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ABSTRACT

Vision-Language Models (VLMs) have demonstrated remarkable generalization
across tasks by aligning visual and linguistic representations. High-quality vi-
sual instruction data is critical for enhancing the performance of Vision-Language
Models. However, current visual instruction tuning datasets, which are primarily
derived from past visual tasks, have several limitations. For instance, the range of
question types is often restricted and closely tied to the original visual tasks. Fur-
thermore, image diversity is limited, as images collected for various specialized
vision tasks clearly fail to adequately represent real-world user queries. Addi-
tionally, previous instruction datasets tend to lack complexity, focusing on sin-
gle tasks like captioning or OCR, which makes it challenging to train models
for more complex, multi-skill scenarios. To address these limitations, we pro-
pose a novel paradigms called strategy-centric synthesis: automatically synthe-
sizing high-quality instruction data from large-scale image-text pairs. First, we
employ an efficient heuristic method to select high-quality, complex images from
DataComp-1B image-text pairs. Carefully crafted prompts and these images are
fed to VLMs to extract high-quality query strategies and generate corresponding
image descriptions. These descriptions are subsequently used to retrieve images
aligned with specific questioning strategies. Finally, the retrieved images and
their matching strategies are used to synthesize high-quality instructional data.
Our experiments indicate that with continued instruction fine-tuning via LoRA on
only 3,000 newly synthesized data samples, 0.45% of the LLAVA-1.5 instruction
tuning dataset, the model significantly outperforms the original LLAVA-1.5-7B
across multiple benchmarks, thereby demonstrating the effectiveness of our ap-
proach.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs)(Liu et al [2024c} [Zhu et al., [2023; [Li et al.}|2023a;
Dai et al., [2023} [Tong et al., [2024; |Wang et al., [2024) have demonstrated strong cross-task general-
ization in recent years. Typical architectures consist of a pre-trained visual backbone (Radford et al.}
2021} |Sun et al.,|2023) for encoding visual features, a pre-trained LLM (Touvron et al., 2023} |Chi-
ang et al., 2023) to interpret user instructions and generate responses, and a vision-language cross-
modal connector to align visual encoder outputs with the language model. Training an instruction-
following LMM typically follows a two-stage protocol. First, the pretraining stage leverages image-
text pairs to align visual features with the language model’s word embedding space. Second, the
visual instruction tuning stage fine-tunes the model on visual instructions, enabling it to handle
diverse user requests that involve visual content. For the pretraining stage, the abundance of image-
text pairs accumulated from prior research means that data is not a significant bottleneck. However,
in the visual instruction tuning stage, there is a clear lack of sufficient high-quality instruction data.
Previous approaches have transformed data from previous visual task datasets using templates (Xu
et al., 2022), manual annotations (Xu et al., [2023)), language models (Liu et al., 2024c; Tong et al.,
2024)), or vision-language models (Zhao et al., 2023; Wang et al.| 2023} |Chen et al., 2023b)) to gen-
erate instruction data.

However, these datasets exhibit several clear limitations:
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Figure 1: A comparison of two different paradigms for constructing instruction data. The left side
illustrates the previous instruction data centered on vision-based tasks, in which instruction data is
generated through templates or rewriting. In contrast, the right side is centered on strategies that
guide the VLM model in synthesizing high-quality queries for a category of images with shared
features.

1. Lack of Diversity: Since most instruction datasets are derived from previous vision tasks,
these datasets face limitations in diversity, specifically in the following aspects: (1) Limited
Question Types: The types of questions are highly correlated with the original tasks, and
the categories of tasks themselves are limited. For instance, compiled
nearly all past vision tasks but only managed to obtain 200+ diverse vision-language tasks,
resulting in a limited variety of question types. (2) Limited Image Distribution: The images
collected for specialized vision tasks are clearly insufficient to cover the distribution of
real-world user queries. (2) Limited Variety of Prompt Templates Used for Synthesis:
Past work has often used a static template to prompt VLMs (vision-language models) to
synthesize instruction data for different images, such as detailed captions

2023b)) or complex reasoning tasks (Liu et al, [2024c} [Chen et al, 2024), which restricts
the full potential of the VLMs.

2. Lack of Complexity: In most previous queries, only one basic visual ability, such as cap-
tioning or OCR, is typically involved. However, real-world scenarios often require a com-
bination of multiple abilities to resolve queries. Fine-tuning on previous instruction data
does not adequately teach VLMs to master a combination of multiple capabilities.

3. Mismatch Between Images and Prompt Templates: Each image has an optimal ques-
tioning approach, but previous synthesis methods have not sufficiently considered this. For
instance, simple images selected from image caption datasets are sometimes forced into
generating complex reasoning instruction data (Liu et al.,[2024c}; [Chen et al., 2024), which
can lead the model to produce divergent questions rather than high-quality reasoning prob-
lems.

