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Figure 1: Without any high-precision depth supervision, Jasmine achieves remarkably detailed and accurate
depth estimation results through zero-shot generalization across diverse scenarios.

Abstract

In this paper, we propose Jasmine, the first Stable Diffusion (SD)-based self-
supervised framework for monocular depth estimation, which effectively harnesses
SD’s visual priors to enhance the sharpness and generalization of unsupervised
prediction. Previous SD-based methods are all supervised since adapting diffusion
models for dense prediction requires high-precision supervision. In contrast, self-
supervised reprojection suffers from inherent challenges (e.g., occlusions, texture-
less regions, illumination variance), and the predictions exhibit blurs and artifacts
that severely compromise SD’s latent priors. To resolve this, we construct a
novel surrogate task of mix-batch image reconstruction. Without any additional
supervision, it preserves the detail priors of SD models by reconstructing the images
themselves while preventing depth estimation from degradation. Furthermore, to
address the inherent misalignment between SD’s scale and shift invariant estimation
and self-supervised scale-invariant depth estimation, we build the Scale-Shift GRU.
It not only bridges this distribution gap but also isolates the fine-grained texture
of SD output against the interference of reprojection loss. Extensive experiments
demonstrate that Jasmine achieves SoTA performance on the KITTI benchmark
and exhibits superior zero-shot generalization across multiple datasets. Project
page and code are available at here.

1 Introduction

Estimating depth from monocular images is a fundamental problem in computer vision, which plays an
essential role in various downstream applications such as 3D/4D reconstruction[62, 61], autonomous
driving[10], etc. Compared with supervised methods[25, 33, 21], self-supervised monocular depth
estimation (SSMDE) mines 3D information solely from video sequences, significantly reducing
reliance on expensive ground-truth depth annotations. These methods derive supervision from
geometric constraints (e.g., scene depth consistency) through cross-frame reprojection loss, and the
ubiquitous video data further suggests an unlimited working potential. However, view reconstruction-
based losses suffer from occlusions, texture-less regions, and illumination changes[83], which
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severely restrict the model’s capacity to recover fine-grained details and may cause pathological
overfitting to specific datasets.

Recent studies[25] demonstrated that SD possesses powerful visual priors to elevate depth prediction
sharpness and generalization, which offers promising potential to address the above limitations.
In addition, E2E FT[33] and Lotus[21] further reveal that single-step denoising can achieve better
accuracy, which is particularly critical for self-supervised paradigms. It not only accelerates the
inference denoising process but also significantly reduces the training costs in self-reprojection
supervision, thereby creating opportunities to integrate SD into the SSMDE framework.

However, fine-tuning diffusion models for dense prediction requires high-precision supervision to
preserve their inherent priors[25]. Supervised methods typically employ synthetic RGB-D datasets,
where clean depth annotations align with the high-quality SD’s training data, thereby keeping its
latent space intact. In contrast, directly applying self-supervision introduces a critical challenge:
reprojection losses or pre-trained depth pseudo-labels propagate perturbed gradients caused by
artifacts and blurs into SD’s latent space, rapidly corrupting its priors during early training stages.
Namely, high-precision “supervision" must exist at the beginning to protect SD’s latent space. Such
supervision seems impossible in self-supervised learning, but we find a handy and valuable alternative:
the RGB image. In fact, the image inherently contains complete visual details, avoids external depth
dependencies in self-supervision, and aligns perfectly with SD’s original objective of image generation.
Therefore, we construct a surrogate task of mix-batch image reconstruction (MIR) through a task
switcher, where the same SD model alternately reconstructs synthesized/real images and predicts
depth maps within each training batch. This strategy repurposes self-supervised reprojection loss to
tolerate color variations while maintaining structural consistency[ 4], intentionally decoupling color
fidelity from depth accuracy, and finally preserving SD priors successfully.

Another challenge is the output range of SD’s VAE[27] that is inherently bounded within a fixed
range, i.e., [-1, 1]. Existing methods typically normalize GT depth maps to this range in the training
procedure. During inference, these supervised approaches perform least-squares alignment to recover
absolute scale and shift, yielding scale- and shift-invariant (SSI) depth predictions. However, self-
supervised frameworks rely on coupled depth-pose optimization, which theoretically requires shift
invariance to be strictly zero for stable convergence, ultimately producing scale-invariant (SI) depth
predictions. To bridge this inherent distribution gap, we propose a gated recurrent unit (GRU)-based
novel transform module termed Scale-Shift GRU (SSG). It not only iteratively aligns SSI depth
to SI depth by refining scale-shift parameters but also acts as a gradient filter, which suppresses
anomalous gradients caused by artifact-contaminated in self-supervised training, thereby preserving
the fine-grained texture details of SD’s output while enforcing geometric consistency.

Extensive experiments show that our proposed method, Jasmine, @ achieves the SoTA performance
among all SSMDEs on the competitive KITTI dataset, ® shows remarkable zero-shot generaliza-
tion across multiple datasets (even surpassing models trained with augmented data), ® demonstrates
unprecedented detail preservation. As the first work to bridge self-supervised and zero-shot
depth estimation paradigms, we also provide an in-depth analysis of the effects of different depth
de-normalization strategies employed in their respective domains. To sum up, the main contributions
are summarized as follows:

* We first introduce SD into a self-supervised depth estimation framework. Our methods eliminate
the dependency on high-precision depth supervision while retaining SD’s inherent advantages in
detail sharpness and cross-domain generalization.

* We proposed a surrogate task of MIR that anchors SD’s priors via self-supervised gradient sharing
to avoid SD’s latent-space corruption caused by reprojection artifacts.

* We proposed Scale-Shift GRU (SSG) to dynamically align depth scales while filtering noisy
gradients to solve SSI versus SI distribution mismatch problems in self-supervised depth estimation.

2 Relative Work

Self-supervised Depth Estimation Due to the high costs of GT-depth collection from LiDARs
and other sensors, self-supervised depth estimation (SSDE) has gained significant research attention.
SSDE can be broadly categorized into stereo-based(learning depth from synchronized image pairs)[52,
14,12, 3, 2] and monocular-based methods (using sequential video frames)[3 1, 87, 85, 32, 37, 83, 20,
34,19, 29]. Additionally, when focusing on inference capability, existing methods can further diverge



oy

i_m surrogate switch s , il (‘%_ﬁ

Mix-batch I, £ 1% - single step T =T i % Lny 'YJ | warp
_ = ~d — -

F Qh 7,49 ' ; Scale-Shift T inh
B d SN " Denoiser — -
o ; D m GRUx2 p
E U-Net f 0 > <

Noise n ]
4,  Depth Prediction

()]

e
n normalization | Le Lyc

edge extraction L.
C

Training Image I, Dyc

Figure 2: Finetuning Protocol of Jasmine. The I, and L,,, are each concatenated with n[33] and fed into the
VAE encoder €. Next, the U-Net performs single-step denoising guided by the task switcher s, and subsequently
decodes the SSI-depth prediction Ds sy and the reconstructed image with the D (Sec. 3.2). Afterward, the Dssr
is processed by the SSG for distribution refinement, yielding the final depth estimation Dgsr. The Lic, Le, Lpn
and L, are supervision loss and they are detailed in Sec. 3.4. The edge extraction module is detailed in Sec C

into single-frame and multi-frame approaches[55, 17, 9, 1]. Comparisons between these paradigms
are detailed in Sec. E.2. Recently, DepthAnything v1/v2[68, 69] has revealed that we can obtain an
accurate single image depth prediction model with strong generalization by training on large-scale
image depth pairs. However, we argue that such datasets still remain a small fraction of the ubiquitous
video data available. This observation motivates our exploration of the most challenging configuration:
training exclusively on video sequences while maintaining single-frame inference capability, thereby
laying the groundwork for developing genuinely versatile “DepthAnything” models.

