Jasmine: Harnessing Diffusion Prior for Self-Supervised Depth Estimation

 1 BJTU 2 NTU 3 HKUST 4 CQUPT † Corresponding Author

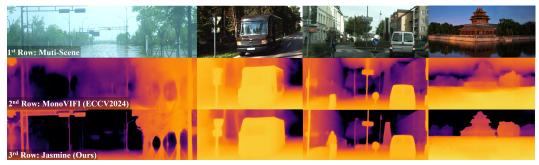


Figure 1: Without any high-precision depth supervision, Jasmine achieves remarkably detailed and accurate depth estimation results through zero-shot generalization across diverse scenarios.

Abstract

In this paper, we propose **Jasmine**, the first Stable Diffusion (SD)-based selfsupervised framework for monocular depth estimation, which effectively harnesses SD's visual priors to enhance the sharpness and generalization of unsupervised prediction. Previous SD-based methods are all supervised since adapting diffusion models for dense prediction requires high-precision supervision. In contrast, selfsupervised reprojection suffers from inherent challenges (e.g., occlusions, textureless regions, illumination variance), and the predictions exhibit blurs and artifacts that severely compromise SD's latent priors. To resolve this, we construct a novel surrogate task of mix-batch image reconstruction. Without any additional supervision, it preserves the detail priors of SD models by reconstructing the images themselves while preventing depth estimation from degradation. Furthermore, to address the inherent misalignment between SD's scale and shift invariant estimation and self-supervised scale-invariant depth estimation, we build the Scale-Shift GRU. It not only bridges this distribution gap but also isolates the fine-grained texture of SD output against the interference of reprojection loss. Extensive experiments demonstrate that Jasmine achieves SoTA performance on the KITTI benchmark and exhibits superior zero-shot generalization across multiple datasets. Project page and code are available at here.

1 Introduction

Estimating depth from monocular images is a fundamental problem in computer vision, which plays an essential role in various downstream applications such as 3D/4D reconstruction[62, 61], autonomous driving[10], etc. Compared with supervised methods[25, 33, 21], self-supervised monocular depth estimation (SSMDE) mines 3D information solely from video sequences, significantly reducing reliance on expensive ground-truth depth annotations. These methods derive supervision from geometric constraints (*e.g.*, scene depth consistency) through cross-frame reprojection loss, and the ubiquitous video data further suggests an unlimited working potential. However, view reconstruction-based losses suffer from occlusions, texture-less regions, and illumination changes[83], which

severely restrict the model's capacity to recover fine-grained details and may cause pathological overfitting to specific datasets.

Recent studies[25] demonstrated that SD possesses powerful visual priors to elevate depth prediction sharpness and generalization, which offers promising potential to address the above limitations. In addition, E2E FT[33] and Lotus[21] further reveal that single-step denoising can achieve better accuracy, which is particularly critical for self-supervised paradigms. It not only accelerates the inference denoising process but also significantly reduces the training costs in self-reprojection supervision, thereby creating opportunities to integrate SD into the SSMDE framework.

However, fine-tuning diffusion models for dense prediction requires high-precision supervision to preserve their inherent priors[25]. Supervised methods typically employ synthetic RGB-D datasets, where clean depth annotations align with the high-quality SD's training data, thereby keeping its latent space intact. In contrast, directly applying self-supervision introduces a critical challenge: reprojection losses or pre-trained depth pseudo-labels propagate perturbed gradients caused by artifacts and blurs into SD's latent space, rapidly corrupting its priors during early training stages. Namely, high-precision "supervision" must exist at the beginning to protect SD's latent space. Such supervision seems impossible in self-supervised learning, but we find a handy and valuable alternative: the RGB image. In fact, the image inherently contains complete visual details, avoids external depth dependencies in self-supervision, and aligns perfectly with SD's original objective of image generation. Therefore, we construct a surrogate task of *mix-batch image reconstruction (MIR)* through a task switcher, where the same SD model alternately reconstructs synthesized/real images and predicts depth maps within each training batch. This strategy repurposes self-supervised reprojection loss to tolerate color variations while maintaining structural consistency[14], intentionally decoupling color fidelity from depth accuracy, and finally preserving SD priors successfully.

Another challenge is the output range of SD's VAE[27] that is inherently bounded within a fixed range, *i.e.*, [-1, 1]. Existing methods typically normalize GT depth maps to this range in the training procedure. During inference, these supervised approaches perform least-squares alignment to recover absolute scale and shift, yielding *scale- and shift-invariant (SSI)* depth predictions. However, self-supervised frameworks rely on coupled depth-pose optimization, which theoretically requires shift invariance to be strictly zero for stable convergence, ultimately producing *scale-invariant (SI)* depth predictions. To bridge this inherent distribution gap, we propose a gated recurrent unit (GRU)-based novel transform module termed *Scale-Shift GRU (SSG)*. It not only iteratively aligns SSI depth to SI depth by refining scale-shift parameters but also acts as a gradient filter, which suppresses anomalous gradients caused by artifact-contaminated in self-supervised training, thereby preserving the fine-grained texture details of SD's output while enforcing geometric consistency.

Extensive experiments show that our proposed method, Jasmine, ① achieves the SoTA performance among all SSMDEs on the competitive KITTI dataset, ② shows remarkable zero-shot generalization across multiple datasets (even surpassing models trained with augmented data), ③ demonstrates unprecedented detail preservation. As the first work to bridge self-supervised and zero-shot depth estimation paradigms, we also provide an in-depth analysis of the effects of different depth de-normalization strategies employed in their respective domains. To sum up, the main contributions are summarized as follows:

- We **first** introduce SD into a self-supervised depth estimation framework. Our methods eliminate the dependency on high-precision depth supervision while retaining SD's inherent advantages in detail sharpness and cross-domain generalization.
- We proposed a surrogate task of MIR that anchors SD's priors via self-supervised gradient sharing to avoid SD's latent-space corruption caused by reprojection artifacts.
- We proposed Scale-Shift GRU (SSG) to dynamically align depth scales while filtering noisy
 gradients to solve SSI versus SI distribution mismatch problems in self-supervised depth estimation.

2 Relative Work

Self-supervised Depth Estimation Due to the high costs of GT-depth collection from LiDARs and other sensors, self-supervised depth estimation (SSDE) has gained significant research attention. SSDE can be broadly categorized into stereo-based(learning depth from synchronized image pairs)[52, 14, 12, 3, 2] and monocular-based methods (using sequential video frames)[31, 87, 85, 32, 37, 83, 20, 34, 19, 29]. Additionally, when focusing on inference capability, existing methods can further diverge

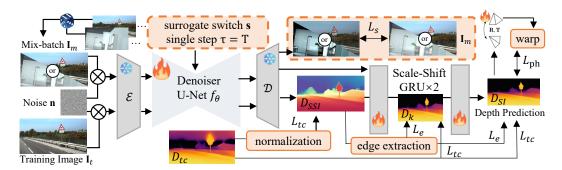


Figure 2: Finetuning Protocol of Jasmine. The I_t and I_m are each concatenated with n[33] and fed into the VAE encoder ε . Next, the U-Net performs single-step denoising guided by the task switcher s, and subsequently decodes the SSI-depth prediction D_{SSI} and the reconstructed image with the \mathcal{D} (Sec. 3.2). Afterward, the D_{SSI} is processed by the SSG for distribution refinement, yielding the final depth estimation D_{SI} . The L_{tc} , L_e , L_{ph} and L_s are supervision loss and they are detailed in Sec. 3.4. The edge extraction module is detailed in Sec \mathbb{C}

into single-frame and multi-frame approaches[55, 17, 9, 1]. Comparisons between these paradigms are detailed in Sec. E.2. Recently, DepthAnything v1/v2[68, 69] has revealed that we can obtain an accurate single image depth prediction model with strong generalization by training on large-scale image depth pairs. However, we argue that such datasets still remain a small fraction of the ubiquitous video data available. This observation motivates our exploration of the most challenging configuration: training exclusively on video sequences while maintaining single-frame inference capability, thereby laying the groundwork for developing genuinely versatile "DepthAnything" models.

Diffusion for Depth Perception As the diffusion paradigm showcases its talents in generative tasks[22, 46, 28, 76, 51, 59], DDP[24] first reformulates depth perception as a depth map denoising task and leads to giant progress. Followers like DDVM[40], MonoDiffusion[44], and D4RD[50] (the latter two are self-supervised methods but employ self-designed diffusion) all demonstrate the advantages of this paradigm in various MDE sub-tasks. Subsequently, the most renowned diffusion model, Stable Diffusion[39], has demonstrated significant potential for depth perception tasks. VPD[84], TAPD[26], and Prior-Diffusion[77] use Stable Diffusion as a multi-modal feature extractor, leveraging textual modality information to improve depth estimation accuracy. Concurrently, Marigold[25] and GeoWizard[11] enhanced model generalization and detail preservation by fine-tuning Stable Diffusion, capitalizing on its prior training with large-scale, high-quality datasets. Afterward, E2E FT[33] and Lotus[21] further accelerated inference by optimizing the noise scheduling process. In this work, our Jasmine continues these works and extends SD to the field of self-supervision.

3 Methods

In this section, we will introduce the foundational knowledge of the SSMDE and SD-based MDE (Sec. 3.1), the surrogate task of mix-batch image reconstruction (MIR, Sec. 3.2), the scale-shift adaptation with GRU (Sec. 3.3) and the SD finetune protocol specified for self-supervision (SSG, Sec. 3.4). An overview of the whole framework is shown in Fig. 2 and its training pseudocode is shown in Algorithm 1.

3.1 Preliminaries

Self-Supervised Monocular Depth Estimation makes use of the adjacent frames $\mathbf{I}_{t'}$ to supervise the output depth with geometric constraints. Given the current frame \mathbf{I}_t , the MDE model as $\mathcal{F}: \mathbf{I}_t \to D \in \mathbb{R}^{W \times H}$, we can synthesize a warped current frame $\mathbf{I}_{t' \to t}$ with:

$$\mathbf{I}_{t' \to t} = \mathbf{I}_{t'} \left\langle \text{proj} \left(D, \mathcal{T}_{t \to t'}, K \right) \right\rangle, t' \in (t - 1, t + 1), \tag{1}$$

where $\mathcal{T}_{t \to t'}$ denotes the relative camera poses obtained from the pose network, K denotes the camera intrinsics, and $\langle \cdot \rangle$ denotes the grid sample process. Then, we can compute the photometric reconstruction loss between \mathbf{I}_t and $\mathbf{I}_{t' \to t}$ to constrain the depth:

$$L_{ph}(\mathbf{I}_t, \mathbf{I}_{t' \to t}) = \eta_{p1} (1 - \text{SSIM}(\mathbf{I}_t, \mathbf{I}_{t' \to t})) / 2 + \eta_{p2} \|\mathbf{I}_t - \mathbf{I}_{t' \to t}\|.$$

$$(2)$$

Stable Diffusion-based Monocular Depth Estimation reformulates depth prediction as an image-conditioned annotation generation task. Typically, given the image **I** and processed GT depth **y**, SD first encodes them to the low-dimension latent space through a VAE encoder ε , as $(\mathbf{z}^{\mathbf{I}}, \mathbf{z}^{\mathbf{y}}) = \varepsilon(\mathbf{I}, \mathbf{y})$.

Afterward, gaussian noise is gradually added at levels $\tau \in [1, T]$ into $\mathbf{z}^{\mathbf{y}}$ to obtain the noisy sample, with $\mathbf{z}_{\tau}^{\mathbf{y}} = \sqrt{\overline{\alpha}_{\tau}}\mathbf{z}^{\mathbf{y}} + \sqrt{1-\overline{\alpha}_{\tau}}\epsilon$, then the model learns to iteratively reverse it by removing the predicted noise:

$$\hat{\epsilon} = f_{\theta}^{\epsilon}(\mathbf{z}_{\tau-1}^{\mathbf{y}}|\mathbf{z}_{\tau}^{\mathbf{y}},\mathbf{z}^{\mathbf{I}}),\tag{3}$$

and finally decodes the depth prediction with $D = \mathcal{D}(\mathbf{z_0^y})$. Here $\epsilon \sim \mathcal{N}(0, I)$, f_{θ}^{ϵ} is the ϵ -prediction U-Net, $\overline{\alpha}_t := \prod_{s=1}^t (1 - \beta_s)$, \mathcal{D} is the VAE decoder and $\{\beta_1, \beta_2, \dots, \beta_T\}$ is the noise schedule with T steps.