To address the aforementioned issues, we propose a novel paradigms called strategy-centric synthe-
sis. Before presenting our method, we introduce the query strategy for visual instructions, which
refers to a general questioning perspective applicable to images with some shared characteristics.
As illustrated in Figure[I] the strategy can be used to guide the question synthesis for a category of
images. It is evident that query strategies are more fine-grained than foundational visual task de-
scriptions, making them more suitable for handling complex scenarios. In fact, various basic visual
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tasks can be viewed as specific query strategies within our method. For instance, an OCR-related
task can correspond to the strategy: designing questions about text recognition in the image.

Our method centers around strategies and consists of two primary components: (1) automated strat-
egy mining from seed images using visual language models, and (2) strategy-guided multimodal in-
struction synthesis. First, we introduce a heuristic and efficient approach for selecting high-quality,
complex images from large-scale image-text pairs by leveraging domain-specific visual keywords to
filter image captions and identify relevant images. Using this approach, we construct a diverse and
complex seed image library from the recaptioned DataComp-1B dataset (Li et al.,2024). Carefully
designed prompts are then applied to mine high-quality query strategies and generate corresponding
image type descriptions. After eliminating redundant strategies, we use the image type descriptions
to retrieve matching images, guide question generation based on the associated strategies, and pro-
duce detailed, step-by-step answers. Finally, a self-reflection step is implemented to evaluate the
quality of the synthesized instructions.

Our core contributions are as follows:

1. The proposed strategy-centric data synthesis approach effectively addresses several clear
limitations observed in existing visual instruction datasets. By integrating query strategies
into the synthesis process, we enhance the diversity of both prompt templates and question
types. Moreover, these strategies guide visual language models to generate higher-quality,
complex instruction queries at a finer granularity. During synthesis, retrieving matching
images based on the strategy’s corresponding image type descriptions also significantly
mitigates the mismatch between images and prompt templates.

2. We introduce an automated strategy mining approach, starting with a heuristic retrieval
method to efficiently collect images suitable for generating complex queries. Using these
seed images, we prompt the visual language model to generate query strategies. Our meth-
ods connects billions of image-text pairs to high-quality visual instruction data, providing
potential scalability for high-quality data synthesis.

3. After continued LoRA instruction tuning using only 3k synthesized data samples, 0.45% of
the LLAVA-1.5 instruction tuning dataset, the model significantly outperforms the original
LLAVA-1.5-7B across multiple benchmarks.

2 RELATED WORK

Multimodal Large Language Models (MLLMs) have made significant strides in recent years, driven
by the success of Large Language Models (LLMs). Typical architectures consist of a pre-trained
visual backbone for encoding visual features, a pre-trained LLM to interpret user instructions and
generate responses, and a vision-language cross-modal connector to align visual encoder outputs
with the language model. Models such as LLaVA (Liu et al., 2024cza) and MiniGPT-4 (Zhu et al.,
2023) have demonstrated strong cross-task generalization. mPLUG-Owl (Ye et al., [2023} |2024),
Shikra(Chen et al.| [2023a), and KOSMOS-2 (Peng et al.| [2023) have introduced novel data types
and training methods, such as grounding data, aimed at reducing hallucinations and improving the
grounding capabilities of LLMs. LLaVA-NeXT (Liu et al.| 2024b) has significantly enhanced vi-
sual perception by utilizing dynamic resolution techniques, while Cambrainl (Tong et al.l 2024)
has improved model robustness through visual encoder routing. Recently, Luo et al.| (2024); Xie
et al.| (2024); Zhou et al.| (2024) have combined diffusion models with LLMs to enhance both the
generative and understanding capabilities of MLLMs.

Training an instruction-following LMM typically follows a two-stage protocol. First, the vision-
language alignment pretraining stage leverages image-text pairs to align visual features with the
language model’s word embedding space. Second, the visual instruction tuning stage fine-tunes the
model on visual instructions, enabling it to handle diverse user requests that involve visual content.
For the pretraining stage, the abundance of image-text pairs accumulated from prior research means
that data is not a significant bottleneck. However, in the visual instruction tuning stage, there is
a clear lack of sufficient high-quality instruction data. Previous approaches have transformed data
from single-task visual datasets using templates (Xu et al., [2022), manual annotations (Xu et al.,
2023)), language models (Liu et al.|[2024c};Tong et al.,2024)), or vision-language models (Zhao et al.,
2023; [Wang et al.l 2023; |Chen et al., 2023b)) to generate instruction data. Unlike these datasets,
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Figure 2: Our method centers around strategies and involves two main components: (1) automated
strategy mining from seed images using visual language models, and (2) strategy-guided multimodal
instruction synthesis. First, we build a diverse and complex seed image library using recaptioned
DataComp-1B pairs. We then apply carefully designed prompts to mine high-quality query strate-
gies and corresponding image type descriptions from these images. After deduplicating redundant
strategies, we use the image type descriptions to retrieve matching images and guide question gen-
eration with the corresponding strategies, producing step-by-step answers. Finally, a self-reflection
step evaluates the quality of the synthesized instructions.

where images are primarily collected for specific visual tasks and thus have biased distributions,
our approach is based on billions of image-text pairs, allowing us to construct more diverse and
realistic instruction data. Moreover, we believe that different types of images have their own optimal
questioning strategies. In contrast to methods like ShareGPT4V (Chen et al., [2023b) and ALLaVA
(Chen et al.| 2024), which often apply fixed prompts to all images, we mine large-scale questioning
strategies and dynamically adapt them to suit each image type, thereby significantly improving the
quality of instruction data at the case level.