Diffusion for Depth Perception As the diffusion paradigm showcases its talents in generative
tasks[22, 46, 28, 76, 51, 59], DDP[24] first reformulates depth perception as a depth map denoising
task and leads to giant progress. Followers like DDVM[40], MonoDiffusion[44], and D4RD[50] (the
latter two are self-supervised methods but employ self-designed diffusion) all demonstrate the advan-
tages of this paradigm in various MDE sub-tasks. Subsequently, the most renowned diffusion model,
Stable Diffusion[39], has demonstrated significant potential for depth perception tasks. VPD[84],
TAPD[26], and Prior-Diffusion[77] use Stable Diffusion as a multi-modal feature extractor, leverag-
ing textual modality information to improve depth estimation accuracy. Concurrently, Marigold[25]
and GeoWizard[11] enhanced model generalization and detail preservation by fine-tuning Stable
Diffusion, capitalizing on its prior training with large-scale, high-quality datasets. Afterward, E2E
FT[33] and Lotus[21] further accelerated inference by optimizing the noise scheduling process. In
this work, our Jasmine continues these works and extends SD to the field of self-supervision.

3 Methods

In this section, we will introduce the foundational knowledge of the SSMDE and SD-based MDE
(Sec. 3.1), the surrogate task of mix-batch image reconstruction (MIR, Sec. 3.2), the scale-shift
adaptation with GRU (Sec. 3.3) and the SD finetune protocol specified for self-supervision (SSG,
Sec. 3.4). An overview of the whole framework is shown in Fig. 2 and its training pseudocode is
shown in Algorithm 1.

3.1 Preliminaries

Self-Supervised Monocular Depth Estimation makes use of the adjacent frames I+ to supervise
the output depth with geometric constraints. Given the current frame I;, the MDE model as F : I; —
DeRWXH we can synthesize a warped current frame I, _,; with:

It/ﬁt:It/ <pI'Oj(D,7;*>t/7K)>,tI€(t-l,t-'-l), (1)

where T;_,4 denotes the relative camera poses obtained from the pose network, K denotes the
camera intrinsics, and (-) denotes the grid sample process. Then, we can compute the photometric
reconstruction loss between I; and I;/_,; to constrain the depth:

Lpn (T, e p) = mp1 (1 — SSIM (T, Ty 54)) /2 + np2 [T — Tyt | - )

Stable Diffusion-based Monocular Depth Estimation reformulates depth prediction as an image-
conditioned annotation generation task. Typically, given the image I and processed GT depth y, SD
first encodes them to the low-dimension latent space through a VAE encoder ¢, as (z!,2) = (L, y).



Afterward, gaussian noise is gradually added at levels 7 € [1,T] into zY to obtain the noisy sample,
with z¥ = /a,.2z¥ + /1 — &€, then the model learns to iteratively reverse it by removing the
predicted noise:

¢ = fo(ay 1|2y, 2"), 3)
and finally decodes the depth prediction with D = D(z3 ). Here e ~ N (0, I), f§ is the e-prediction

U-Net, @; := [[._,(1 — Bs), D is the VAE decoder and {f1, Sz, ..., A7} is the noise schedule with
T steps.

Equation | demonstrates that the self-supervised approach needs the depth prediction D for image
warping. However, obtaining z3) requires iterative computation of Eq. 3, which becomes computation-
ally infeasible considering the enormous size of SD models. Fortunately, Lotus and E2E FT[33, 21]
demonstrate that we can obtain comparable results with single-step denoising and directly predict
depth, D = D (fZ (2¥,2")) , 7 = T, which makes it possible to train SD with self-supervision. The
step-by-step workflow is detailed in Sec B.

3.2 Surrogate Task: Image Reconstruction

Self-supervision Compromise SD Prior. The photometric reconstruction losses (Eq. 2) inevitably
introduce the supervision with noise and artifacts due to occlusions, texture-less regions, and pho-
tometric inconsistencies. As shown in Fig. 3 (a), consider a scenario where relative camera poses
T:—+ represents a pure horizontal translation. The point p—which should ideally have 5 pixels of
disparity (reciprocal of depth)—becomes occluded. Instead, it must displace 10 to compensate for
incorrect pixel matches, resulting in erroneous depth alignment with point ¢ (a detailed explanation
is provided in Sec. F). This phenomenon propagates to neighboring points, collectively eroding
structural details (e.g., the tree’s edge) while generating imprecise supervisory signals that rapidly
degrade SD’s fine-grained prior knowledge.

To preserve these details, we notice that both SSMDE and SD inherently rely on image consistency:
SSMDE uses photometric constraints (Eq. 2), while SD’s training directly minimizes image gen-
eration errors. Inspired by this, we propose a surrogate task: image reconstruction. Concretely,
following [11], we design a switcher s € {s,, s, } to alternate the U-Net f7 between the main and
surrogate tasks. When activated by s,, we have D = D (fZ (s,,2¥,2z")). In contrast, we have

I =D (f; (sy,2¥,2")) . Notably, the switcher s is a processed one-hot vector and it is combined
with the time embeddings fed into the f7. This allows the U-Net to condition its internal operations
on the currently selected task. Therefore, we follow the SD paradigm and initially formulate the
surrogate loss as:

Ly = ||2" — £§(sy, 2%, 2")|]*. )

Mix-batch Images Reconstruction with Photometric Supervision. We show that it is possible
to preserve the SD priors by introducing a compact surrogate task. However, our experiments
reveal that naively applying Eq. 4 for SSMDE optimization yields suboptimal results (Fig. 3(c)).
Through empirical investigation, we identify three critical insights: 1) Inferior reconstructed images
(e.g., KITTI) introduce block artifacts (Fig. 3(c)). We attribute this to the latent space operating
at % resolution: When inputs align with the pre-trained € and D, smooth supervision is achieved.
Conversely, each latent pixel supervision manifests as 8x8 block artifacts in prediction. 2) Introducing
high-quality synthesized images (maintaining self-supervision compliance) offers a potential solution,
but exclusive training on these data causes the model to only excel at reconstructing synthetic images
but fails to generalize this capability to reduce depth estimation blurriness(Fig. 3 (d)). 3) Mixing
these images within a training batch allows synthesized images to anchor the model to latent priors,
while real-world data enforces geometric structure alignment, is a possible solution. But this strategy
shows notable sensitivity to mix rate A (Fig. 3 (g), (e) is a failure scene).

To address the mismatch between VAE and image, we proposed to replace Eq. 4 with the photometric
loss Ly, (Eq. 2) in the image domain. Compared to Eq. 4, L, emphasizes structural consistency
rather than color fidelity, which aligns better with depth estimation objectives. As shown in Fig. 3(f,
g), this supervision not only makes MIR robust to A but also significantly improves the estimation
quality. Therefore, we take the Hypersim dataset(4.2.1), a photorealistic synthetic dataset specifically
designed for geometric learning, as the auxiliary image and update Eq. 4 with

In = ¢(Ix, 1, A), Ls = Lpn(In, D(f§ (54,27, 2"))), 5)
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Figure 3: The attempts to preserve the SD prior. The meanings of (a)-(f) are detailed in Sec. 3.2. Notably,
while (e) demonstrates superior visual quality, it erroneously interprets surface textures (e.g., house windows) as
depth edges. (g) shows the performance variations under different A settings for photometric supervision (Eq. 5)
and latent supervision (Eq. 4). The complete metrics and their definitions are provided in Sec. E.4.

where ¢ denotes random choice; Ik and Iy are KITTI and Hypersim images, respectively.

In summary, MIR constructs each training batch by randomly selecting images from these two
datasets, and supervises the reconstructed image with the photometric loss in Eq. 5.

Analysis of Auxiliary Images The specific synthetic data usage may raise concerns about appli-
cability boundaries. To clarify, we conduct additional experiments and present three insights about
the relationship between auxiliary data and performance: (1) Synthetic images are not essential; our
surrogate task maintains efficacy with real-world imagery. (2) The dataset scale proves non-critical, as
competitive performance emerges with samples under 1k. (3) Domain divergence between auxiliary
and primary datasets enhances results and is even more important than image quality. Please refer to
Sec. 4.4 for detailed experimental support.

This analysis and related experiments reveal MIR is a highly promising training paradigm. It not
only imposes no inherent limitations on any dense prediction tasks but also challenges the notion
that fine-tuning SD requires high-quality annotation. Even with legacy datasets like KITTI, we can
still leverage readily available images to effectively utilize SD priors and enhance depth estimation
sharpness.

