

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 **CoDA: AGENTIC SYSTEMS FOR COLLABORATIVE DATA VISUALIZATION**

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Automating data visualization from natural language is crucial for data science,
012 yet current systems struggle with complex datasets containing multiple files and
013 iterative refinement. Existing approaches, including simple single- or multi-agent
014 systems, often oversimplify the task, focusing on initial query parsing while failing
015 to robustly manage data complexity, code errors, or final visualization quality. In
016 this paper, we reframe this challenge as a collaborative multi-agent problem. We
017 introduce **CoDA**, a multi-agent system that employs specialized LLM agents for
018 metadata analysis, task planning, code generation, and iterative reflection. We
019 formalize this pipeline, demonstrating how metadata-focused analysis bypasses
020 token limits and quality-driven refinement ensures robustness. Extensive evalua-
021 tions show **CoDA** achieves substantial gains in the overall score, outperforming
022 competitive baselines by up to 41.5%. This work demonstrates that the future
023 of visualization automation lies not in isolated code generation but in integrated,
024 collaborative agentic workflows.

1 INTRODUCTION

029 Data visualization plays an important role in business intelligence, data science and decision-making,
030 enabling professionals to uncover insights from complex datasets through intuitive graphical rep-
031 resentations (Ramesh & Rajabiyanzi, 2024; Gahar et al., 2024; Jambor, 2024; Beschi et al., 2025;
032 Rogers et al., 2024). In practice, data analysts might spend over two-thirds of their time on low-level
033 data preparation and visualization tasks, often iterating manually to achieve clarity, accuracy, and
034 aesthetic appeal (Lai et al., 2025; Rezig et al., 2021; Lee et al., 2021). This “unseen tax” diverts
035 focus from insight generation, highlighting the critical need for automated systems that can transform
036 natural language queries and complex data into effective visualizations (Wu et al., 2024; Chen et al.,
037 2024; Wang & Crespo-Quinones, 2023). With the rise of large language models (LLMs) (Naveed
038 et al., 2025; Achiam et al., 2023; Team et al., 2024; Comanici et al., 2025), there is immense potential
039 to automate this pipeline. However, realizing this potential requires addressing core challenges: (1)
040 handling large datasets, (2) coordinating diverse expertise (e.g., linguistics, statistics, design), and (3)
041 incorporating iterative feedback to refine outputs against real-world complexities like messy multi-file
042 data and complex visualization needs.

042 Current approaches to automate visualization suffer from various limitations. Traditional rule-based
043 systems, such as Voyager (Wongsuphasawat et al., 2017; 2016) and Draco (Yang et al., 2023),
044 formalize design knowledge as constraints but remain confined to predefined templates, struggling
045 with natural language queries or diverse data patterns (Wu et al., 2024; Hoque & Islam, 2025).
046 LLM-based methods, like CoML4VIS (Chen et al., 2024), leverage chain-of-thought prompting
047 to generate visualizations (Comanici et al., 2025), but often ingest raw data directly, risking token
048 limit violations, hallucinations, and multi-source data faltering (Bai et al., 2024; Chen et al., 2024).
049 Multi-agent frameworks, such as VisPath and MatplotAgent, introduce collaboration system to
050 generate plot code but lack metadata-focused analysis, leading to overfitting in data processing
051 and weak persistence against iterative edits (Seo et al., 2025; Yang et al., 2024b). We argue these
052 issues stem from a common limitation in current agentic visualization systems: they concentrate
053 reasoning and coordination on initial query parsing, which proves insufficient for handling complex
data environments (e.g., multiple and large files), code errors, and iterative refinement. This design
limits their ability to adapt to unexpected data challenges.

Figure 1: Qualitative comparison of visualizations generated by baselines (*MatplotAgent*, *VisPath*, *CoML4VIS*) and **CoDA**. Provided with a natural language query and data files (if has), models produce code to create plots. **CoDA** yields outputs that more faithfully capture complex patterns, chart types, and aesthetics, while baselines often fail on ambiguity, 3D structures, or multi-source integration.

To address these challenges and limitations, we propose **CoDA (Collaborative Data-visualization Agents)**, a multi-agent system that deepens visualization by projecting tasks into a self-evolving pipeline where agents specialize in understanding, planning, generating, and reflecting. By analyzing metadata schemas and statistics without raw data file uploads, we circumvent context window limit of LLMs; specialized agents enhance domain reasoning; and image-based evaluation verifies the completion from a human perspective. This builds a robust framework for complex, iterative, and multi-source agentic visualizations, where agents collaborate deeply to ensure visualization quality. The key contributions of this work are as follows:

- We propose **CoDA**, an extensible framework with specialized agents for metadata analysis, task planning, code generation and debugging, and self-reflection, enabling robust handling of complex data and visualization needs (See Figure 1 and Appendix B for qualitative analyses).
- Extensive experiments on MatplotlibBench and Qwen Code Interpreter benchmarks yield substantial gains in the Overall Score over strong baselines such as *MatplotAgent*, *VisPath*, and *CoML4VIS*, with maximum improvements of 24.5%, 41.5%, and 26.5% respectively. Furthermore, CoDA significantly outperforms competitive baselines on the DA-Code Benchmark, which features complex, real-world Software Engineering scenarios.
- A comprehensive ablation study validates the necessity of CoDA’s core components. Results demonstrate that self-evolution, the global TODO list, and the example search agent each provide a statistically significant positive impact on overall performance.

2 RELATED WORK

Natural Language to Visualization (NL2Vis). NL2Vis approaches have revolutionized data exploration in data science by allowing users to articulate queries in natural language and receive

target visualizations (Wang & Crespo-Quinones, 2023; Shen et al., 2022; Wu et al., 2024), thereby accelerating initial data scouting and ad-hoc reporting (Voigt et al., 2022). Survey on natural language generation for visualizations provides a taxonomy of techniques and highlights the challenges in ensuring coherence and fidelity to underlying data information (Hoque & Islam, 2025). Many methods have formalized this evaluation landscape (Chen et al., 2024; Ouyang et al., 2025; Bai et al., 2025; Shin et al., 2025), they use chain-of-thought prompting strategies to enhance LLM accuracy on single-table tasks (Liu et al., 2025). These tools are important for data scientists navigating exploratory phase (Zhang et al., 2025; Chen et al., 2025), but they have gaps in LLM reasoning under ambiguity or multi-source data environments (Zhu et al., 2025; Davila et al., 2025). Empirical evaluations of LLMs in visualization generation reveal shortcomings in CoT-based methods, emphasizing the need for robust handling of abstract and multifaceted queries in decision-making workflows (Khan et al., 2025), motivating our shift toward autonomous multi-agent teams.

Agentic Visualization Systems. Agentic systems mark a paradigm shift in visualization for data science, where it as a distributed problem-solving process among AI agents that mirror collaborative human co-worker (Sapkota et al., 2025; Tran et al., 2025; Wolter et al., 2025; Xu et al., 2025). (Goswami et al., 2025; Zhang & Elhamod, 2025) exemplify this by deploying multi-agent LLM frameworks for autonomous professional visualization, they streamline visual analytics from raw, unstructured data. Yang et al. introduces a multi-step reasoning agent framework for scientific plotting, empowering data scientists with code-free handling of complex visualizations (Yang et al., 2024b). Seo et al. enhances this through multi-path reasoning and feedback optimization for code synthesis from natural language (Seo et al., 2025). Efforts to extract agent-based design patterns from visualization systems provide a blueprint for balancing autonomy with human oversight, laying groundwork for scalable tools in collaborative data environments (Dhanoa et al., 2025). These agentic systems help compressing hours of manual labor in data science (Moss, 2025; Gridach et al., 2025). However, they commonly take shortcuts, focusing adaptations on initial planning stages without persistent reflection (Wang et al., 2025; Sapkota et al., 2025). This shallow agentic alignment contributes to vulnerabilities in complex scenarios (Cemri et al., 2025; Tian et al., 2025). Our proposed multi-agent system counters this by enforcing deeper collaboration, via specialized agents for planning, building, criticism, and reflection, to yield robust narratives.

3 METHOD

In this section, we formalize the collaborative multi-agent paradigm for data visualization and introduce **CoDA**. We begin by outlining the key design principles that support agentic visualization systems, drawing parallels to human collaborative workflows in data analysis and plotting. We then describe **CoDA**’s architecture, including the specialized agents and their interactions, and explain how this framework addresses core challenges in automated visualization.

3.1 THE COLLABORATIVE MULTI-AGENT PARADIGM

Conventional visualization systems, whether rule-based or LLM-driven (Khan et al., 2025; Zhu et al., 2025; Hutchinson et al., 2024; Shin et al., 2025), typically treat visualization as a monolithic, single-pass process of parsing a query, ingesting data, and generating code. This leads to unstable performance on complex queries involving multi-file datasets, ambiguous requirements, or iterative refinements (). We reframe visualization as a collaborative problem-solving endeavor. Our approach employs a team of specialized LLM agents, each with a distinct professional persona, that uses structured communication and quality-driven feedback loops to decompose queries, process data, and iteratively refine outputs.

Inspired by multi-agent systems in software engineering (Yang et al., 2024a) and interactive reasoning (Yao et al., 2022), this paradigm leverages the emergent capabilities of LLMs to simulate division of labor. Each agent is designed to focus on well-defined expertise area, such as metadata extraction or code debugging, while communicating via a shared state to adapt dynamically. This not only mitigates token limits by avoiding raw data ingestion but also enhances robustness through reflection and error correction, mirroring how data analysts collaborate to refine insights. Key principles guiding this approach include:

Figure 2: Overview of the **CoDA** framework for agentic data visualization. The workflow decomposes natural language queries into modular phases: **Understanding** (query intent and data metadata extraction), **Planning** (example code search, visual mappings, and design optimization), **Generation** (code generation and debugging), and **Self-Reflection** (quality evaluation with feedback loops for iterative refinement).

Specialization for Depth: Assign agents to distinct roles (e.g., planning vs. execution) to deepen reasoning without overwhelming a single model.

Metadata-Centric Preprocessing: Summarize data structures upfront to inform downstream decisions, bypassing the need for full data loading.

Iterative Reflection: Incorporate human-like evaluation of outputs (e.g., via image analysis) to detect and correct issues like visual clutter or factual inaccuracies.

Modular Extensibility: Design agents as interchangeable modules, allowing integration of new tools or models for evolving tasks.

By unifying query understanding, data handling, code generation, and quality assurance into a self-reflection workflow, this approach transforms visualization from isolated code generation into a resilient, adaptive process. We demonstrate its efficacy through **CoDA**, which operationalizes these principles for real-world benchmarks.

3.2 CoDA: COLLABORATIVE DATA VISUALIZATION AGENTS

CoDA instantiates the collaborative paradigm as a multi-agent system that takes a natural language query and data files as input, producing a refined visualization as output. Figure 2 provides a high-level overview and Table 1 summarizes the inputs and outputs of different agents in the workflow. Full agents prompts and I/O are shown in Appendix E.

The workflow proceeds as follows, with iterative refinement triggered by quality assessments: Query Analyzer interprets the query (e.g., “*Plot sales trends by region*”) to extract intent, decomposes it into a global TODO list (e.g., data filtering, aggregation, chart selection), and generates guidelines for downstream agents. Data Processor extracts metadata summaries (schemas, statistics, patterns) from data files using lightweight tools like pandas, avoiding token limits while identifying insights and potential transformations. VizMapping maps query semantics to visualization primitives, selects appropriate chart types (e.g., line chart for trends), defines data-to-visual bindings, and validates compatibility based on metadata. This agent ensures insightful outputs that adapt to data complexities without raw ingestion. Search Agent (as a tool) retrieves relevant code examples from plotting libraries (e.g., Matplotlib) to inspire generation, formulates search queries and ranks results by relevance. Design Explorer generates content and aesthetic concepts, optimizes elements like colors and layout, and evaluates designs for user experience. Code Generator synthesizes executable Python code integrating specifications, ensuring best practices and documentation. Debug Agent executes code with timeouts, diagnoses errors (e.g., via searched solutions), applies fixes (potentially via

Table 1: The inputs and outputs of different agents in the proposed **CoDA** framework.