Equation 1 demonstrates that the self-supervised approach needs the depth prediction D for image warping. However, obtaining $\mathbf{z_0^y}$ requires iterative computation of Eq. 3, which becomes computationally infeasible considering the enormous size of SD models. Fortunately, Lotus and E2E FT[33, 21] demonstrate that we can obtain comparable results with single-step denoising and directly predict depth, $D = \mathcal{D}\left(f_{\theta}^z\left(\mathbf{z_{\tau}^y}, \mathbf{z^I}\right)\right), \tau = T$, which makes it possible to train SD with self-supervision. The step-by-step workflow is detailed in Sec B.

3.2 Surrogate Task: Image Reconstruction

Self-supervision Compromise SD Prior. The photometric reconstruction losses (Eq. 2) inevitably introduce the supervision with noise and artifacts due to occlusions, texture-less regions, and photometric inconsistencies. As shown in Fig. 3 (a), consider a scenario where relative camera poses $\mathcal{T}_{t \to t'}$ represents a pure horizontal translation. The point p—which should ideally have 5 pixels of disparity (reciprocal of depth)—becomes occluded. Instead, it must displace 10 to compensate for incorrect pixel matches, resulting in erroneous depth alignment with point q (a detailed explanation is provided in Sec. F). This phenomenon propagates to neighboring points, collectively eroding structural details (e.g., the tree's edge) while generating imprecise supervisory signals that rapidly degrade SD's fine-grained prior knowledge.

To preserve these details, we notice that both SSMDE and SD inherently rely on image consistency: SSMDE uses photometric constraints (Eq. 2), while SD's training directly minimizes image generation errors. Inspired by this, we propose a surrogate task: image reconstruction. Concretely, following [11], we design a switcher $s \in \{s_x, s_y\}$ to alternate the U-Net f_{θ}^z between the main and surrogate tasks. When activated by s_x , we have $D = \mathcal{D}\left(f_{\theta}^z\left(s_x, \mathbf{z}_{\tau}^{\mathbf{y}}, \mathbf{z}^{\mathbf{I}}\right)\right)$. In contrast, we have $\mathbf{I} = \mathcal{D}\left(f_{\theta}^z\left(s_y, \mathbf{z}_{\tau}^{\mathbf{y}}, \mathbf{z}^{\mathbf{I}}\right)\right)$. Notably, the switcher s is a processed one-hot vector and it is combined with the time embeddings fed into the f_{θ}^z . This allows the U-Net to condition its internal operations on the currently selected task. Therefore, we follow the SD paradigm and initially formulate the surrogate loss as:

$$L_s = ||\mathbf{z}^{\mathbf{I}} - f_{\theta}^z(s_y, \mathbf{z}_{\tau}^y, \mathbf{z}^{\mathbf{I}})||^2.$$
(4)

Mix-batch Images Reconstruction with Photometric Supervision. We show that it is possible to preserve the SD priors by introducing a compact surrogate task. However, our experiments reveal that naively applying Eq. 4 for SSMDE optimization yields suboptimal results (Fig. 3(c)). Through empirical investigation, we identify three critical insights: 1) Inferior reconstructed images (e.g., KITTI) introduce block artifacts (Fig. 3(c)). We attribute this to the latent space operating at $\frac{1}{8}$ resolution: When inputs align with the pre-trained ε and \mathcal{D} , smooth supervision is achieved. Conversely, each latent pixel supervision manifests as 8×8 block artifacts in prediction. 2) Introducing high-quality synthesized images (maintaining self-supervision compliance) offers a potential solution, but exclusive training on these data causes the model to only excel at reconstructing synthetic images but fails to generalize this capability to reduce depth estimation blurriness(Fig. 3 (d)). 3) Mixing these images within a training batch allows synthesized images to anchor the model to latent priors, while real-world data enforces geometric structure alignment, is a possible solution. But this strategy shows notable sensitivity to mix rate λ (Fig. 3 (g), (e) is a failure scene).

To address the mismatch between VAE and image, we proposed to replace Eq. 4 with the photometric loss L_{ph} (Eq. 2) in the image domain. Compared to Eq. 4, L_{ph} emphasizes structural consistency rather than color fidelity, which aligns better with depth estimation objectives. As shown in Fig. 3(f, g), this supervision not only makes MIR robust to λ but also significantly improves the estimation quality. Therefore, we take the Hypersim dataset(4.2.1), a photorealistic synthetic dataset specifically designed for geometric learning, as the auxiliary image and update Eq. 4 with

$$\mathbf{I_h} = \phi(\mathbf{I}_K, \mathbf{I}_H, \lambda), L_s = L_{ph}(\mathbf{I_h}, \mathcal{D}(f_{\theta}^z(s_y, \mathbf{z_{\tau}^y}, \mathbf{z^I}))), \tag{5}$$

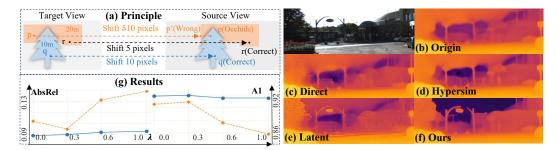


Figure 3: The attempts to preserve the SD prior. The meanings of (a)-(f) are detailed in Sec. 3.2. Notably, while (e) demonstrates superior visual quality, it erroneously interprets surface textures (e.g., house windows) as depth edges. (g) shows the performance variations under different λ settings for photometric supervision (Eq. 5) and latent supervision (Eq. 4). The complete metrics and their definitions are provided in Sec. E.4.

where ϕ denotes random choice; \mathbf{I}_K and \mathbf{I}_H are KITTI and Hypersim images, respectively.

In summary, MIR constructs each training batch by randomly selecting images from these two datasets, and supervises the reconstructed image with the photometric loss in Eq. 5.

Analysis of Auxiliary Images The specific synthetic data usage may raise concerns about applicability boundaries. To clarify, we conduct additional experiments and present three insights about the relationship between auxiliary data and performance: (1) Synthetic images are not essential; our surrogate task maintains efficacy with real-world imagery. (2) The dataset scale proves non-critical, as competitive performance emerges with samples under 1k. (3) Domain divergence between auxiliary and primary datasets enhances results and is even more important than image quality. Please refer to Sec. 4.4 for detailed experimental support.

This analysis and related experiments reveal MIR is a highly promising training paradigm. It not only imposes no inherent limitations on any dense prediction tasks but also challenges the notion that fine-tuning SD requires high-quality annotation. Even with legacy datasets like KITTI, we can still leverage readily available images to effectively utilize SD priors and enhance depth estimation sharpness.

3.3 Scale-Shift GRU

The misalignment of SSI-SI depth. We first analyze the training procedure of SSMDE. Denoting the relative camera poses $\mathcal{T}_{t \to t'}$ as $[\mathbf{R}|\mathbf{T}]$, we can further expand the proj process in Eq. 1 with:

$$\zeta'D' = K(\mathbf{R}K^{-1}\zeta D + \mathbf{T}),\tag{6}$$

where ζ, ζ' denote homogeneous coordinates and D, D' represent depths in \mathbf{I}_t and $\mathbf{I}_{t'}$, respectively. Afterward, the coordinate $\zeta'[\mathbf{u}, \mathbf{v}]$ in $\mathbf{I}_{t'}$ maps to $[\mathbf{u}, \mathbf{v}]$ in $\mathbf{I}_{t' \to t}$ and we can grid sample every pixel to get $\mathbf{I}_{t' \to t}$. However, this mapping is not unique. We can scale both sides of the equation with s_c :

$$\zeta' s_c D' = K(\mathbf{R} K^{-1} \zeta s_c D + s_c \mathbf{T}), \tag{7}$$

where both **T** and s_c **T** represent valid relative poses. But if we further introduce a shift s_h , we can derive the formula (detailed derivations at Sec. A) to obtain:

$$K^{-1}\zeta'g_1(D') = \mathbf{R}K^{-1}\zeta s_h + g_2(\mathbf{T}),\tag{8}$$

where $g_1(\cdot)$ and $g_2(\cdot)$ are affine transformations (SSI depth is affine depth). The above equation means that the affine depth of any scene $(g_1(D'))$ can appear as a plane from a certain perspective. This plane has the depth s_h and the extrinsic transformation of this perspective and the original one is $[\mathbf{R}|\mathbf{T}]$, which is undoubtedly impossible (more explanations in Sec. A). Thus, the shift s_h does not exist under the geometric constraints, and SSMDE predicts Scale-Invariant Depth D_{SI} .

Additionally, we analyze the training process of SD-based MDE. The processed GT depth **y** mentioned in Sec. 3.1 satisfies the VAE's[27] inherent boundary [-1, 1], typically obtained by:

$$\mathbf{y} = ((D_{GT} - D_{GT,2})/(D_{GT,98} - D_{GT,2}) - 0.5) \times 2,\tag{9}$$

where $D_{GT,i}$ corresponds to the i% percentiles of individual depth maps. Obviously, compared to the raw depth, y is normalized and differs from D_{GT} by an absolute scale and shift, which can

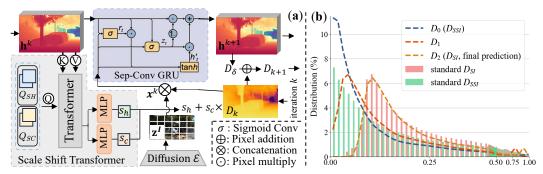


Figure 4: (a): Model Structure of SSG. It corresponds to the gray rectangle shown in Fig. 2, standing for an iteration within two consecutive ones. The pipeline of SSG is comprehensively described in Sec. 3.3 (DepthHead is omit in (a) for clear). (b): Depth distribution alignment visualization. We statistically analyze each stage of Jasmine's SSG module on the KITTI test set. The standard SI and SSI depths are obtained by applying Eq. 9 and dividing the maximum value to the depth GT, respectively.

be recovered by the least squares alignment in evaluation. Consequently, SD-based MDE predicts Scale-Shift-Invariant Depth D_{SSI} .

This inherent distribution gap between SSI and SI depth creates barriers for SD integration, and the SSG is specifically designed to fix it.

The Design of SSG. Transforming the depth distribution from SSI depth to SI depth requires profound scene understanding, and the scale (s_c) and shift (s_h) factors are tightly coupled. Therefore, as shown in Fig. 4(a), compared to traditional GRU, SSG introduces a core component Scale-Shift Transformer (SST), and modifies the iterative prediction formula:

From
$$D_{k+1} = D_{\delta} + D_k$$
 To $D_{k+1} = D_{\delta} + s_c \cdot D_k + s_h$, (10)

where $D_{\delta} = \text{DepthHead}(\mathbf{h}^{k+1})$, k denotes the iteration step and \mathbf{h} denotes the hidden state (preliminaries of GRU in Sec D). Specifically, the SST employs learnable scale/shift queries (Q_{SC}/Q_{SH}) that interact with SD's hidden states (keys/values) via cross-attention. The output vector is subsequently split and processed by MLPs to produce s_c and s_h . For the hidden state update, to enhance spatial awareness, the current input \mathbf{x}^k is defined as the concatenation of image features \mathbf{z}^I and the current depth D_k . The hidden state \mathbf{h}^k evolves via a standard GRU iteration to produce the refined hidden state \mathbf{h}^{k+1} and subsequently update D_k to D_{k+1} .