3.3 Scale-Shift GRU

The misalignment of SSI-SI depth. We first analyze the training procedure of SSMDE. Denoting
the relative camera poses 7;_,; as [R|T], we can further expand the proj process in Eq. | with:

¢(D'=KRK ¢D+T), (6)

where ¢, ¢’ denote homogeneous coordinates and D, D’ represent depths in I; and I,/, respectively.
Afterward, the coordinate ¢’[u,v] in I maps to [u,v] in I;/_,; and we can grid sample every pixel to
get I, _,,. However, this mapping is not unique. We can scale both sides of the equation with s.:

('s.D' = K(RK (s.D + s.T), (7

where both T and s.T represent valid relative poses. But if we further introduce a shift s;,, we can
derive the formula (detailed derivations at Sec. A) to obtain:

K7 '('g1(D") = RK'Csp + g2(T), ®)

where g1 () and g3(-) are affine transformations (SSI depth is affine depth). The above equation
means that the affine depth of any scene (g1(D’)) can appear as a plane from a certain perspective.
This plane has the depth s;, and the extrinsic transformation of this perspective and the original one is
[R|T], which is undoubtedly impossible (more explanations in Sec. A). Thus, the shift s, does not
exist under the geometric constraints, and SSMDE predicts Scale-Invariant Depth Dg;.

Additionally, we analyze the training process of SD-based MDE. The processed GT depth y mentioned
in Sec. 3.1 satisfies the VAE’s[27] inherent boundary [-1, 1], typically obtained by:

vy = (Der — Dar2)/(Dares — Dar2) — 0.5) x 2, 9)

where Dgr; corresponds to the 1% percentiles of individual depth maps. Obviously, compared
to the raw depth, y is normalized and differs from Dgr by an absolute scale and shift, which can
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Figure 4: (a): Model Structure of SSG. It corresponds to the gray rectangle shown in Fig. 2, standing for an
iteration within two consecutive ones. The pipeline of SSG is comprehensively described in Sec. 3.3 (DepthHead
is omit in (a) for clear). (b): Depth distribution alignment visualization. We statistically analyze each stage of
Jasmine’s SSG module on the KITTI test set. The standard SI and SSI depths are obtained by applying Eq. 9 and
dividing the maximum value to the depth GT, respectively.

be recovered by the least squares alignment in evaluation. Consequently, SD-based MDE predicts
Scale-Shift-Invariant Depth Dgg;.

This inherent distribution gap between SSI and SI depth creates barriers for SD integration, and the
SSG is specifically designed to fix it.

The Design of SSG. Transforming the depth distribution from SSI depth to SI depth requires
profound scene understanding, and the scale (s.) and shift (sj) factors are tightly coupled. Therefore,
as shown in Fig. 4(a), compared to traditional GRU, SSG introduces a core component Scale-Shift
Transformer (SST), and modifies the iterative prediction formula:

From Dy =Ds+ D, To Dgy1 = Ds+ s.- Dy + sp, (10)

where D5 = DepthHead(h**1), k denotes the iteration step and h denotes the hidden state (prelimi-
naries of GRU in Sec D). Specifically, the SST employs learnable scale/shift queries (Qsc/Qs ) that
interact with SD’s hidden states (keys/values) via cross-attention. The output vector is subsequently
split and processed by MLPs to produce s. and s;,. For the hidden state update, to enhance spatial
awareness, the current input x” is defined as the concatenation of image features z’ and the current
depth Dy,. The hidden state h* evolves via a standard GRU iteration to produce the refined hidden
state h**+1 and subsequently update Dy, to Dy .

To balance computational efficiency and GRU’s iterative benefits, we employ two GRU iterations:
starting from the initial depth Dy (Dggsr) to sequentially produce Dy and D2 (Dgy). As shown in
Fig. 4(b), the distribution of Dy tends to align with the standard SSI depth distribution, while D4
and D5 progressively converge towards the SI depth. This clearly demonstrates that SSG iteratively
aligns SSI depth to SI depth by refining the scale-shift parameters. GRU is preferred over other
architectures due to its reset gate mechanism. During training, the reset gate r can prevent the back-
propagation of anomalous gradients to the former step by selectively resetting parts of the hidden
state. Therefore, this mechanism enables the fine-grained Dgg; to filter out erroneous supervision
signals from reprojection losses and exhibit richer details than Dg; (shown in Fig. 2). To preserve
these fine-grained details in the final prediction, we further constrain the edge alignment between
Dggr and Dgy with an edge extraction module, detailed in Sec. C.

3.4 Steady SD Finetune with Self-Supervision

As the first framework to finetune SD with self-supervision, we encountered a novel challenge:
training instability, which is mainly due to the SD’s enormous size, joint training across modules, and
indirect self-supervisory mechanisms. To enhance the convergence reliability and reproducibility, we
explored a straightforward approach by introducing a pre-trained self-supervised teacher model (e.g.,
MonoViT) to estimate Dy as pseudo labels. Dy, provides direct supervision but has a performance
upper bound, which can stabilize model training in the early stages while gradually decreasing loss
weights throughout the training process:

L. = (Lp (norm (Dy.) , Dss1) + Lp (Dic, D1) -1 +L (filter (D) , Ds1) - me2) [Msteps (11)

where L g is the Berhu Loss, “norm” is the [-1,1] normalization, and “filter”” are adaptive strategies
to avoid performance bottlenecks. Through extensive experimentation and error bar analysis, we



demonstrate that this pseudo-label training proves particularly crucial for steady training in complex,
multi-module self-supervised systems. The implementation details are in Sec. C. Finally, the total
training loss of the Jasmine model is:

L:L5+Lpiz+Ltc+L<z'77aa (12)

where L refers to Eq.5, Ly, refers to Eq. 2, Ly refers to Eq. 11, and L, is some auxiliary adjustment
losses (e.g., gds loss[34] Laps, edge loss L, etc.) with a tiny weight. They will be detailed in
supplementary material Sec. C.

4 Experiment

4.1 Implement Details

We implement the proposed Jasmine using Accelerate[16] and PyTorch[35] with Stable Diffusion
v2[39] as the backbone. Following the pipeline in Fig. 2, we disable text conditioning while
maintaining most hyperparameter consistency with E2E FT[33]. The loss weights specified in Sec. 3
are empirically configured as:

Na =8¢ —3,m1 = 0.6, 12 = 0.9,1p1 = 0.85,7)p2 = 0.15, 1)yep = max (1,30 - (step,,,,,/SteP,raz))-

Training uses the AdamW optimizer[30] with a base learning rate of 3e — 5. All experiments
are conducted on 8 NVIDIA A800 GPUs with a total batch size of 32, training for a total of 25k
training steps, requiring around 1 day. Following [15], we also employed standard data augmentation
techniques (horizontal flips, random brightness, contrast, saturation, and hue jitter).

4.2 Evaluation
4.2.1 Datasets

Unless specified, all datasets are finally resized to 1024 x 320 resolution for training.

Training Datasets. KITTI[13]: Following the previous work[15], we mainly conduct our experiments
on the widely used KITTI dataset. We employ Zhou’s split[86] containing 39,810 training and
4,424 validation samples after removing static frames. The evaluation uses 697 Eigen raw test
images with metrics from [15], applying 80m ground truth clipping and Eigen crop preprocessing[8].
Hypersim[38]: This photorealistic synthetic dataset (461 indoor scenes) contributes approximately
28k samples from its official training split for mix-batch image reconstruction. Each iteration uses
random crops from the original 1024 x768 to 1024 x 320 resolution.

Zero-shot Evaluation Datasets DrivingStereo[67]: Contains 500 images per weather condition
(fog, cloudy, rainy, sunny) for zero-shot testing. CityScape[7]: Evaluated on 1,525 test images with
dynamic vehicle-rich urban scenes, using ground truth from [55].

MIR Analysis Datasets ETH3D[41]: We resize this high-resolution (6048x4032) dataset to 4K
resolution, then randomly cropped to 1024 x 320 per iteration (898 total samples). Virtual KITTI[4]
is a synthetic street scene dataset. We processed this dataset identically to real KITTI data.