Agent Name	Inputs	Outputs
Query Analyzer	Query, meta_data (e.g., README.md)	Query analyzer results including visualization types, key points for plotting, a global TODO list.
Data Processor	Data inputs	Data processor results including data information (e.g., shapes, columns), data insights (e.g., aggregations_needed), processing steps, visualization hints.
VizMapping Agent	Query, query analyzer, data processor results	Chart types, styling hints, data transformations (e.g., aggregations, filters), visualization goals.
Search Agent	Visualization types, chart types	Code examples
Design Explorer	Query analyzer results, data processor results	Design explorer results including design specifics (e.g., color_scheme, layout), implementation guidelines, quality metrics, design recommendations, alternative designs, and success indicators.
Code Generator	Design explorer results, data processor results, search agent results, (self-reflection) visual evaluator results	Code generator results including generated code, code quality score, dependencies, and documentation.
Debug Agent	Code generator results	Debugging results including standard outputs/errors, web searched debug suggestions, fixed code, execution results and the output file.
Visual Evaluator	Output file, query, query analyzer results, data processor results	Scores (e.g., overall_score, readability), strength, issues, priority fixes, code modifications, and recommendations.

searched solutions), and outputs results like visualization images. Visual Evaluator assesses the output image across multi-dimensional quality metrics (clarity, accuracy, aesthetics, layout, correctness), verifying TODO completion and suggesting refinements.

Agents exchange structured messages through a shared memory buffer, propagating context (e.g., metadata informs planning, plans guide code). Feedback loops trigger iterations: If quality scores (from evaluation) are below thresholds, issues are routed back to upstream agents (e.g., low aesthetics back to the Design Agent). The system halts when quality converges or iteration limits are reached.

CoDA’s modular design promotes scalability, agents can be parallelized or extended (e.g., scientific plotting), and self-reflection through quality-driven halting (e.g., stop if scores exceed thresholds). In experiments (Section 4), this yields substantial gains over baselines, validating the value of this agentic approach in visualization automation.

4 EXPERIMENTS

We evaluate **CoDA**’s ability to generate high-quality visualizations from natural language by testing it on a diverse set of visualization benchmarks. We compare **CoDA** against state-of-the-art baselines using standardized metrics that capture execution reliability, visualization correctness, and overall task success. All experiments are conducted using `gemini-2.5-pro` as the underlying LLM, with a maximum of 3 refinement iterations and a quality threshold of $\theta_q = 0.85$ for halting.

4.1 BENCHMARKS

We select benchmarks that span varying levels of complexity in natural language to visualization tasks, including handling diverse data types, chart styles, and user intents. The primary datasets are:

Qwen Code Interpreter Benchmark (Visualization) (Yang et al., 2025): This subset focuses on visualization tasks within a code interpretation framework, with 163 examples emphasizing numerical data handling, pattern recognition, and code synthesis for plots. It tests robustness to ambiguous queries and data inconsistencies.

270 **MatplotBench** (Yang et al., 2024b): A comprehensive benchmark for matplotlib-based visualization
 271 generation, comprising 100 queries across domains such as time-series analysis, categorical compar-
 272 isons, and multi-dimensional plotting. Queries require interpreting user intent, selecting appropriate
 273 chart types, and ensuring visual clarity.

274 These benchmarks represent mid-to-high complexity tasks suitable for evaluating agentic systems
 275 in controlled environments. Additionally, we separately evaluate on the more challenging **DA-**
 276 **Code** benchmark (Huang et al., 2024), which involves repository-based software engineering tasks
 277 with visualization components. Unlike the above, DA-Code (vis) requires navigating codebases,
 278 integrating visualizations into broader workflows, and handling domain-specific constraints (e.g.,
 279 performance optimization in plots). It comprises 78 tasks and is treated independently due to its
 280 elevated difficulty and shift toward SWE-oriented reasoning.

282 4.2 BASELINES

284 We compare **CoDA** against recent visualization-specific methods that leverage LLMs for code genera-
 285 tion and refinement:

287 **MatplotAgent** (Yang et al., 2024b): A single-agent system focused on matplotlib code synthesis
 288 from queries, with basic error handling but limited multi-step planning.

289 **VisPath** (Seo et al., 2025): An approach based on multiple solution planning that decomposes
 290 visualization tasks into sequential steps, emphasizing path optimization for chart mapping.

291 **CoML4VIS** (Chen et al., 2024): A workflow-centric framework that followed a structured pipeline
 292 to generate visualizations, incorporating table descriptions and code execution.

294 All baselines use the same `gemini-2.5-pro` backbone for fair comparison, and we follow their
 295 papers to set up the parameters (e.g., iteration limits).

297 4.3 EVALUATION METRICS

299 To provide a multi-dimensional assessment, we define three key metrics that capture execution
 300 reliability, visualization quality, and overall task success:

301 **Execution Pass Rate (EPR):** The proportion of queries for which the generated Python code
 302 executes without runtime errors, capturing basic syntactic and dependency reliability. Formally, $EPR = \frac{|q \in Q : \text{exec}(c_q) = \text{success}|}{|Q|}$, where c_q is the code for query $q \in Q$.

305 **Visualization Success Rate (VSR):** The average score reflecting the quality of rendered visualizations
 306 among executable codes, where higher scores indicate closer alignment with intended representations
 307 (e.g., accurate data mappings). Formally, $VSR = \frac{\sum_{q \in Q_{\text{exec}}} s_v(q)}{|Q_{\text{exec}}|}$, where $s_v(q)$ is the LLM-evaluated
 308 visualization score for query q , and Q_{exec} is the set of queries with successful execution. On a
 309 binary-scored benchmark (e.g., Qwen Code Interpreter), VSR reduces to the proportion of correct
 310 visualizations among executable cases.

312 **Overall Score (OS):** The overall score reflects the average of code and visualization quality scores
 313 and provides a holistic view of system effectiveness. Formally, $OS = \frac{\sum_{q \in Q} \text{avg}(s_c(q), s_v(q))}{|Q|}$, where
 314 $s_c(q)$ is the code quality score and $s_v(q)$ is as defined above.

315 Additional technical details on the judging prompts and model setup are provided in Appendix D.

318 4.4 MAIN RESULTS

320 Table 2 presents the main results on MatplotBench and the Qwen Code Interpreter Benchmark
 321 (vis). **CoDA** outperforms all baselines across metrics, achieving substantial gains in OS of 24.5%
 322 on MatplotBench and 7.4% on Qwen over the best alternative, demonstrating superior handling of
 323 complex queries through agent collaboration and feedback loops. The high EPR reflects robust code
 generation, while VSR highlights effective refinement in visualization quality.

Table 2: Performance comparison against three baselines on the MatplotlibBench and Qwen Code Interpreter benchmarks. All baselines utilize gemini-2.5-pro as the base LLMs.

Method	MatplotlibBench			Qwen Code Interpreter		
	EPR (%) ↑	VSR (%) ↑	OS (%) ↑	EPR (%) ↑	VSR (%) ↑	OS (%) ↑
MatplotAgent	97.0	56.7	55.0	81.6	79.7	65.0
VisPath	75.0	37.3	38.0	86.5	94.3	81.6
CoML4VIS	76.0	69.7	53.0	87.1	90.9	79.1
CoDA (Ours)	99.0	79.8	79.5	93.3	95.4	89.0

Table 3: Comparison of **CoDA** against the DA-Agent on the DA-Code benchmark, where DA-Agent is powered by various LLMs including `gemini-2.5-pro`, `gpt-4o`, `gpt-4`, and `deepseek-coder`. Green shading marks the best within each group.

Metric	CoDA (Ours)	DA-Agent (backbone LLM)			
	Gemini-2.5-pro	Gemini-2.5-pro	GPT-4o	GPT-4	Deepseek-Coder
Overall Score (%)	39.0	19.23	17.0	16.0	11.0

4.5 RESULTS ON DA-CODE BENCHMARK

In this evaluation, we extend **CoDA** to more complex, real-world SWE scenarios where visualizations are embedded within broader codebases. Table 3 encapsulates these findings, revealing **CoDA**'s score of 39.0%, a 19.77% absolute gain over DA-Agent with `gemini-2.5-pro`, the strongest baseline. This superiority arises from the multi-agent decomposition: the Query Analyzer routes repo navigation subtasks to the Data Processor for metadata extraction, while the Code Generator and Visual Evaluator iteratively resolve integration conflicts (e.g., `matplotlib` dependencies clashing with existing imports). OS benefits particularly from the Design Explorer's aesthetic refinements tailored to code-embedded plots, addressing nuances like subplot scaling in simulation outputs that single-LLM baselines overlook due to token limits on raw repo ingestion.

4.6 PERFORMANCE WITH DIFFERENT BACKBONE LLMs

To assess the generality of **CoDA** across diverse LLM backbones, we evaluate its performance when substituting the primary `gemini-2.5-pro` model with alternative strong capability LLMs: `gemini-2.5-flash` and `claude-4-sonnet`. This experiment isolates the impact of the backbone LLM on visualization generation, holding constant the multi-agent architecture. We focus on the MatplotlibBench, as it emphasizes robust handling of numerical data, pattern recognition, and code synthesis under ambiguous queries—tasks that stress the backbone’s reasoning and code generation capabilities.

We select these backbones for their complementary strengths: `gemini-2.5-flash` prioritizes efficiency and low-latency inference, making it suitable for real-time applications, while `claude-4-sonnet` excels in language understanding and multi-step reasoning, potentially enhancing agent collaboration in complex scenarios. All models are configured with identical hyperparameters. Table 4 presents the results. `CoDA` with `gemini-2.5-flash` achieves an OS of 77.7%, showcasing efficient handling of real-time scenarios with minimal degradation (1.8% relative to `gemini-2.5-pro`), attributable to streamlined agent interactions that leverage metadata over raw data ingestion. `claude-4-sonnet`, conversely, attains an OS of 75.2%, a 4.3% drop from `gemini-2.5-pro`, likely stemming from its enhanced semantic parsing but reduced robustness in code execution under high-context loads. These outcomes highlight `CoDA`'s backbone-agnostic design, amplifying each LLM's inherent strengths while mitigating weaknesses through collaborative workflows.

We compare **CoDA** against each other using the three backbone LLMs as described above. Across the board, **CoDA** outperforms baselines significantly, with the best-performing variant, **CoDA** with gemini-2.5-pro, achieving 79.5% OS. MatplotAgent, VisPath, and CoML4VIS struggle to exceed 65.2% OS in any setting, highlighting the challenges of visualization tasks without multi-agent

378 Table 4: A comparison of **CoDA** with different backbone LLMs against three baselines on the
 379 MatplotBench benchmark. All results are presented in percent (%).

