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ABSTRACT

While Deep Reinforcement Learning (DRL) has shown promise for stock trad-
ing, its practical application is constrained by critical gaps that undermine perfor-
mance in real-world volatile markets, most notably during events like the 2020
COVID-19 market crash. Specifically, existing DRL methods fail to capitalize on
textual financial news (a key leading indicator of market sentiment), struggle to
model multi-scale temporal dynamics, and lack robustness to extreme volatility,
leaving them unable to adapt to sudden shifts in market fundamentals. To ad-
dress these limitations, we propose a volatility-adaptive, multimodal DRL frame-
work for stock trading integrating pre-trained Large Language Models (LLMs),
Transformers, and the Soft Actor-Critic (SAC) algorithm. The framework first
uses an LLM-driven module to extract sentiment and event features from finan-
cial news, maps price dynamics into the LLM’s semantic space via a multi-head
attention reprogramming layer, and fuses these modalities via cross-attention to
capture intrinsic news-price interdependencies. To enhance state representation,
a Transformer encoder models short/long-term news sentiment trends, price fluc-
tuations, and inter-stock correlations, and merges these heterogeneous features
into a compact, unified state via multi-head attention. Finally, we incorporate
gradient feedback from SAC’s critic network to the Transformer, enabling end-to-
end optimization of feature learning and trading policy. Empirical evaluations on
NASDAQ-100 data show our framework outperforms existing DRL methods in
multi-stock trading, while surpassing Transformer-based methods in single-stock
prediction, with ablations confirming core modules drive performance gains.

1 INTRODUCTION

In the stock market, the primary goal of financial trading is to profit from buying and selling finan-
cial assets at advantageous prices to increase asset value. This process also involves asset allocation
and risk management, which refers to the rational diversification of assets to reduce the risk in
highly dynamic market environments and ensure the relative stability and security of assets. While
Deep Reinforcement Learning (DRL) has driven notable advances in stock trading by integrating
deep learning (DL) and reinforcement learning (RL) (Jiang et al., 2017; Li et al., 2019; Liu et al.,
2018; 2021a). The former, including neural networks (LeCun et al., 1989; Vaswani, 2017; Graves &
Graves, 2012), with their strength in parsing high-dimensional data (e.g., price time series, technical
indicators), excel at identifying latent patterns in historical market information (Jiang et al., 2017;
Lien et al., 2023; Lucarelli & Borrotti, 2020; Morales & Zaragoza, 2012; Sahu et al., 2023); The
latter (Meng & Khushi, 2019; An et al., 2022), on the other hand, enable trading agents to itera-
tively learn optimal decision-making policies through continuous interaction with dynamic market
environments.

Yet, their synergy remains hamstrung by critical limitations that severely undermine real-world ef-
fectiveness, particularly in navigating complex and volatile market conditions, like the 2020 COVID-
19 market crash or the 2018 US-China trade friction. First, conventional DRL models, such as Deep
DPG (DDPG) (Lillicrap, 2015), Proximal Policy Optimization (PPO) (Park et al., 2024; Schulman
et al., 2017), Advantage Actor-Critic (A2C) and SAC (Haarnoja et al., 2018), can not fully utilize
multimodal data information. They rely almost exclusively on structured price sequences, over-
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looking the pivotal role of unstructured textual data (e.g., financial news, policy announcements)
in shaping market sentiment and expectations. Text often precedes tangible price reactions (Guo
et al., 2023; Trichilli & Boujelbène Abbes, 2023; Navarro et al., 2023; Benhamou et al., 2021).
For instance, during unforeseen events, public opinion dissemination can anticipate price shifts by
days or weeks. While Large Language Models (LLMs) tailored to finance, such as FinBERT (Liu
et al., 2021b; Huang et al., 2023; Zhao et al., 2021) and FinGPT (Liu et al., 2023) have demon-
strated promise in extracting sentiment and event-driven features from text, their integration into
DRL remains fragmented. Existing methods (e.g., (Ding et al., 2023)) fail to resolve the misalign-
ment between text semantic features and price-derived representations, limiting the collaborative
potential of multimodal data (Cao et al., 2025).

Second, most DRL systems struggle to reconcile multi-scale temporal dynamics simultaneously.
Market behavior exhibits nested patterns, from short-term daily volatility to long-term weekly/-
monthly trends, yet traditional DRL approaches struggle to handle these scales (Yang et al., 2020).
Some state-of-the-art approaches that integrate Transformers, which are well-suited for time-series
modeling (Vaswani, 2017)) into DRL fall short in the fusion of market temporal dynamics informa-
tion. For instance, , while TACR (Lee & Moon, 2023), based on Decision Transformers (Chen et al.,
2021) and SAC, focuses on long-term asset allocation dependencies without addressing multi-scale
feature fusion. This gap leaves DRL agents unable to fully contextualize price movements, leading
to suboptimal decision-making.