4.2.2 Performance Comparison

For all the evaluations, only , Marigold, E2E FT, and Lotus adopt the least squares alignment.
The other self-supervised methods use median alignment. The definitions and differences of these
alignments are detailed discussed in Sec. 4.3. The meaning of each metric is detailed in Sec. G.

KITTI result To fully demonstrate the advantages of our approach, we compare Jasmine against
the most efficient SSMDE models and SoTA SD-based methods. As shown in Table 1, Jasmine
achieves the best performance across all metrics on the KITTI benchmark. Notably, our method
makes significant progress on the a; metric, reflecting an overall improvement in depth estimation
accuracy. This systematic advancement stems from the rich prior knowledge of SD. As shown in
Fig. 1, without any specialized design for reflective surfaces, our method can accurately distinguish
scene elements from their reflections. Additionally, the first row of Fig. 5 also demonstrates that our
approach preserves structural details better than existing methods. Moreover, when compared to the
other SD-based zero-shot models, none of which, including , use the ground truth depth of
KITTI, our method demonstrates a substantial performance advantage, further highlighting the value
of self-supervised techniques.



Table 1: Quantitative results on the KITTI dataset. For the error-based metrics , the lower value is better;
and for the accuracy-based metrics , the higher value is better. The best and second-best results are marked in

bold and underline. Jacho et al* is a combined model that applies both Jaeho’s[34] (handle dynamic objects)
and TriDepth’s[5] (solve edge flatten) approach. Jasmine* and Jasmine are the same model but use different
alignments (discussed in Sec. 4.3). In the data column, Syn, K, and H represent the synthetic, KITTI, and
Hypersim datasets, respectively. The number of images and depth labels usage are in brackets. All experiments
are conducted at 1024x320 resolution (Performance of Marigold/E2E FT/Lotus is robust to this resolution).

Method Venue Notes Data AbsRel SqRel RMSE RMSElog ap az as
Marigold[25] CVPR2024 | ZeroShot | Syn(74K+74K) 0.120 0.672 4.033 0.184 0.874 0.968 0.985
E2E FT[33] WACV2025 | ZeroShot | Syn(74K+74K) 0.112  0.649 4.099 0.180 0.890 0.969 0.985
Lotus[21] ICLR2025 | ZeroShot | Syn(59K+59K) 0.110 0.611  3.807 0.175 0.892 0970 0.986
Jasmine* - Mono KH(68K+0) 0.102 0.540 3.728 0.162 0.907 0.973 0.987
Monodepth2[15] ICCV2019 Mono K(40K+0) 0.115  0.882  4.701 0.190 0.879 0.961 0.982
HR-Depth[31] AAAI2021 Mono K(40K+0) 0.106 0.755 4472 0.181 0.892 0.966 0.984
R-MSFM6[87] ICCV2021 Mono K(40K+0) 0.108  0.748 4.470 0.185 0.889 0.963 0.982
DevNet[85] ECCV2022 Mono K(40K+0) 0.100  0.699 4412 0.174 0.893 0.966 0.985
DepthSegNet[32] ECCV2022 Mono K(40K+0) 0.099 0.624 4.165 0.171 0.902 0.969 0.985
SD-SSMDE|37] CVPR2022 Mono K(40K+0) 0.098  0.674 4.187 0.170 0.902 0.968 0.985
MonoViT[83] 3DV 2022 Mono K(40K+0) 0.096 0.714  4.292 0.172 0.908 0.968 0.984
LiteMono[81] CVPR2023 Mono K(40K+0) 0.102  0.746 4.444 0.179 0.896 0.965 0.983
DaCCNJ[20] ICCV2023 Mono K(40K+0) 0.094  0.624 4.145 0.169 0.909 0.970 0.985
Jaeho et al*.[5, 34] || CVPR2024 Mono K(40K+0) 0.091 0.604  4.066 0.164 0913 0970 0.986
RPrDepth[19] ECCV2024 Mono K(40K+0) 0.091 0.612  4.098 0.162 0910 0971 0.986
Mono-ViFI[29] ECCV2024 Mono K(40K+0) 0.093  0.589 4.072 0.168 0.909 0.969 0.985
Jasmine - Mono KH(68K+0) 0.090 0.581 3.944 0.161 0.919 0.972 0.986

Table 2: Quantitative zero-shot results on the CityScape and DrivingStereo dataset and its variants
(Rainy, Cloudy, Foggy). Alignment protocols and annotation rules follow Table 1’s specifications. AbsRel,
RMSE, and a; metrics are shown.

Method DrivingStereo Rainy CityScape Cloudy Foggy

AbsRel RMSE a; |AbsRel RMSE a; |AbsRel RMSE a; AbsRel RMSE a; |AbsRel RMSE a;
Marigold[25] 0.178 6.638 0.749| 0.148 6.770 0.801| 0.164 6.632 0.763| 0.173 6.881 0.751| 0.146 6.545 0.798
E2E FT[33] 0.160 5.437 0.795| 0.164 6.671 0.793| 0.160 6.944 0.792| 0.157 5.522 0.797| 0.141 6.034 0.836
Lotus[21] 0.173  5.816 0.771] 0.167 6.675 0.775| 0.147 6.582 0.824| 0.159 5.640 0.795| 0.150 6.173 0.798
Jasmine* 0.134 4.666 0.854| 0.159 6.071 0.825| 0.107 5.000 0.907| 0.134 4.762 0.846| 0.113 4.883 0.897
MonoDepth2[15] || 0.191 8.359 0.770| 0.260 12.577 0.609| 0.158 8.185 0.783] 0.192 10.07 0.775] 0.156 10.425 0.799
MonoViT[83] 0.150 7.657 0.815| 0.190 9.407 0.724| 0.140 7.913 0.802| 0.134 7.280 0.849| 0.107 7.899 0.882
Mono-ViFI[29] 0.158 6.723 0.798| 0.400 13.960 0.484| 0.134 7.372 0.817| 0.154 6.883 0.800| 0.160 8.494 0.769
WeatherDepth[49] || 0.166 6.986 0.796| 0.166 8.844 0.748| 0.137 6.515 0.837| 0.167 7.566 0.793| 0.132 7.679 0.859
Jasmine 0.136 5.340 0.850| 0.160 7.194 0.787| 0.123 6.618 0.852| 0.133 5.651 0.849| 0.098 5.702 0.902

Generalization Results Compared to in-domain evaluation, Jasmine exhibits even more remark-
able results in zero-shot generalization. Due to the large number of comparison datasets and the
unavailability of some models’ open-source code, we only compare with Monodepth2 (the most
classic model), MonoViT (renowned for its robustness), MonoViFi (the latest model), and Weath-
erDepth (trained with additional weather-augmented data, totaling 278k samples), all of which are
self-supervised models. In fact, MonoViT already surpasses the zero-shot capability for nearly
all models in the SSMDE, making it a sufficiently strong baseline[42]. Additionally, SD-based
methods have excelled in generalization, allowing us to conduct a fair zero-shot comparison here. As
shown in Table 2, Jasmine demonstrated state-of-the-art performance on the datasets of Cityscape

RGB Image (Part) Zoom/Enhance MonoViT Weatherdepth MonoVIFI Jasmine

Figure 5: Qualitative results on KITTI, DrivingStereo, and CityScape datasets. We compare Jasmine with the
most generalizable and best-performing SSMDE methods in both in-domain and zero-shot scenarios.
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and four weather scenarios of driving stereo. Remarkably, our method maintains effectiveness in
out-of-distribution (OOD) rainy conditions even without specialized training on weather-enhanced
datasets like WeatherKITTI[49]. As illustrated in Fig. 1, Jasmine successfully identifies water
surface reflections while producing refined depth estimates. The fine-grain estimation details are
further demonstrated in Fig. 5, pedestrian chins (second row), tree support structures (third row), and
bicycle-rider contours (fourth row) are all predicted delicately and precisely. These sharp results were
completely disrupted by the reprojection loss in previous self-supervised methods.

Further Analysis We also deeply compare Jasmine with other SSDE configurations (stereo training
and multi-frame inference) and on KITTI improved GT benchmark in Sec. E.2, E.1.