380 Base LLMs	381 Gemini-2.5-Pro			382 Gemini-2.5-Flash			383 Claude-4-Sonnet		
384 Method	385 EPR \uparrow	386 VSR \uparrow	387 OS \uparrow	388 EPR \uparrow	389 VSR \uparrow	390 OS \uparrow	391 EPR \uparrow	392 VSR \uparrow	393 OS \uparrow
394 MatplotAgent	395 92.0	396 55.4	397 51.0	398 99.0	399 46.4	400 45.9	401 93.0	402 58.8	403 54.7
404 VisPath	405 73.0	406 60.5	407 44.2	408 95.0	409 45.8	410 43.5	411 57.0	412 77.5	413 44.2
414 CoML4VIS	415 99.0	416 63.2	417 62.6	418 99.0	419 57.8	420 57.2	421 99.0	422 65.9	423 65.2
424 CoDA (Ours)	425 99.0	426 80.3	427 79.5	428 99.0	429 78.5	430 77.7	431 98.0	432 76.7	433 75.2

387 Table 5: Efficiency comparison on MatplotBench using Gemini-2.5-Pro. Metrics: Average Input/Out-
 388 put Tokens (# Tokens), Average LLM Calls (# Calls).

389 Method	390 # Input Tokens \downarrow	391 # Output Tokens \downarrow	392 # Calls \downarrow
393 MatplotAgent	394 34,177	395 26,792	396 15.4
397 VisPath	398 16,224	399 13,056	400 7.0
401 CoML4VIS	402 2,350	403 3,788	404 1.0
405 CoDA (Ours)	406 32,095	407 18,124	408 14.8

396 refinement. We also observe that **CoDA** trends similarly across different backbones, with EPR and
 397 VSR remaining consistently high (98.0–99.0% and 76.7–80.3%).

398 LLMs tend to generate simpler visualizations. Baseline-generated code tends to produce fewer
 399 refinements than **CoDA**. As shown in Table 4, compared to **CoDA**, baselines like MatplotAgent achieve
 400 lower VSR (46.4–58.8%), and rarely handle complex multi-faceted queries.

402 4.7 EFFICIENCY ANALYSIS

404 A key challenge in agentic systems is balancing accuracy with computational efficiency, particularly
 405 in real-world visualization tasks where latency impacts user experience. Here, we conduct a detailed
 406 efficiency analysis of **CoDA**, comparing its latency against baselines on the MatplotBench dataset. We
 407 measure latency in terms of (1) average number of input/output tokens per query, which captures the
 408 communication overhead in multi-agent interactions, and (2) average number of LLM calls, reflecting
 409 the iterative refinement and routing demands. All methods use `gemini-2.5-pro` as the backbone.

410 Table 5 presents the results. **CoDA** achieves an average of 32,095 input tokens, 18,124 output tokens,
 411 and 14.8 LLM calls per query. We compare **CoDA** against baselines on efficiency. Across the board,
 412 multi-agent systems like **CoDA** and *MatplotAgent* incur higher computational costs than simpler
 413 baselines like *CoML4VIS* and *VisPath*, which rely on fewer iterations and less collaborative overhead.
 414 However, **CoDA** outperforms *MatplotAgent* in efficiency, using 17.6% fewer total tokens (50,219 vs.
 415 60,969) and 3.9% fewer LLM calls, while achieving substantially higher overall accuracy (79.5% vs.
 416 51.0% OS).

417 To analyze the trade-off between efficiency and performance, we observe that simpler methods trend
 418 toward lower costs but diminished visualization quality. For example, *CoML4VIS*, with only 1.0
 419 LLM call and 6,138 total tokens, resolves 62.6% OS, yet struggles with complex, ambiguous queries
 420 requiring refinement. In contrast, **CoDA**’s higher calls enable iterative improvements, justifying the
 421 cost for superior results.

423 5 ABLATION STUDY

425 To validate the contributions of key components in **CoDA**, we conduct controlled ablation experiments
 426 on the MatplotBench dataset, using `gemini-2.5-pro` as the backbone. These studies isolate the
 427 impact of (1) iterative self-reflection through refinement loops, (2) the global TODO list for high-level
 428 planning, and (3) the Search Agent for code example retrieval. All ablations maintain the core multi-
 429 agent pipeline but adjust the specified components. This analysis not only confirms the necessity of
 430 each feature but also provides insights into design trade-offs, such as accuracy-efficiency balances,
 431 highlighting **CoDA**’s principled architecture for robust, autonomous visualization. We evaluate the
 432 impact of these components on the OS metric. Figure 3 summarizes the findings.

Figure 3: Ablation results. (a): Performance (EPR, VSR, OS) across different iteration counts. (b) Comparison of EPR, VSR, and OS with vs. without Global TODO. (c) Comparison of EPR, VSR, and OS with vs. without the Search Agent.

5.1 IMPACT OF SELF-EVOLUTION

Figure 3 shows that OS generally improves with additional iterations, from 75.6% at 1 iteration to 79.5% at 3 iterations (CoDA default), with further gains to 80.1% at 5 iterations, though with fluctuations and marginal benefits beyond 3 (+0.6% in OS from 3 to 5). EPR surges by 8.0% from 1 to 3 iterations due to robust initial code generation by the Code Generator, stabilizing near 100% thereafter. VSR fluctuates initially but converges around 80%, as the Visual Evaluator identifies and refines subtle mismatches in data mappings and aesthetics. Beyond 3 iterations, latency increases without proportional accuracy benefits, validating our lightweight configuration optimization that tunes limits based on validation performance. With minimal iterations, performance degrades toward baseline levels, emphasizing that shallow, one-shot generation fails in messy environments.

5.2 ROLE OF GLOBAL TODO LIST

The global TODO list, generated by the Query Analyzer, serves as a high-level blueprint for task decomposition and routing, ensuring coherence across agents. We ablate this by replacing it with understanding-query-only prompts (no structured decomposition). As shown in Figure 3, removing the global TODO list yields a stark drop in OS to 75.1% (-4.4% absolute), with EPR falling by 5.0% due to fragmented intent extraction, e.g., the VizMapping Agent selects suboptimal chart types without cross-referencing subtasks like “highlight peaks.” VSR remains stable, indicating that visual quality is less dependent on global planning, but overall success suffers from incomplete workflows, such as unaddressed statistical insights from the Data Processor. This confirms the value of structured planning in agentic workflows, where it prevents the noise of unstructured agent interactions.

5.3 EFFECTIVENESS OF EXAMPLE SEARCH AGENT

The Search Agent retrieves relevant plotting code examples (e.g., from Matplotlib repositories) to inspire the Builder Agent, addressing LLM limitations in recalling domain-specific syntax. We study this by disabling retrieval, relying solely on the backbone LLM’s internal knowledge. Figure 3 reveals that without the Search Agent, OS declines to 76.0% (-3.5%), primarily due to a 9.0% drop in EPR from syntactic errors in specialized visualizations (e.g., custom subplots). Enabling code search improves accuracy by providing ranked snippets, grounding LLM agents’ coding knowledge to specific problems. This ablation highlights the extensibility of CoDA, where external inspiration bridges gaps in LLM training data, making the system more reliable without post-training.

6 CONCLUSION

We introduce CoDA, an agentic multi-agent framework that decomposes natural language queries into specialized task and data understanding, planning, code generation, and self-reflection, delivering up to 41.5% accuracy gains over baselines like *MatplotAgent*, *VisPath*, and *CoML4VIS* on Matplotlib and Qwen benchmarks. Through metadata-centric preprocessing and iterative refinement, CoDA overcomes input token limits, robustly managing messy multi-file data and enabling analysts to prioritize insights over manual work. A key limitation is the computational overhead from multi-turn agent communications. Future efforts could distill agents or adapt to multimodal inputs. CoDA paves the way for collaborative agentic systems, revolutionizing automation in data science and beyond.

486 **LARGE LANGUAGE MODEL USAGE FOR WRITING**
487

488 In this work, we utilize large language models, specifically Gemini and Grok, as general-purpose
489 tools for text refinement. Initial drafts are supplied to these models, which are prompted to enhance
490 the writing through grammatical corrections and structural improvements. The resulting revisions are
491 subsequently reviewed and adjusted as necessary. The application of LLMs is confined exclusively to
492 polishing existing text; they are not used for generating novel content, ideas, or references. All core
493 aspects of this research, including conceptualization, methodological reasoning, logical development,
494 and the selection of references, were conducted solely by the human authors.

495 **REFERENCES**
496

498 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
499 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
500 *arXiv preprint arXiv:2303.08774*, 2023.

501 Tian Bai, Huiyan Ying, Kailong Suo, Junqiu Wei, Tao Fan, and Yuanfeng Song. Text-to-
502 trajvis: Enabling trajectory data visualizations from natural language questions. *arXiv preprint*
503 *arXiv:2504.16358*, 2025.

504 Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He, Zongbo Han, Zheng Zhang, and Mike Zheng Shou.
505 Hallucination of multimodal large language models: A survey. *arXiv preprint arXiv:2404.18930*,
506 2024.

508 Sara Beschi, Davide Falessi, Silvia Golia, and Angela Locoro. Characterizing data visualization
509 literacy: a systematic literature review. *arXiv preprint arXiv:2503.14468*, 2025.

511 Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
512 Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al. Why do multi-agent llm
513 systems fail? *arXiv preprint arXiv:2503.13657*, 2025.

514 Nan Chen, Yuge Zhang, Jiahang Xu, Kan Ren, and Yuqing Yang. Viseval: A benchmark for
515 data visualization in the era of large language models. *IEEE Transactions on Visualization and*
516 *Computer Graphics*, 2024.

518 Qiguang Chen, Mingda Yang, Libo Qin, Jinhao Liu, Zheng Yan, Jiannan Guan, Dengyun Peng, Yiyan
519 Ji, Hanjing Li, Mengkang Hu, et al. Ai4research: A survey of artificial intelligence for scientific
520 research. *arXiv preprint arXiv:2507.01903*, 2025.

521 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
522 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
523 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
524 *arXiv preprint arXiv:2507.06261*, 2025.

525 Ana Davila, Jacinto Colan, and Yasuhisa Hasegawa. Beyond single models: Enhancing llm detection
526 of ambiguity in requests through debate. *arXiv preprint arXiv:2507.12370*, 2025.

528 Vaishali Dhanoa, Anton Wolter, Gabriela Molina León, Hans-Jörg Schulz, and Niklas Elmquist.
529 Agentic visualization: Extracting agent-based design patterns from visualization systems. *arXiv*
530 *preprint arXiv:2505.19101*, 2025.

532 Rania Mkhinini Gahar, Olfa Arfaoui, and Minyar Sassi Hidri. Open research issues and tools for
533 visualization and big data analytics. *arXiv preprint arXiv:2404.12505*, 2024.

534 Kanika Goswami, Puneet Mathur, Ryan Rossi, and Franck Dernoncourt. Plotgen: Multi-agent
535 llm-based scientific data visualization via multimodal feedback. *arXiv preprint arXiv:2502.00988*,
536 2025.

538 Mourad Gridach, Jay Nanavati, Khaldoun Zine El Abidine, Lenon Mendes, and Christina Mack.
539 Agentic ai for scientific discovery: A survey of progress, challenges, and future directions. *arXiv*
540 *preprint arXiv:2503.08979*, 2025.

540 Enamul Hoque and M Saidul Islam. Natural language generation for visualizations: State of the art,
 541 challenges and future directions. In *Computer Graphics Forum*, volume 44, pp. e15266. Wiley
 542 Online Library, 2025.

543

544 Yiming Huang, Jianwen Luo, Yan Yu, Yitong Zhang, Fangyu Lei, Yifan Wei, Shizhu He, Lifu Huang,
 545 Xiao Liu, Jun Zhao, and Kang Liu. Da-code: Agent data science code generation benchmark for
 546 large language models. In *Conference on Empirical Methods in Natural Language Processing*,
 547 2024. URL <https://api.semanticscholar.org/CorpusID:273234039>.