To balance computational efficiency and GRU's iterative benefits, we employ two GRU iterations: starting from the initial depth D_0 (D_{SSI}) to sequentially produce D_1 and D_2 (D_{SI}). As shown in Fig. 4(b), the distribution of D_0 tends to align with the standard SSI depth distribution, while D_1 and D_2 progressively converge towards the SI depth. This clearly demonstrates that SSG iteratively aligns SSI depth to SI depth by refining the scale-shift parameters. GRU is preferred over other architectures due to its reset gate mechanism. During training, the reset gate $\bf r$ can prevent the backpropagation of anomalous gradients to the former step by selectively resetting parts of the hidden state. Therefore, this mechanism enables the fine-grained D_{SSI} to filter out erroneous supervision signals from reprojection losses and exhibit richer details than D_{SI} (shown in Fig. 2). To preserve these fine-grained details in the final prediction, we further constrain the edge alignment between D_{SSI} and D_{SI} with an edge extraction module, detailed in Sec. C.

3.4 Steady SD Finetune with Self-Supervision

As the **first** framework to finetune SD with self-supervision, we encountered a novel challenge: training instability, which is mainly due to the SD's enormous size, joint training across modules, and indirect self-supervisory mechanisms. To enhance the convergence reliability and reproducibility, we explored a straightforward approach by introducing a pre-trained self-supervised teacher model (e.g., MonoViT) to estimate D_{tc} as pseudo labels. D_{tc} provides direct supervision but has a performance upper bound, which can stabilize model training in the early stages while gradually decreasing loss weights throughout the training process:

$$L_{tc} = \left(L_B\left(\operatorname{norm}\left(D_{tc}\right), D_{SSI}\right) + L_B\left(D_{tc}, D_1\right) \cdot \eta_{t1} + L_B\left(\operatorname{filter}\left(D_{tc}\right), D_{SI}\right) \cdot \eta_{t2}\right) / \eta_{\text{step}}, \quad (11)$$

where L_B is the Berhu Loss, "norm" is the [-1,1] normalization, and "filter" are adaptive strategies to avoid performance bottlenecks. Through extensive experimentation and error bar analysis, we

demonstrate that this pseudo-label training proves particularly crucial for steady training in complex, multi-module self-supervised systems. The implementation details are in Sec. C. Finally, the total training loss of the Jasmine model is:

$$L = L_s + L_{ph} + L_{tc} + L_a \cdot \eta_a, \tag{12}$$

where L_s refers to Eq. 5, L_{ph} refers to Eq. 2, L_{tc} refers to Eq. 11, and L_a is some auxiliary adjustment losses (e.g., gds loss[34] L_{GDS} , edge loss L_e , etc.) with a tiny weight. They will be detailed in supplementary material Sec. C.

4 Experiment

4.1 Implement Details

We implement the proposed Jasmine using Accelerate[16] and PyTorch[35] with Stable Diffusion v2[39] as the backbone. Following the pipeline in Fig. 2, we disable text conditioning while maintaining most hyperparameter consistency with E2E FT[33]. The loss weights specified in Sec. 3 are empirically configured as:

$$\eta_a = 8e - 3, \eta_{t1} = 0.6, \eta_{t2} = 0.9, \eta_{p1} = 0.85, \eta_{p2} = 0.15, \eta_{\text{step}} = \max(1, 30 \cdot (\text{step}_{now}/\text{step}_{max})).$$

Training uses the AdamW optimizer[30] with a base learning rate of 3e - 5. All experiments are conducted on 8 NVIDIA A800 GPUs with a total batch size of 32, training for a total of 25k training steps, requiring around 1 day. Following [15], we also employed standard data augmentation techniques (horizontal flips, random brightness, contrast, saturation, and hue jitter).

4.2 Evaluation

4.2.1 Datasets

Unless specified, all datasets are finally resized to 1024×320 resolution for training.

Training Datasets. <u>KITTI</u>[13]: Following the previous work[15], we mainly conduct our experiments on the widely used KITTI dataset. We employ Zhou's split[86] containing 39,810 training and 4,424 validation samples after removing static frames. The evaluation uses 697 Eigen raw test images with metrics from [15], applying 80m ground truth clipping and Eigen crop preprocessing[8]. <u>Hypersim</u>[38]: This photorealistic synthetic dataset (461 indoor scenes) contributes approximately 28k samples from its official training split for mix-batch image reconstruction. Each iteration uses random crops from the original 1024×768 to 1024×320 resolution.

Zero-shot Evaluation Datasets DrivingStereo [67]: Contains 500 images per weather condition (fog, cloudy, rainy, sunny) for zero-shot testing. CityScape [7]: Evaluated on 1,525 test images with dynamic vehicle-rich urban scenes, using ground truth from [55].

MIR Analysis Datasets <u>ETH3D</u>[41]: We resize this high-resolution (6048×4032) dataset to 4K resolution, then randomly cropped to 1024×320 per iteration (898 total samples). <u>Virtual KITTI</u>[4] is a synthetic street scene dataset. We processed this dataset identically to real KITTI data.

4.2.2 Performance Comparison

For all the evaluations, only Jasmine*, Marigold, E2E FT, and Lotus adopt the least squares alignment. The other self-supervised methods use median alignment. The definitions and differences of these alignments are detailed discussed in Sec. 4.3. The meaning of each metric is detailed in Sec. G.

KITTI result To fully demonstrate the advantages of our approach, we compare Jasmine against the most efficient SSMDE models and SoTA SD-based methods. As shown in Table 1, Jasmine achieves the best performance across all metrics on the KITTI benchmark. Notably, our method makes significant progress on the a_1 metric, reflecting an overall improvement in depth estimation accuracy. This systematic advancement stems from the rich prior knowledge of SD. As shown in Fig. 1, without any specialized design for reflective surfaces, our method can accurately distinguish scene elements from their reflections. Additionally, the first row of Fig. 5 also demonstrates that our approach preserves structural details better than existing methods. Moreover, when compared to the other SD-based zero-shot models, none of which, including Jasmine*, use the ground truth depth of KITTI, our method demonstrates a substantial performance advantage, further highlighting the value of self-supervised techniques.

Table 1: Quantitative results on the KITTI dataset. For the error-based metrics, the lower value is better; and for the accuracy-based metrics, the higher value is better. The best and second-best results are marked in bold and underline. Jaeho et al* is a combined model that applies both Jaeho's[34] (handle dynamic objects) and TriDepth's[5] (solve edge flatten) approach. Jasmine* and Jasmine are the same model but use different alignments (discussed in Sec. 4.3). In the data column, Syn, K, and H represent the synthetic, KITTI, and Hypersim datasets, respectively. The number of images and depth labels usage are in brackets. All experiments are conducted at 1024×320 resolution (Performance of Marigold/E2E FT/Lotus is robust to this resolution).

Method	Venue	Notes	Data	AbsRel	SqRel	RMSE	RMSElog	a_1	a_2	a_3
Marigold[25]	CVPR2024	ZeroShot	Syn(74K+74K)	0.120	0.672	4.033	0.184	0.874	0.968	0.985
E2E FT[33]	WACV2025	ZeroShot	Syn(74K+74K)	0.112	0.649	4.099	0.180	0.890	0.969	0.985
Lotus[21]	ICLR2025	ZeroShot	Syn(59K+59K)	0.110	0.611	3.807	0.175	0.892	0.970	0.986
Jasmine*	-	Mono	KH(68K+0)	0.102	0.540	3.728	0.162	0.907	0.973	0.987
Monodepth2[15]	ICCV2019	Mono	K(40K+0)	0.115	0.882	4.701	0.190	0.879	0.961	0.982
HR-Depth[31]	AAAI2021	Mono	K(40K+0)	0.106	0.755	4.472	0.181	0.892	0.966	0.984
R-MSFM6[87]	ICCV2021	Mono	K(40K+0)	0.108	0.748	4.470	0.185	0.889	0.963	0.982
DevNet[85]	ECCV2022	Mono	K(40K+0)	0.100	0.699	4.412	0.174	0.893	0.966	0.985
DepthSegNet[32]	ECCV2022	Mono	K(40K+0)	0.099	0.624	4.165	0.171	0.902	0.969	0.985
SD-SSMDE[37]	CVPR2022	Mono	K(40K+0)	0.098	0.674	4.187	0.170	0.902	0.968	0.985
MonoViT[83]	3DV 2022	Mono	K(40K+0)	0.096	0.714	4.292	0.172	0.908	0.968	0.984
LiteMono[81]	CVPR2023	Mono	K(40K+0)	0.102	0.746	4.444	0.179	0.896	0.965	0.983
DaCCN[20]	ICCV2023	Mono	K(40K+0)	0.094	0.624	4.145	0.169	0.909	0.970	0.985
Jaeho et al*.[5, 34]	CVPR2024	Mono	K(40K+0)	0.091	0.604	4.066	0.164	0.913	0.970	0.986
RPrDepth[19]	ECCV2024	Mono	K(40K+0)	0.091	0.612	4.098	0.162	0.910	0.971	0.986
Mono-ViFI[29]	ECCV2024	Mono	K(40K+0)	0.093	0.589	4.072	0.168	0.909	0.969	0.985
Jasmine	-	Mono	KH(68K+0)	0.090	0.581	3.944	0.161	0.919	0.972	0.986

Table 2: Quantitative zero-shot results on the CityScape and DrivingStereo dataset and its variants (Rainy, Cloudy, Foggy). Alignment protocols and annotation rules follow Table 1's specifications. AbsRel, RMSE, and a_1 metrics are shown.

Method	Driv	vingSter	eo	Rainy		CityScape		Cloudy			Foggy				
Method	AbsRel	RMSE	a_1	AbsRel	RMSE	a_1	AbsRel	RMSE	a_1	AbsRel	RMSE	a_1	AbsRel	RMSE	a_1
Marigold[25]	0.178	6.638	0.749	0.148	6.770	0.801	0.164	6.632	0.763	0.173	6.881	0.751	0.146	6.545	0.798
E2E FT[33]	0.160	5.437	0.795	0.164	6.671	0.793	0.160	6.944	0.792	0.157	5.522	0.797	0.141	6.034	0.836
Lotus[21]	0.173	5.816	0.771	0.167	6.675	0.775	0.147	6.582	0.824	0.159	5.640	0.795	0.150	6.173	0.798
Jasmine*	0.134	4.666	0.854	0.159	6.071	0.825	0.107	5.000	0.907	0.134	4.762	0.846	0.113	4.883	0.897
MonoDepth2[15]	0.191	8.359	0.770	0.260	12.577	0.609	0.158	8.185	0.783	0.192	10.07	0.775	0.156	10.425	0.799
MonoViT[83]	0.150	7.657	0.815	0.190	9.407	0.724	0.140	7.913	0.802	0.134	7.280	0.849	0.107	7.899	0.882
Mono-ViFI[29]	0.158	6.723	0.798	0.400	13.960	0.484	0.134	7.372	0.817	0.154	6.883	0.800	0.160	8.494	0.769
WeatherDepth[49]	0.166	6.986	0.796	0.166	8.844	0.748	0.137	6.515	0.837	0.167	7.566	0.793	0.132	7.679	0.859
Jasmine	0.136	5.340	0.850	0.160	7.194	0.787	0.123	<u>6.618</u>	0.852	0.133	5.651	0.849	0.098	5.702	0.902

Generalization Results Compared to in-domain evaluation, Jasmine exhibits even more remarkable results in zero-shot generalization. Due to the large number of comparison datasets and the unavailability of some models' open-source code, we only compare with Monodepth2 (the most classic model), MonoViT (renowned for its robustness), MonoViFi (the latest model), and WeatherDepth (trained with additional weather-augmented data, totaling 278k samples), all of which are self-supervised models. In fact, MonoViT already surpasses the zero-shot capability for nearly all models in the SSMDE, making it a sufficiently strong baseline[42]. Additionally, SD-based methods have excelled in generalization, allowing us to conduct a fair zero-shot comparison here. As shown in Table 2, Jasmine demonstrated state-of-the-art performance on the datasets of Cityscape

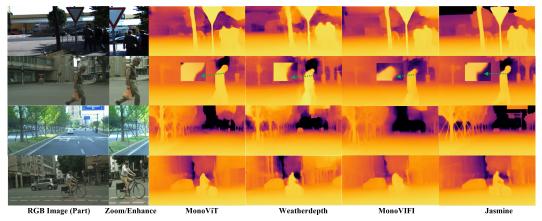


Figure 5: Qualitative results on KITTI, DrivingStereo, and CityScape datasets. We compare Jasmine with the most generalizable and best-performing SSMDE methods in both in-domain and zero-shot scenarios.

and four weather scenarios of driving stereo. Remarkably, our method maintains effectiveness in out-of-distribution (OOD) rainy conditions even without specialized training on weather-enhanced datasets like WeatherKITTI[49]. As illustrated in Fig. 1, Jasmine successfully identifies water surface reflections while producing refined depth estimates. The fine-grain estimation details are further demonstrated in Fig. 5, pedestrian chins (second row), tree support structures (third row), and bicycle-rider contours (fourth row) are all predicted delicately and precisely. These sharp results were completely disrupted by the reprojection loss in previous self-supervised methods.