Third, existing DRL algorithms often fail to adjust policies dynamically during systemic shocks.
For example, during market crashes, these models may suffer from catastrophic losses due to rigid
feature representations and disjointed optimization of feature learning and policy execution. While
frameworks like FinRL (Li et al., 2021; Liu et al., 2021a) have standardized DRL for finance and
proposed adaptive variants (e.g., adaptive DDPG (Li et al., 2019)), they still lack mechanisms to
unify multimodal semantics features and volatility awareness into a coherent decision-making pro-
cess. StockFormer (Gao et al., 2023) uses Transformer branches to capture long/short-term price
trends and inter-stock correlations but lacks explicit modeling of volatility dynamics, thereby lead-
ing to limited performance in real-world volatile markets.

To address these limitations, this paper proposes a volatility-adaptive multimodal DRL framework
that integrates pre-trained LLMs, Transformers, and SAC. The key contributions are:

• A multimodal LLM-driven module that bridges text and price data: We use pre-trained
LLMs (e.g., BERT, GPT-2 Radford et al. (2019)) to extract fine-grained sentiment and event
features from financial news, and a multi-head attention reprogramming layer (inspired by
Time-LLM (Jin et al., 2023))to align price time-series (OCHLV + technical indicators) with
the LLM’s semantic space, enabling seamless cross-modal fusion via cross-attention

• A Transformer-based feature extractor for multi-scale dynamics: This module models
short/long-term news sentiment trends, price fluctuations, and inter-stock correlations, fus-
ing these into a compact state representation via multi-head attention. Critically, we enable
gradient feedback from SAC’s critic to the Transformer, achieving end-to-end optimization
of feature learning and trading policy.

• Empirical validation of superiority in real-world datasets, such as NASDAQ-100 data, our
framework outperforms state-of-the-art DRL methods (e.g., SAC, PPO, StockFormer) in
multi-stock trading and surpasses Transformer-based and LLM-only models (e.g., Auto-
former Wu et al. (2021), GPT-2) in single-stock price prediction. Ablation studies confirm
that unifying multimodal semantics and multi-scale temporal dynamics is the core driver
of enhanced market volatility adaptability.

2 METHODOLOGY

Addressed the limitations of existing DRL approaches in stock trading, our method integrates pre-
trained LLMs and Transformers into a SAC-based multimodal DRL framework (Figure 1). In the
observation extraction module, LLMs conduct fine-grained semantic parsing and sentiment quan-
tification on financial news, while a multi-head attention reprogramming layer maps OCHLV data
(Open, Close, High, Low and Volume) and technical indicators into an LLM-compatible space for
seamless multimodal fusion. The state generation module employs a Transformer-based predictive

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: The proposed framework integrating pre-trained LLMs, Transformers into SAC-based
DRL for stock trading, with observation extraction, state generation and critic gradient feedback.

model to capture short/long-term news trends, price dynamics, and inter-stock correlations, fusing
them via multi-head attention into a unified state. This state is fed into SAC for adaptive trading,
where critic gradients propagate back to enhance joint training of predictive features encoding and
policy learning, strengthening the agent’s ability to leverage multimodal insights for robust decision-
making.

2.1 MULTIMODAL LLM

To enable cross-modal alignment (for observation extraction) and enrich the state space, we design
a multimodal LLM designed to integrate financial news and price data, perform predictive tasks
and capture latent market signals. It learns latent representations by fusing price time-series (P =
{popen, pclose, ..., pvolume}) and news (pnews),and the model minimizes supervised prediction loss by
learning latent representations hnews from multimodal data P , enabling it to accurately perceive
market conditions. Specifically, using a sliding window of size D on the multimodal sequence data
Pn,t−z:t, we predict the stock’s closing price at the next time point pclose

n,t+1, formulating the following
objective:

min
θ

E[L(f(Pn,t−z:t), p
close
n,t+1)] (1)

where f is the time-series LLM model parameterized by θ, andL denotes the loss function. Through
this process, the model autonomously learns potential market trends and events driven by multi-
modal information, enriching downstream analysis and decision-making, with three core compo-
nents including Price Encoder, News Encoder and Fusion Module, as depicted in Figure 2.

a) Price Encoder: To convert price time-series into LLM-compatible tokens, we first preprocess
OCHLV data via standardization (to normalize scales) and and partition the sequence into fixed-
length patches (e.g., chunks of k consecutive time steps). Each patch is embedded into a dense
vector via a linear projection, generating chunked patch embeddings Xprice that explicitly preserve
temporal structure for capturing sequential price dynamics.

b) News Encoder: The News Encoder leverages pre-trained LLMs to process financial text, en-
coding news into contextual embeddings (hnews) capturing semantic nuances and market sentiment.
To align these embeddings with stock prediction tasks (e.g., closing price forecasting), we employ
task-specific prompt engineering (Figure 3a) and explicitly specify input features (historical prices,
lag terms, news content) and guide the LLM to prioritize market-relevant patterns,ensuring semantic
representations align with downstream trading objectives.

c) Reprogramming layer: As shown in Figure 3b, the reprogramming layer aligns price patch em-
beddings Xprice with the LLM’s semantic space, which is critical for enabling effective fusion of
price and news tokens. By remapping time-series inputs to an LLM-compatible space using text
prototypes, this layer supports universal time-series modeling without modifying the LLM back-
bone. Using a token embedding matrixE ∈ RV×D (where V is vocabulary size and D is hidden
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dimension), multi-head attention projects price features into the LLM’s representation space:

Qh = XpriceW
Q
h

Kh = XpriceW
K
h

Vh = XpriceW
V
h

(2)

This projection yields price embeddings Zprice compatible with news-derived tokens:

Zprice = Concat(Z1, . . . , Zh)W
O (3)

Zh = SoftMax
(
QhK

⊤
h√

d

)
Vh (4)

Figure 2: Multimodal LLM framework: Price Encoder (lower left), News Encoder (lower right),
and Fusion Module (upper) for cross-modal alignment.

d) Multimodal Fusion The multimodal fusion module leverages cross-attention mechanisms to
enable token-level interaction between aligned price embeddings Zprice (from the Price Encoder)and
news embeddings Znews (from the News Encoder) by enabling token-level interaction, which is
critical to capture intrinsic news-price interdependencies:

Zprice−news = Attention(Qnews,Kprice, Vprice)

Znews−price = Attention(Qpirc,Knews, Vnews)
(5)

where the query (Q), key (K), and value (V) matrices are defined as:

• Qnews = ZnewsWQ, Kpirce = ZpriceWK , Vprice = ZpircWV

• Qprice = ZpriceW
′
Q, Knews = ZnewsW

′
K , Vnews = ZnewsW

′
V

ZF = LayerNorm(Zprice-news + Znews-price) (6)

These bidirectional representations are then normalized to stabilize training and consolidate into a
unified token sequence ZF . It is fed into the LLM, which leverages both price patterns and news
semantics to output news-aware features Onews for downstream state encoding in the Transformer-
based feature extraction module.
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(a) Prompt example for financial tasks (b) Reprogramming layer for price-LLM
alignment

Figure 3: Key components of multimodal fusion.

2.2 TRANSFORMER-BASED FEATURE EXTRACTION

To address the limitation of traditional DRL in modeling multi-scale temporal dynamics and inter-
stock dependencies, we design a Transformer-based feature extraction module to capture three key
types of latent market signals: news trends, stock price fluctuations, and inter-stock correlation
structures, specifically short/long-term news sentiment (snews

short/long), short/long-term price trends

(spriceshort/long), and stock correlations (srelat). By leveraging the Transformer’s self-attention mech-
anism, this module explicitly models the sequential dependencies in news and price data and the
relational patterns between stocks, laying the foundation for robust multi-scale feature fusion and
downstream policy learning.

2.3 MULTISCALE FUSION

Following transformer-based feature extraction, we first fuse the news textual spaces and price
spaces across distinct temporal horizons, then integrate the price space with its associated corre-
lation space, and finally consolidate these fused representations into a unified, comprehensive state
space, resolving the misalignment between single-scale features and complex market dynamics:

snews
t = MH-Attn(snews

t,long, s
news
t,short, s

news
t,short) + snews

t,long

sprice
t = MH-Attn(sprice

t,long, s
price
t,short, s

price
t,short) + sprice

t,long

shybrid
t = MH-Attn(sprice

t , srelat
t , srelat

t ) + sprice
t

(7)

St = Concat(shybrid
t , snews

t , shold
t ) (8)

2.4 SENTIMENT-AWARE ADAPTIVE TRADING WITH SAC

We adopt the SAC algorithm for adaptive trading in St with a key innovation: In addition to estimat-
ing Q-values, the critic network propagates the gradients of state values back to the stock relation
prediction module (as shown by the dashed line in 1. This enables joint training of both the predictive
encoding and policy learning stages, where the critic’s evaluation of state values facilitates further
uncovering of correlations between trading assets from noisy, high-dimensional observations. The
soft Q-function loss is:

J (Q) = E
[(

Q(st, at)− (Rt + γ(Q̂τ − λ log π))
)2

/2

]
(9)
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3 EXPERIMENTS

3.1 DATASET DESCRIPTIONS

To avoid information leakage, all datasets strictly preserve temporal ordering, with training data
drawn from earlier periods than their corresponding evaluation phases. The stock price data, is
sourced from Yahoo Finance (refer to Supplementary Materials B.1). News data comes from the
Hugging Face dataset (refer to Supplementary Materials B.1), covering news texts of Nasdaq 100
components. Due to significant missing news data, 10 stocks with complete news coverage between
January 4, 2019 and December 30, 2022 were selected: ADBE, ADSK, ALGN, AMAT, AMD,
AMGN, BIIB, CDNS, CHTR, and CMCSA.

All numerical features were normalized to [0, 1] using min-max scaling for model stability and
feature consistency. Missing news texts were filled with ”null” for subsequent identification and
filtering; extra spaces, tabs, and line breaks were removed to enhance text standardization and pro-
cessing efficiency.Additional data-related information is provided in the appendix.

3.2 IMPLEMENTATION DETAILS

Experiments were conducted on an Ubuntu 20.04 server equipped with an NVIDIA RTX 4090D
GPU, with model development and training implemented using Python 3.8 and PyTorch 2.0.0.