4.3 Analysis of Depth De-normalization

The performance gap between Jasmine ™ /
and in Tables | and 2 high-

lights the impact of de-normalization

N
ro

strategies—median alignment for self- .
supervised methods and LSQ alignment |
for zero-shot settings. As the first work /

bridging these two domains, we provide
an in-depth analysis of how these choices
affect evaluation.

-0.6

Figure 6: Comparison of different de-normalization
Depth de-normalization refers to the pro- schemes. The blue points are predictions after align-
cess of transforming the model’s predicted ment and the green line is the ideal GT depth. Sub-
depth values back to the GT distribution figures (a,c) are the results of LSQ alignment, while
for metric evaluation. The typical de- (b,d) are median alignment.
normalization strategies include:
© No operation: Models predict metric depth [23]: Deyoi = Dpred-
@ Median Alignment: Models predict SI Depth [15], which can be recovered by scaling the
ratio of the median of the GT depth to the median of the predicted depth: D¢yq = Dpreq -
median(Dgr)/median(Dp,cq)-
® Least-Squares (LSQ) Alignment: Models predict SSI Depth [25], which can be recovered by
affine transformation (scaled and shifted) to best fit the GT depth. The evaluated depth is given by:
Deyai = 58" Dpreq + t*. where the optimal scale s* and shift ¢* are determined by minimizing the
sum of squared differences: (s*,¢*) = argminy,((s - Dprea,s +1t) — Dar,i)?.

s,t

From Tables | and 2, we have following observations:

Metric inconsistency: For the exact same model, the evaluation metrics can vary dramatically
depending on the de-normalization method, making direct comparison unfair.

Metrics characteristics: Under LSQ alignment, quadratic metrics (e.g., SqRel, RMSE) are usually
better, but first-order metrics (e.g., AbsRel) and overall accuracy (a;) are often worse.

Scenario suitability: For in-domain training, median alignment is generally superior, while in
zero-shot scenarios, LSQ alignment is usually stronger.

As shown in Fig. 6 (a, ¢), LSQ alignment tends to accommodate outliers ¢ and o/, resulting in a
larger overall shift in the alignment. In contrast, in sub-figures (b, d), outliers have little effect on the
median, so the accuracy for the majority of points is preserved. In the context of depth estimation,
a and a’ can represent the model’s predictions for regions that are difficult to estimate. Clearly, for
quadratic metrics, under median alignment, the large error between o’ and the GT in (d) will be
further amplified by squaring, leading to a drop in the overall metric. However, when computing
overall accuracy, a’ or a are typically outside the threshold for a; and thus do not affect it, while the
originally accurate predictions for other points become less accurate due to the shift introduced by
LSQ alignment. Similarly, first-order metrics also degrade due to these shifts. This explains why
achieves better RMSE and SqRel but worse a; and AbsRel compared to Jasmine.

For the last observation, in in-domain scenarios (Table 1), Jasmine outperforms Jasmine* because the
shift-free estimation learned by Jasmine is disrupted by LSQ alignment, introducing a suboptimal
shift and degrading performance. In out-of-domain scenarios (Table 2), performs better,
as the depth distributions of different datasets may differ significantly, and using least-squares to
estimate the best fit is clearly a better choice.



4.4 Ablation Study

As shown in Table 3, we conduct ablation studies to validate our designs. Firstly, in

, we gradually tested the effects of our basic components, such as SD prior,
MIR, and SSG. The SD prior proves most critical - training from scratch (IDO vs. IDI1)
causes catastrophic failure (AbsRel1473%, RMSE1206%). The other experiments also demon-
strate that disabling MIR (ID4) or SSG (ID3) degrades performance by 47%/43% in Ab-
sRel, proving the necessity of depth distribution alignment and SD detail preservation.

In sub-table (b), we further melted down
our proposed SSG. ID (6) reveals that the
naive GRU can initially solve the distribu-
tion misalignment by estimating the Dy
(Eq. 4). However, the scale difference be-

Table 3: Ablation Studies. vK and Hy mean the virtual
KITTI and Hypersim datasets. Dataset/n denote we downsam-
ple the image to % resloution(i.e. Hy/1.6 means downsample
to 640x 192, where 640=1024/1.6) and resize them back.

. ID) Method AbsRel SqRel RMSE | a a

tween SSI and SI depth makes it difficult to @ I Oursq [ o 2
restore through linear addition. Therefore, (0) Jasmine [ 0090 0581 3.944 [ 0919 0972
after introducing SST, the overall model
performance is further enhanced by 10%’ (1) w/o SD Prior 0.516  6.019 12.06 | 0.258 0.501

i lv achievine SoTA perf A () wloMIR+SSG 0.175 2264 7.969 | 0.790 0.929
ultimately achieving 5014 pertormance. (3) wio SSG 0.129 0938 4470 | 0.872 0.956
comprehensive analysis of MIR was con-  (4) wio MIR 0.132 0673 4271 | 0852 0967
ducted in sub-table (¢) and we can draw (b) Scale-Shift GRU
similar conclusions to Sec. 3.2. Jasmine  (5) w/o SSG 0.129 0938 4470 | 0.872  0.956
significantly outperforms the alternatives, (6) wio SST | 0098 0715 4.350 | 0909 0.969

. (c) Mix-batch Image Reconstruction
such as KITTI/synthetic-only reconstruc- ) wio MIR 0132 0673 4271 10853 0967
tion (IDs (8,9) and Fig. 3 (c,d)) and latent-  (8) Direct 0.129 0679 4.385 | 0.858 0.962
space supervision (ID (10) and Fig. 3 (e)), (9 Only Hy 0.106 ~ 0.614  4.181 | 0.901 0.970
which strongly proves the effectiveness of (10 Latent space 0095 0606 4138 | 0.909 0970
. . (d) Auxiliary Image Analysis
our proposed MIR. The analysis of auxil-  —555r 0.095 0616 4040 | 0912 0972
iary images is presented in sub-table (d).  (13)KITTI+ETH3D | 0.090 0586 3.937 | 0916 0972
The experiments in IDs (0, 13, 14) indicate (14) KITTI+vK 0.094  0.606 4.068 | 0.911 0.972
that, compared to real/synthesis datasets, (15 KITTI+Hy/4 0.091 059  3.943 | 0917  0.972
(16) KITTI+Hy/1.6 0.090 0.591 3.971 | 0918 0.972

the content of the dataset is more impor-
tant, and diverse scenes offer greater ben-
efits than street views (virtual KITTI images) similar to our primary dataset, KITTI. Furthermore,
IDs (0, 15, 16) demonstrate that our surrogate task is robust to image sampling resolutions, as
downsampling to ﬁ or even i has minimal impact on the results. Moreover, ID(13) further confirms
that MIR remains effective even when trained on small-scale datasets (fewer than 1k samples). These
insights provide potential opportunities for applying SD models to other dense estimation tasks
and enhancing result sharpness. In summary, these ablation results validate the effectiveness of
our proposed adaptation protocol, indicating that each design plays a crucial role in optimizing the
diffusion model for self-supervised depth estimation tasks.

4.5 Inference Latency

As shown in the table below (MACs and Runtime are measured on a image with 1024 x320 resolution
on RTX 4090.), while Jasmine is more computationally expensive than prior self-supervised methods,
it follows the trend of models like Marigold in trading cost for superior performance. Notably, our
SSG module adds negligible latency, with Jasmine’s runtime being comparable to Lotus.

Method Marigold Lotus E2E-Mono Monodepth2 MonoViT MonoViFi Jasmine
MACs 133T 2.65T 2.65T 21.43G 25.63G 28.79G 2.83T
Runtime 9.88s 157ms 152ms 33ms 29ms 25ms 172ms

5 Conclusion

We propose Jasmine, the first SD-based self-supervised framework for monocular depth estimation,
effectively leveraging SD’s priors to enhance sharpness and generalization without high-precision
supervision. To achieve this objective, we introduce two novel modules: Mix-batch Image Recon-
struction (MIR) for mitigating reprojection artifacts and preserving Stable Diffusion’s latent priors,
alongside Scale-Shift GRU (SSG) to align scale-invariant depth predictions while suppressing noisy
gradients. Extensive experiments demonstrate that Jasmine achieves SoTA performance on KITTI
and superior zero-shot generalization across datasets. Our approach establishes a new paradigm for
unsupervised depth estimation, paving the way for future advancements in self-supervised learning.
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The answer NA means that the abstract and introduction do not include the claims
made in the paper.