3 METHOD

As shown in Figure [2] our approach consists of two key components: (1) the automated mining
of high-quality strategies from seed images using visual language models, and (2) strategy-guided
multimodal instruction data synthesis.

3.1 AUTOMATED STRATEGY MINING

Manually annotating query strategies is prohibitively costly and time-consuming. In practice, we
have found that with carefully designed prompts, powerful visual language models can mine high-
quality potential query strategies directly from representative images. This insight led us to develop
the automated mining method.

High-Quality Seed Image Library Construction The construction of a high-quality seed image
library focuses on two main criteria: (1) Diversity: Traditional instruction datasets built from indi-
vidual academic tasks often contain many homogeneous images. To cover a broader range of image
types, we leverage recaptioned DataComp-1B image-text pairs (Li et al.,[2024). We start by identi-
fying common real-world domains, such as science, medicine, and business. For each domain, we
generate a series of visual keywords using large language models (LLMs) through prompts, then
use these keywords to filter captions from the large-scale image-text pairs, allowing us to acquire
matching images. (2) Complexity: We assume that the more keywords in the caption of the image,
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Given the current image, analyze the specific features and elements,
and identify potential questioning angles in real —life scenarios .
Then, devise detailed and general strategies for generating
questions . Finally , provide the general types of images to which
these strategies are applicable .

Please respond in the following format:

Analysis :[ Analyze the specific features and elements of the image
and identify potential questioning angles in real—life scenarios .]

Strategies :[ List detailed and general questioning strategies . Don’t
need the example question .]

Images:[Describe types of images where these strategies would be
applicable .]

Figure 3: Prompt used for strategy mining.

the higher the upper bound of complexity for formulating questions. Thus, we select images that
better reflect the intricacies of real-world scenarios by the number of visual keywords present in the
captions. According to the above principles and methods, we collect images from different domains,
cluster them using embedding representations and select representative images as seed images.

Strategy Mining Using these high-quality seed images, we employ carefully designed prompts to
guide the visual language model in strategy mining. Specifically, we first prompt the model to assess
whether the image is suitable for querying, then extract general and detailed query strategies from
multiple perspectives based on the image. These strategies provide questioning perspectives for
images with certain similar features. Finally, the model generate the types of images to which these
strategies could be applied. The detailed prompt can be found in Figure 3]

Deduplication of Mined Strategies Despite the use of representative images from various domains,
the mined strategies may still exhibit redundancy. To address this, we perform deduplication. We
compute embeddings for the strategies, calculate pairwise cosine similarities, and filter them based
on a threshold determined through empirical testing.

3.2 STRATEGY-GUIDED MULTIMODAL INSTRUCTION SYNTHESIS

Building on the strategies and their corresponding image types, we introduce a comprehensive dy-
namic strategy-driven approach for synthesizing multimodal instructions.

Candidate Image Retrieval Given a strategy and the corresponding image types, the process be-
gins with the retrieval of images that match the image types from our previously constructed multi-
domain image library. Specifically, we leverage a CLIP model to transform the image type descrip-
tions and the multi-domain image library into the embedding space for similarity matching.

Question Generation Once the matched images have been retrieved, the corresponding strategy
will guide the visual language model to generate high-quality questions. The detailed prompt can be
found in Figure 5] These questions essentially represent the concretization of the strategy given the
current image. By increasing the number of images retrieved for each strategy, we can easily scale
the dataset to a larger size. Therefore, our approach has significant scalability advantages.

Step-by-Step Answer Generation Following the question generation, the visual language model
will be prompted to generate detailed, step-by-step answers. These answers are crafted to not only
address the query but also to provide comprehensive explanations and the reasoning process needed
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Category: Technology \
Question: What materials are used in
creating the objects shown in the image, and
what does their craftsmanship suggest about
the technological advancements and cultural
influences in their production?

¥ Answer: The objects in the image are
created using thin strips of bamboo or
similar lightweight wood, which are
carefully bent and joined to form intricate
structural models. The use of bamboo, a
sustainable material, suggests an emphasis
on eco-friendly construction practices. The
craftsmanship involved in bending and
joining the bamboo strips points to a high
level of skill and precision, ...

\ J

Figure 4: A randomly sampled case. More cases can be found in the appendix.