Further Analysis We also deeply compare Jasmine with other SSDE configurations (stereo training and multi-frame inference) and on KITTI improved GT benchmark in Sec. E.2, E.1.

4.3 Analysis of Depth De-normalization

The performance gap between Jasmine and Jasmine* in Tables 1 and 2 highlights the impact of de-normalization strategies—median alignment for self-supervised methods and LSQ alignment for zero-shot settings. As the first work bridging these two domains, we provide an in-depth analysis of how these choices affect evaluation.

Depth de-normalization refers to the process of transforming the model's predicted depth values back to the GT distribution for metric evaluation. The typical denormalization strategies include:

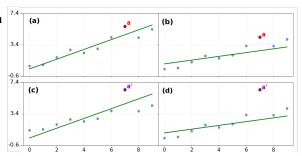


Figure 6: Comparison of different de-normalization schemes. The blue points are predictions after alignment and the green line is the ideal GT depth. Subfigures (a,c) are the results of LSQ alignment, while (b,d) are median alignment.

- **1** No operation: Models predict metric depth [23]: $D_{eval} = D_{pred}$.
- **2** Median Alignment: Models predict SI Depth [15], which can be recovered by scaling the ratio of the median of the GT depth to the median of the predicted depth: $D_{eval} = D_{pred} \cdot \text{median}(D_{GT})/\text{median}(D_{pred})$.
- **3** Least-Squares (LSQ) Alignment: Models predict SSI Depth [25], which can be recovered by affine transformation (scaled and shifted) to best fit the GT depth. The evaluated depth is given by: $D_{eval} = s^* D_{pred} + t^*. \text{ where the optimal scale } s^* \text{ and shift } t^* \text{ are determined by minimizing the sum of squared differences: } (s^*, t^*) = \arg\min_{s,t} \sum_i ((s \cdot D_{pred,i} + t) D_{GT,i})^2.$

From Tables 1 and 2, we have following observations:

Metric inconsistency: For the exact same model, the evaluation metrics can vary dramatically depending on the de-normalization method, making direct comparison unfair.

Metrics characteristics: Under LSQ alignment, quadratic metrics (e.g., SqRel, RMSE) are usually better, but first-order metrics (e.g., AbsRel) and overall accuracy (a_1) are often worse.

Scenario suitability: For in-domain training, median alignment is generally superior, while in zero-shot scenarios, LSQ alignment is usually stronger.

As shown in Fig. 6 (a, c), LSQ alignment tends to accommodate outliers a and a', resulting in a larger overall shift in the alignment. In contrast, in sub-figures (b, d), outliers have little effect on the median, so the accuracy for the majority of points is preserved. In the context of depth estimation, a and a' can represent the model's predictions for regions that are difficult to estimate. Clearly, for quadratic metrics, under median alignment, the large error between a' and the GT in (d) will be further amplified by squaring, leading to a drop in the overall metric. However, when computing overall accuracy, a' or a are typically outside the threshold for a_1 and thus do not affect it, while the originally accurate predictions for other points become less accurate due to the shift introduced by LSQ alignment. Similarly, first-order metrics also degrade due to these shifts. This explains why Jasmine* achieves better RMSE and SqRel but worse a_1 and AbsRel compared to Jasmine.

For the last observation, in in-domain scenarios (Table 1), Jasmine outperforms Jasmine* because the shift-free estimation learned by Jasmine is disrupted by LSQ alignment, introducing a suboptimal shift and degrading performance. In out-of-domain scenarios (Table 2), Jasmine* performs better, as the depth distributions of different datasets may differ significantly, and using least-squares to estimate the best fit is clearly a better choice.

4.4 Ablation Study

As shown in Table 3, we conduct ablation studies to validate our designs. Firstly, in sub-table (a), we gradually tested the effects of our basic components, such as SD prior, MIR, and SSG. The SD prior proves most critical - training from scratch (ID0 vs. ID1) causes catastrophic failure (AbsRel\dagge4473\%, RMSE\dagge206\%). The other experiments also demonstrate that disabling MIR (ID4) or SSG (ID3) degrades performance by 47\%/43\% in AbsRel, proving the necessity of depth distribution alignment and SD detail preservation.

In sub-table (b), we further melted down our proposed SSG. ID (6) reveals that the naive GRU can initially solve the distribution misalignment by estimating the D_{δ} (Eq. 4). However, the scale difference between SSI and SI depth makes it difficult to restore through linear addition. Therefore, after introducing SST, the overall model performance is further enhanced by 10%, ultimately achieving SoTA performance. A comprehensive analysis of MIR was conducted in sub-table (c) and we can draw similar conclusions to Sec. 3.2. Jasmine significantly outperforms the alternatives, such as KITTI/synthetic-only reconstruction (IDs (8,9) and Fig. 3 (c,d)) and latentspace supervision (ID (10) and Fig. 3 (e)), which strongly proves the effectiveness of our proposed MIR. The analysis of auxiliary images is presented in sub-table (d). The experiments in IDs (0, 13, 14) indicate that, compared to real/synthesis datasets, the content of the dataset is more important, and diverse scenes offer greater ben-

Table 3: **Ablation Studies.** vK and Hy mean the virtual KITTI and Hypersim datasets. Dataset/n denote we downsample the image to $\frac{1}{n}$ resloution(*i.e.* Hy/1.6 means downsample to 640×192 , where 640 = 1024/1.6) and resize them back.

(ID) Method	AbsRel	SqRel	RMSE	a_1	a_2					
	Ours									
(0) Jasmine	0.090	0.581	3.944	0.919	0.972					
(a) Basic Component										
(1) w/o SD Prior	0.516	6.019	12.06	0.258	0.501					
(2) w/o MIR+SSG	0.175	2.264	7.969	0.790	0.929					
(3) w/o SSG	0.129	0.938	4.470	0.872	0.956					
(4) w/o MIR	0.132	0.673	4.271	0.852	0.967					
(b) Scale-Shift GRU										
(5) w/o SSG	0.129	0.938	4.470	0.872	0.956					
(6) w/o SST	0.098	0.715	4.350	0.909	0.969					
(c) Mi	x-batch Im	age Reco	nstruction							
(7) w/o MIR	0.132	0.673	4.271	0.852	0.967					
(8) Direct	0.129	0.679	4.385	0.858	0.962					
(9) Only Hy	0.106	0.614	4.181	0.901	0.970					
(10) Latent space	0.095	0.606	4.138	0.909	0.970					
(d)	Auxiliary	Image Aı	nalysis							
(12) KITTI	0.095	0.616	4.040	0.912	0.972					
(13) KITTI+ETH3D	0.090	0.586	3.937	0.916	0.972					
(14) KITTI+vK	0.094	0.606	4.068	0.911	0.972					
(15) KITTI+Hy/4	0.091	0.596	3.943	0.917	0.972					
(16) KITTI+Hy/1.6	0.090	0.591	3.971	0.918	0.972					

efits than street views (virtual KITTI images) similar to our primary dataset, KITTI. Furthermore, IDs (0, 15, 16) demonstrate that our surrogate task is robust to image sampling resolutions, as downsampling to $\frac{1}{1.6}$ or even $\frac{1}{4}$ has minimal impact on the results. Moreover, ID(13) further confirms that MIR remains effective even when trained on small-scale datasets (fewer than 1k samples). These insights provide potential opportunities for applying SD models to other dense estimation tasks and enhancing result sharpness. **In summary,** these ablation results validate the effectiveness of our proposed adaptation protocol, indicating that each design plays a crucial role in optimizing the diffusion model for self-supervised depth estimation tasks.

4.5 Inference Latency

As shown in the table below (MACs and Runtime are measured on a image with 1024×320 resolution on RTX 4090.), while Jasmine is more computationally expensive than prior self-supervised methods, it follows the trend of models like Marigold in trading cost for superior performance. Notably, our SSG module adds negligible latency, with Jasmine's runtime being comparable to Lotus.

Method	Marigold	Lotus	E2E-Mono	Monodepth2	MonoViT	MonoViFi	Jasmine
MACs	133T	2.65T	2.65T	21.43G	25.63G	28.79G	2.83T
Runtime	9.88s	157ms	152ms	33ms	29ms	25ms	172ms

5 Conclusion

We propose Jasmine, the first SD-based self-supervised framework for monocular depth estimation, effectively leveraging SD's priors to enhance sharpness and generalization without high-precision supervision. To achieve this objective, we introduce two novel modules: Mix-batch Image Reconstruction (MIR) for mitigating reprojection artifacts and preserving Stable Diffusion's latent priors, alongside Scale-Shift GRU (SSG) to align scale-invariant depth predictions while suppressing noisy gradients. Extensive experiments demonstrate that Jasmine achieves SoTA performance on KITTI and superior zero-shot generalization across datasets. Our approach establishes a new paradigm for unsupervised depth estimation, paving the way for future advancements in self-supervised learning.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant (U2441242,62172032) and Graduate Research Innovation Project under Grant (KKYJS25001536).

References

- [1] Antyanta Bangunharcana, Ahmed Magd, and Kyung-Soo Kim. Dualrefine: Self-supervised depth and pose estimation through iterative epipolar sampling and refinement toward equilibrium. In *CVPR*, pages 726–738, 2023. 3, 23
- [2] Juan Luis Gonzalez Bello and Munchurl Kim. Forget about the lidar: Self-supervised depth estimators with med probability volumes. In *NeurIPS*, pages 12626–12637, 2020. 2
- [3] Juan Luis Gonzalez Bello and Munchurl Kim. Plade-net: Towards pixel-level accuracy for self-supervised single-view depth estimation with neural positional encoding and distilled matting loss. In *CVPR*, pages 6851–6860, 2021. 2
- [4] Yohann Cabon, Naila Murray, and Martin Humenberger. Virtual kitti 2. arXiv preprint arXiv:2001.10773, 2020. 7
- [5] Xingyu Chen, Ruonan Zhang, Ji Jiang, Yan Wang, Ge Li, and Thomas H Li. Self-supervised monocular depth estimation: Solving the edge-fattening problem. In *Proceedings of the IEEE/CVF Winter Conference* on Applications of Computer Vision, pages 5776–5786, 2023.
- [6] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit Girdhar. Maskedattention mask transformer for universal image segmentation. In *Proceedings of the IEEE/CVF conference* on computer vision and pattern recognition, pages 2132–2143, 2022. 27
- [7] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In CVPR, pages 3213–3223, 2016. 7
- [8] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single image using a multi-scale deep network. *Advances in neural information processing systems*, 27, 2014. 7
- [9] Ziyue Feng, Liang Yang, Longlong Jing, Haiyan Wang, Yingli Tian, and Bing Li. Disentangling object motion and occlusion for unsupervised multi-frame monocular depth. In ECCV, pages 228–244, 2022. 3
- [10] Michaël Fonder, Damien Ernst, and Marc Van Droogenbroeck. M4depth: Monocular depth estimation for autonomous vehicles in unseen environments. 2021.
- [11] Xiao Fu, Wei Yin, Mu Hu, Kaixuan Wang, Yuexin Ma, Ping Tan, Shaojie Shen, Dahua Lin, and Xiaoxiao Long. Geowizard: Unleashing the diffusion priors for 3d geometry estimation from a single image. *arXiv* preprint arXiv:2403.12013, 2024. 3, 4
- [12] Ravi Garg, Vijay Kumar BG, Gustavo Carneiro, and Ian Reid. Unsupervised cnn for single view depth estimation: Geometry to the rescue, 2016. 2
- [13] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In 2012 IEEE conference on computer vision and pattern recognition, pages 3354–3361. IEEE, 2012. 7
- [14] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised monocular depth estimation with left-right consistency. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 270–279, 2017. 2
- [15] Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J Brostow. Digging into self-supervised monocular depth estimation. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 3828–3838, 2019. 7, 8, 9, 29
- [16] Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Mangrulkar, Marc Sun, and Benjamin Bossan. Accelerate: Training and inference at scale made simple, efficient and adaptable. https://github.com/huggingface/accelerate, 2022. 7
- [17] Vitor Guizilini, Rares Ambrus, Dian Chen, Sergey Zakharov, and Adrien Gaidon. Multi-frame self-supervised depth with transformers. In CVPR, pages 160–170, 2022. 3