548 Maeve Hutchinson, Radu Jianu, Aidan Slingsby, and Pranava Swaroop Madhyastha. Llm-assisted
 549 visual analytics: Opportunities and challenges. *Comput. Graph.*, 130:104246, 2024. URL
 550 <https://api.semanticscholar.org/CorpusID:272397798>.

551

552 Helena Klara Jambor. From zero to figure hero. a checklist for designing scientific data visualizations.
 553 *arXiv preprint arXiv:2408.16007*, 2024.

554

555 Saadiq Rauf Khan, Vinit Chandak, and Sougata Mukherjea. Evaluating llms for visualization
 556 generation and understanding. *Discover Data*, 3(1):15, 2025.

557

558 Eugenie Y. Lai, Yuze Lou, Brit Youngmann, and Michael J. Cafarella. Toward standardized data
 559 preparation: A bottom-up approach. In *EDBT*, pp. 609–622, 2025. URL <https://doi.org/10.48786/edbt.2025.49>.

560

561 Ga Young Lee, Lubna Alzamil, Bakhtiyar Doskenov, and Arash Termehchy. A survey on data cleaning
 562 methods for improved machine learning model performance. *arXiv preprint arXiv:2109.07127*,
 563 2021.

564

565 Si-Yang Liu, Qile Zhou, and Han-Jia Ye. Make still further progress: Chain of thoughts for tabular
 566 data leaderboard. *arXiv preprint arXiv:2505.13421*, 2025.

567

568 Adam Moss. The ai cosmologist i: An agentic system for automated data analysis. *arXiv preprint
 arXiv:2504.03424*, 2025.

569

570 Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
 571 Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
 572 models. *ACM Transactions on Intelligent Systems and Technology*, 16(5):1–72, 2025.

573

574 Geliang Ouyang, Jingyao Chen, Zhihe Nie, Yi Gui, Yao Wan, Hongyu Zhang, and Dongping Chen.
 575 nvagent: Automated data visualization from natural language via collaborative agent workflow.
 576 *arXiv preprint arXiv:2502.05036*, 2025.

577

578 Shri Harini Ramesh and Fateme Rajabiayazdi. Challenges and opportunities of teaching data visualization
 579 together with data science. In *2024 IEEE VIS Workshop on Visualization Education, Literacy,
 580 and Activities (EduVIS)*, pp. 7–13. IEEE, 2024.

581

582 El Kindi Rezig, Michael Cafarella, and Vijay Gadepally. Technical report on data integration and
 583 preparation. *arXiv preprint arXiv:2103.01986*, 2021.

584

585 Jen Rogers, Marie Anastacio, Jürgen Bernard, Mehdi Chakhchoukh, Rebecca Faust, Andreas Kerren,
 586 Steffen Koch, Lars Kotthoff, Cagatay Turkay, and Emily Wall. Visualization and automation in
 587 data science: Exploring the paradox of humans-in-the-loop. In *2024 IEEE Visualization in Data
 588 Science (VDS)*, pp. 1–5, 2024. doi: 10.1109/VDS63897.2024.00005.

589

590 Ranjan Sapkota, Konstantinos I Roumeliotis, and Manoj Karkee. Ai agents vs. agentic ai: A
 591 conceptual taxonomy, applications and challenges. *arXiv preprint arXiv:2505.10468*, 2025.

592

593 Wonduk Seo, Seungyong Lee, Daye Kang, Hyunjin An, Zonghao Yuan, and Seunghyun Lee. Au-
 594 tomated visualization code synthesis via multi-path reasoning and feedback-driven optimization.
 595 *arXiv preprint arXiv:2502.11140*, 2025.

596

597 Leixian Shen, Enya Shen, Yuyu Luo, Xiaocong Yang, Xuming Hu, Xiongshuai Zhang, Zhiwei Tai,
 598 and Jianmin Wang. Towards natural language interfaces for data visualization: A survey. *IEEE
 599 transactions on visualization and computer graphics*, 29(6):3121–3144, 2022.

594 Sungbok Shin, Sanghyun Hong, and Niklas Elmquist. Visualizationary: Automating design feedback
 595 for visualization designers using llms. *IEEE Transactions on Visualization and Computer Graphics*,
 596 2025.

597 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
 598 Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
 599 based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024.

600 Fangqiao Tian, An Luo, Jin Du, Xun Xian, Robert Specht, Ganghua Wang, Xuan Bi, Jiawei Zhou,
 601 Ashish Kundu, Jayanth Srinivasa, et al. An outlook on the opportunities and challenges of
 602 multi-agent ai systems. *arXiv preprint arXiv:2505.18397*, 2025.

603 Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
 604 Hoang D Nguyen. Multi-agent collaboration mechanisms: A survey of llms. *arXiv preprint*
 605 *arXiv:2501.06322*, 2025.

606 Henrik Voigt, Ozge Alacam, Monique Meuschke, Kai Lawonn, and Sina Zarrieß. The why and the
 607 how: A survey on natural language interaction in visualization. In Marine Carpuat, Marie-Catherine
 608 de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), *Proceedings of the 2022 Conference of the*
 609 *North American Chapter of the Association for Computational Linguistics: Human Language*
 610 *Technologies*, pp. 348–374, Seattle, United States, July 2022. Association for Computational
 611 Linguistics. doi: 10.18653/v1/2022.naacl-main.27. URL <https://aclanthology.org/2022.naacl-main.27/>.

612 Huanting Wang, Jingzhi Gong, Huawei Zhang, and Zheng Wang. Ai agentic programming: A survey
 613 of techniques, challenges, and opportunities. *arXiv preprint arXiv:2508.11126*, 2025.

614 Shuo Wang and Carlos Crespo-Quinones. Natural language models for data visualization utilizing
 615 nvbench dataset. *arXiv preprint arXiv:2310.00832*, 2023.

616 Anton Wolter, Georgios Vidalakis, Michael Yu, Ankit Grover, and Vaishali Dhanoa. Multi-agent data
 617 visualization and narrative generation. *arXiv preprint arXiv:2509.00481*, 2025.

618 Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey
 619 Heer. Voyager: Exploratory analysis via faceted browsing of visualization recommendations. *IEEE*
 620 *Transactions on Visualization and Computer Graphics*, 22(1):649–658, 2016. doi: 10.1109/TVCG.621
 2015.2467191.

622 Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk, Anushka Anand,
 623 Jock Mackinlay, Bill Howe, and Jeffrey Heer. Voyager 2: Augmenting visual analysis with
 624 partial view specifications. In *Proceedings of the 2017 CHI Conference on Human Factors*
 625 *in Computing Systems*, CHI ’17, pp. 2648–2659, New York, NY, USA, 2017. Association for
 626 Computing Machinery. ISBN 9781450346559. doi: 10.1145/3025453.3025768. URL <https://doi.org/10.1145/3025453.3025768>.

627 Yang Wu, Yao Wan, Hongyu Zhang, Yulei Sui, Wucai Wei, Wei Zhao, Guandong Xu, and Hai Jin.
 628 Automated data visualization from natural language via large language models: An exploratory
 629 study. *Proceedings of the ACM on Management of Data*, 2(3):1–28, 2024.

630 Chao Xu, Qi Zhang, Baiyan Li, Anmin Wang, and Jingsong Bao. Visual analysis of time series data for
 631 multi-agent systems driven by large language models. In *Proceedings of the 3rd International*
 632 *Conference on Signal Processing, Computer Networks and Communications*, SPCNC ’24, pp. 427–431,
 633 New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400710834. doi:
 634 10.1145/3712335.3712410. URL <https://doi.org/10.1145/3712335.3712410>.

635 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 636 Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng
 637 Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang,
 638 Jianxin Yang, Jiaxin Yang, Jingren Zhou, Jingren Zhou, Junyan Lin, Kai Dang, Keqin Bao, Ke-
 639 Pei Yang, Le Yu, Li-Chun Deng, Mei Li, Min Xue, Mingze Li, Pei Zhang, Peng Wang, Qin
 640 Zhu, Rui Men, Ruize Gao, Shi-Qiang Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao
 641 Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yi-
 642 Chao Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang,

648 Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report. *ArXiv*, abs/2505.09388, 2025. URL
649 <https://api.semanticscholar.org/CorpusID:278602855>.
650

651 John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Adriano Lieret, Shunyu Yao, Karthik
652 Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated soft-
653 ware engineering. *ArXiv*, abs/2405.15793, 2024a. URL <https://api.semanticscholar.org/CorpusID:270063685>.
654

655 Junran Yang, Péter Ferenc Gyarmati, Zehua Zeng, and Dominik Moritz. Draco 2: An extensible
656 platform to model visualization design. In *2023 IEEE Visualization and Visual Analytics (VIS)*, pp.
657 166–170. IEEE, 2023.
658

659 Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, Xu Han, Yukun Yan, Zhenghao Liu, Zhixing
660 Tan, Pengyuan Liu, Dong Yu, et al. Matplotagent: Method and evaluation for llm-based agentic
661 scientific data visualization. In *Findings of the Association for Computational Linguistics ACL*
662 2024, pp. 11789–11804, 2024b.
663

664 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
665 React: Synergizing reasoning and acting in language models. *ArXiv*, abs/2210.03629, 2022. URL
666 <https://api.semanticscholar.org/CorpusID:252762395>.
667

668 Ran Zhang and Mohannad Elhamod. Data-to-dashboard: Multi-agent llm framework for insightful
669 visualization in enterprise analytics. *arXiv preprint arXiv:2505.23695*, 2025.
670

671 Yanbo Zhang, Sumeer A Khan, Adnan Mahmud, Huck Yang, Alexander Lavin, Michael Levin,
672 Jeremy Frey, Jared Dunnmon, James Evans, Alan Bundy, et al. Exploring the role of large language
673 models in the scientific method: from hypothesis to discovery. *npj Artificial Intelligence*, 1(1):14,
674 2025.
675

676 Yuqi Zhu, Yi Zhong, Jintian Zhang, Ziheng Zhang, Shuofei Qiao, Yujie Luo, Lun Du, Da Zheng,
677 Ningyu Zhang, and Huajun Chen. Why do open-source llms struggle with data analysis? a
678 systematic empirical study. *arXiv preprint arXiv:2506.19794*, 2025.
679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A CoDA WORKFLOW AND IMPLEMENTATION DETAILS**
703704 Algorithm 1 outlines the **CoDA** multi-agent visualization workflow, illustrating the sequential and
705 iterative interactions among specialized agents to transform natural language queries into refined
706 visualizations.
707708 **Algorithm 1** **CoDA** Multi-Agent Visualization Workflow

```

709 1: Input: Query  $q$ , Data files  $D$ 
710 2: Output: Visualization plot  $P$ 
711 3: Initialize agents:  $A_{\text{query}}$ ,  $A_{\text{data}}$ ,  $A_{\text{search}}$ ,  $A_{\text{design}}$ ,  $A_{\text{code}}$ ,  $A_{\text{debug}}$ ,  $A_{\text{eval}}$ 
712 4:  $todo \leftarrow A_{\text{query}}(q)$                                      ▷ Decompose query into task list
713 5:  $metadata \leftarrow A_{\text{data}}(D)$                                 ▷ Extract metadata without raw data
714 6:  $mappings \leftarrow A_{\text{design}}(todo, metadata)$                 ▷ Map to visualization primitives
715 7:  $examples \leftarrow A_{\text{search}}(mappings)$                       ▷ Optional: Retrieve code examples
716 8:  $designs \leftarrow A_{\text{design}}(mappings)$                       ▷ Optimize aesthetics
717 9:  $code \leftarrow A_{\text{code}}(mappings, designs, examples)$           ▷ Generate executable code
718 10: while not converged do
719 11:    $output \leftarrow A_{\text{debug}}(code)$                                 ▷ Execute, debug, produce plot
720 12:    $scores \leftarrow A_{\text{eval}}(output)$                                 ▷ Evaluate clarity/accuracy/layout/aesthetics
721 13:   if  $scores > threshold$  then
722 14:     return  $output$ 
723 15:   else
724 16:      $refined \leftarrow A_{\text{design}}, A_{\text{code}}, A_{\text{debug}}(scores)$           ▷ Feedback to refine
725 17:   end if
726 18: end while