For temporal multimodal LLM feature extraction, the framework processes 20-day stock price/vol-
ume time-series data combined with news headlines for multimodal fusion. It utilizes BERT/GPT-2
with a hidden dimension of 768, a maximum prompt length of 200, a dropout rate of 0.2 during
fusion, and GeLU as the activation function. The training strategy employs a batch size of 8 over
50 epochs, with the Adam optimizer paired with OneCycleLR (maximum learning rate = 0.001)
and early stopping (training terminates if no significant validation improvement is observed for 10
consecutive epochs). For task adaptation, the trained model is used in the inference phase to predict
stock prices; for multi-stock trading tasks, it outputs 16-dimensional news feature vectors for the
trading module.

The process employs both Transformer and SAC. The Transformer encoder uses 16-dimensional
encoders/decoders for LLM feature input and 18 dimensions in correlation learning scenarios (10
stocks + 8 technical indicators), with modules trained for long- and short-term trend prediction and
correlation feature inference. The SAC observation space includes covariance matrices, technical
indicators (e.g., MACD, BOLL), and long- and short-term news/price indicators, with these features
fused to inform trading decisions. Key parameters include a prediction sequence length of 20, a
63-day lookback period for covariance calculation, a SAC action space of 10 (corresponding to 10
stocks), and a 257-dimensional observation space after multi-head attention fusion.

3.3 COMPARATIVE METHODS AND EVALUATION METRICS

3.3.1 MULTI-STOCK TRADING TASK

The buy-and-hold strategy based on the NASDAQ 100 Index serves as the benchmark. Additionally,
8 state-of-the-art stock trading approaches are included for comparison, comprising classic DRL
algorithms, such as SAC, DDPG, TD3, A2C, and PPO, which are implemented using the FinRL
framework (Li et al., 2021; Liu et al., 2021a), As comparative DRL baselines, the Ensemble Strategy
(Yang et al., 2020), the Transformer-based TACR model (Lee & Moon, 2023), and the StockFormer
model (Gao et al., 2023) are also included in this experiments.

When evaluating trading performance, five core indicators are adopted: Cumulative Return(CR),
Annualized Return(AR), Sharpe Ratio(SR), Annualized Volatility (AV) and Maximum DrawDown
(MDD). AV measures the degree of fluctuation in investment returns, and MDD reflects the max-
imum possible loss during the investment process. These indicators comprehensively measure the
performance of the strategy.
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3.3.2 STOCK PRICE PREDICTION TASK

To validate the performance gains from our proposed prompt engineering and reprogramming layer
in stock price prediction, we select three representative baselines for comparison: Autoformer (time-
series-focused), GPT-2, and BERT (LLM-focused), all lacking our multimodal alignment and task-
specific optimizations. Autoformer (Wu et al., 2021) uses self-attention to analyze stock price time-
series, capture trends/periodicity, and predict price trends. GPT-2 (Radford et al., 2019) is a large
language model that mines market sentiment from text via text understanding. BERT (Devlin et al.,
2019) adopts a bidirectional Transformer encoder to capture text context, learning text features via
pre-training/finetuning for stock price prediction. In this experiment, they process the same news
for prediction comparison. Prediction performance is evaluated using Mean Squared Error (MSE)
and Mean Absolute Error (MAE) (see B.2 for details),which quantify prediction error for rigorous
comparison.

3.4 EXPERIMENTAL RESULTS AND ANALYSIS

3.4.1 MULTI-STOCK TRADING COMPARISON EXPERIMENT

To verify the effectiveness of the proposed temporal multimodal LLM stock trading strategy, experi-
ments were conducted on 10 Nasdaq 100 component stocks with an initial capital of $100,000 (data
in Table 1 and Figure 4 are based on this amount).

As shown in the multi-stock trading strategy comparison results in Table 1, during the period from
December 2021 to December 2022, the temporal multimodal intelligent trading algorithms based on
LLM (BERT/GPT-2) and Transformer demonstrated significant advantages, specifically as follows:
Performance of Return Generation: Our proposed methods demonstrate standout performance

Method CR ↑ AR ↑ SR ↑ AV ↓ MDD ↓
Buy-and-HoldFama & French (1993) -0.315 -0.297 -0.944 0.320 0.355
A2C(Liu et al., 2021a) -0.349 -0.329 -1.088 0.321 0.421
PPO(Liu et al., 2021a) -0.336 -0.316 -0.632 0.447 0.445
SAC(Liu et al., 2021a) -0.505 -0.480 -1.610 0.365 0.550
TD3(Liu et al., 2021a) -0.438 -0.415 -1.040 0.428 0.513
DDPG(Liu et al., 2021a) -0.116 -0.108 -0.086 0.402 0.296
Ensemble Strategy(Yang et al., 2020) -0.240 -0.225 -0.398 0.426 0.443
TACR(Lee & Moon, 2023) 0.026 0.024 0.261 0.456 0.326
StockFormer(Gao et al., 2023) 0.018 0.017 0.225 0.393 0.270
Ours(GPT2) 0.169 0.156 0.541 0.408 0.227
Ours(BERT) 0.191 0.164 0.544 0.440 0.244

Table 1: Performance comparisons of multi-stock trading strategies (Dec 2021 - Dec 2022)

across return generation, volatility adaptation, and risk-adjusted returns, critical for volatile markets,
with Figure 4 validating these advantages dynamically: Among the proposed methods, our BERT-
based algorithm achieved a cumulative return of 0.191 with an annualized return of 0.164; our
GPT-2-based algorithm also obtained a positive return of 0.169 with an annualized return of 0.156.
In contrast, the buy-and-hold strategy showed a significant negative return, with cumulative return at
0.315 and annualized return at -0.297. Traditional reinforcement learning methods generally failed
to achieve positive returns. The Transformer-based StockFormer achieved a small positive return of
0.018, with annualized return at 0.017, but still lagged behind the proposed methods. This confirms
our framework’s superiority in generating returns by fusing news sentiment and price dynamics.