Formulate a high—quality question based on the image, and refer to
the following question strategies : {}. Then generate a detailed ,
step—by—step solution, and reflect on whether the answer is correct .
Ensure your response is valid JSON. Do not include any extra text,
explanations , or formatting . Output only the JSON object, in the
exact format below, so it can be directly loaded using ‘json.load ‘:

{

“question ”: “Formulate a high—quality question based on the
image, referencing the question strategies mentioned above.”,
“answer”: “Provide a detailed , step—by—step solution to the
question proposed above.”,

”evaluation_answer ”: “Evaluate the correctness of the answer,

2 2

only output ’yes’ or 'no’.

Figure 5: Prompt used for instruction synthesis using a given strategy. {} serves as a placeholder
for the strategy.

to solve the problem. The step-by-step nature of these answers is critical in ensuring clarity, par-
ticularly for complex visual tasks that require multi-step reasoning or the integration of multiple
fundamental visual tasks.

Self-Reflection for Quality Evaluation To ensure the quality and accuracy of the synthesized in-
structions, we implement an additional step where the model reflects on its own outputs. This
self-reflection phase encourages the model to assess the correctness and completeness of its an-
swers, identifying any potential errors in reasoning. We directly filter out examples that the model
identifies as incorrect.
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4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Domain | Tech Art Business Medicine Science  Sociology
Number | 66,388 86,585 48,735 48,503 163,965 82,277

Table 1: Number of images downloaded across different domains.

Our dataset construction primarily builds on the recaptioned dataset (Li et al., 2024)), which employs
a vision-language model (VLM) to recaption billions of text-image pairs. We began by identifying
several distinct domains: Tech, Art, Business, Medicine, Science, and Sociology. With the help of
GPT-4 and manual verification, we curated a set of visualization-related keywords for each domain,
which can be found in the Appendix. We hypothesize that the more keywords in the caption of the
image, the greater its potential for generating complex questions. Therefore, if a caption contains
more than four visualizable keywords and the image resolution exceeds (336, 336), we download
and save the image. By traversing billions of text-image pairs, we successfully downloaded a diverse
set of images across these domains, as detailed in Table

Next, we applied k-means clustering techniques to these images, grouping them into 1,00 clusters
for each domain. It is important to emphasize that more clusters can be set here; however, due to
our limited budget, we only need a small number of images, so we choose to use a relatively small
clustering cluster. For each cluster, we selected the image closest to the centroid as the representative
image, while the remaining images were reserved for future retrieval. Using the GPT-40 visual
language model, we generated general and detailed questioning strategies from multiple perspectives
for each image. Using regular expressions, we extracted approximately 2,000 strategies and their
corresponding image type descriptions from the response. We then applied semantic deduplication
to these strategies, utilizing OpenAl’s “text-embedding-3-small” model to obtain their embedded
representations. By setting a cosine similarity threshold of 0.65, we reduced the set to about 1000
unique questioning strategies.

When retrieving images using image type descriptions, we employed the CLIP model (Li et al.,
2024), which was trained on a large corpus of internet images. Given that different strategies might
correspond to similar image types, some overlap in the retrieved images was anticipated. To address
this, we randomly selected one image from the top k (k=5) retrieval results to increase diversity.
Finally, considering budgetary constraints, we synthesized three data cases per strategy using the
GPT-40 model. Therefore, the final synthesized dataset consists of 3k instances, which is approx-
imately only 0.45% of the original 665k instruction fine-tuning data. The code and data will be
open-sourced.

4.2 EXPERIMENTAL SETUP

We selected the popular instruction-tuned LLaVA-v1.5-7B (Liu et al 2024a) model as our base-
line and adopted the LoRA technique for further instruction tuning. There are two reasons for this
choice: (1) Due to limited budget and computational resources, the scale of our synthetic dataset is
relatively small, making it challenging to perform full-scale instruction tuning from scratch. (2) The
newly constructed instruction data is often more complex, involving combinations of multiple sub-
tasks, which is more suitable for continued learning in a model that already possesses foundational
capabilities. The format of the synthetic data is parsed to be consistent with the original instruction
dataset of LLaVA-1.5 (Liu et al., [2024a). Additionally, to ensure reproducibility, all hyperparam-
eters used during the LoRA fine-tuning process are kept identical to the original script (Liu et al.,
2024a)), as detailed in the appendix.