- [18] S. Mahdi H. Miangoleh, Mahesh Reddy, and Yağız Aksoy. Scale-invariant monocular depth estimation via ssi depth. In *Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers* '24, SIGGRAPH '24, page 1–11. ACM, July 2024. 22
- [19] Wencheng Han and Jianbing Shen. High-precision self-supervised monocular depth estimation with rich-resource prior. In *European Conference on Computer Vision*, pages 146–162. Springer, 2024. 2, 8
- [20] Wencheng Han, Junbo Yin, and Jianbing Shen. Self-supervised monocular depth estimation by directionaware cumulative convolution network. In ICCV, 2023. 2, 8
- [21] Jing He, Haodong Li, Wei Yin, Yixun Liang, Leheng Li, Kaiqiang Zhou, Hongbo Zhang, Bingbing Liu, and Ying-Cong Chen. Lotus: Diffusion-based visual foundation model for high-quality dense prediction. *arXiv preprint arXiv:2409.18124*, 2024. 1, 2, 3, 4, 8, 28
- [22] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. 3
- [23] Mu Hu, Wei Yin, Chi Zhang, Zhipeng Cai, Xiaoxiao Long, Hao Chen, Kaixuan Wang, Gang Yu, Chunhua Shen, and Shaojie Shen. Metric3d v2: A versatile monocular geometric foundation model for zero-shot metric depth and surface normal estimation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024. 9
- [24] Yuanfeng Ji, Zhe Chen, Enze Xie, Lanqing Hong, Xihui Liu, Zhaoqiang Liu, Tong Lu, Zhenguo Li, and Ping Luo. Ddp: Diffusion model for dense visual prediction. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, October 2023. 3
- [25] Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, and Konrad Schindler. Repurposing diffusion-based image generators for monocular depth estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9492–9502, 2024. 1, 2, 3, 8, 9, 28
- [26] Neehar Kondapaneni, Markus Marks, Manuel Knott, Rogério Guimarães, and Pietro Perona. Text-image alignment for diffusion-based perception, 2023. 3
- [27] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, and Ole Winther. Autoencoding beyond pixels using a learned similarity metric. CoRR, abs/1512.09300, 2015. 2, 5
- [28] Kang Liao, Zongsheng Yue, Zhouxia Wang, and Chen Change Loy. Denoising as adaptation: Noise-space domain adaptation for image restoration. *arXiv* preprint arXiv:2406.18516, 2024. 3
- [29] Jinfeng Liu, Lingtong Kong, Bo Li, Zerong Wang, Hong Gu, and Jinwei Chen. Mono-vifi: A unified learning framework for self-supervised single and multi-frame monocular depth estimation. In *European Conference on Computer Vision*, pages 90–107. Springer, 2024. 2, 8, 23, 28
- [30] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. 7
- [31] Xiaoyang Lyu, Liang Liu, Mengmeng Wang, Xin Kong, Lina Liu, Yong Liu, Xinxin Chen, and Yi Yuan. Hr-depth: High resolution self-supervised monocular depth estimation. In AAAI, pages 2294–2301, 2021. 2, 8
- [32] Jingyuan Ma, Xiangyu Lei, Nan Liu, Xian Zhao, and Shiliang Pu. Towards comprehensive representation enhancement in semantics-guided self-supervised monocular depth estimation. In ECCV, pages 304–321, 2022. 2, 8
- [33] Gonzalo Martin Garcia, Karim Abou Zeid, Christian Schmidt, Daan de Geus, Alexander Hermans, and Bastian Leibe. Fine-tuning image-conditional diffusion models is easier than you think. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, 2025. 1, 2, 3, 4, 7, 8, 28
- [34] Jaeho Moon, Juan Luis Gonzalez Bello, Byeongjun Kwon, and Munchurl Kim. From-ground-to-objects: Coarse-to-fine self-supervised monocular depth estimation of dynamic objects with ground contact prior. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10519–10529, 2024. 2, 7, 8, 25, 27
- [35] Adam Paszke et al. Pytorch: An imperative style, high-performance deep learning library. In NeurIPS, pages 8026–8037, 2019.
- [36] Rui Peng, Ronggang Wang, Yawen Lai, Luyang Tang, and Yangang Cai. Excavating the potential capacity of selfsupervised monocular depth estimation. In *ICCV*, pages 15560–15569, 2021. 23

- [37] Andra Petrovai and Sergiu Nedevschi. Exploiting pseudo labels in a self-supervised learning framework for improved monocular depth estimation. In CVPR, pages 1568–1578, 2022. 2, 8
- [38] Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Kumar, Miguel Angel Bautista, Nathan Paczan, Russ Webb, and Joshua M Susskind. Hypersim: A photorealistic synthetic dataset for holistic indoor scene understanding. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 10912–10922, 2021. 7
- [39] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer* vision and pattern recognition, pages 10684–10695, 2022. 3, 7
- [40] Saurabh Saxena, Charles Herrmann, Junhwa Hur, Abhishek Kar, Mohammad Norouzi, Deqing Sun, and David J. Fleet. The surprising effectiveness of diffusion models for optical flow and monocular depth estimation, 2023. 3
- [41] Thomas Schops, Johannes L Schonberger, Silvano Galliani, Torsten Sattler, Konrad Schindler, Marc Pollefeys, and Andreas Geiger. A multi-view stereo benchmark with high-resolution images and multicamera videos. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3260–3269, 2017. 7
- [42] Lingdong Seo, Liang Weng, Zhiqiang Zhao, Xuan Wang, Jing Qiu, and Yinlong Liu. Robodepth: Robust out-of-distribution depth estimation under corruptions. In Advances in Neural Information Processing Systems, volume 36, 2024. 8
- [43] Shuwei Shao, Zhongcai Pei, Weihai Chen, Peter CY Chen, and Zhengguo Li. Nddepth: Normal-distance assisted monocular depth estimation and completion. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024. 27
- [44] Shuwei Shao, Zhongcai Pei, Weihai Chen, Dingchi Sun, Peter C. Y. Chen, and Zhengguo Li. Monodiffusion: Self-supervised monocular depth estimation using diffusion model, 2023. 3
- [45] Shuwei Shao, Zhongcai Pei, Xingming Wu, Zhong Liu, Weihai Chen, and Zhengguo Li. Iebins: Iterative elastic bins for monocular depth estimation. In Advances in Neural Information Processing Systems (NeurIPS), 2023. 27
- [46] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2020. 3
- [47] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke, Thomas Brox, and Andreas Geiger. Sparsity invariant cnns. In 2017 international conference on 3D vision (3DV), pages 11–20. IEEE, 2017. 28
- [48] Haochen Wang, Anlin Zheng, Yucheng Zhao, Tiancai Wang, Zheng Ge, Xiangyu Zhang, and Zhaoxiang Zhang. Reconstructive visual instruction tuning. *arXiv preprint arXiv:2410.09575*, 2024. 23
- [49] Jiyuan Wang, Chunyu Lin, Lang Nie, Shujun Huang, Yao Zhao, Xing Pan, and Rui Ai. Weatherdepth: Curriculum contrastive learning for self-supervised depth estimation under adverse weather conditions. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pages 4976–4982. IEEE, 2024. 8, 9
- [50] Jiyuan Wang, Chunyu Lin, Lang Nie, Kang Liao, Shuwei Shao, and Yao Zhao. Digging into contrastive learning for robust depth estimation with diffusion models. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pages 4129–4137, 2024. 3, 27
- [51] JiYuan Wang, Chunyu Lin, Lei Sun, Rongying Liu, Lang Nie, Mingxing Li, Kang Liao, Xiangxiang Chu, and Yao Zhao. From editor to dense geometry estimator. arXiv preprint arXiv:2509.04338, 2025.
- [52] Ruoyu Wang, Zehao Yu, and Shenghua Gao. Planedepth: Self-supervised depth estimation via orthogonal planes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 21425–21434, 2023. 2, 23
- [53] Xianqi Wang, Hao Yang, Gangwei Xu, Junda Cheng, Min Lin, Yong Deng, Jinliang Zang, Yurui Chen, and Xin Yang. Zerostereo: Zero-shot stereo matching from single images. arXiv preprint arXiv:2501.08654, 2025. 30
- [54] Zhengxue Wang, Zhiqiang Yan, Jinshan Pan, Guangwei Gao, Kai Zhang, and Jian Yang. Dornet: A degradation oriented and regularized network for blind depth super-resolution. In *Proceedings of the* Computer Vision and Pattern Recognition Conference, pages 15813–15822, 2025. 30

- [55] Jamie Watson, Oisin Mac Aodha, Victor Adrian Prisacariu, Gabriel J. Brostow, and Michael Firman. The temporal opportunist: Self-supervised multi-frame monocular depth. In CVPR, pages 1164–1174, 2021. 3, 7, 23
- [56] Gangwei Xu, Haotong Lin, Hongcheng Luo, Xianqi Wang, Jingfeng Yao, Lianghui Zhu, Yuechuan Pu, Cheng Chi, Haiyang Sun, Bing Wang, et al. Pixel-perfect depth with semantics-prompted diffusion transformers. *arXiv preprint arXiv:2510.07316*, 2025. 30
- [57] Gangwei Xu, Jiaxin Liu, Xianqi Wang, Junda Cheng, Yong Deng, Jinliang Zang, Yurui Chen, and Xin Yang. Banet: Bilateral aggregation network for mobile stereo matching. arXiv preprint arXiv:2503.03259, 2025. 30
- [58] Gangwei Xu, Xianqi Wang, Zhaoxing Zhang, Junda Cheng, Chunyuan Liao, and Xin Yang. Igev++: Iterative multi-range geometry encoding volumes for stereo matching. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 47(8):7108–7122, 2025. 30
- [59] Guangkai Xu, Yongtao Ge, Mingyu Liu, Chengxiang Fan, Kangyang Xie, Zhiyue Zhao, Hao Chen, and Chunhua Shen. What matters when repurposing diffusion models for general dense perception tasks? arXiv preprint arXiv:2403.06090, 2024. 3
- [60] Guangkai Xu, Wei Yin, Jianming Zhang, Oliver Wang, Simon Niklaus, Simon Chen, and Jia-Wang Bian. Towards domain-agnostic depth completion. *Machine Intelligence Research*, 21(4):652–669, 2024. 30
- [61] Guangkai Xu and Feng Zhao. Toward 3d scene reconstruction from locally scale-aligned monocular video depth. JUSTC, 54(4):0402–1–0402–11, 2024. 1
- [62] Haofei Xu, Songyou Peng, Fangjinhua Wang, Hermann Blum, Daniel Barath, Andreas Geiger, and Marc Pollefeys. Depthsplat: Connecting gaussian splatting and depth. arXiv preprint arXiv:2410.13862, 2024.
- [63] Zhiqiang Yan, Yuankai Lin, Kun Wang, Yupeng Zheng, Yufei Wang, Zhenyu Zhang, Jun Li, and Jian Yang. Tri-perspective view decomposition for geometry-aware depth completion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 4874–4884, 2024. 30
- [64] Zhiqiang Yan, Kun Wang, Xiang Li, Guangwei Gao, Jun Li, and Jian Yang. Tri-perspective view decomposition for geometry aware depth completion and super-resolution. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025. 30
- [65] Zhiqiang Yan, Kun Wang, Xiang Li, Zhenyu Zhang, Jun Li, and Jian Yang. Rignet: Repetitive image guided network for depth completion. In European Conference on Computer Vision, pages 214–230. Springer, 2022. 30
- [66] Zhiqiang Yan, Zhengxue Wang, Kun Wang, Jun Li, and Jian Yang. Completion as enhancement: A degradation-aware selective image guided network for depth completion. In *Proceedings of the IEEE/CVF* Conference on Computer Vision and Pattern Recognition, pages 26943–26953, 2025. 30
- [67] Guorun Yang, Xiao Song, Chaoqin Huang, Zhidong Deng, Jianping Shi, and Bolei Zhou. Drivingstereo: A large-scale dataset for stereo matching in autonomous driving scenarios. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2019.
- [68] Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth anything: Unleashing the power of large-scale unlabeled data. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10371–10381, 2024. 3
- [69] Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth anything v2. arXiv preprint arXiv:2406.09414, 2024. 3
- [70] Zhu Yu, Zehua Sheng, Zili Zhou, Lun Luo, Si-Yuan Cao, Hong Gu, Huaqi Zhang, and Hui-Liang Shen. Aggregating feature point cloud for depth completion. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 8732–8743, 2023. 30
- [71] Zhu Yu, Runmin Zhang, Jiacheng Ying, Junchen Yu, Xiaohai Hu, Lun Luo, Si-Yuan Cao, and Hui-Liang Shen. Context and geometry aware voxel transformer for semantic scene completion. *Advances in Neural Information Processing Systems*, 37:1531–1555, 2024. 30
- [72] Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jinguo Luo, Tianlu Mao, and Zhaoqi Wang. MSP-MVS: Multi-granularity segmentation prior guided multi-view stereo. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 9753–9762, 2025. 30