Performance of Volatility Adaptation: We evaluate volatility resilience via AV and MDD. Our
BERT-based algorithm achieves an AV of 0.440 and a MDD of 0.244; Our GPT-2-based algorithm
had an AV of 0.408 and a MDD of 0.227. This highlights our framework’s ability to balance fluctu-
ation control and loss mitigation in volatile markets.

Performance of Risk-adjusted return indicators: The SR (excess return per unit risk) further
validates our advantage. Ours (BERT) and Ours (GPT-2) achieve 0.544 and 0.541, respectively,
far exceeding all baselines. StockFormer’s SR of 0.225 represents only 37% of the BERT-based
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Figure 4: The cumulative returns of different trading strategies in the NASDAQ 100 market

method’s result, highlighting the superior performance of the proposed approaches in terms of risk-
adjusted returns.

Figure 4 shows the dynamic process of the daily cumulative returns of each algorithm during the
backtest period, further validating the above conclusions. During periods of severe market fluctua-
tions, the buy-and-hold strategy on the Nasdaq 100 index fell by 31.5%; DRL methods experienced
systemic failure, with the SAC strategy suffering a loss of 50.5% during the same period, exposing
the vulnerability of RL methods to black swan events. Although StockFormer achieved a positive
return of 1.8%, its overall performance was still inferior to that of the proposed methods. Through ef-
fective extraction of text information and risk diversification, the proposed methods based on GPT-2
and BERT achieved high positive returns, capable of demonstrating significant volatility resistance,
return sustainability, and strategy stability.

3.5 SINGLE-STOCK PREDICTION COMPARISON EXPERIMENT

The single-stock prediction comparison experiment is designed to evaluate the efficacy of the pro-
posed temporal multimodal LLM module in predicting individual stock performance. The study
focuses on five constituent stocks of the NASDAQ: ADSK, ALGN, AMD, CHTR, and CMCSA.

The comparative analysis incorporates the following benchmark methods: the time-series prediction
model Autoformer, as well as the pre-trained models BERT and GPT-2. As illustrated in Table

Table 2: The comparison of single-stock prediction experimental results

Method ADSK ALGN AMD CHTR CMCSA
MSE↓MAE↓MSE↓MAE↓MSE↓MAE↓MSE↓MAE↓MSE↓MAE↓

Autoformer(Wu et al., 2021) 0.46 0.53 1.69 1.04 9.66 3.02 5.95 2.26 2.43 1.26
GPT-2(Radford et al., 2019) 0.64 0.74 0.67 0.76 0.77 0.71 3.07 1.61 1.03 0.82
BERT(Devlin et al., 2019) 0.31 0.49 0.71 0.78 1.22 0.97 0.69 0.70 1.22 0.91

Ours(GPT-2) 0.29 0.47 0.39 0.57 0.33 0.48 2.49 1.42 0.75 0.73
Ours(BERT) 0.26 0.45 0.58 0.71 0.79 0.72 0.54 0.62 1.12 0.87

4, Ours methods (GPT-2 and BERT) exhibit superior performance in forecasting multiple stocks.
Specifically, for ADSK and CHTR, the Ours (BERT) model achieves lower prediction errors than
alternative methods, thereby demonstrating enhanced accuracy; for ALGN, AMD, and CMCSA, the
Ours (GPT-2) model delivers more precise predictions.
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3.6 ABLATION EXPERIMENTS

This series of ablation experiments selects BERT as the base model and is conducted on multi-stock
trading tasks and stock prediction tasks. Specifically, it focuses on examining the effectiveness of
each module and the feature fusion mechanisms therein in trading tasks, as well as the influence of
the sophistication of LLMs prompt engineering and reprogramming layer on prediction results.

3.6.1 ABLATION STUDY ON TRADING MODULES

As demonstrated in Table 3, we assess the individual and combined impacts of four core modules:
News prediction module, Price prediction module, Correlation inference module and the critical role
of the attention-based cross-modal fusion mechanism.

Table 3: The ablation study of core modules

News Prediction
Module

Price Prediction
Module

Correlation
Inference Module

Feature Fusion
Mechanism

CR SR

✓ ✓ ✓ 0.018 0.225
✓ ✓ ✓ 0.147 0.483
✓ ✓ ✓ 0.185 0.582
✓ ✓ ✓ 0.167 0.530
✓ ✓ ✓ ✓ 0.191 0.608

The complete model exhibits superior performance: it achieves 3.2% higher cumulative returns than
the best sub-module combination, which integrates news and price data; a 4.5% improvement in
the Sharpe Ratio; and a 10.6-fold return enhancement over the baseline that combines price and
correlation data, with returns increasing from 0.018 to 0.191.