We evaluated the model on multiple mainstream benchmarks: ChartQA (Masry et al.l 2022),
MME(Fu et al., 2023) MMBench (Liu et al., [2023), MMMU(Yue et al., 2024), POPE (L1 et al.,
2023b) , ScienceQA IMG (Lu et al.} 2022) , TextVQA (val)(Singh et al. 2019) ,VizWiz (Gurari
et al.l 2018)), DocVQA (Mathew et al., 2020). We utilized LLLMs-Eval (Bo Li* & Liu, [2024) as the
evaluation tool and, to ensure reproducibility, maintained all evaluation parameters at their default
settings without any modifications.
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Method Language Model | ChartQA’  MME” /MME® MMB MMMU POPE SQA(img) TextVQA (val) VizWiz (val) DocVQA
BLIP-2 FLAN-T5 - 1293.8/7290.0 - - - 61.0 - 19.6 -
InstructBLIP Vicuna-7B -/- 36.0 60.5 - 345 -
InstructBLIP FLAN-T5 1212.8/291.8 - 63.1 334

Shikra Vicuna-13B -/- 58.8 - -

IDEFICS-80B LLaMA-65B -/- 545 - 36.0

LLAVA Vicuna-7B - 807.0/247.9 34.1 - - 385 -

LLAVA-1.5 Vicuna-7B 18.24 1510.75/348.21 64.3 353 85.87 69.61 46.07 54.38 28.08
LLAVA-1.5 + ours  Vicuna-7B 19.32 1474.90 /32535 61.94 37.22 86.67 69.72 46.33 59.26 30.96

Table 2: Performance of various models across different tasks. For tasks that were not evaluated in
the original LLAVA-1.5 paper, we used Imms-eval (Bo Li* & Liul, [2024) for evaluation. "LLAVA-
1.5 + ours’ refers to the performance of the LLAVA-1.5 model, which has been further fine-tuned
using LoRA on our synthesized dataset of 3,000 instances.

4.3 ANALYSIS OF EXPERIMENTAL RESULTS

Table 2] shows the performance of the baselines and our method across various benchmarks. The
results indicate that, with continued LoRA instruction fine-tuning on only 3k synthesized data, the
model significantly outperforms the original LLAVA-1.5-7B on 6 out of 8 tasks, with particularly
notable improvements in MMMU, VizWiz (val), and DocVQA, demonstrating the effectiveness of
our approach.

4.4 IMPACT OF THE NUMBER OF SYNTHETIC DATA PER STRATEGY

Num | ChartQA MMMU TextVQA (val) VizWiz (val)
0 18.24 353 46.07 54.36
1 18.40 35.87 45.73 57.26
2 19.00 37.11 46.16 59.19
3 19.32 37.22 46.33 59.26

Table 3: Performance of different numbers of synthetic data per strategy.“0” represents the baseline,
which refers to the original performance of LLAVA-1.5-7B.

We further conducted experiments by synthesizing different amounts of data for each strategy, rang-
ing from 1 to 3, corresponding to overall dataset sizes of 1k, 2k, and 3k. Table [3] presents the per-
formance of the LLAVA-1.5-7B model on ChartQA, MMMU, TextVQA (validation), and VizWiz
(validation). The results demonstrate that for a fixed number of strategies, scaling the dataset by
increasing the number of images matched to each strategy can further enhance the model’s perfor-
mance. This suggests that our approach holds the potential to construct large-scale datasets.

Distribution of Number of Skills Covered in Tasks

mm AllaVa
mmm | LaVa-Instruct-150k
mmm Ours

20 A

Percentage (%)
W
(=)

1 2 3 4 5 6 7 8 9 10
Number of Skills Covered

Figure 6: The comparison of three datasets in terms of numbers of different skills covered in each
task.
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4.5 STATISTICAL ANALYSIS OF QUERY COMPLEXITY

We conducted a quantitative analysis of the dataset from the perspective of query complexity. To
measure query complexity, we performed a statistical analysis focusing on the number of skills
required to solve each sampled problem. The more skills a task involves, the more complex it is.
We used GPT-4o for this task, with the prompt template provided in the appendix. Additionally, we
randomly selected a subset of synthesized complex reasoning problems from ALLaVa (Chen et al.|
2024) and LLaVa-1.5 (Liu et al.,|2024a) for comparison, ensuring an equal number of samples.

The Figure [6] shows that instructions from LLaVa-1.5 and ALLaVa cover 2 to 7 skills, with most
centered around 4. In contrast, instructions from our dataset exhibit a broader range of skill coverage,
spanning from 3 to 10, with a higher overall complexity, most tasks requiring around 6 skills. This
suggests that our dataset is intrinsically more complex and diverse than the other two.

Method MMMU  SQA(img) VizWiz (val)
LLAVA-1.5-7B + ours 1k 35.87 69.28 57.26
w/o strategy 35.67 69.11 56.32
w/o strategy + image matching | 35.44 68.85 56.08
LLAVA-1.5-7B 353 69.61 54.36

Table 4: Ablation study on MME, SQA(img), and VizWiz (val). ”w/o strategy” indicates removing
the strategy component from the prompt during data synthesis, primarily ablating the second part of
our method. ”w/o strategy + image matching” means further ablating the first part of our method
by randomly selecting images, essentially evaluating the direct contribution of GPT-40 to model
performance.