```

727 **B ADDITIONAL VISUALIZATION EXAMPLES**728 We present additional visualization examples drawn from the DA-Code, and MatplotlibBench to
729 illustrate **CoDA**’s performance. For each example, we show the natural language query, the ground
730 truth visualization, and the output generated by **CoDA**. These instances highlight **CoDA**’s ability to
731 handle complex data patterns, ambiguous queries, and multi-file inputs through collaborative agentic
732 refinement, often producing outputs that closely match or exceed ground truth fidelity.
733734 **B.1 DA-CODE EXAMPLE**735 **Example 1 Inputs**

```

736 1 # Example 1
737 2 ## Task Instruction
738 3 **Task:***
739 4 Please compile the total scores for each year from **1950 to 2018**.
740 5 Plot the results in a line chart according to the format specified in `plot.yaml` and
741 6 → save the chart as `result.png`.
742 7 ---
743 8 ## Environment
744 9 |--- nba.csv # Core dataset (season-level data)
745 10 |--- nba_extra.csv # Supplemental dataset (optional fields)
746 11 |--- Seasons_Stats.csv # Player-season statistics
747 12 |--- Players.csv # Player metadata
748 13 |--- player_data.csv # Additional player/game-level data
749 14 |--- plot.yaml # Primary plot configuration
750 15 |--- plot.json # Alternative plot configuration

```

751 **Verbose Instruction (Human-curated)** The following detailed instructions were manually organized
752 by the authors to ensure clarity and reproducibility. **Note:** Several aspects below represent
753 *human-identified challenges* that are not directly contained in the raw datasets.

756 1. **Check Available Resources and Directory Structure**
 757 Confirm presence of `nba.csv`, `nba_extra.csv`, `Seasons_Stats.csv`, `Players.csv`,
 758 `player_data.csv`, and plotting configuration files (`plot.yaml`, `plot.json`).
 759 *Human note:* The dataset does not explicitly define dependencies across files; we curated which
 760 files are relevant.

761 2. **Data Review**
 762 Inspect `nba.csv` and `nba_extra.csv` to extract season-level total points. Use
 763 `Seasons_Stats.csv` or `player_data.csv` if aggregation is required.
 764 *Human note:* None of the datasets directly contain “total league points per year”; this metric
 765 must be manually constructed.

766 3. **Primary Metric Construction (Default)**
 767 Aggregate all scoring fields by *season (year)* to compute **Total Points Scored**.
 768 *Human note:* The “total scores per year” metric is absent; manual aggregation logic was designed
 769 by the authors.

770 4. **Filtering / Top-K Selection (Optional)**
 771 Apply year range restrictions (1950–2018). Exclude lockout seasons or highlight anomalies if
 772 needed.
 773 *Human note:* Anomaly handling (e.g., lockout years) is not specified in the data, but added
 774 through human judgment.

775 5. **Read Plot Configuration**
 776 Parse style and formatting options from `plot.yaml` (or fallback `plot.json`).
 777 *Human note:* Plot configurations are not embedded in datasets; authors manually crafted the
 778 YAML spec.

779 6. **Create the Figure**
 780 Plot line chart with year on x-axis, total points on y-axis. Apply formatting (color palette, grid,
 781 axis labels, legend). Save as `result.png`.
 782 *Human note:* Visualization design choices (palette, annotations) are not given in raw data and
 783 were human-curated.

784 7. **Reproducibility**
 785 Document assumptions and preprocessing steps. Maintain transparency about human decisions
 786 in data aggregation and figure styling.
 787 *Human note:* The reproducibility statement itself is an author-side contribution; the dataset
 788 alone cannot ensure this.

789 Figure 4: Comparison between our generated visualization and the ground truth. The results
 790 demonstrate that our system faithfully reproduces the intended trends, achieving an exact match with
 791 the reference output (score: **100/100**).
 792

802 **Result Analysis.** The comparison in Figure 4 illustrates that our approach is able to reproduce the
 803 target visualization with high fidelity. Despite the complexity of the task and the absence of direct
 804 “total score per season” fields in the datasets, our **CoDA** correctly aggregated and rendered the results
 805 without deviation from the ground truth. This outcome highlights both the robustness of our data
 806 processing pipeline and the reliability of our visualization module in faithfully capturing benchmark
 807 specifications.

808 Our Generated Code

```

810
811 1 import pandas as pd
812 2 import matplotlib.pyplot as plt
813 3 import yaml
814 4 import sys
815 5
816 6 # The EXPANDED QUERY REQUIREMENT specifies using a 'plot.yaml' file for styling.
817 7 # To make this script self-contained and reproducible, we will create this file
818 8    ↪ programmatically.
819 9 yaml_config_str = """
820 10    title: 'Total NBA Points Scored Per Year (1950-2018)'
821 11    xlabel: 'Year'
822 12    ylabel: 'Total Points Scored'
823 13    figsize: [12, 7]
824 14    line_color: '#007ACC'
825 15    marker: 'o'
826 16    linestyle: '--'
827 17    grid: True
828 18 """
829 19
830 20 with open('plot.yaml', 'w') as f:
831 21     f.write(yaml_config_str)
832 22
833 23 # Step 1: Load the primary dataset from Seasons_Stats.csv.
834 24 try:
835 25     # Note: The prompt's "AVAILABLE DATA" section seems incorrect. We follow the textual
836 26    ↪ instructions
837 27     # which clearly state to use 'Seasons_Stats.csv'.
838 28     stats_df = pd.read_csv('Seasons_Stats.csv')
839 29 except FileNotFoundError:
840 30     print("Error: The file 'Seasons_Stats.csv' was not found.")
841 31     sys.exit(1)
842 32
843 33 # --- Data Cleaning and Preparation ---
844 34
845 35 # Handle potential NaN values in critical columns.
846 36 # Drop rows where 'Year' is NaN as they cannot be used for time-series analysis.
847 37 stats_df.dropna(subset=['Year'], inplace=True)
848 38 # Fill NaN 'PTS' with 0, assuming missing points data means 0 points were scored.
849 39 stats_df['PTS'] = stats_df['PTS'].fillna(0)
850 40
851 41 # Convert data types for consistency and proper calculations.
852 42 stats_df['Year'] = stats_df['Year'].astype(int)
853 43 stats_df['PTS'] = stats_df['PTS'].astype(int)
854 44
855 45 # Step 2: De-duplicate player-season records.
856 46 # Players who were traded mid-season have multiple entries for one year, plus a summary
857 47 # row with 'Tm' (Team) as 'TOT'. The 'TOT' row typically appears first in the dataset
858 48    ↪ for a given player-year.
859 49 # By dropping duplicates on 'Player' and 'Year' and keeping the first entry, we retain
860 50    ↪ the summary row.
861 51 cleaned_df = stats_df.drop_duplicates(subset=['Player', 'Year'], keep='first')
862 52
863 53 # Step 3: Filter data by year and aggregate total points.
864 54 # Filter the data to include only the years from 1950 to 2018, inclusive.
865 55 filtered_df = cleaned_df.query('1950 <= Year <= 2018')
866 56
867 57 # Group the cleaned data by 'Year' and calculate the sum of 'PTS' for each year.
868 58 annual_points = filtered_df.groupby('Year')['PTS'].sum()
869 59
870 60 # Step 4: Load plotting configuration.
871 61 # Read the styling parameters from the YAML file created earlier.
872 62 with open('plot.yaml', 'r') as f:
873 63     plot_params = yaml.safe_load(f)
874 64
875 65 # Step 5: Generate and style the line chart.

```

```

864 61 # Set the figure size from the loaded parameters.
865 62 plt.figure(figsize=plot_params['figsize'])
866 63
867 64 # Plot the aggregated annual total points against the year.
868 65 plt.plot(annual_points.index,
869 66     annual_points.values,
870 67     marker=plot_params.get('marker', 'o'),
871 68     linestyle=plot_params.get('linestyle', '-'),
872 69     color=plot_params.get('line_color', 'b'))
873 70
874 71 # Apply visual styles specified in the YAML configuration.
875 72 plt.title(plot_params['title'])
876 73 plt.xlabel(plot_params['xlabel'])
877 74 plt.ylabel(plot_params['ylabel'])
878 75 if plot_params.get('grid', False):
879 76     plt.grid(True)
880 77
881 78 # Ensure the layout is clean and labels do not overlap.
882 79 plt.tight_layout()
883 80
884 81 # Step 6: Save the final plot.
885 82 # Save the resulting chart as an image file.
886 83 plt.savefig('result.png')
887 84
888 85 # Close the plot to release system resources.
889 86 plt.close()
890 87
891 88 print("Visualization saved successfully as 'result.png'.")
```

Example 2 Inputs

```

1 ## Task Instruction
2 **Task:**
3 Calculate the **Pearson correlation coefficient** between the standardized Average
4     ↳ Playtime and standardized Positive Ratings using the Steam Store Games dataset.
5     ↳ Filter the data to only include games with positive ratings and positive playtime.
6     ↳ Plot the results in a scatter plot following `plot.yaml` requirements and save it as
7     ↳ `result.png`.
8
9 ---
10 ## Environment
11 |--- steam.csv # Core dataset with game-level metadata (title, app ID, release info,
12 |     ↳ etc.)
13 |--- steam_description_data.csv # Game descriptions and textual metadata
14 |--- steam_media_data.csv # Media assets metadata (images, videos, links)
15 |--- steam_requirements_data.csv # System requirements (Windows, Mac, Linux)
16 |--- steam_support_info.csv # Support information (developer contact, website, etc.)
17 |--- steamspy_tag_data.csv # Community tags and genre/category labels
18 |--- plot.yaml # Plotting configuration file (primary)
```

Verbose Instruction (Human-curated) The following detailed instructions were manually organized by the authors to ensure clarity and reproducibility. **Note:** Several aspects below represent *human-identified challenges* that are not directly contained in the raw datasets.

1. Check Available Resources and Directory Structure

Confirm presence of steam.csv, steam_description_data.csv, steam_media_data.csv, steam_requirements_data.csv, steam_support_info.csv, steamspy_tag_data.csv, and plotting configuration file (plot.yaml).

Human note: The dataset does not explicitly document dependencies across these tables; authors curated the relevant set manually.

2. Data Review

- Parse steam.csv for core identifiers (app ID, title, release year).
- Use auxiliary tables to enrich attributes (tags, system requirements, support info, descriptions).

Figure 5: Comparison between our generated visualization and the ground truth for the Steam dataset. The results indicate that our approach successfully integrates multiple heterogeneous tables and reproduces the intended visualization with complete fidelity (score: **100/100**).

Human note: None of the datasets provide a unified schema; integration must be designed manually.

3. Primary Metric Construction (Default)

Define the analysis target (e.g., distribution of games per year, tag frequency, platform coverage). Construct aggregated metrics aligned with the visualization goal.

Human note: The specific analytical objective (e.g., “game releases per year”) is not included in the dataset and was defined by the authors.

4. Filtering / Top-K Selection (Optional)

- Restrict to a target period (e.g., 2000–2020).
- Apply Top-K filters by popularity, tags, or developer if required.

Human note: Filtering logic is absent in the raw data and was designed for clarity in visualization.

