompt length 20 (θ(i)Dec) Sampling Method beam search
Train epochs 100 Beam Size 3
Batch size 1 Temperature 0.01
Optimizer SGD Top k 5
Learning rate 5e−5 Top p 0.3
Scaling factor α 0.5 Maximum New Tokens 40

C.1. Details of Ablation on Rationale Dataset Construction

Table A.11 shows detailed experiment results of Table 2. DEDER consistently demonstrates improved performance than
the few-shot CoT method across various language models. The lower performance is observed when using GPT2 for
rationale extraction, demonstrating the limited reasoning capability of sLM with in-context learning. The slight performance
difference between the Few-shot approach and DEDER, when using GPT3.5’s chat-based architecture, can be attributed to
its conversational design focus. For the optimal application of MDP-featured in-context learning with a Chat LLM, distinct
from a text generation model, crafting an in-context example design specifically for dialogue interactions becomes crucial.

Table A.11. Details of ablation on rationale dataset construction

Method LM Train Seen Unseen Spatial Unseen Environment

SR GC SR GC SR GC SR GC

Few-shot GPT2 41.9±19.3 67.4±13.5 2.4±0.5 23.1±0.7 0.6± 0.1 22.1±0.9 0.0±0.0 20.5± 1.2
DEDER GPT2 60.8±4.0 82.4±2.2 53.5±2.2 75.3±1.3 27.3±61.7 61.7±0.7 19.4±15.5 49.1±2.8
Few-shot GPT3 100.0±0.0 100.0±0.0 72.8±0.1 87.4±0.2 48.6±0.4 79.0±0.1 28.7±2.6 62.9±2.1
DEDER GPT3 100.0±0.0 100.0±0.0 72.8±0.1 88.8±0.2 46.9±0.5 77.3±0.4 37.4±2.0 65.3±0.9
Few-shot GPT3.5 100.0±0.0 100.0± 0.0 78.3±0.6 90.5±0.2 52.0±0.7 80.0±0.3 39.7±0.0 66.5±0.3
DEDER GPT3.5 100.0±0.0 100.0±0.0 78.4±1.4 91.5±2.3 50.0±0.6 80.3±0.2 39.9±2.3 68.6±1.4
Few-shot PaLM 100.0±0.0 100.0± 0.0 76.9±0.3 89.7±0.1 49.3±0.3 79.7±0.2 29.9±1.0 63.5±0.4
DEDER PaLM 100.0±0.0 100.0±0.0 81.8±0.5 92.2±0.2 52.7±1.0 81.2±0.4 40.3±0.9 68.7±0.6

C.2. Details of Embodied Knowledge Graph and Contrastive Learning

Table A.12 shows detailed experiment results of Table 3. We measured inference times several off-the-shelf devices such
as RTX 3090, 3050 and 2080 Ti GPUs. DEDER ensures real-time inference speeds across these various devices while
consistently yielding superior performance compared to other ablated comparisons.

Table A.12. Details of ablation on embodied KG and contrastive learning

Method Inference Time Train Seen Unseen Spatial Unseen Environment

RTX 3090 RTX 3050 RTX 2080 Ti SR GC SR GC SR GC SR GC

DEDER 0.65±0.01 1.16±0.01 0.77±0.02 100.0±0.0 100.0±0.0 81.8±0.5 92.2±0.2 52.7±1.0 81.2±0.4 40.3±0.9 68.7±0.6
− LCon 0.65±0.01 1.16±0.01 0.77±0.02 100.0±0.0 100.0±0.0 77.2±0.5 89.9±0.3 51.1±1.0 80.3±0.4 33.9±2.0 65.2±1.3
−KG 0.72±0.01 1.68±0.01 1.12± 0.01 99.9±0.1 99.9±0.1 71.0±6.3 87.1±3.5 48.3±7.2 78.4±4.0 35.6±5.6 65.7±3.9
−KG & LCon 0.72±0.01 1.68±0.01 1.12± 0.01 93.7±1.6 97.5±0.8 73.2±0.5 87.8±0.4 49.5±0.2 79.9±0.2 37.1±1.2 66.7±0.0
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C.3. Details of Reasoning-policy Structure

Table A.13 shows detailed experiment results of Table 4. DEDER ensures real-time inference speeds across various
off-the-shelf devices while maintaining consistently superior performance compared to other ablation comparisons.