4.6 ABLATION STUDY

We used 1,000 standard synthesized data instances, corresponding to the num=1 setting in Table
[l as the baseline for conducting ablation experiments on the LLava-1.5-7B model, examining the
contributions of two key components: (1) The impact of dynamic strategy-based data synthesis on
model performance: In this experiment, the strategy is removed from the prompt, with only the
image type distribution retained. This isolates the effect of strategies on the overall performance.
We used GPT-4 to synthesize 1,000 data instances under this setting. (2) The contribution of GPT-40
to model improvement: We not only removed the strategy mining, but also omitted both retrieval and
image filtering. Instead, we randomly downloaded 1,000 images from DataComp-1B and used GPT-
4o without strategies to synthesize the instruction data. This experiment fully ablates our method,
allowing us to evaluate the direct contribution of GPT-40 to model performance.

Table [ presents the results across multiple datasets under different settings. The decline in consis-
tency between "LLLAVA-1.5-7B + ours 1k” and ”w/o strategy” highlights the effectiveness of using
dynamic strategies in synthesizing instruction data. The comparison between “w/o strategy” and
”w/o strategy + image matching” demonstrates the advantage of retrieving matched images from
our curated image library, as opposed to randomly selecting from DataComp-1B. The comparison
between *w/o strategy + image matching” and 'LLLAVA-1.5-7B’ showcases that the gains provided
by GPT-4 alone are relatively limited. In other words, this also demonstrates that when synthesizing
data, even with a powerful visual language model, our method can significantly further improve the
quality of the synthesized data.

5 CONCLUSION

To address the key limitations of existing visual instruction tuning datasets, we introduced a novel
strategy-driven approach that synthesizes high-quality instruction data from large-scale image-text
pairs. Through a carefully designed pipeline, we automated the process of mining strategies and
generating detailed, multimodal instructions tailored to the characteristics of each image. Empiri-
cal results demonstrated the effectiveness of our approach, with significant improvements observed
after continue fine-tuning using only 3,000 synthesized data samples. The model outperformed
LLAVA-1.5-7B across multiple benchmarks, validating the potential of strategy-guided multimodal
data synthesis in advancing the performance of vision-language models. For future work, we plan
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to investigate the performance of synthesized data on several open-source vision-language models
within our framework. Additionally, we aim to secure more computational resources to compre-
hensively explore the scalability of this approach and its potential for large-scale implementation in
industry.
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648
649
650
651

652
653 You are an Al assistant who is good at evaluating the difficulty and

654 complexity of image—text tasks. For each given task and its answer,

655 you should anab{s.e the. skill set that i‘s used in this. task . Sk?]l

- sets can be abilities like object detection , mathematic calculation ,
logical reasoning, etc.. When deciding the involved skill sets for

657 a task, do not use too specific terms like “domain knowledge of

658 fatty acids” or “moment of inertia calculation ” but more general and

659 inclusive terms like “chemical knowledge” or ”physical calculation

660 ”. The number of skill sets involved in a task can be diverse and

661 do not feel pressured to give less or more.

662 Here is the task: {}

663 And here is the answer to the task: {}

664 Give your answer directly in the format of following list :

- ["skill setl", "skill set2", "skill set3",

666 Now give your answer and don’t output anything else :

667
668
669
670 Figure 7: Prompt used for complexity analysis for a given task.
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Figure 8: Command and parameters used in our LoRA finetuning process.
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Art: artist, bar, interval, art, style, key, pitch,
design, building, melody, title, signature,
structure, music, figures, century, church, chord,
subject, artists, intervals, chords, clef, author,
feature, sculpture, patron, clarinet, line,

Business: price, company, stock, value, costs, sales
, cash, income, production, units, bond, portfolio,
tax, debt, shares, product, balance, share, project,
distribution, labor, growth, economy, inventory,
curve, dollars, bonds, investment, business,

Medicine: body, disease, diagnosis, screening,
patients, cases, cancer, examination, subjects,
blood, appearance, population, thalassaemia,
exposure, risk, incidence, age, cell, vaccine, heart
, hospital, reaction, time, serum, health, test,
structure, pressure,

Science: reaction, pressure, area, structure, force,
gas, length, value, foundation, water, points,
field, region, energy, order, sample, mass, compound
, angle, solution, temperature, function, axis,
distance, wire, level, cell, data, section, circuit,
change, resistance, weight, direction, circle,
statements, speed,

Technology: tree, node, code, stress, diameter,
water, force, pressure, circuit, flow, steel, system
, pipe, velocity, heat, point, tank, temperature,
power, plate, mass, bar, rod, unit, shaft, gas,
terms, plane, steam, weight, state, speed, voltage,
pin, strain, link, tube, volume, spring, network,
turbine,

Sociology: study, group, participants, brain,
treatment, memory, stress, symptoms, language,
system, research, behavior, researcher, response,
factors, studies, disorder, sleep, drug, therapy,
levels, control, nerves, movement, axis, health,
experiment, patient, behaviors, individual,
percentage, mortality,

Figure 9: Visualization-related keyword examples for different domains.
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Category: Technology
Question: How can industrial waste management practices
be improved to minimize the exposure pathways of heavy
metals in industrial settings as depicted in the image?
Answer: 1. Implement advanced industrial treatment
facilities: Industries should use modern treatment plants to
neutralize or filter heavy metals from wastes before
disposal. Technologies such as electrochemical treatment,
ion exchange, and chemical precipitation can be utilized.
2. Enforce stringent regulatory standards: Governments
need to set and enforce stricter regulations on industrial
waste disposal to ensure that companies adhere to safe
practices, thereby reducing emissions and contamination.
3. Promote the adoption of cleaner production methods:
Encourage industries to adopt cleaner and more sustainable
production techniques that minimize waste generation.
This can include using eco-friendly raw materials and
optimizing processes to reduce by-products.