These results validate that the news prediction module effectively synthesizes multi-source informa-
tion to enhance market trend analysis and trading decisions. The ablation experiment also reveals a
significant performance degradation when the attention mechanism is removed: cumulative returns
decrease by 12.6%, falling from 0.191 to 0.167, while the Sharpe Ratio drops by 12.8%, declining
from 0.608 to 0.530.

Additional ablation study and supplementary statistical tests are discussed in Supplementary Ma-
terials (refer to 7). We firstly evaluate the contribution of each component to prediction perfor-
mance(e.g., LLMs and the reprogramming layer); We also provide the details of the statistically
significant difference between the proposed approach and random strategies.

4 CONCLUSION

This paper introduces a multimodal DRL framework that integrates LLMs and Transformers to ad-
dress key limitations in existing approaches: the underutilization of multimodal data, misalignment
between textual information and price movements, and insufficient modeling of volatility and multi-
scale market dynamics. A multimodal LLM module is employed to fuse news and price data through
prompt engineering and reprogramming layers. Additionally, a Transformer-based model is devel-
oped to extract and combine features, which are jointly trained with a SAC algorithm to strengthen
the synergy between feature representation and policy learning.

Experimental results show that the proposed method outperforms benchmark models across key
performance metrics, including the SR and MDD, in both multi-stock trading and single-stock pre-
diction tasks. Ablation studies confirm the contribution of each component within the trading and
prediction modules, as well as the performance improvement attributable to the reprogramming
layer. Statistical tests further demonstrate a significant difference between the proposed strategy and
random strategies, underscoring the robustness of our approach.

In summary, this framework advances the integration of multimodal data and strategy optimization,
offering valuable insights for stock trading research and practical support for investors in volatile
markets. A promising future direction involves exploring multi-agent collaboration and specializa-
tion to improve operational efficiency while mitigating the effects of LLM hallucinations.

9
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5 ETHICS STATEMENT

This study develops a multimodal deep reinforcement learning framework for the financial domain,
with adherence to ethical principles detailed as follows:

Data Ethics All datasets employed are publicly accessible resources. Their usage strictly complies
with the terms of service set forth by the data providers. No sensitive information is included in
the datasets; missing news data is filled with ”null” solely to ensure the smooth progression of
experiments, which is in line with relevant data privacy guidelines.

Research Integrity To avoid information leakage, the dataset is split into training and test sets,
each belonging to distinct time periods. The model architecture, hyperparameters, and computing
infrastructure have all been fully disclosed. Experimental results are presented objectively in this
study, with clear distinction from the limitations of the framework, and no exaggerated claims are
made.

Market Impact This framework is intended exclusively for academic research and shall not be
used for live commercial trading. Guided by the core principle of responsible innovation, this study
aims to advance knowledge at the intersection of artificial intelligence and finance while minimizing
potential risks to markets and society.

6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this study’s findings, all critical resources and details have been
systematically organized and documented in the main text, appendix, and supplementary materials.
For the framework proposed in this study, the complete implementation code, pre-trained models,
and evaluation scripts will be made publicly available upon the paper’s acceptance. This codebase
includes full training and testing scripts for multimodal LLM analysis, Transformer inference, and
SAC-based trading implementation, as well as all experimental configurations utilized in this re-
search—facilitating researchers’ convenient access to replicate the model training and prediction
processes.

Regarding the datasets used in the experiments, the core dataset division principles and key statistical
characteristics are outlined in the main text and supplementary materials. The supplementary mate-
rials further provide detailed descriptions of data sources and links to open-source dataset reposito-
ries, enabling the replication of data acquisition and preparation workflows. For model parameters
and experimental settings, Section 3.2 of the main text specifies the key hyperparameters of the
experiments, while the appendix supplements additional critical configuration details—eliminating
ambiguities in experimental setup.

Additionally, the ablation studies and statistical tests conducted to validate the effectiveness of model
components and the significance of results are thoroughly documented in the experimental section
and appendix. These materials include complete raw result tables and statistical test metrics, al-
lowing readers to verify the robustness of this study’s conclusions. By cross-referencing the afore-
mentioned resources, researchers can fully replicate the entire experimental workflow—from data
preparation and model training to result validation—ensuring that the performance metrics and core
findings of this study are independently verifiable.
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A USE OF LLMS

LLMs were employed in a limited capacity during the writing of this manuscript, solely to assist
with textual refinement for logical coherence, terminological standardization, and overall clarity.
All core intellectual content, including experiments, model designs, and results, was produced by
the authors. This use aligns with academic integrity principles, and the authors assume complete
responsibility for the work’s authenticity.

B SUPPLEMENTARY MATERIALS

B.1 CODE, DATASETS AND IMPLEMENTATIONS

Code To ensure the reproducibility of our results, the code supporting this study will be made
publicly available on GitHub shortly after the paper is accepted.