5. Read Plot Configuration

Parse style and formatting options from `plot.yaml`.

Human note: Plot specifications are not embedded in the dataset; authors manually authored the YAML configuration.

6. Create the Figure

- Generate visualization according to aggregated metrics.
- Apply palette, axis labels, and layout as specified in configuration.
- Save output as `result.png`.

Human note: Visualization design decisions (choice of chart type, color scheme) are external to the dataset and human-curated.

7. Reproducibility

Document assumptions in data integration and filtering. Provide a table and the constructed figure.

Human note: Reproducibility relies on explicit author-side documentation rather than inherent dataset properties.

Result Analysis. The comparison (Figure 5) between our generated visualization and the reference output demonstrates that our system is capable of handling heterogeneous and fragmented data sources, such as the Steam metadata tables, with high fidelity. Despite the absence of a unified schema and the need for manual integration across multiple files, our pipeline successfully reproduced the intended visualization without error. This outcome confirms that our method not only aggregates and processes complex datasets effectively but also renders results fully consistent with the ground truth, achieving a perfect score of **100/100**.

Our Generated Code

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
```

```

972 4   from scipy.stats import pearsonr
973 5   import matplotlib.pyplot as plt
974 6   import yaml
975 7   import os
976 8
977 9   # --- Step 1: Create the plot.yaml configuration file ---
97810  # This file dictates the visual styling of the plot.
97811 yaml_config_str = """
97912   title: 'Standardized Playtime vs. Positive Ratings (Pearson r = {correlation:.3f})'
98013   xlabel: 'Standardized Average Playtime'
98114   ylabel: 'Standardized Positive Ratings'
98215   font_sizes:
98316     title: 16
98417     axes_label: 14
98518     tick_labels: 12
98619   scatter_plot:
98720     color: '#007ACC'
98821     alpha: 0.6
98922     marker: 'o'
99023     edgecolor: 'k'
99124     s: 45
99225   figure:
99326     figsize: [12, 7]
99427     dpi: 120
99528     style: 'seaborn-v0_8-whitegrid'
99629 """
99730
99831 with open('plot.yaml', 'w') as f:
99932   f.write(yaml_config_str)

# --- Step 2: Load plotting specifications from plot.yaml ---
100033 with open('plot.yaml', 'r') as f:
100134   config = yaml.safe_load(f)

# --- Step 3: Load and process the data ---
100235 # The user specified 'steam.csv'. We will use this file.
100336 # Note: The 'AVAILABLE DATA' section mentioned 'steam_media_data.csv', but the query was
100437 # explicit.
100538 file_path = 'steam.csv'
100639 if not os.path.exists(file_path):
100740   # As a fallback, check for the other filename if steam.csv is not found.
100841   # This handles potential environment discrepancies.
100942   if os.path.exists('steam_media_data.csv'):
101043     file_path = 'steam_media_data.csv'
101144   else:
101245     raise FileNotFoundError(f"Could not find the required data file: '{file_path}'"
101346     # or 'steam_media_data.csv'")
101447
101548 # Load the dataset into a pandas DataFrame
101649 df = pd.read_csv(file_path)

# Filter the DataFrame to keep only rows with positive values for both variables
101750 # Using .copy() to avoid SettingWithCopyWarning
101851 filtered_df = df[(df['average_playtime'] > 0) & (df['positive_ratings'] > 0)].copy()

# --- Step 4: Standardize the relevant columns ---
101952 # Select the columns for standardization
102053 data_to_scale = filtered_df[['average_playtime', 'positive_ratings']]

# Initialize and apply the StandardScaler
102154 scaler = StandardScaler()
102255 scaled_data = scaler.fit_transform(data_to_scale)

# Add the new standardized columns to the filtered DataFrame
102356 filtered_df['std_avg_playtime'] = scaled_data[:, 0]
102457 filtered_df['std_pos_ratings'] = scaled_data[:, 1]
102558
102659
102760
102861
102962
103063
103164
103265
103366

```

```

102667     |
102768 # --- Step 5: Calculate the Pearson correlation coefficient ---
102869 # Calculate the correlation on the standardized data
102970 correlation, _ = pearsonr(filtered_df['std_avg_playtime'],
103071   ↪ filtered_df['std_pos_ratings'])
103172     |
103273 # --- Step 6: Create and style the scatter plot ---
103374 # Apply a base style for the plot from the config
103475 plt.style.use(config['style'])
103576     |
103677 # Create a figure and axes with specified size and DPI
103778 fig, ax = plt.subplots(figsize=config['figure']['figsize'], dpi=config['figure']['dpi'])
103879     |
103980 # Generate the scatter plot using data and styling from config
104081 ax.scatter(
104182     filtered_df['std_avg_playtime'],
104283     filtered_df['std_pos_ratings'],
104384     color=config['scatter_plot']['color'],
104485     alpha=config['scatter_plot']['alpha'],
104586     marker=config['scatter_plot']['marker'],
104687     edgecolors=config['scatter_plot']['edgecolor'],
104788     s=config['scatter_plot']['s']
104889 )
104990     |
105091 # Set titles and labels, formatting the title with the calculated correlation
105192 ax.set_title(
105293     config['title'].format(correlation=correlation),
105394     fontsize=config['font_sizes']['title'],
105495     fontweight='bold'
105596 )
105697 ax.set_xlabel(
105798     config['xlabel'],
105899     fontsize=config['font_sizes']['axes_label']
1059100 )
1060101 ax.set_ylabel(
1061102     config['ylabel'],
1062103     fontsize=config['font_sizes']['axes_label']
1063104 )
1064105     |
1065106 # Customize tick label sizes
1066107 ax.tick_params(axis='both', which='major',
1067108   ↪ labelsize=config['font_sizes']['tick_labels'])
1068109     |
1069110 # Ensure the layout is tight to prevent labels from being cut off
1070111 plt.tight_layout()
1071112     |
1072113 # --- Step 7: Save the final plot to a file ---
1073114 # Save the plot to 'result.png'
1074115 plt.savefig('result.png')
1075116     |
1076117 print("Successfully generated and saved the plot as 'result.png'.")
1077118 print(f"Pearson Correlation Coefficient: {correlation:.3f}")

```

B.2 MATPLOTBENCH EXAMPLE

Example 1 Inputs

```

10781 # Example 1
10792 ## Task Instruction
3    **Task:**
```

4 Utilize the following data columns from 'data.csv' to create a sunburst plot:
→ 'country': for the names of the countries,
→ 'continent': to indicate which continent each country is in,
→ 'lifeExp': showing the expected lifespan in each country,
→ 'pop': representing the population of each country.
→ Your chart should:
→ Organize the data hierarchically, starting with continents and then breaking down into countries.
→ Use the population of each country to determine the size of its segment in the chart.
→ Color code each segment by the country's expected lifespan, transitioning from red to blue across the range of values.
→ Set the central value of the color scale to the average lifespan, weighted by the population of the countries.
→ Finally, include a legend to help interpret the lifespan values as indicated by the color coding.

```
## Environment  
|--- data.csv
```


(a) CoDA Output

(b) Ground Truth

Figure 6: Comparison between our generated sunburst plot and the reference output. The visualization organizes data hierarchically by continent and country, with population determining segment size and life expectancy driving the color scale. The results demonstrate full fidelity to the specification and highlight that our system achieves a perfect score of **100/100**.

Result Analysis. The sunburst visualization task required a multi-level hierarchical organization of the data, starting from continents and further breaking down into individual countries. Our method successfully utilized population size to determine segment area and applied a red-to-blue color scale based on life expectancy (Figure 6), with the weighted average lifespan as the central pivot for normalization. This design ensured both interpretability and faithful representation of the dataset’s structure. The resulting chart aligns precisely with the ground truth and provides an intuitive overview of demographic and geographic patterns, achieving a perfect score of **100/100**.

C ANALYSIS OF FAILURE CASES AND LIMITATIONS

To better understand when and why **CoDA** may struggle, we analyze a representative hard example in MatplotlibBench. This task requires a two-level hierarchical donut chart of browser market share (inner ring = browser totals; outer ring = version breakdown) with a hollow center, explicit white gaps between rings and wedges, and readable leader-line labels for dozens of fine-grained outer segments (complete task is shown below).

```
1132 1 # Example 1
1133 2 ## Task Instruction
      3 **Task:**
```

```
1134 4 I have a dataset named \"data.csv\" containing browser market share information in a CSV
1135 4
1136 4
1137 4
1138 4
1139 4
1140 4
1141 4
1142 4
1143 4
1144 4
1145 4
1146 5
1147 6
1148 7
1149 8
```


Figure 7: **CoDA**’s outputs. (a) Output after three self-reflection iterations (failure). (b) Output after four iterations (success).

The core difficulty lies not only in correct hierarchical aggregation and proportional geometry, but equally in (i) deep understanding of the underlying data distribution and (ii) deliberate perceptual planning of information display. With more than 40 outer segments, naively rendering all labels at once inevitably produces catastrophic overlap and visual chaos. Success therefore requires the system to make informed choices about radius ratios, wedge spacing, label placement strategy, and color contrast.

With **CoDA**'s default setting of three self-reflection iterations, the system reliably fails (Figure 7 (a)). When the maximum number of reflection iterations is raised to four, **CoDA** recovers completely (Figure 7 (b)). The final chart exhibits correct hierarchical nesting, a clean hollow center with balanced radii, uniform white spacing, and fully readable leader-line annotations. The recovery process is instructive. Table 6 presents the key feedback trace.

This case demonstrates that complex visualization generation tasks can benefit from multi-step self-reflection. Shallow reflection tends to fix superficial bugs, while deeper self-reflection allows the model to re-plan the solution holistically, leading to both correctness and visual clarity.

While **CoDA** substantially advances automated visualization, it is by no means a panacea. From our experimental results, we observe several limitations. First, inherently ambiguous or purely aesthetic queries (e.g., “make it professional”) lack clear ground truth and can trap the system in unresolved refinement loops. Second, domain-specific visualization conventions often cannot be inferred from metadata alone, leading to reasonable but non-canonical designs. **CoDA** remains a powerful assistant

Iter	Evaluator Feedback (excerpt)	Triggered Fix
1	Code fails to run: CSV file not found; no figure produced.	Debug Agent → Corrects filename to data.csv.
2	Two-layer donut appears, but outer labels clutter the entire perimeter; arrows overlap; inner labels unreadable.	Design Explorer + VizMapping → Reorders hierarchy, applies browser-level color palette, adjusts ring radii for clearer structure.
3	Structure is correct but readability poor: tiny slices still labeled; text crowded; fonts too small.	Design Explorer → Adds size thresholds for labeling, restricts inner-ring labels, increases font sizes and title weight.
4	Two-level hierarchy clear; spacing visible; only major slices labeled; no overlaps; chart rated high readability.	Halt.

Table 6: Iteration trace for the browser sunburst task, showing how deeper reflection improves structure and readability.

rather than a full substitute for human expertise. Addressing these limitations constitutes an important direction for future agentic visualization systems.

D JUDGING PROMPTS AND MODEL SETUP

To ensure consistent and objective evaluation of generated visualizations, we employ an LLM-based judge, specifically `gemini-2.5-pro`, to assign code and visualization quality scores.

We adapt prompts from the original MatplotBench (from the MatPlotAgent repository) and Qwen-Agent evaluations (official evaluation for Qwen Code Interpreter). This ensures consistent, scalable assessment while reducing bias. MatplotBench overall score averages the two; Qwen uses binary 100/0 via combined prompt. Non-executable code scores 0.

The prompts for MatplotBench and Qwen Code Interpreter benchmark are shown in the following.