\_ /. J

Category: Technology

Question: What materials are used in creating the objects
shown in the image, and what does their craftsmanship
suggest about the technological advancements and cultural
influences in their production?

Answer: The objects in the image are created using thin
strips of bamboo or similar lightweight wood, which are
carefully bent and joined to form intricate structural
models. The use of bamboo, a sustainable material,
suggests an emphasis on eco-friendly construction
practices. The craftsmanship involved in bending and
joining the bamboo strips points to a high level of skill and
precision, indicating advanced techniques in woodworking
and model making. This type of craftsmanship is often
seen in cultures with a strong tradition of manual arts and
could imply a localized technology influenced by cultural
heritage and environmental considerations.

Figure 13: Examples of synthesized instruction of Technology domain from our dataset.
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Category: Business

Question: What percentage of the pie chart does 'Austria’
approximately represent?

Answer: 1. Identify the segment labeled as 'Austria’ on the
pie chart. It has a value of 2.

2. Sum up all the segments in the pie chart: 3 (Ireland) + 9
(Italy) + 2 (Portugal) + 9 (UK) + 4 (Other (New)) + 2
(Czech Republic) + 2 (Hungary) + 17 (Lithuania) + 15
(Poland) + 2 (Belgium) + 6 (Germany) + 10 (Other (Old))
+ 3 (Greece) + 11 (Spain) + 2 (Austria) + 3 (France) =
100.\n3. Calculate the percentage represented by 'Austria':
(2/100) * 100 = 2%.

Therefore, Austria represents approximately 2% of the pie
chart.

. J

Category: Business

Question: How should Kyocera strategically plan its
resource allocation to optimize its net sales distribution
across different sectors, given the FY2010 net sales data
and competitor rankings?

Answer: 1. Analyzing Current Allocation:

- Analyze the existing net sales distribution across
sectors: Electronics Devices (12%), Applied Ceramics
(11%), Telecommunications (7%), Information Equipment
(55%), Other (4%), Fine Ceramics (7%), Semiconductor
Parts (4%).

2. Identify Growth Opportunities:

- Conduct market analysis to identify high-growth
potential sectors.

- Evaluate competitor strengths and weaknesses based on
NIKKEI Index rankings.
3. Prioritize High-Potential Sectors:

- Allocate more resources to high-potential sectors such
as Information Equipment. ... )

Figure 14: Examples of synthesized instruction of Business domain from our dataset.
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Category: Medicine

Question: Analyze the effectiveness of each step in the
CLATUU Alpha process as outlined in the infographic, and
discuss the reasoning behind each recommendation for
targeting stubborn fat.

Answer: Step 1: Identification of problem areas where
traditional methods of weight loss (jogging and dieting) are
ineffective, highlighting the issue with stubborn fat. Step
2: Introduction of CLATUU Alpha which suctions the skin
and subcutaneous layers, setting up the treatment area for
localized fat reduction. Step 3: Application of cooling
energy to the targeted fat deposits to induce apoptosis,
which is a natural process of programmed cell death, aimed
at reducing fat cells. Step 4: Representation of the effect of
the cooling energy on fat cells, where the fat cells become
crystallized and start dying, to be metabolized by the body.
Step 5: Demonstration of the reduced density of fat in the
targeted area post-treatment, indicating the effectiveness of

& process in making the area leaner. ... )

o
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Category: Medicine

Question: How can connected health technologies, as
illustrated in the image, be effectively implemented in a
clinical setting to improve patient outcomes, and what are
the potential benefits and challenges associated with their
adoption?

Answer: 1. Assess the current state of technology and
infrastructure in the clinical setting. Ensure adequate
internet connectivity, secure data storage, and compatible
devices. 2. Identify specific patient needs that connected
health technologies can address, such as remote monitoring
for chronic di or telemedicine ¢ ions. 3.
Integrate connected health devices into routine clinical
workflows, such as wearables for monitoring vital signs,
connected medication dispensers, and telehealth platforms
for remote consultations. 4. Train healthcare providers on
the use, maintenance, and troubleshooting of these
technologies, emphasizing data privacy and patient

i consent. ... ‘

Figure 15: Examples of synthesized instruction of Medicine domain from our dataset.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

\

Pre-stressing
force

J

Jacking tension force
v

ap

Tension after release

Distance from the anchorage

Category: Science

Question: Given the diagram showing the relationship
between pre-stressing force and distance from the
anchorage, how would you decompose the jacking tension
force (P) into its horizontal and vertical components?
Additionally, calculate the change in pre-stressing force
(AP) over a distance (L_set).