The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
Justification: [TODO]
Guidelines:

The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.
The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:[Yes]
Justification: [TODO]
Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.
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* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: [TODO]
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.).

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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8.

10.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes]
Justification: [TODO]
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:[Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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12.

13.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:[NA]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:[Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not release new assets.
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* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:|[NA|

Justification: [TODO]

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [TODO]

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: [TODO]

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

In this appendix, we provide more implementation details, experiments, analysis, and discussions for
a comprehensive evaluation and understanding of Jasmine. Detailed contents are listed as follows:
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A Proof of Scale-Invariant Depth

For SSI depth, we assume that the estimated depth D and the ground truth depth D have the following
relationship:

D =s5.D + s,

Meanwhile, the depth from another viewpoint can be denoted as g1(D’). Here, g; represents a
transformation, and it is straightforward to see that this must be a linear transformation since the
known identity only contains linear terms. Introducing a nonlinear transformation would not hold for
the depth of arbitrary scenes. Thus, we can define:

gl(Dl) = alD/ + bl
Similarly, we can define the transition as go(T), which is also a linear transformation, given by:
go (T) =ayT + by

Note that for transformations within the same scene, the relative pose R remains constant[18]. Also,
a and b here can be arbitrary numbers, so we have:

9(x) — x> g(x) — a3 ~ g() (13)
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Table 4: Additional quantitative results on the KITTI dataset.

Method Venue Notes Data AbsRel || SqRel RMSE RMSElog aq as as
ManyDepth[55] || CVPR2021 | (-1,0) | K(4O0K+0) | 0.091 || 0.694 4245 0.171 0911 | 0.968 0.983
Dual Refine[1] || CVPR2023 | (-1,0) | K(40K+0) | 0.087 || 0.674 4.130 0.167 0915 | 0.969 0.984
Mono-ViFI[29] || ECCV2024 | (-1,0,1) | K(40K+0) | 0.089 | 0.556 3.981 0.164 0914 | 0971 0.986
EPCDepth[36] || ICCV2021 | Stereo | K(45K+0) | 0.091 || 0.646 4.207 0.176  0.901 | 0.966 0.983
PlaneDepth[52] || CVPR2023 | Stereo | K(45K+0) | 0.085 || 0.563 4.023 0.171 0910 | 0.968 0.984

Jasmine - Mono | KH(68K+0) | 0.090 || 0.581 3.944 0161 0919 | 0972 0.986

Assuming the SSI depth is work, we have:
('g1(D') = K (RK™'((seD + ) + g2(T)) (14)

Eq. 7 in the paper is:

('scD' = K (RK™'(s.D + s.T), (15)
Subtracting Eq. 15 from Eq. 14, we have:

¢ (g1(D") — s.D') = K (RK™"Csp + (92(T) — s.T))

From Eq. 13, it can be simplified as:

(g(D') =K (RK*lCSh + 92(T))
Multiplying both sides by K 1, we get:

K7'¢'q1(D") = RK ™' Csp, + g2(T)
This is Eq. 8 in the paper.

B Detailed Training Workflow and Pseudocode

B.1 Step-by-Step Workflow

In this section, we temporarily omit the specifics of MIR and SSG to clarify the integration of
self-supervision with the Stable Diffusion framework in Jasmine:

* Input: A sequence of temporally adjacent images (like video frames), e.g., a source image ;- and
a target image I;.
— Here I, is exactly the training image, I/ can be the previous frame I;_; or the next frame
I t+1 of I, t-
* Step 1: Depth Prediction (via SD U-Net):
— The SD U-Net, fZ, takes the latent of the target image, 2/ = VAE.encode(1;), and a pure
noise vector, n, as input.
— It performs a single-step denoising process to predict the latent representation of a depth map,
Yy
2.
# This is the key point we mentioned in Sec 3.1: single-step denoising make this step become
a fast, feed-forward process rather than computationally prohibitive with slow, iterative
denoising.
— The VAE decoder then converts z§ into the final depth map, D = VAE.decode(z).
— Crucially, no GT depth is ever used in this step.

* Step 2: Pose Prediction:

— A separate PoseNet takes the image pair (I, I;/) as input and predicts the relative camera pose
(rotation and translation), T} 4.

* Step 3: Self-Supervised Signal Generation (Image Reprojection[48]):

— Using the predicted depth map D and the predicted pose T;_,+, we perform a warping
operation to reproject the pixels from the source image ;- onto the target image’s coordinate
system. This creates a synthesized target image, I;.

* Step 4: Loss Calculation and Optimization:
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— A photometric reprojection loss, Ly, is calculated by comparing the synthesized image I,
with the original target image I;.

— This loss, L}, is the core self-supervised signal. If the predicted depth D is incorrect, the
reprojected image I; will not match the original I;, resulting in a high loss.
* Step 5: End-to-End Backpropagation:

— The gradient from L, is backpropagated through the entire computational graph. This means
the gradient flows back to update the weights of both the PoseNet and, most importantly, the
SD U-Net (7).

* Output: The predicted depth map D obtained from Step 1.
B.2 Training Pseudocode

Algorithm 1 outlines the complete training procedure for Jasmine, incorporating all components
including MIR, SSG, and the full loss computation (Corresponds to the pipeline in Fig. 2).

Algorithm 1 Jasmine Training Algorithm
1: Initialize: SD U-Net, PoseNet, SSG, VAE, optimizer
2: VAE.eval() > VAE weights are frozen
3: for each batch of inputs ‘I’ in dataloader do

4: > Mix-batch Image Reconstruction (MIR)
5 Sdepth < [1,0], Srecon < [0, 1] > Task switchers
6: 2l 2L 2™ < VAE.encode(I[’I_t'], I['I_m’], noise)

7: Dys; + VAE.decode(SD_UNet([27, 2"],t = 999, 5 = Saqeptn))

8: I cc + VAE.decode(SD_UNet([2] . 2"],t = 999, 8 = Srccon))

9: > Scale-Shift GRU (SSG)
10: Dlist — SSG(DSSZ', Ztl) > Dlist contains [Dssia Dl, Dsz]
11: pose < PoseNet(I['I_t'], I['T_t"]) > Pose Estimation for Self-Supervision
12: loss < compute_loss(I, Dy;s, pose, Irec) > Loss Computation and Optimization
13: optimizer.zero_grad()

14: loss.backward()
15: optimizer.step()
16: end for

17: function COMPUTE_LOSS(inputs, Dy;s¢, pose, Irc.)
18: Dsia Dssi — Dlist[_1]7 Dlist[O]
19: reproj_img < reproject(inputs[’1_t”], Dy;, pose)

20: Ly, < photometric_loss(reproj_img, inputs['I_t’]) > Core self-supervised signal
21: L < photometric_loss(I,.., inputs[’T_m’]) > Surrogate task signal
22: Ly, « teacher_loss(Dy;s¢, inputs[’D_tc’]) > As per Eq. 11
23: L, + compute_auxiliary_loss(inputs, Dg;, Dss;)

24: loss <= Lpp + Ls + L¢c + Ly - 0.008

25: return [oss

26: end function

27: function COMPUTE_AUXILIARY_LOSS(inputs, Dg;, Dss;)
28: Laps + gds_loss(inputs[’I_t’], inputs[’seg’], Ds;)
20: Lgky « sky_loss(Dgs;, inputs[’sky_mask’])

30: L. + edge_loss(Ds;, Dss;)

31: return Lops + Lsgy + Le

32: end function

C Supervision Details

Self-supervised depth estimation has been researched for a decade, and hundreds of works have
proposed numerous progressive ideas. Therefore, to achieve SoTA performance, it is inevitable that
we will reuse some loss constraints from previous works to optimize our results. In the following text,
except for the edge loss, the other losses are mostly referenced from prior papers and are not the core
contributions of this paper. Thus, we have not included them in the main paper. The effectiveness of
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the other papers’ losses has been comprehensively proved in their papers, and we did not conduct
additional ablation studies for them. For the loss specific in this paper, we present some visualized
ablation results in Fig. 7.