Table A.13. Details of reasoning-policy structure

Method Inference Time Train Seen Unseen Spatial Unseen Environment

RTX 3090 RTX 3050 RTX 2080 Ti SR GC SR GC SR GC SR GC

Iterative 2.92±0.02 3.08±0.01 3.2±0.01 100.0±0.0 100.0±0.0 76.0±0.7 89.8±0.2 54.0±0.4 81.4±0.2 35.1±2.0 65.9±1.7
DEDER 0.65±0.01 1.16±0.01 0.77±0.02 100.0±0.0 100.0±0.0 81.8±0.5 92.2±0.2 52.7±1.0 81.2±0.4 40.3±0.9 68.7±0.6
−Ψc 0.63±0.01 1.47±0.01 0.74±0.01 99.9±0.1 99.9±0.0 75.9±0.3 89.6±0.1 52.2±0.2 80.7±0.1 29.9±1.0 63.8±0.5
−Ψg 0.63±0.01 1.16±0.01 0.74±0.01 100.0±0.0 100.0±0.0 76.8±0.3 89.6±0.1 50.9±0.1 79.3±0.1 30.5±2.6 62.9±1.1
−Ψc&Φg 0.60±0.01 1.00±0.01 0.64±0.09 100.0±0.0 100.0±0.0 63.3±0.1 83.1±0.1 39.5±0.4 73.5±0.4 28.7±1.0 61.2±0.4

DEDER w Ψa 0.63±0.01 1.16±0.01 0.75±0.01 99.9±0.1 99.9±0.0 74.7±0.4 88.6±0.2 52.2±0.2 80.7±0.1 35.1±1.0 64.1±0.8

C.4. Details of DEDER performance w.r.t. Policy Network Sizes

Table A.14 shows detailed experiment results of Table 5. As the network size increases, overall performance generally
increases. However, the network capacity of the reasoning-policy ΦR has a more significant impact on enhancing performance
compared to the planning-policy ΦP.

Table A.14. Details of DEDER performance w.r.t. policy network sizes

ΦR ΦP Parameter Size Train Seen Unseen Spatial Unseen Environment

SR GC SR GC SR GC SR GC

t5-small gpt2 0.06B+0.1B 100.0±0.0 100.0±0.0 81.8±0.5 92.2±0.2 52.7±1.0 81.2±0.4 40.3±0.9 68.7±0.6
t5-small gpt2-medium 0.06B+0.4B 100.0±0.0 100.0±0.0 81.4±0.1 92.1±0.1 52.6±0.4 81.0±0.4 39.7±1.2 69.9±0.0
t5-small gpt2-large 0.06B+0.8B 100.0±0.0 100.0±0.0 81.8±0.1 92.1±0.1 52.5±0.2 81.2±0.1 67.5±1.7 39.7±2.0
t5-base gpt2 0.2B+0.1B 100.0±0.0 100.0±0.0 79.4±0.5 91.2±0.3 55.2±0.7 82.8±0.4 41.8±1.7 69.3±1.2
t5-base gpt2-medium 0.2B+0.4B 100.0±0.0 100.0±0.0 78.8±0.6 91.0±0.3 55.2±0.3 83.1±0.3 42.0±1.0 69.6±0.3
t5-base gpt2-large 0.2B+0.8B 100.0±0.0 100.0±0.0 80.0±1.3 91.5±0.5 54.9±0.5 82.4±0.6 43.1±2.4 70.2±1.3
t5-large gpt2 0.7B+0.1B 100.0±0.0 100.0±0.0 82.1±1.0 92.3±0.3 57.2±0.4 83.0±0.1 47.7±1.0 73.5±0.8
t5-large gpt2-medium 0.7B+0.4B 100.0±0.0 100.0±0.0 81.8±0.6 92.3±0.2 57.5±0.4 83.2±0.2 48.3±1.4 73.5±0.8
t5-large gpt2-large 0.7B+0.8B 100.0±0.0 100.0±0.0 81.2±0.4 92.0±0.1 57.5±0.3 83.1±0.1 49.1±1.2 74.2±0.3

D. Embodied Knowledge Graph Examples

Figure A.6. Example of initial embodied kG

Figures A.6 and A.7 show examples of our embodied KG. Initially, the task description provides information on a partially
observable environment. From this information, our sLM-based policy efficiently encapsulates knowledge of the environment
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via an embodied KG as illustrated in Figure A.6. As the agent interacts with its surroundings, gathering information necessary
for task completion, the embodied KG reflects those changes via the update function U , as specified in (5). Examples of
these dynamic changes in the embodied KG, reflective of the evolving environment, are depicted in FigureA.7. Finally, our
KG retriever function V , detailed in (6), selects a subset of the embodied KG based on the task description h and observation
o. This subset is then used for embodied KG prompting to our reasoning-policy, as illustrated in Figure A.8.

Timestep 0 Timestep 1

Timestep 2 Timestep 3

Figure A.7. Maintenance of the embodied KG to accommodate changes in environment information during task execution by the agent.
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Retrieved Facts:
(Mug, in, Sink), (Agent, at, Sink), (Agent, 
CanSee, Mug), (Agent, PickedUp, Fork)… 

Task Desc. ℎ: put a mug of fork in sidetable ... 
Observation 𝑜𝑜: Mug, Spatula, Apple, Fork …

KG retriever function 𝑉𝑉

Figure A.8. Example of retrieved subset of embodied KG
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