- [73] Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, and Zhaoqi Wang. DVP-MVS: Synergize depth-edge and visibility prior for multi-view stereo. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 9743–9752, 2025. 30
- [74] Zhenlong Yuan, Zhidong Yang, Yujun Cai, Kuangxin Wu, Mufan Liu, Dapeng Zhang, Hao Jiang, Zhaoxin Li, and Zhaoqi Wang. SED-MVS: Segmentation-Driven and Edge-Aligned Deformation Multi-View Stereo with Depth Restoration and Occlusion Constraint. *IEEE Transactions on Circuits and Systems for Video Technology*, 2025. 30
- [75] Zhenlong Yuan, Dapeng Zhang, Zehao Li, Chengxuan Qian, Jianing Chen, Yinda Chen, Kehua Chen, Tianlu Mao, Zhaoxin Li, Hao Jiang, and Zhaoqi Wang. Dvp-mvs++: Synergize depth-normal-edge and harmonized visibility prior for multi-view stereo, 2025. 30
- [76] Zongsheng Yue, Kang Liao, and Chen Change Loy. Arbitrary-steps image super-resolution via diffusion inversion. arXiv preprint arXiv:2412.09013, 2024. 3
- [77] Ziyao Zeng, Jingcheng Ni, Daniel Wang, Patrick Rim, Younjoon Chung, Fengyu Yang, Byung-Woo Hong, and Alex Wong. Priordiffusion: Leverage language prior in diffusion models for monocular depth estimation, 2024. 3
- [78] Ziyao Zeng, Jingcheng Ni, Daniel Wang, Patrick Rim, Younjoon Chung, Fengyu Yang, Byung-Woo Hong, and Alex Wong. Priordiffusion: Leverage language prior in diffusion models for monocular depth estimation. *arXiv preprint arXiv:2411.16750*, 2024. 30
- [79] Ziyao Zeng, Daniel Wang, Fengyu Yang, Hyoungseob Park, Stefano Soatto, Dong Lao, and Alex Wong. Wordepth: Variational language prior for monocular depth estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9708–9719, 2024. 30
- [80] Ziyao Zeng, Yangchao Wu, Hyoungseob Park, Daniel Wang, Fengyu Yang, Stefano Soatto, Dong Lao, Byung-Woo Hong, and Alex Wong. Rsa: Resolving scale ambiguities in monocular depth estimators through language descriptions. Advances in neural information processing systems, 37:112684–112705, 2024. 30
- [81] Ning Zhang, Francesco Nex, George Vosselman, and Norman Kerle. Lite-mono: A lightweight cnn and transformer architecture for self-supervised monocular depth estimation. In *Proceedings of the IEEE/CVF* Conference on Computer Vision and Pattern Recognition, pages 18537–18546, 2023. 8
- [82] Renrui Zhang, Ziyao Zeng, Ziyu Guo, and Yafeng Li. Can language understand depth? In Proceedings of the 30th ACM International Conference on Multimedia, pages 6868–6874, 2022. 30
- [83] Chaoqiang Zhao, Youmin Zhang, Matteo Poggi, Fabio Tosi, Xianda Guo, Zheng Zhu, Guan Huang, Yang Tang, and Stefano Mattoccia. Monovit: Self-supervised monocular depth estimation with a vision transformer. In 2022 international conference on 3D vision (3DV), pages 668–678. IEEE, 2022. 1, 2, 8, 28
- [84] Wenliang Zhao, Yongming Rao, Zuyan Liu, Benlin Liu, Jie Zhou, and Jiwen Lu. Unleashing text-to-image diffusion models for visual perception. ICCV, 2023. 3
- [85] Kaichen Zhou, Lanqing Hong, Changhao Chen, Hang Xu, Chaoqiang Ye, Qingyong Hu, and Zhenguo Li. Devnet: Self-supervised monocular depth learning via density volume construction. In ECCV, pages 125–142, 2022. 2, 8
- [86] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G. Lowe. Unsupervised learning of depth and ego-motion from video, 2017. 7
- [87] Zhongkai Zhou, Xinnan Fan, Pengfei Shi, and Yuanxue Xin. R-msfm: Recurrent multi-scale feature modulation for monocular depth estimating. In *ICCV*, pages 12757–12766, 2021. 2, 8

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: [TODO]

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: [TODO]

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer:[Yes]

Justification: [TODO]

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.

- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: [TODO]

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: [TODO]

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not

including code, unless this is central to the contribution (e.g., for a new open-source benchmark).

- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: [TODO]

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: [TODO]

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.).
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: [TODO]

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: [TODO]

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: [TODO]

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.

 If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: [TODO]

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: [TODO]

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: [TODO]

Guidelines:

• The answer NA means that the paper does not release new assets.

- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer:[NA]

Justification: [TODO]

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: [TODO]

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: [TODO]

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

Appendix

In this appendix, we provide more implementation details, experiments, analysis, and discussions for a comprehensive evaluation and understanding of Jasmine. Detailed contents are listed as follows:

Contents

A	Pro	oof of Scale-Invariant Depth	22
В	De	tailed Training Workflow and Pseudocode	23
]	B.1	Step-by-Step Workflow	23
]	B.2	Training Pseudocode	24
C	Su	pervision Details	24
(C.1	SGD Loss for Dynamic Object	25
(C.2	Edge Loss for Sharp Prediction	25
(C.3	Sky Loss for Anti-artifact	25
(C.4	Eliminating the Bottleneck of Teacher Loss	26
D	Pro	eliminaries of GRU	27
E	Ad	dition Experiments Results	28
]	E.1	Evaluation on KITTI Improved Benchmark	28
]	E.2	Comparison with Other Self-Supervised Settings	28
]	E.3	Qualitative Comparisons	28
]	E.4	Mix-batch Ratio Ablation Details	28
F	An	alysis of SD Prior Degradation via Self-Supervision	29
G	Ev	aluation Metrics	29
H	Er	ror Bar Analysis	29
Ι	Lir	mitation and Future Work	30

A Proof of Scale-Invariant Depth

For SSI depth, we assume that the estimated depth \hat{D} and the ground truth depth D have the following relationship:

$$\hat{D} = s_c D + s_h$$

Meanwhile, the depth from another viewpoint can be denoted as $g_1(D')$. Here, g_1 represents a transformation, and it is straightforward to see that this must be a linear transformation since the known identity only contains linear terms. Introducing a nonlinear transformation would not hold for the depth of arbitrary scenes. Thus, we can define:

$$g_1(D') = a_1 D' + b_1$$

Similarly, we can define the transition as $g_2(\mathbf{T})$, which is also a linear transformation, given by:

$$g_2(\mathbf{T}) = a_2\mathbf{T} + b_2$$

Note that for transformations within the same scene, the relative pose \mathbf{R} remains constant[18]. Also, a and b here can be arbitrary numbers, so we have:

$$g(x) - x \simeq g(x) - a_3 \simeq g(x) \tag{13}$$

Table 4: Additional quantitative results on the KITTI dataset.

Method	Venue	Notes	Data	AbsRel	SqRel	RMSE	RMSElog	a_1	a_2	a_3
ManyDepth[55]	CVPR2021	(-1,0)	K(40K+0)	0.091	0.694	4.245	0.171	0.911	0.968	0.983
Dual Refine[1]	CVPR2023	(-1,0)	K(40K+0)	0.087	0.674	4.130	0.167	0.915	0.969	0.984
Mono-ViFI[29]	ECCV2024	(-1,0,1)	K(40K+0)	0.089	0.556	3.981	0.164	0.914	0.971	0.986
EPCDepth[36]	ICCV2021	Stereo	K(45K+0)	0.091	0.646	4.207	0.176	0.901	0.966	0.983
PlaneDepth[52]	CVPR2023	Stereo	K(45K+0)	0.085	0.563	4.023	0.171	0.910	0.968	0.984
Jasmine	-	Mono	KH(68K+0)	0.090	0.581	3.944	0.161	0.919	0.972	0.986

Assuming the SSI depth is work, we have:

$$\zeta' g_1(D') = K \left(\mathbf{R} K^{-1} \zeta(s_c D + s_h) + g_2(\mathbf{T}) \right) \tag{14}$$

Eq. 7 in the paper is:

$$\zeta' s_c D' = K \left(\mathbf{R} K^{-1} \zeta s_c D + s_c \mathbf{T} \right), \tag{15}$$

Subtracting Eq. 15 from Eq. 14, we have:

$$\zeta'(g_1(D') - s_c D') = K\left(\mathbf{R}K^{-1}\zeta s_h + (g_2(\mathbf{T}) - s_c \mathbf{T})\right)$$

From Eq. 13, it can be simplified as:

$$\zeta' g_1(D') = K \left(\mathbf{R} K^{-1} \zeta s_h + g_2(\mathbf{T}) \right)$$

Multiplying both sides by K^{-1} , we get:

$$K^{-1}\zeta'q_1(D') = \mathbf{R}K^{-1}\zeta s_h + q_2(\mathbf{T})$$

This is Eq. 8 in the paper.

B Detailed Training Workflow and Pseudocode

B.1 Step-by-Step Workflow

In this section, we temporarily omit the specifics of MIR and SSG to clarify the integration of self-supervision with the Stable Diffusion framework in Jasmine:

- Input: A sequence of temporally adjacent images (like video frames), e.g., a source image $I_{t'}$ and a target image I_t .
 - Here I_t is exactly the training image, $I_{t'}$ can be the previous frame I_{t-1} or the next frame I_{t+1} of I_t .

• Step 1: Depth Prediction (via SD U-Net):

- The SD U-Net, f_{θ}^z , takes the latent of the target image, $z^I = \text{VAE.encode}(I_t)$, and a pure noise vector, \mathbf{n} , as input.
- It performs a single-step denoising process to predict the latent representation of a depth map, z_0^y .
 - * This is the key point we mentioned in Sec 3.1: single-step denoising make this step become a fast, feed-forward process rather than computationally prohibitive with slow, iterative denoising.
- The VAE decoder then converts z_0^y into the final depth map, $D = VAE.decode(z_0^y)$.
- Crucially, no GT depth is ever used in this step.

• Step 2: Pose Prediction:

- A separate PoseNet takes the image pair $(I_t, I_{t'})$ as input and predicts the relative camera pose (rotation and translation), $T_{t \to t'}$.