C.1 SGD Loss for Dynamic Object

We first introduce the most commonly used smoothness loss L., in self-supervised depth estimation,
which encourages locally smooth depth maps while preserving edges in the image. Its specific
expression is as follows:

Lom = |0, D]e”1%1 19, D|e~ 191, (16)
where D is the depth normalized by the mean of D.

Building on this, we adopt the GDS loss (only the first stage) from[34] to handle dynamic objects.
This approach is based on the smoothness loss and introduces a ground-contact-prior mask M,
defined as:
Mgy (i, ) = v - My(i, j) + (1 = My (4, j))

where M, is the dynamic object segmentation obtained from a semantic segmentation network (1
represents dynamic and O for static), and - is the weighting parameter for M., empirically set to
100. Considering the bottom pixels of dynamic regions like the car tire, they impose a high weighting
on |9yd;| with M, (4, j) = ~, thereby enforcing its depth consists with its neighboring ground pixels
below. So the final loss is:

Leps = |0;Dle™% + |9, D| Myye™ 11, (17)
C.2 Edge Loss for Sharp Prediction

We further introduce an edge loss to enhance the prediction’s details. Since the surrogate and primary
tasks are decoupled after the U-Net’s final layer, and the Scale-Shift Invariant (SSI) depth is shielded
from photometric loss interference through SSG-based isolation, the SSI depth retains significantly
richer structural details. To transfer these details to the final result, we introduce a simple edge loss.
Specifically, we design a GradNet,

GradNet(z) = (|conv2d(z, wy)|, |conv2d(x, wy)|) ,

where w, = [[-1,0,1],[-2,0,2],[-1,0,1]] and w, = [[-1,-2,—1],[0,0,0],[1,2,1]] are the
convolutional kernels for computing gradients in the = and y directions. Subsequently, the edge loss
is defined as:

Le :LI(CLaDuL)_FLl(CyaDy)a (18)

where (C., C,) = GradNet(Dsg;) represents the normalized gradient of the detached SSI depth, and

(Dz,Dy) = GradNet(Dyy, ) represents the gradient of blur depth. We implement this edge loss to
the SSG outputs D, and SI depth D-. The detached Dsg;, while the depth distribution is inaccurate,
has sharper edges, making it an excellent teacher. The prediction comparison with and without edge
loss are shown in Fig. 7 (d-4) and (d-3), respectively.

C.3 SKky Loss for Anti-artifact

Our experiments reveal that (Fig. 7 (b-2)), although the edge loss significantly enhances the model’s
details, artifacts still appear outside object edges, particularly in the sky. This is because the sky is a
texture-less region, causing self-supervised models to produce erroneous estimates. However, this
typically does not affect performance, as during testing, the sky is either cropped (Eigen Crop) or its
ground truth depth is invalid and excluded from evaluation. To address this issue, we introduce a sky
loss:

Lsky = Thsky * Ll(Da Dinax 1p, Msky)v (19)

where D is the predicted depth, Dy, is the maximum depth value, 1 is a tensor of ones with
the same shape as D, and Mgy is the sky mask derived from the semantic segmentation. 7y is a
weighting factor set to 0.1.

Note that the sky loss does not add extra details. As shown in Fig. 7 (b-2) and (b-3), the original
details are already captured by the model; the sky loss merely sets the sky depth to infinity.
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(d-3)w/o L, (d-4) Ours

Figure 7: Qualitative Ablation Study of Adaptive Loss. Notably, while (a-2) demonstrates superior
visual quality, it exhibits an entirely inaccurate depth distribution. (a-4) is the result of E2E FT, which
can serve as a pseudo-label here.

RGB Image (Part) Zoom/Enhance MonoViT ‘Weatherdepth MonoVIFI Jasmine

Figure 8: Qualitative results on zero-shot Scale-Invariant depth estimation.

C.4 Eliminating the Bottleneck of Teacher Loss

In this section, we elaborate on the details of the implementation of teacher loss. We use MonoViT as
the teacher model. The model estimates disparity dp, and thus we obtain the depth D, through:

! =cli ! + ! ! dp, 0, 3
Dtc B P Dmaz szn Dmam P ’

where D, and D, are set to 0.1 and 100, respectivley. We find that the depth range at range
[0,3] can already describe all information within the maximum depth.
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For the SSI depth supervision, we perform a normalization similar to Eq. 9 in paper:

- ch — min(Dtc>
Norm(Dy) = 2 - (maX(Dtc) () 0.5) . (20)

Furthermore, to avoid the performance ceiling imposed by the teacher model, we draw inspiration
from D4RD[50], and employ an adaptive filtering mechanism:

Y

My = {min ph (LI),,) < ]
t’ Tstep
where ) is a constant set to 1.5, I%¢ ., is the warped target image using the teacher disparity D;., and
Nstep = Max (1,30 - (step,, ., /5t€Pynae)) 18 @ dynamic factor that adjusts with training progress. This
adaptive weight initially allows the model to converge across the entire depth map and subsequently
filters out less accurate regions, mitigating the adverse effects of inaccurate pseudo-depth labels.

Therefore, we have:
ﬁlter (DtC) - DtC . Mtc,

In the supervision process, we introduce the BerHu loss L and get better results:

lz — yl, if [z —y| <c¢,

LB(LI},y) = {(zy)2+c2 (21)
2c

, iflz —y| > ¢,

where ¢ = 0.2 - max(|z — y|) is a threshold that adapts to the error magnitude. This loss imposes a
greater penalty on pixels with larger errors using an Lo-like penalty, while retaining the robustness of
L4 loss for small errors.

Thus, The Eq. 13 in paper:
Lic = (Lp (norm (Dy.) , Dsst) + Lp (Die, D1) - i1
+Lp (ﬁlter (DtC) ) DSI) ’ 77t2) /nstep;

is fully detailed in this part. The teacher loss not only stabilizes our model but also avoids limiting its
performance potential.

The segmentation model mentioned above is Mask2Former[6] throughout. To avoid the miscon-
ception that the details stem from the segmentation network’s output, we further expand Fig. 3 (in
paper) with segment-based methods. In fact, to preserve these details, a naive approach is to employ
semantic segmentation constraints[34]. However, as shown in Fig. 7 (a-2), using the semantic triplet
loss from [34] not only disrupts the depth distribution but also introduces spurious edges, rendering it
incompatible with SD’s latent priors. Furthermore, the results in paper Table 1 are compared with a
segmentation-based model Jaeon et al*, and our method achieves superior performance.

(22)

D Preliminaries of GRU

The Gated Recurrent Unit (GRU) is a type of recurrent neural network (RNN) that uses gating
mechanisms to control the flow of information between the previous hidden state and the current
input, making it effective for sequence modeling tasks. Recently, GRUs have been gradually used in
depth estimation[45, 43]. A GRU cell updates its hidden state h**! based on the previous hidden
state h* and the current input x*. This update process is primarily managed by two gates: the reset
gate (r) and the update gate (z). The reset gate determines how much of the past information
(from the previous hidden state) to effectively "forget" or "reset" before computing a new candidate
hidden state. The update gate then decides how much of this new candidate hidden state should be
incorporated into the final hidden state, versus how much of the previous hidden state to carry over.
The mathematical formulation for these operations is as follows:

Zkﬁ_1 = U([hk,Xk],Wz)7 rk+1 = J([hk7xk]’Wr)7
h**1 = tanh(Conv([r* 1 © h* x*], W},)), (23)
h*+1 = (1 - 2"+1) @ h* + 2F+1 © b,

where k denotes iteration steps, o is the sigmoid activation function (outputting values between 0 and

1, ideal for gating), and ® indicates element-wise multiplication. The terms W, W,., W, represent
the learnable parameters (typically weight matrices and biases) for the update gate, reset gate, and
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candidate hidden state computation, respectively. The C'onv notation suggests that convolutional
layers are used for these transformations, as is common when applying GRUs to feature maps in
computer vision tasks. In our paper, the refined hidden state h**! predicts depth adjustment D;
to update Dy, yielding Dy for subsequent iterations, as utilized in our Scale-Shift GRU (SSG)
module (see Sec. 3.3).