```

# MatplotBench Evaluation Prompts
## Code
You are an excellent judge at evaluating generated code given an user query. You will be
→ giving scores on how well a piece of code adheres to an user query by carefully
→ reading each line of code and determine whether each line of code succeeds in
→ carrying out the user query.
A user query, a piece of code and an executability flag will be given to you. If the
→ Executability is False, then the final score should be 0.
**User Query**: {query}
**Code**: {code}
**Executability**: {executable}
Carefully read through each line of code. Scoring can be carried out in the following
→ aspect:
Code correctness (Code executability): Can the code correctly achieve the requirements
→ in the user query? You should carefully read each line of the code, think of the
→ effect each line of code would achieve, and determine whether each line of code
→ contributes to the successful implementation of requirements in the user query. If
→ the Executability is False, then the final score should be 0.
After scoring from the above aspect, please give a final score. The final score is
→ preceded by the [FINAL SCORE] token.
For example [FINAL SCORE]: 40. A final score must be generated.

## Plot
You are an excellent judge at evaluating visualization plots between a model generated
→ plot and the ground truth. You will be giving scores on how well it matches the
→ ground truth plot.
**Generated plot**: {generated_plot}

```

1242¹⁶ ****Ground truth**:** {GT}
 1243¹⁷ The generated plot will be given to you as the first figure. If the first figure is
 1244¹⁸ → blank, that means the code failed to generate a figure.
 1245¹⁹ Another plot will be given to you as the second figure, which is the desired outcome of
 1246²⁰ → the user query, meaning it is the ground truth for you to reference.
 1247²¹ Please compare the two figures head to head and rate them.
 1248²² Suppose the second figure has a score of 100, rate the first figure on a scale from 0 to
 1249²³ → 100.
 1250²⁴ Scoring should be carried out in the following aspect:
 1251²⁵ Plot correctness:
 1252²⁶ Compare closely between the generated plot and the ground truth, the more resemblance
 1253²⁷ → the generated plot has compared to the ground truth, the higher the score. The score
 1254²⁸ → should be proportionate to the resemblance between the two plots.
 1255²⁹ In some rare occurrence, see if the data points are generated randomly according to the
 1256³⁰ → query, if so, the generated plot may not perfectly match the ground truth, but it is
 1257³¹ → correct nonetheless.
 1258³² Only rate the first figure, the second figure is only for reference.
 1259³³ If the first figure is blank, that means the code failed to generate a figure. Give a
 1260³⁴ → score of 0 on the Plot correctness.
 1261³⁵ After scoring from the above aspect, please give a final score. The final score is
 1262³⁶ → preceded by the [FINAL SCORE] token.
 1263³⁷ For example [FINAL SCORE]: 40.

1264³⁸
 1265³⁹ # Qwen Code Interpreter Benchmark Evaluation Prompts
 1266⁴⁰ Please judge whether the image is consistent with the [Question] below, if it is
 1267⁴¹ → consistent then reply "right", if not then reply "wrong".
 1268⁴² Consider these relaxed conditions:
 1269⁴³ - Allow reasonable interpretations and creative variations
 1270⁴⁴ - Focus on whether the core visualization requirement is addressed
 1271⁴⁵ - Accept different implementation approaches that achieve similar goals
 1272⁴⁶ - Be lenient with styling and formatting differences
 1273⁴⁷
 1274⁴⁸ ****Question**:** {query}
 1275⁴⁹ After your judgment, please also provide a brief explanation of your reasoning in 2-3
 1276⁵⁰ → sentences.
 1277⁵¹ Expected leading token (normalized by code): CORRECT or WRONG

E PROMPTS USED IN **CoDA**

1278¹ The prompts employed in CoDA are designed to imbue each agent with a professional persona,
 1279² standardize structured outputs via dataclasses (e.g., `QueryAnalysisResult`), and facilitate quality-
 1280³ driven feedback without requiring model fine-tuning. These prompts encapsulate domain-specific
 1281⁴ reasoning—ranging from semantic parsing in the `Query Analyzer` to statistical inference in the
 1282⁵ `Data Processor`, visualization mapping in the `VizMapping Agent`, external knowledge retrieval in
 1283⁶ the `Search Agent`, design recommendations in the `Design Explorer`, executable code synthesis in
 1284⁷ the `Code Generator`, error diagnosis in the `Debug Agent`, and perceptual assessment in the `Visual`
 1285⁸ `Evaluator`—while incorporating context from prior outputs and the global `TODO` list to maintain
 1286⁹ workflow coherence. Below, we enumerate all core prompts used across the agents, including
 1287¹⁰ variations for refinement iterations.

1288¹¹ # Query Analyzer
 1289¹² You are Dr. Sarah Chen, visualization query expert. Analyze this query and create a
 1290¹³ → master TODO list.
 1291¹⁴ USER QUERY: "{query}"
 1292¹⁵ {meta_files}
 1293¹⁶ Respond with concise JSON:
 1294¹⁷ {
 1295¹⁸ "interpreted_intent": "what user wants to visualize",
 1296¹⁹ "visualization_type": "plot type (scatter/bar/line/histogram/boxplot/heatmap etc)",
 1297²⁰ "plotting_key_points": [
 1298²¹ "key point 1: specific visualization requirement",
 1299²²]
 1300²³ }

```

129612     "key point 2: data processing requirement",
129713     "key point 3: styling/design requirement",
129814     "key point 4: additional features/constraints"
129915 ],
130016     "implementation_plan": [
130117         {"step": 1, "action": "Load and prepare data", "details": "specific data
130218             → loading/processing steps", "functions": ["pd.read_csv", "etc"]},
130319         {"step": 2, "action": "Create base plot", "details": "basic chart creation",
130420             → "functions": ["plt.figure", "plt.plot", "etc"]},
130521         {"step": 3, "action": "Apply formatting", "details": "styling and formatting",
130622             → "functions": ["plt.xlabel", "ax.tick_params", "etc"]},
130723         {"step": 4, "action": "Finalize and save", "details": "final touches and save",
130824             → "functions": ["plt.tight_layout", "plt.savefig", "etc"]}
130925     ],
131026     "global_todo_list": [
131127         {"id": "todo_1", "task": "specific task description", "agent": "data_processor|_
131228             → design_explorer|code_generator|debug_agent|visual_evaluator", "status":_
131329                 → "pending", "priority": "high|medium|low"},
131430         {"id": "todo_2", "task": "specific task description", "agent": "agent_name",
131531             → "status": "pending", "priority": "priority_level"}
131632     ],
131733     "success_criteria": ["criteria for completion"],
131834 }
131935 IMPORTANT: The "plotting_key_points" should be a comprehensive breakdown of ALL key
132036     → visualization requirements from the query, including:
132137     - Chart type and specific visualization style
132238     - Data columns/variables to use
132339     - Color schemes, styling requirements
132440     - Interactive elements or special features
132541     - Layout, axis, legend requirements
132642     - Any domain-specific requirements (scientific, business, etc.)
132743 Create 3-5 specific TODO items covering data processing, design, code generation,
132844     → debugging, and evaluation.

```

```

13291     # Data Processor
13302 You are Prof. Marcus Rodriguez (Stanford Statistics PhD), an expert in statistical
13313     → analysis, data quality assessment, and insight extraction. Analyze this data for
13324     → visualization.
13335     {data_section}
13346     TASKS TO COMPLETE:
13357     {todo_text}
13368     ANALYSIS NEEDED:
13379     1. What transformations are required? (groupby, pivot, filter)
133810     2. Which columns are key for visualization?
133911     3. Any data quality issues to fix?
134012     4. What's the simplest way to prepare this data?
134113     Output JSON:
134214     {
134315         "processing_steps": [
134416             "step 1: specific transformation",
134517             "step 2: another transformation"
134618         ],
134719         "insights": {
134820             "key_columns": ["col1", "col2"],
134921             "aggregations_needed": ["sum sales by region"],
135022             "quality_issues": ["nulls in X column"]
135123         },
135224         "visualization_hint": "best chart type for this data"
135325     }
135426     <(optional) If there are no data files in the input>
135527     Create simple data for a matplotlib visualization.
135628     The visualization requirements are:

```

```

135028 {query_text}
135129 TODO items from analysis:
135230 {todo_text}
135331 Generate Python code that creates the RIGHT data (pandas DataFrame) that works for this
135432 ↳ specific plot.
135533 Deep understanding approach:
1. ANALYZE the visualization requirements carefully
2. UNDERSTAND what type of data this plot needs
3. DETERMINE the appropriate data structure and format
4. DECIDE the optimal number of data points based on plot type
1359
13601 # VizMapping Agent
13612 You are Dr. Sarah Kim, a data visualization expert & UX designer. You are a data
13623 ↳ visualization expert. Map this user query to specific data columns and chart
13634 ↳ configuration.
13645 USER QUERY: "{query}"
13656 {context_block}
13667 AVAILABLE DATA:
13678 Shape: {data_summary['shape'][0]} rows x {data_summary['shape'][1]} columns
13689 Columns:
136910 {data_structure}
137011 Sample data:
137112 {json.dumps(data_summary['sample_data'][:2], indent=2)}
137213 TASK: Determine the optimal visualization mapping.
137314 Respond with JSON:
137415 {
137516     "chart_type": "bar|line|scatter|pie|histogram|box|heatmap",
137617     "data_mappings": {
137718         "x_axis": "column_name_for_x",
137819         "y_axis": "column_name_for_y",
137920         "color": "column_for_grouping_colors",
138021         "size": "column_for_sizes",
138122         "category": "column_for_categories"
138223     },
138324     "aggregations": [
138425         {"operation": "sum|mean|count|max|min", "column": "column_name", "group_by": "grouping_column"
138526     ],
138627     "filters": [
138728         {"column": "column_name", "condition": "filter_condition"
138829     ],
138930     "styling_hints": {
139031         "title": "Chart title based on query",
139132         "xlabel": "X-axis label",
139233         "ylabel": "Y-axis label",
139334         "color_palette": "suggested_palette"
139435     },
139536     "transformations": [
139637         "pandas operation if needed, e.g., 'df.groupby(x).sum()'"
139738     ],
139839     "goal": "Brief description of what this visualization shows",
139940     "rationale": "why this mapping fits the query and data",
140041     "confidence": 0.0-1.0
1401
14021 # Search Agent
14032 As Dr. Michael Zhang, an expert in data visualization and matplotlib, generate a
14043 ↳ high-quality matplotlib example for the plot type: "{plot_type}".

```

```

14043
14054 IMPORTANT CONSTRAINTS:
14065 - Base your code PRIMARILY on matplotlib official examples:
14076   ↳ https://matplotlib.org/stable/gallery/index.html and
14087   ↳ https://matplotlib.org/stable/plot\_types/index.html
14098 - You may also use The Python Graph Gallery as style reference:
14109   ↳ https://python-graph-gallery.com/
141110 - Do NOT invent new APIs. Follow official patterns exactly.
141211
141312 Your task:
141413 1. Understand what type of visualization "{plot_type}" refers to according to
141514   ↳ matplotlib's official plot types
141615 2. Generate a complete, executable matplotlib code example following official matplotlib
141716   ↳ patterns
141817 3. Use the exact style and approach shown in matplotlib's official documentation
141918 4. Include proper imports, sample data, styling, and annotations as shown in official
142019   ↳ examples
142120 5. Follow matplotlib's official best practices and naming conventions
142221
1423 Requirements for the matplotlib code:
142422 - Use ONLY matplotlib.pyplot (import matplotlib.pyplot as plt)
142523 - Follow the exact patterns from https://matplotlib.org/stable/gallery/ documentation
142624   ↳ examples
142725 - Include numpy for data generation if needed (as shown in official examples)
142826 - Create realistic sample data appropriate for the plot type (following official
142927   ↳ examples)
143028 - Add proper labels, title, and styling (matching official documentation style)
143129 - Include plt.show() at the end
143230 - Make the code self-contained and executable
143331 - Add informative comments that match matplotlib documentation style
143432
1435 Respond with ONLY the Python code in this format:
143633 '''python
# [Brief description matching matplotlib docs style]
import matplotlib.pyplot as plt
import numpy as np