• Step 3: Self-Supervised Signal Generation (Image Reprojection[48]):

- Using the predicted depth map D and the predicted pose $T_{t\to t'}$, we perform a warping operation to reproject the pixels from the source image $I_{t'}$ onto the target image's coordinate system. This creates a synthesized target image, \hat{I}_t .

• Step 4: Loss Calculation and Optimization:

- A photometric reprojection loss, L_{ph} , is calculated by comparing the synthesized image \hat{I}_t with the original target image I_t .
- This loss, L_{ph} , is the core self-supervised signal. If the predicted depth D is incorrect, the reprojected image \hat{I}_t will not match the original I_t , resulting in a high loss.

• Step 5: End-to-End Backpropagation:

Algorithm 1 Jasmine Training Algorithm

 $D_{list} \leftarrow \text{SSG}(D_{ssi}, z_t^I)$

 $D_{si}, D_{ssi} \leftarrow D_{list}[-1], D_{list}[0]$

return $L_{GDS} + L_{SKY} + L_e$

- The gradient from L_{ph} is backpropagated through the entire computational graph. This means the gradient flows back to update the weights of both the **PoseNet** and, most importantly, the **SD U-Net** (f_{θ}^z) .
- Output: The predicted depth map D obtained from Step 1.

B.2 Training Pseudocode

9:

10:

18:

31:

Algorithm 1 outlines the complete training procedure for Jasmine, incorporating all components including MIR, SSG, and the full loss computation (Corresponds to the pipeline in Fig. 2).

```
1: Initialize: SD U-Net, PoseNet, SSG, VAE, optimizer

2: VAE.eval() \triangleright VAE weights are frozen

3: for each batch of inputs 'I' in dataloader do

4: \triangleright Mix-batch Image Reconstruction (MIR)

5: s_{depth} \leftarrow [1,0], s_{recon} \leftarrow [0,1] \triangleright Task switchers

6: z_t^I, z_m^I, z^n \leftarrow \text{VAE.encode}(I['I\_t'], I['I\_m'], \text{noise})

7: D_{ssi} \leftarrow \text{VAE.decode}(\text{SD\_UNet}([z_t^I, z^n], t = 999, s = s_{depth}))

8: I_{rec} \leftarrow \text{VAE.decode}(\text{SD\_UNet}([z_m^I, z^n], t = 999, s = s_{recon}))
```

⊳ Scale-Shift GRU (SSG)

 $\triangleright D_{list}$ contains $[D_{ssi}, D_1, D_{si}]$

```
11: pose \leftarrow PoseNet(I['I\_t'], I['I\_t'']) > Pose Estimation for Self-Supervision

12: loss \leftarrow compute\_loss(I, D_{list}, pose, I_{rec}) > Loss Computation and Optimization

13: loss.backward()

14: loss.backward()

15: loss.backward()

16: end for

17: function COMPUTE\_LOSS(inputs, D_{list}, pose, I_{rec})
```

```
reproj\_img \leftarrow reproject(inputs['I_t''], D_{si}, pose)
19:
         L_{ph} \leftarrow \mathsf{photometric\_loss}(reproj\_img, \mathsf{inputs['I\_t']})
20:
                                                                                        L_s \leftarrow \text{photometric\_loss}(I_{rec}, \text{inputs['I\_m']})
21:
                                                                                                22:
         L_{tc} \leftarrow \text{teacher\_loss}(D_{list}, \text{inputs['D\_tc']})
                                                                                                         ⊳ As per Eq. 11
         L_a \leftarrow \text{compute\_auxiliary\_loss(inputs}, D_{si}, D_{ssi})
         loss \leftarrow L_{ph} + L_s + L_{tc} + L_a \cdot 0.008
24:
25:
         return loss
26: end function
27: function COMPUTE_AUXILIARY_LOSS(inputs, D_{si}, D_{ssi})
         L_{GDS} \leftarrow \text{gds\_loss(inputs['I\_t'], inputs['seg'], } D_{si})
28:
29:
         L_{SKY} \leftarrow \text{sky\_loss}(D_{ssi}, \text{inputs['sky\_mask']})
30:
         L_e \leftarrow \text{edge\_loss}(D_{si}, D_{ssi})
```

C Supervision Details

32: end function

Self-supervised depth estimation has been researched for a decade, and hundreds of works have proposed numerous progressive ideas. Therefore, to achieve SoTA performance, it is inevitable that we will reuse some loss constraints from previous works to optimize our results. In the following text, except for the **edge loss**, the other losses are mostly referenced from prior papers and are not the core contributions of this paper. Thus, we have not included them in the main paper. The effectiveness of

the other papers' losses has been comprehensively proved in their papers, and we did not conduct additional ablation studies for them. For the loss specific in this paper, we present some visualized ablation results in Fig. 7.

C.1 SGD Loss for Dynamic Object

We first introduce the most commonly used smoothness loss L_{sm} in self-supervised depth estimation, which encourages locally smooth depth maps while preserving edges in the image. Its specific expression is as follows:

$$L_{sm} = |\partial_x \hat{D}| e^{-|\partial_x \mathbf{I}|} + |\partial_y \hat{D}| e^{-|\partial_y \mathbf{I}|}, \tag{16}$$

where \hat{D} is the depth normalized by the mean of D.

Building on this, we adopt the GDS loss (only the first stage) from [34] to handle dynamic objects. This approach is based on the smoothness loss and introduces a ground-contact-prior mask M_{gr} , defined as:

$$M_{qr}(i,j) = \gamma \cdot M_t(i,j) + (1 - M_t(i,j))$$

where M_t is the dynamic object segmentation obtained from a semantic segmentation network (1 represents dynamic and 0 for static), and γ is the weighting parameter for M_{gr} , empirically set to 100. Considering the bottom pixels of dynamic regions like the car tire, they impose a high weighting on $|\partial_y \hat{d}_t|$ with $M_{gr}(i,j) = \gamma$, thereby enforcing its depth consists with its neighboring ground pixels below. So the final loss is:

$$L_{GDS} = |\partial_x \hat{D}| e^{-|\partial_x \mathbf{I}|} + |\partial_y \hat{D}| M_{gr} e^{-|\partial_y \mathbf{I}|}.$$
(17)

C.2 Edge Loss for Sharp Prediction

We further introduce an edge loss to enhance the prediction's details. Since the surrogate and primary tasks are decoupled after the U-Net's final layer, and the Scale-Shift Invariant (SSI) depth is shielded from photometric loss interference through SSG-based isolation, the SSI depth retains significantly richer structural details. To transfer these details to the final result, we introduce a simple edge loss. Specifically, we design a GradNet,

$$GradNet(x) = (|conv2d(x, w_x)|, |conv2d(x, w_y)|)$$

where $w_x = [[-1,0,1],[-2,0,2],[-1,0,1]]$ and $w_y = [[-1,-2,-1],[0,0,0],[1,2,1]]$ are the convolutional kernels for computing gradients in the x and y directions. Subsequently, the edge loss is defined as:

$$L_e = L_1(C_x, D_x) + L_1(C_y, D_y), (18)$$

where $(C_x,C_y)=\operatorname{GradNet}(\hat{\underline{D}}_{\mathrm{SSI}})$ represents the normalized gradient of the <u>detached</u> SSI depth, and $(D_x,D_y)=\operatorname{GradNet}(\hat{D}_{\mathrm{blur}})$ represents the gradient of blur depth. We implement this edge loss to the SSG outputs D_1 and SI depth D_2 . The detached $\underline{D}_{\mathrm{SSI}}$, while the depth distribution is inaccurate, has sharper edges, making it an excellent teacher. The prediction comparison with and without edge loss are shown in Fig. 7 (d-4) and (d-3), respectively.

C.3 Sky Loss for Anti-artifact

Our experiments reveal that (Fig. 7 (b-2)), although the edge loss significantly enhances the model's details, artifacts still appear outside object edges, particularly in the sky. This is because the sky is a texture-less region, causing self-supervised models to produce erroneous estimates. However, this typically does not affect performance, as during testing, the sky is either cropped (Eigen Crop) or its ground truth depth is invalid and excluded from evaluation. To address this issue, we introduce a sky loss:

$$L_{\text{skv}} = \eta_{\text{skv}} \cdot L_1(D, D_{\text{max}} \cdot \mathbf{1}_D, M_{\text{skv}}), \tag{19}$$

where D is the predicted depth, D_{\max} is the maximum depth value, $\mathbf{1}_D$ is a tensor of ones with the same shape as D, and M_{sky} is the sky mask derived from the semantic segmentation. η_{sky} is a weighting factor set to 0.1.

Note that the sky loss does not add extra details. As shown in Fig. 7 (b-2) and (b-3), the original details are already captured by the model; the sky loss merely sets the sky depth to infinity.

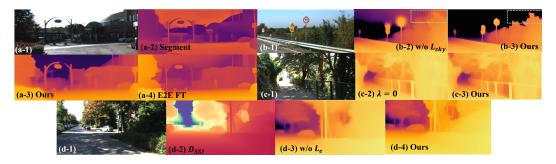


Figure 7: **Qualitative Ablation Study of Adaptive Loss.** Notably, while (a-2) demonstrates superior visual quality, it exhibits an entirely inaccurate depth distribution. (a-4) is the result of E2E FT, which can serve as a pseudo-label here.

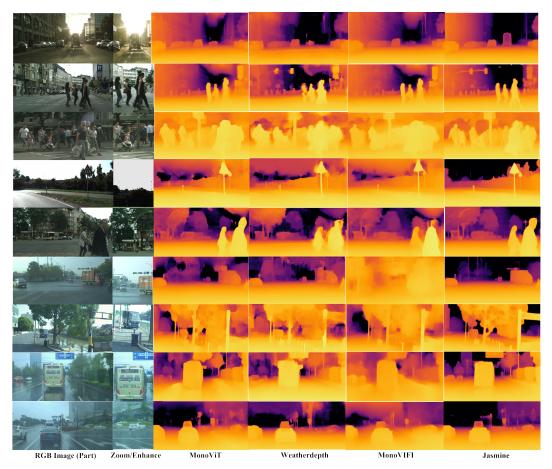


Figure 8: Qualitative results on zero-shot Scale-Invariant depth estimation.

C.4 Eliminating the Bottleneck of Teacher Loss

In this section, we elaborate on the details of the implementation of teacher loss. We use MonoViT as the teacher model. The model estimates disparity dp, and thus we obtain the depth $D_{\rm tc}$ through:

$$\frac{1}{D_{\mathrm{tc}}} = \mathrm{clip}\left(\frac{1}{D_{max}} + \left(\frac{1}{D_{min}} - \frac{1}{D_{max}}\right) \cdot dp,\,0,\,3\right),$$

where D_{min} and D_{max} are set to 0.1 and 100, respectively. We find that the depth range at range [0,3] can already describe all information within the maximum depth.

For the SSI depth supervision, we perform a normalization similar to Eq. 9 in paper:

$$Norm(D_{tc}) = 2 \cdot \left(\frac{D_{tc} - \min(D_{tc})}{\max(D_{tc}) - \min(D_{tc})} - 0.5 \right). \tag{20}$$

Furthermore, to avoid the performance ceiling imposed by the teacher model, we draw inspiration from D4RD[50], and employ an adaptive filtering mechanism:

$$M_{tc} = \left[\min_{t'} \ ph\left(\mathbf{I}, \mathbf{I}_{t' \to t}^{tc}\right) < \frac{\lambda}{\eta_{\text{step}}} \right],$$

where λ is a constant set to 1.5, $\mathbf{I}_{t' \to t}^{tc}$ is the warped target image using the teacher disparity D_{tc} , and $\eta_{\text{step}} = \max(1, 30 \cdot (\text{step}_{now}/\text{step}_{max}))$ is a dynamic factor that adjusts with training progress. This adaptive weight initially allows the model to converge across the entire depth map and subsequently filters out less accurate regions, mitigating the adverse effects of inaccurate pseudo-depth labels. Therefore, we have:

filter
$$(D_{tc}) = D_{tc} \cdot M_{tc}$$
,

In the supervision process, we introduce the BerHu loss L_B and get better results:

$$L_B(x,y) = \begin{cases} |x-y|, & \text{if } |x-y| \le c, \\ \frac{(x-y)^2 + c^2}{2c}, & \text{if } |x-y| > c, \end{cases}$$
 (21)

where $c = 0.2 \cdot \max(|x - y|)$ is a threshold that adapts to the error magnitude. This loss imposes a greater penalty on pixels with larger errors using an L_2 -like penalty, while retaining the robustness of L_1 loss for small errors.