E Addition Experiments Results

E.1 Evaluation on KITTI Improved Benchmark

The standard self-supervised evaluation on the KITTI dataset is typically conducted using the raw
LiDAR GT. However, due to the noisy nature of LiDAR data and known preprocessing issues',
we also provide the eigen improved benchmark result. Following the practice adopted in Mono-
ViFi [29], as shown in Table 5, this evaluation further confirms Jasmine’s SoTA performance, where
it consistently outperforms other leading methods.

Table 5: Quantitative results on the KITTI dataset using the improved GT [47]. The performance of
SD-based methods is not fully reported in their original papers.

Method AbsRel] SqRell RMSE| RMSElog| | a1t as? asT
Marigold [25] 0.099 - - - 0916 0.987 -
E2E-FT [33] 0.096 - - - 0.921 0.980 -
Lotus [21] 0.081 - - - 0.931 0.987 -
0.064 0.294 2.982 0.097 0.957 0.994 0.998
MonoViT [83] 0.068 0.314 3.125 0.105 0.948 0.992 0.998
MonoViFi [29] 0.071 0.338 3.539 0.113 0.937 0.990 0.998
Jasmine 0.061 0.255 2.765 0.092 0.963 0.995 0.999

E.2 Comparison with Other Self-Supervised Settings

As mentioned in Sec. 2, our single-frame monocular approach is more challenged but practical
compared to other self-supervised configurations. Compared to stereo-based methods, monocular
methods face additional challenges with dynamic objects and pose estimation inaccuracy, but monoc-
ular methods can eliminate the need for synchronized binocular cameras and precise calibration.
Similarly, single-frame models neglect temporal information during inference, while multi-frame
methods leverage consecutive frames to construct cost volumes and even support iterative refinement
at test time, yielding improved accuracy. However, the practical deployment of multi-frame methods
remains constrained by the availability of multiple frames.

Despite these inherent disadvantages, as shown in Table 4, our method still outperforms the state-
of-the-art approaches in both multi-frame and stereo-supervision domains across most metrics.
This remarkable achievement, especially considering our more challenging problem setting, further
demonstrates the substantial strength and generalizability of our approach.

E.3 Qualitative Comparisons Table 6: Ablation Studies on the mix-batch ratio. Ph

refers to supervision using Eq. 5, while Latent refers
In Fig. 8, we further compare the perfor- to supervision using Eq. 4 . The notation +\ denotes
mance of our Jasmine with other methods  the proportion of the KITTI dataset used (e.g., +0.3
in multi scenes. The quantitative results indicates a KITTI:Hypersim ratio of 3:7 in the MIR
obviously demonstrate that our method training data.)

can produce much finer and more accurate  ~(ID) Method | AbsRel SqRel RMSE | a4 as
depth predictions, particularly in complex Ph+0 0.089 0.573 3.973 | 0918 0.972
regions with intricate structures, which Ph+0.3 0.090 0.581 3.944 | 0.919 0.972
sometimes cannot be reflected by the met- ~ Ph+0.6 0.092 0593 3.933 | 0915 0.973
rics. Ph+1 0093 0590 3.970 | 0.915 0.973
Latent+0 0.106  0.614 4181 | 0.901 0.970
. . . . Latent+0.3 0.095 0.606 4.138 | 0.909 0.970
E4  Mix-batch Ratio Ablation Details - ° " oc || 0751 0600 4322 | 0876 0.970
Latent+1 0.129 0.679 4.385 | 0.858 0.962

In the paper, Fig. 3 (g) illustrates the per-
formance variation versus the mix-batch ratio under two supervision schemes. We further present

'Discussed in MonoDepth2 repository: https://github.com/nianticlabs/monodepth2/issues/274
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the complete results in Table 6. Note that although “Ph+0” offers better metrics, it predicts blurred
results (7 (c-2)).

F Analysis of SD Prior Degradation via Self-Supervision

For clarity, we first revisit the core definition of disparity: when capturing two images of the same
scene from different camera positions, the same point will appear at different pixel coordinates
in each image. This difference is known as disparity. In fact, disparity and depth are inversely
proportional and correspond one-to-one.

From this perspective, the loss function in Eq. 1 is designed to find, for each point in the target view
I, the most similar point in the source view I;,. From the coordinate difference between these points
I, we obtain the depth supervision (Eq. 2). However, if the corresponding point in I is occluded
in I+, the optimization process is forced to select the "least bad" alternative, resulting in an incorrect
match and, consequently, erroneous depth estimation.

Taking Fig. 3 (a) as an example, the scene consists of a infinite background (depth=00), an orange
rectangle (20m), and a light blue tree (10m). Here, the camera only shifts horizontally between the
target and source views. For point q (tree), the correct disparity is 10 pixels (10m). For point p,r
(rectangle), the correct disparity should be 5 pixels (20m).

Due to camera movement, the tree in the source view occludes the correct matching point of p. To
minimize photometric loss, the algorithm searches for the most similar region nearby and once again
finds the orange area at p’, which is 10 pixels (10m).

This error causes the expected depth edge on the right side of point p to disappear (right side’s depth
are all 10m, reason same to p), resulting in a blurred boundary in the depth map. When such depth
map is used as a supervisory signal to guide the SD model, it effectively introduces "noisy" data.
This forces the SD model to learn and reproduce these incorrect and blurred boundaries, thereby
undermining its strong prior knowledge of clear object boundaries.

G Evaluation Metrics

Similar to [15], we employ the following evaluation metrics in our experiments,
.1 .
AbsRel: M| ZdeMvz ‘d — dgt| /dgt’

2
SqRel: m Zdeﬂfvz ”d - dgt” /d.(]t;
2
RMSE: \/ ] e, 14— dgell;

RMSElog: \/ﬁ 2aen, llog(d) — log(dgt)HQ?

ay: percentage of d such that max(diﬂ7 %) < 1.25' ; where d; and d denote the GT and estimated

pixel depth, M, is the valid mask set to le — 3 < dg; < 80.

H Error Bar Analysis

As highlighted in Sec 3.4, directly training o s oLse

Jasmine can be unstable due to the SD’s - o T 89.56
enormous size, joint training across mod-
ules, and indirect self-supervisory mecha-
nisms. To further ensure stability, we also
implement a module-wise freezing training
strategy, which involves 3 key phases: In obe

the beginning, we enable gradient updates » 8
for all network components. Subsequently, T

we freeze the SSG and Posenet modules Josmine  wio Dic snd wio Muli-stage Jasmine — wio Dyc and w/o Muli-sage
to decouple depth-pose optimization while

maintaining fixed parameters. After achiev- Figure 9: Error Bar Analysis on KITTI Eigen test split.
ing convergence to a suboptimal solution, We conduct this analysis through multiple training runs and
we reintroduce gradient updates to these observe the performance oscillations after 25k steps.
modules for final optimization. In the training procedure, the first training phase involved 15k steps,

5
81 (%)

90

AbsRel (%)
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while the second and third phases automatically transitioned, sharing an additional 10k steps for a total
of 25k training steps. As illustrated in Fig. 9, we demonstrate that the pseudo-label supervision and
module-wise freezing training are particularly crucial for steady training in complex, multi-module
self-supervised systems.

I Limitation and Future Work

As noted in Sec. 2, the ubiquitously available videos suggest that the self-supervised methods possess
significant data advantages and working potential. In this paper, Jasmine is trained on only tens of
thousands of data samples and only on a driving dataset (KITTI), leaving room for further exploration
in scaling up training data to other domains (industry, indoor, etc). We believe that if there really
emerges a ‘GPT” moment for 3D perception in the future, it will more likely involve self-supervised
methods trained on videos rather than learning from annotated depth. Furthermore, we believe that
the unsupervised Stable Diffusion fine-tuning paradigm proposed in this paper can be applied to
other related fields, such as depth completion [65, 63, 66, 70, 71, 60], depth super-resolution [64, 54],
Multi-view Stereo [74, 75, 72, 73], Stereo Matching [56, 58, 57, 53] and Language Aid Depth
Estimation [78, 80, 79, 82].
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