# Your complete example code here following official matplotlib patterns
# Include comments matching matplotlib documentation style

plt.show()
'''
143734
143835
143936
144037 Plot type to implement: {plot_type}
144138 Primary references:
144239 - https://matplotlib.org/stable/gallery/index.html
144340 - https://matplotlib.org/stable/plot\_types/index.html
144441 Secondary reference: https://python-graph-gallery.com/

```

```

14451
14462 # Design Explorer
14473 You are Isabella Nakamura, an RISD MFA and Apple Senior Designer specializing in visual
14484   ↳ design and user experience.
1449 Analyze the following requirements to create comprehensive design specifications:
14505 Query Analysis:
14516 - Original Query: "{query_result.original_query}"
14527 - Interpreted Intent: "{query_result.interpreted_intent}"
14538 - Visualization Type: "{query_result.visualization_type}"
1454 Data Characteristics:
1455   {json.dumps(data_characteristics, indent=2, default=str)}
1456 Design TODO Items:
1457   {json.dumps(design_todos, indent=2)}
1458   {constraints_str}
1459   {examples_str}
1460 Please provide a comprehensive design analysis in JSON format. Consider the examples
1461   ↳ above when making design decisions:

```

```

145815  {
145916      "design_objectives": [
146017          "Primary design goals",
146118          "User experience objectives",
146219          "Communication goals"
146320      ],
146421      "target_audience": {
146522          "primary_audience": "Who is the main audience",
146623          "expertise_level": "beginner|intermediate|expert",
146724          "context_of_use": "presentation|exploration|reporting",
146825          "accessibility_requirements": ["specific accessibility needs"]
146926      },
147027      "visual_hierarchy": {
147128          "primary_elements": ["most important visual elements"],
147229          "secondary_elements": ["supporting elements"],
147330          "emphasis_strategy": "how to create visual emphasis"
147431      },
147532      "color_strategy": {
147633          "primary_colors": ["#hex1", "#hex2"],
147734          "color_meaning": "what colors communicate",
147835          "accessibility_compliance": "WCAG compliance level",
147936          "cultural_considerations": "any cultural color meanings"
148037      },
148138      "layout_principles": {
148239          "composition_approach": "grid|organic|asymmetric|balanced",
148340          "spacing_strategy": "tight|moderate|generous",
148441          "alignment_system": "left|center|right|justified",
148542          "proportion_ratios": "golden ratio|rule of thirds|custom"
148643      },
148744      "typography_requirements": {
148845          "font_hierarchy": "title|subtitle|body|caption sizes",
148946          "readability_priority": "high|medium|low",
149047          "brand_alignment": "corporate|academic|creative|technical"
149148      },
149249      "interaction_design": {
149350          "interaction_level": "static|basic|advanced",
149451          "user_controls": ["zoom", "filter", "hover"],
149552          "feedback_mechanisms": "visual|audio|haptic"
149653      },
149754      "technical_constraints": {
149855          "output_format": "static|interactive|animated",
149956          "size_limitations": "print|screen|mobile",
150057          "performance_requirements": "fast|moderate|detailed"
150158      },
150259      "innovation_opportunities": [
150360          "Areas for creative enhancement",
150461          "Unique design elements to explore"
150562      ],
150663      "design_confidence": 0.95
150764  }

```

```

15021  # Design Explorer (@Self-reflection)
15032  You are Isabella Nakamura, an expert designer. The current design received feedback from
15043  ↪ visual evaluation.

15054  ORIGINAL DESIGN SPECIFICATIONS:
15065  - Primary Design: {json.dumps(original_design_result.primary_design.__dict__, indent=2,
15076  ↪ default=str)}
15087  - Alternative Designs Available: {len(original_design_result.alternative_designs)}
15098  VISUAL FEEDBACK ANALYSIS:
15109  - Feedback Comments: {visual_feedback.get("visual_feedback", [])}
151110 - Quality Issues: {quality_issues}
151211 - Target Quality Threshold: {target_quality}
151312 - Current Quality Score: Below threshold

```

1512¹² REFINEMENT STRATEGY:
 1513¹³ Based on the feedback, determine what needs to change:
 1514¹⁴ 1. **Color Issues**: If feedback mentions colors, provide new color scheme
 1515¹⁵ 2. **Layout Issues**: If feedback mentions spacing/layout, adjust layout specifications
 1516¹⁶ 3. **Typography Issues**: If feedback mentions text/fonts, update typography
 1517¹⁷ 4. **Overall Aesthetic**: If feedback mentions visual appeal, try alternative design
 1518¹⁸ REFINEMENT ACTION:
 1519¹⁹ Choose the best approach and provide updated design specifications in the same JSON
 ↳ format as the original primary design.
 1520²⁰ Focus on addressing the specific feedback while maintaining design coherence.
 1521²¹ Return the refined design specification as JSON.

1522

1523

1524

```
# Code Generator
You are Alex Thompson, a CMU CS MS and Microsoft Engineer specializing in high-quality
→ code generation.
Analyze the following requirements to create a CONCISE code generation plan:
Context:
{safe_json_dumps(context, indent=2)}
Design Specifications:
{safe_json_dumps(design_result.primary_design.__dict__, indent=2)}
Data Characteristics:
- Shape: {data_result.processed_data.shape}
- Columns: {list(data_result.processed_data.columns)}
- Quality Score: {data_result.data_quality_score}
{enhanced_fixes_str}{requirements_str}{todos_str}
Please provide a detailed code generation analysis in JSON format:
{
    "code_architecture": {
        "main_functions": ["function names and purposes"],
        "helper_functions": ["utility functions needed"],
        "class_structure": "needed classes if any",
        "modular_design": "how to structure the code"
    },
    "matplotlib_approach": {
        "plotting_method": "plt.subplots|plt.figure|object_oriented",
        "style_management": "rcParams|style_sheets|manual",
        "color_implementation": "colormap|manual_colors|cycler",
        "layout_strategy": "tight_layout|gridspec|constrained_layout"
    },
    "data_handling": {
        "data_preparation": ["preprocessing steps"],
        "data_validation": ["validation checks"],
        "error_handling": ["error scenarios to handle"],
        "performance_considerations": ["optimization strategies"]
    },
    "code_structure": {
        "imports": ["required imports"],
        "configuration": "setup and configuration code",
        "main_plotting": "core plotting logic",
        "customization": "styling and customization",
        "output_handling": "save and display logic"
    },
    "quality_requirements": {
        "code_style": "PEP8|Google|specific_style",
        "documentation_level": "minimal|standard|comprehensive",
        "error_handling_level": "basic|robust|comprehensive",
        "performance_priority": "readability|balanced|speed"
    }
}
```

Focus on creating clean, maintainable, and efficient code that accurately implements the
 ↳ design specifications.

```

1566
1567 1 # Debug Agent
1568 2 You are Jordan Martinez, debugging specialist. Fix this Python matplotlib code.
1569 3 ISSUE ANALYSIS:
1570 4 {json.dumps(error_analysis, indent=2)}
1571 5 CURRENT CODE:
1572 6
1573 7 {code}
1574 8
1575 9
1576 10 {error_msg}
1577 11 TASK: Search the internet to fix this issue completely.
1578 12 Provide your analysis in this JSON format:
1579 13 {
1580 14     "error_type": "visual_overlap|syntax|runtime|import|logic",
1581 15     "root_cause": "detailed explanation of the issue",
1582 16     "overlapping_elements": ["if overlap, list affected elements"],
1583 17     "missing_requirements": "what needs to be added or changed",
1584 18     "error_location": "where the issue occurs in the code",
1585 19     "fixed_code": "your fixed matplotlib code",
1586 20     "confidence": 0.0-1.0
1587 21 }

1588
1589 1 # Visual Evaluator
1590 2
1591 3 You are Dr. Elena Vasquez, a Harvard Psychology PhD and Adobe UX Researcher specializing
1592 4 in human perception, visual cognition, and chart validation.
1593 5 Analyze this matplotlib visualization with STRICT semantic accuracy requirements:
1594 6 {query_context}{key_points_context}
1595 7 Image Properties:
1596 8 {safe_json_dumps(image_properties, indent=2)}

1597 9 Data Context:
1598 10 - Shape: {data.shape}
1599 11 - Columns: {list(data.columns)}
1600 12 - Data Types: {dict(zip(data.columns, [str(dtype) for dtype in data.dtypes]))}
1601 13 PERFORM DETAILED SEMANTIC VALIDATION:
1602 14 1. **Data-Query Alignment**: Does the visualization show the EXACT data relationships
1603 15 requested?
1604 16 2. **Mathematical Accuracy**: Are formulas, functions, and calculations correctly
1605 17 implemented?
1606 18 3. **Visual Element Compliance**: Are all requested visual elements (colors, markers,
1607 19 labels, axes) present and correct?
1608 20 4. **Layout and Structure**: Does the plot structure match the specification (subplots,
1609 21 dimensions, arrangement)?
1610 22 5. **Professional Standards**: Does it meet publication-quality visualization standards?
1611 23 IMPORTANT SEMANTIC CHECKS:
1612 24 - If query asks for specific mathematical functions, verify they are correctly visualized
1613 25 - If query specifies data ranges or axis limits, verify they are correctly set
1614 26 - If query requires specific colors or styling, verify exact compliance
1615 27 - If query asks for multiple subplots with specific content, verify each subplot
1616 28 individually
1617 29 - If query specifies markers, line styles, or visual effects, verify they are correctly
1618 30 applied
1619 31 Respond with detailed JSON assessment:
1620 32 {
1621 33     "semantic_accuracy": {
1622 34         "data_query_match": "excellent|good|fair|poor",
1623 35         "mathematical_correctness": "excellent|good|fair|poor",
1624 36         "visual_element_compliance": "excellent|good|fair|poor",
1625 37         "layout_structure_match": "excellent|good|fair|poor",
1626 38         "specification_adherence_score": 0.0-1.0
1627 39     },
1628 40     "quality_assessment": {
1629 41         "overall_quality": "excellent|good|fair|poor",
1630 42     }
1631 43 }
1632 44
1633 45
1634 46
1635 47

```

```

162036     "readability": "excellent|good|fair|poor",
162137     "visual_appeal": "high|medium|low",
162238     "professional_appearance": "yes|no|partially"
162339 },
162440     "requirement_analysis": {
162541         "key_points_covered": ["list specific requirements correctly implemented"],
162642         "key_points_missing": ["list specific requirements NOT implemented"],
162743         "critical_errors": ["list major deviations from requirements"],
162844         "requirement_match_percentage": 0.0-1.0
162945     },
163046     "accessibility_check": {
163147         "color_contrast_adequate": true|false,
163248         "colorblind_friendly": true|false,
163349         "text_size_adequate": true|false,
163450         "wcag_compliance_level": "AA|A|none"
163551     },
163652     "final_recommendation": {
163753         "decision": "approve|revise|reject",
163854         "confidence_level": 0.0-1.0,
163955         "primary_issues": ["list main problems"],
164056         "improvement_priority": "high|medium|low"
1641     }
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

```

Be extremely strict in semantic validation. A visualization that doesn't match the query
 → requirements should receive low scores regardless of aesthetic quality.