Thus, The Eq. 13 in paper:

$$L_{tc} = (L_B \left(\text{norm} \left(D_{tc} \right), D_{\text{SSI}} \right) + L_B \left(D_{tc}, D_1 \right) \cdot \eta_{t1}$$

$$+ L_B \left(\text{filter} \left(D_{tc} \right), D_{SI} \right) \cdot \eta_{t2} \right) / \eta_{\text{step}},$$
(22)

is fully detailed in this part. The teacher loss not only stabilizes our model but also avoids limiting its performance potential.

The segmentation model mentioned above is Mask2Former[6] throughout. To avoid the misconception that the details stem from the segmentation network's output, we further expand Fig. 3 (in paper) with segment-based methods. In fact, to preserve these details, a naive approach is to employ semantic segmentation constraints[34]. However, as shown in Fig. 7 (a-2), using the semantic triplet loss from [34] not only disrupts the depth distribution but also introduces spurious edges, rendering it incompatible with SD's latent priors. Furthermore, the results in paper Table 1 are compared with a segmentation-based model Jaeon et al*, and our method achieves superior performance.

D Preliminaries of GRU

The Gated Recurrent Unit (GRU) is a type of recurrent neural network (RNN) that uses gating mechanisms to control the flow of information between the previous hidden state and the current input, making it effective for sequence modeling tasks. Recently, GRUs have been gradually used in depth estimation[45, 43]. A GRU cell updates its hidden state \mathbf{h}^{k+1} based on the previous hidden state \mathbf{h}^k and the current input \mathbf{x}^k . This update process is primarily managed by two gates: the **reset gate** (\mathbf{r}) and the **update gate** (\mathbf{z}). The reset gate determines how much of the past information (from the previous hidden state) to effectively "forget" or "reset" before computing a new candidate hidden state. The update gate then decides how much of this new candidate hidden state should be incorporated into the final hidden state, versus how much of the previous hidden state to carry over. The mathematical formulation for these operations is as follows:

$$\mathbf{z}^{k+1} = \sigma([\mathbf{h}^k, \mathbf{x}^k], W_z), \quad \mathbf{r}^{k+1} = \sigma([\mathbf{h}^k, \mathbf{x}^k], W_r),$$

$$\widehat{\mathbf{h}}^{k+1} = \tanh(Conv([\mathbf{r}^{k+1} \odot \mathbf{h}^k, \mathbf{x}^k], W_h)),$$

$$\mathbf{h}^{k+1} = (1 - \mathbf{z}^{k+1}) \odot \mathbf{h}^k + \mathbf{z}^{k+1} \odot \widehat{\mathbf{h}}^{k+1},$$
(23)

where k denotes iteration steps, σ is the sigmoid activation function (outputting values between 0 and 1, ideal for gating), and \odot indicates element-wise multiplication. The terms W_z, W_r, W_h represent the learnable parameters (typically weight matrices and biases) for the update gate, reset gate, and

candidate hidden state computation, respectively. The Conv notation suggests that convolutional layers are used for these transformations, as is common when applying GRUs to feature maps in computer vision tasks. In our paper, the refined hidden state \mathbf{h}^{k+1} predicts depth adjustment D_{δ} to update D_k , yielding D_{k+1} for subsequent iterations, as utilized in our Scale-Shift GRU (SSG) module (see Sec. 3.3).

${f E}$ **Addition Experiments Results**

E.1 Evaluation on KITTI Improved Benchmark

The standard self-supervised evaluation on the KITTI dataset is typically conducted using the raw LiDAR GT. However, due to the noisy nature of LiDAR data and known preprocessing issues¹, we also provide the eigen improved benchmark result. Following the practice adopted in Mono-ViFi [29], as shown in Table 5, this evaluation further confirms Jasmine's SoTA performance, where it consistently outperforms other leading methods.

Table 5: Quantitative results on the KITTI dataset using the improved GT [47]. The performance of SD-based methods is not fully reported in their original papers.

Method	AbsRel↓	SqRel↓	RMSE↓	RMSElog↓	$a_1 \uparrow$	$a_2\uparrow$	$a_3 \uparrow$
Marigold [25]	0.099	-	-	-	0.916	0.987	-
E2E-FT [33]	0.096	-	-	-	0.921	0.980	-
Lotus [21]	0.081	-	-	-	0.931	0.987	-
Jasmine*	0.064	0.294	2.982	0.097	0.957	0.994	0.998
MonoViT [83]	0.068	0.314	3.125	0.105	0.948	0.992	0.998
MonoViFi [29]	0.071	0.338	3.539	0.113	0.937	0.990	0.998
Jasmine	0.061	0.255	2.765	0.092	0.963	0.995	0.999

E.2 Comparison with Other Self-Supervised Settings

As mentioned in Sec. 2, our single-frame monocular approach is more challenged but practical compared to other self-supervised configurations. Compared to stereo-based methods, monocular methods face additional challenges with dynamic objects and pose estimation inaccuracy, but monocular methods can eliminate the need for synchronized binocular cameras and precise calibration. Similarly, single-frame models neglect temporal information during inference, while multi-frame methods leverage consecutive frames to construct cost volumes and even support iterative refinement at test time, yielding improved accuracy. However, the practical deployment of multi-frame methods remains constrained by the availability of multiple frames.

Despite these inherent disadvantages, as shown in Table 4, our method still outperforms the stateof-the-art approaches in both multi-frame and stereo-supervision domains across most metrics. This remarkable achievement, especially considering our more challenging problem setting, further demonstrates the substantial strength and generalizability of our approach.

E.3 Qualitative Comparisons

In Fig. 8, we further compare the performance of our Jasmine with other methods in multi scenes. The quantitative results obviously demonstrate that our method can produce much finer and more accurate depth predictions, particularly in complex regions with intricate structures, which sometimes cannot be reflected by the metrics.

E.4 Mix-batch Ratio Ablation Details

In the paper, Fig. 3 (g) illustrates the per-

Table 6: Ablation Studies on the mix-batch ratio. Ph refers to supervision using Eq. 5, while Latent refers to supervision using Eq. 4. The notation $+\lambda$ denotes the proportion of the KITTI dataset used (e.g., +0.3indicates a KITTI:Hypersim ratio of 3:7 in the MIR training data.)

ranning data.)					
(ID) Method	AbsRel	SqRel	RMSE	a_1	a_2
Ph+0	0.089	0.573	3.973	0.918	0.972
Ph+0.3	0.090	0.581	3.944	0.919	0.972
Ph+0.6	0.092	0.593	3.933	0.915	0.973
Ph+1	0.093	0.590	3.970	0.915	0.973
Latent+0	0.106	0.614	4.181	0.901	0.970
Latent+0.3	0.095	0.606	4.138	0.909	0.970
Latent+0.6	0.121	0.649	4.322	0.876	0.970
Latent+1	0.129	0.679	4.385	0.858	0.962

formance variation versus the mix-batch ratio under two supervision schemes. We further present

¹Discussed in MonoDepth2 repository: https://github.com/nianticlabs/monodepth2/issues/274

the complete results in Table 6. Note that although "Ph+0" offers better metrics, it predicts blurred results (7 (c-2)).

F Analysis of SD Prior Degradation via Self-Supervision

For clarity, we first revisit the core definition of disparity: when capturing two images of the same scene from different camera positions, the **same point** will appear at different pixel coordinates in each image. This difference is known as *disparity*. In fact, disparity and depth are inversely proportional and correspond one-to-one.

From this perspective, the loss function in Eq. 1 is designed to find, for each point in the target view I_t , the most **similar point** in the source view $I_{t'}$. From the coordinate difference between these points $I_{t'\to t}$, we obtain the depth supervision (Eq. 2). However, if the corresponding point in I_t is occluded in $I_{t'}$, the optimization process is forced to select the "least bad" alternative, resulting in an incorrect match and, consequently, erroneous depth estimation.

Taking Fig. 3 (a) as an example, the scene consists of a infinite background (depth= ∞), an orange rectangle (20m), and a light blue tree (10m). Here, the camera only shifts horizontally between the target and source views. For point q (tree), the correct disparity is 10 pixels (10m). For point p,r (rectangle), the correct disparity should be 5 pixels (20m).

Due to camera movement, the tree in the source view occludes the correct matching point of p. To minimize photometric loss, the algorithm searches for the most similar region nearby and once again finds the orange area at p', which is 10 pixels (10m).

This error causes the expected depth edge on the right side of point p to disappear (right side's depth are all 10m, reason same to p), resulting in a blurred boundary in the depth map. When such depth map is used as a supervisory signal to guide the SD model, it effectively introduces "noisy" data. This forces the SD model to learn and reproduce these incorrect and blurred boundaries, thereby undermining its strong prior knowledge of clear object boundaries.

G Evaluation Metrics

Similar to [15], we employ the following evaluation metrics in our experiments,

AbsRel: $\frac{1}{|M_{vl}|} \sum_{d \in M_{vl}} |d - d_{gt}| / d_{gt};$ SqRel: $\frac{1}{|M_{vl}|} \sum_{d \in M_{vl}} ||d - d_{gt}||^2 / d_{gt};$ RMSE: $\sqrt{\frac{1}{|M_{vl}|} \sum_{d \in M_{vl}} ||d - d_{gt}||^2};$

RMSElog: $\sqrt{\frac{1}{|M_{vl}|}\sum_{d\in M_{vl}}\left\|\log(d) - \log(d_{gt})\right\|^2}$;

 a_t : percentage of d such that $\max(\frac{d}{d_{gt}},\frac{d_{gt}}{d}) < 1.25^t$; where d_{gt} and d denote the GT and estimated pixel depth, M_{vl} is the valid mask set to $1e-3 < d_{gt} < 80$.

H Error Bar Analysis

As highlighted in Sec 3.4, directly training Jasmine can be unstable due to the SD's enormous size, joint training across modules, and indirect self-supervisory mechanisms. To further ensure stability, we also implement a module-wise freezing training strategy, which involves 3 key phases: In the beginning, we enable gradient updates for all network components. Subsequently, we freeze the SSG and Posenet modules to decouple depth-pose optimization while maintaining fixed parameters. After achieving convergence to a suboptimal solution, we reintroduce gradient updates to these

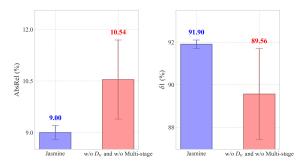


Figure 9: Error Bar Analysis on KITTI Eigen test split. We conduct this analysis through multiple training runs and observe the performance oscillations after 25k steps.

modules for final optimization. In the training procedure, the first training phase involved 15k steps,

while the second and third phases automatically transitioned, sharing an additional 10k steps for a total of 25k training steps. As illustrated in Fig. 9, we demonstrate that the pseudo-label supervision and module-wise freezing training are particularly crucial for steady training in complex, multi-module self-supervised systems.

I Limitation and Future Work

As noted in Sec. 2, the ubiquitously available videos suggest that the self-supervised methods possess significant data advantages and working potential. In this paper, Jasmine is trained on only tens of thousands of data samples and only on a driving dataset (KITTI), leaving room for further exploration in scaling up training data to other domains (industry, indoor, etc). We believe that if there really emerges a 'GPT' moment for 3D perception in the future, it will more likely involve self-supervised methods trained on videos rather than learning from annotated depth. Furthermore, we believe that the unsupervised Stable Diffusion fine-tuning paradigm proposed in this paper can be applied to other related fields, such as depth completion [65, 63, 66, 70, 71, 60], depth super-resolution [64, 54], Multi-view Stereo [74, 75, 72, 73], Stereo Matching [56, 58, 57, 53] and Language Aid Depth Estimation [78, 80, 79, 82].