Dataset This paper utilizes multiple publicly available datasets. Below is an explanation of the
usage and sources of each dataset. We evaluate our framework on stocks from the NASDAQ-100
index and a publicly available stock news dataset:

STOCKS: ADBE, ADSK, ALGN3, AMAT, AMD, AMGN, BIIB, CDNS, CHTR, CMCSA nas-
daq news: 20,580 images of 120 dog breeds

Both datasets are publicly accessible via their official sources. The stock price data can be accessed
on Yahoo Finance.

https://finance.yahoo.com

while the news data comes from an open-source dataset

https://huggingface.co/datasets/benstaf/nasdaq news

Data division for training and testing

Table 4: Dataset Division of the Time-Series LLM Prediction Module

Dataset Type Start Date End Date Trading Days

Training Set 2019-01-04 2021-12-30 735
Validation Set 2020-12-30 2022-01-03 236
Testing Set 2021-12-30 2022-12-30 234

For pre-training the temporal multimodal LLM prediction module, the dataset was split into training,
validation, and test sets to enable the model to learn data patterns and verify generalization. As
shown in Table 4, data was split strictly by time to avoid future information leakage: 735 trading
days for the training set (covering various market cycles), 236 days for the validation set, and 234
days for the test set.

Given the limited sample size, where all stock market-related information is critical for model train-
ing, the pre-trained data is split into training and test sets to maximize utilization of such information.
As detailed in Table 5. We also attempted to conduct experimental research on Chinese stock market
data; however, there is currently a lack of standardized Chinese news text data for the stock market.
This presents a promising avenue for future exploration.

Table 5: Dataset Division of the Trading Module

Dataset Type Start Date End Date Trading Days

Training Set 2019-05-03 2021-11-04 643
Testing Set 2021-11-04 2022-12-30 290

Implementation
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Our implementation is built on the FinRL library, which provides a comprehensive framework for
reinforcement learning strategies in stock trading

https://github.com/AI4Finance-Foundation/FinRL

including data preprocessing, pre-trained models, and trading strategy optimization.

Our multimodal fusion model based on LLM, which is built upon the implementation of the paper -
TimeLLM(Jin et al., 2023)

https://github.com/KimMeen/Time-LLM

We primarily made adjustments for stock price sequences. Specifically, we map the massive to-
ken vocabulary of the native large model to a 1000 - dimensional space using input financial news
data, thus focusing on the financial domain and achieving alignment with price features through
reprogramming.

Our codebase extends the reinforcement learning state by analyzing news data with multimodal large
models and predicting stock prices using Transformer, thereby achieving trading strategy optimiza-
tion and reinforcement learning performance improvement.

B.2 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

Table 6 summarizes the key implementation details and hyperparameters employed in all experi-
ments. Further details and configuration files are available in the supplementary repository.

Table 6: Summary of key implementation details and hyper-parameters for the stock prediction and
trading model.

Component Setting / Value
Framework PyTorch
GPU NVIDIA RTX 4090D
Language Models BERT, GPT-2
llm dim 768
Prompt Max Length 200
dropout (for fusion) 0.2
Activation Function GeLU
Batch Size (Training) 8
Training Epochs 50
Optimizer Adam
Learning Rate Scheduler OneCycleLR, max learning rate=0.001
Early Stopping Criterion 10 consecutive epochs without performance

gain on validation set
Transformer Prediction Encoding (LLM features)
Encoder/Decoder Input dim=16
Transformer Prediction Encoding (correlation feature)
Number of Stocks 10
Technical Indicator dim=8
Encoder/Decoder Input dim=18
Transformer Prediction Module
Prediction Sequence Length=20
look back 63
SAC Module
Action Space 10
Observation Space
- Covariance matrix dim=1
- Technical indicators dim=8
- Short-long term news & price prediction
encoding

dim=4×128

- Position state dim=1
Comprehensive Feature Space (after fusion) dim=257
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The formulas used to evaluate the prediction performance are MSE and MAE, defined as follows:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (10)

MAE =
1

N

N∑
i=1

|yi − ŷi| (11)

C ABLATION STUDY

This section is a supplement to the ablation study. Using CHTR stock data, Table 7 evaluates the
impact of individual prompt components and the reprogramming layer in the temporal multimodal
LLM:

Table 7: The ablation study of multimodel LLM components

Method MSE ↓ MAE ↓
Without Dataset Description 1.103 0.884

Without Task Description 1.087 0.870
Without News Information Description 1.053 0.856

Without Reprogramming Layer 1.100 0.875
Ours 0.191 0.608

Key findings include the following: Removing the dataset description leads to a 4.77-fold increase in
MSE, which highlights its role in initializing domain knowledge; removing the task description re-
sults in a 4.69-fold deterioration in MSE, emphasizing the necessity of explicit objective alignment;
excluding the news context causes a 40.8% increase in MAE, confirming its value in capturing
trends; and ablating the reprogramming layer brings about a 4.75-fold deterioration in MSE, with
the metric rising from 0.191 to 1.100, thus proving its effectiveness in noise suppression.

D STATISTIC TEST

Figure 5: Daily Cumulative Returns Distribution of OURS(BERT) vs Random Strategies and Cu-
mulative Return Time Series from 2021-12-02 to 2022-12-29 (OURS(BERT) vs Random Strategies)

We also performed a significance test to statistically compare the cumulative return sequence from
the experiment with the return sequence generated by random trading. This comparison was con-
ducted to verify whether the distribution of experimental outcomes significantly differs from that of
a random strategy.