Answer: To decompose the jacking tension force (P) into
its horizontal (P_x) and vertical (P_y) components, we can
use the following steps:

1. Identify the angle of inclination (0) of the jacking force.
This can be found through trigonometric relationships
given in the diagram.

2. Use trigonometric functions to decompose the force:

P_x =P *cos(0), P_y=P * sin(6)

Next, calculate the change in pre-stressing force (AP) over
the distance L_set:

1. From the diagram, AP is the difference between the

\initial jacking tension force and the tension ... )

Category: Science

Question: Observing the image, classify the elements in
the periodic table based on their atomic numbers into three
categories: low (1-20), mid (21-40), and high (41 and
above). What chemical properties and trends can you
identify for each category?

Answer: To classify the elements, follow these steps:

... For each category, observe the following trends and
properties:

- Low category (1-20): These elements include nonmetals,
metals, and metalloids. They display a range of properties
from highly reactive (alkali metals and halogens) to noble
gases (inert). They tend to form simple binary compounds.
- Mid category (21-40): These elements are primarily
transition metals. They show properties like high melting
points, formation of colored compounds, and variable
oxidation states. They are often good catalysts and form
alloys. ...

\_ J

Figure 16: Examples of synthesized instruction of Science domain from our dataset.
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Category: Art

Question: Analyze the use of dynamics and articulation in
the first two lines of the 'Leonore' Overture No. 3 for
Violoncello e Basso. How do these elements contribute to
the musical expression and overall structure?

Answer: In the first two lines of the 'Leonore' Overture
No. 3 for Violoncello e Basso, we observe a range of
dynamics including pianissimo (pp), fortissimo (ff), and
crescendos. The use of articulation markings such as
staccato and accents provide contrast and emphasis on
certain notes. The opening measures start with a soft,
delicate texture indicated by pianissimo, creating a sense of
tension and anticipation. The crescendos lead to louder
dynamics, increasing the intensity and driving the music
forward. The staccato notes add a sense of urgency and
movement, while the accented notes highlight important
melodic or harmonic points. Together, these elements
shape the musical expression, guiding the listener through

@trasting moods and contributing to ... /

Category: Art

Question: How does the artist use color, composition, and
subject matter to convey the intensity and chaos of the
historical battle depicted in the painting?

Answer: Step 1: Analyze the use of color in the painting.
The artist uses dark and muted tones to establish a somber
and chaotic atmosphere, which is characteristic of battle
scenes. The varying shades of red, brown, and dark green
emphasize the violence and confusion of the battlefield.
Step 2: Examine the composition. The painting is densely
packed with figures and elements, with no clear focal
point, contributing to a sense of disorder and movement.
The composition directs the viewer's eye to different parts
of the scene, preventing the viewer from settling on one
spot, mirroring the erratic nature of battle. Step 3: Consider
the subject matter. The painting likely depicts a historical
battle, suggested by the presence of soldiers in uniforms,
horses, and weapons. The figures are engaged in combat,

@ir postures and actions illustrating the struggle ... )

Figure 17: Examples of synthesized instruction of Art domain from our dataset.
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Category: Sociology
Question: What can be inferred about the roles and
hierarchies of individuals in the group based on their
seating arrangement and positioning at the event depicted
in the image?

Answer: To infer the roles and hierarchies of individuals
based on their seating arrangement, begin by identifying
those seated at the head table, which suggests a position of
prominence. The individual standing behind the podium
likely holds a leadership or speaker role, indicating a
higher status. The central positioning of certain individuals
at the head table compared to those at the ends could
signify higher importance or rank. Additionally, notice how
body language and attention are directed towards the
podium, indicating respect or subordination. Evaluating
attire and engagement levels can also provide hints about
the differing roles, with more formally dressed individuals
potentially holding higher positions.
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Category: Sociology

Question: Identify the historical context of this
19th-century photograph. Discuss the significance of the
attire and the likely social class of the individuals, referring
to similar examples of famous figures or events from that
era.

Answer: This photograph appears to be from the 19th
century, judging by the attire and the style of the
photograph. The individuals are dressed formally,
indicating that they are likely from the middle or upper
class. During the 19th century, clothing was a significant
indicator of one's social status. Men are wearing
three-piece suits, which were common among business
professionals and the wealthy. Women are dressed in
modest, high-collared dresses, which was typical for
women of higher socioeconomic status who followed strict
social norms. A pertinent example of similar attire can be
seen in photographs of famous figures like Charles

lDickens or members of the American Civil War era upper )

Figure 18: Examples of synthesized instruction of Sociology domain from our dataset.
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