As shown in Figure 5 a, it presents the probability density distributions of cumulative returns for the
random strategy and the framework in this study. With an average cumulative return rate of 0.1778,
the performance of this study is significantly superior to the random strategy, whose average cumu-
lative return rate stands at -0.2929. Considering that the p value of the Kolmogorov - Smirnov test
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is 0.0, the following null hypothesis is rejected at a significance level of α = 0.01: ”The distribution
of our framework is the same as that of random trading strategies”.

Figure 5 b offers a straightforward comparison of the cumulative return rate of this study versus the
average return rate of the random strategy. Beyond the initial short period where their performance
is nearly indistinguishable, our experimental framework maintains stable returns afterward and even
demonstrates considerable profitability in bear market scenarios.

E ALGORITHMIC DETAILS

Algorithm 1, and Algorithm 2 provide pseudocodes for state space expansion through feature fusion,
respectively, and stock trend generation using multimodal large models .

Algorithm 1 Multimodal DRL Trading Algorithm

Require: Observation Space: Onews, Oprice, Orela, shold, Market Volatility σt

Ensure: State Space S with uncertainty metric ϵ
1: I. LLM-Guided Feature Preprocessing
2: Oprice

short ← ExtractWindow(Oprice, 60)

3: Oprice
long ← ExtractWindow(Oprice, 60)

4: II. Adaptive Prediction Module
5: Price Encoder:
6: encshort ← TransformerEncoder(Oprice

short, attn span = 1)

7: enclong ← TransformerEncoder(Oprice
long , attn span = 5)

8: News Encoder:
9: encnewsshort ← TransformerEncoder(Onews

short , attn span = 1)
10: encnewslong ← TransformerEncoder(Onews

long , attn span = 5)
11: Correlation Encoder:
12: srelat ← SparseTransformer(Orela, k = 5)
13: III. Dynamic Feature Fusion
14: sprice ← MHA(enclong, encshort, encshort) + enclong
15: snews ← MHA(encnewslong, encnewsshort, encnewsshort) + encnewslong
16: shybrid ← MHA(sprice, srelat, srelat) + sprice
17: IV. State Space Construction
18: S = Concat(shybrid, shold, snews),
19: return S
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Algorithm 2 Stock Trend Prediction via Multimodal Fusion Based on LLMs

Require: Raw time-series D = {ot, ct, ht, lt, vt} (t = 1, . . . , T ), Text news, LLMs BERT/GPT-2,
LLM word embedding matrix E ∈ RV×D

Ensure: Multimodal latent representation Zfusion (for downstream Transformer/SAC)
1: 1. Price Preprocessing and Multiscale Embedding
2: Normalize D to D̂ using min-max scaling
3: Define short/long windows: Lshort = 1, Llong = 5
4: Nshort = ⌊T/Lshort⌋, Nlong = ⌊T/Llong⌋
5: Split D̂ into short/long patches:
6: Pshort = {ps

1, . . . , p
s
Nshort
}, ps

i = {D̂(i−1)Lshort+1, . . . , D̂iLshort}
7: Plong = {pl

1, . . . , p
l
Nlong
}, pl

i = {D̂(i−1)Llong+1, . . . , D̂iLlong}
8: Encode patches with linear projection (preserve temporal structure, ):
9: for each ps

i ∈ Pshort do
10: es

i = LinearProj(ps
i) ∈ RD

11: end for
12: for each pl

i ∈ Plong do
13: el

i = LinearProj(pl
i) ∈ RD

14: end for
15: Eprice = Concat(Eshort, Elong) where Eshort = {es

i}, Elong = {el
i}

16: 2. News Encoding with Prompt Engineering
17: Tokenize news: tokens = Tokenizer(news)
18: Encode tokens: textemb = {W (t) | t ∈ tokens} ∈ Rn×D

19: Construct task-specific prompt ():
20: prompt = ”Predict stock closing price. Use: ”+history prices+” and news: ”+news content

21: Encode news with LLM and prompt: Znews = LLM(Concat(prompt emb, textemb)) ∈ Rn×D

22: 3. Price Reprogramming to LLM Space
23: Eref ← E
24: for Each attention head h do
25: Query: Qh = XpriceW

Q
h

26: Key: Kh = ErefW
K
h

27: Value: Vh = ErefW
V
h

28: end for
29: Zh = SoftMax(QhK

T
h /
√
D)Vh

30: Zconcat
price = Concat(Zh)W

O

31: Zprice = LayerNorm(Zconcat
price )

32: 4. Cross-Modal Fusion
33: Qnews = ZnewsWQ, Kprice = ZpriceWK , Vprice = ZpriceWV

34: Zprice-news = SoftMax
(

QnewsK
T
price√

D

)
Vprice

35: Qprice = ZpriceW
′
Q, Knews = ZnewsW

′
K , Vnews = ZnewsW

′
V

36: Znews-price = SoftMax
(

QpriceK
T
news√

D

)
Vnews

37: Zfusion = LayerNorm(Zprice-news + Znews-price)
38: return Zfusion
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