Under review as a conference paper at ICLR 2026

CoDA: AGENTIC SYSTEMS FOR COLLABORATIVE DATA
VISUALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Automating data visualization from natural language is crucial for data science,
yet current systems struggle with complex datasets containing multiple files and
iterative refinement. Existing approaches, including simple single- or multi-agent
systems, often oversimplify the task, focusing on initial query parsing while failing
to robustly manage data complexity, code errors, or final visualization quality. In
this paper, we reframe this challenge as a collaborative multi-agent problem. We
introduce CoDA, a multi-agent system that employs specialized LLM agents for
metadata analysis, task planning, code generation, and iterative reflection. We
formalize this pipeline, demonstrating how metadata-focused analysis bypasses
token limits and quality-driven refinement ensures robustness. Extensive evalu-
ations show CoDA achieves substantial gains in the overall score, outperforming
competitive baselines by up to 41.5%. This work demonstrates that the future
of visualization automation lies not in isolated code generation but in integrated,
collaborative agentic workflows.

1 INTRODUCTION

Data visualization plays an important role in business intelligence, data science and decision-making,
enabling professionals to uncover insights from complex datasets through intuitive graphical rep-
resentations (Ramesh & Rajabiyazdi, 2024; Gahar et al., 2024; Jambor, 2024; Beschi et al., 2025;
Rogers et al., 2024). In practice, data analysts might spend over two-thirds of their time on low-level
data preparation and visualization tasks, often iterating manually to achieve clarity, accuracy, and
aesthetic appeal (Lai et al., 2025; Rezig et al., 2021; Lee et al., 2021). This “unseen tax” diverts
focus from insight generation, highlighting the critical need for automated systems that can transform
natural language queries and complex data into effective visualizations (Wu et al., 2024; Chen et al.,
2024; Wang & Crespo-Quinones, 2023). With the rise of large language models (LLMs) (Naveed
et al., 2025; Achiam et al., 2023; Team et al., 2024; Comanici et al., 2025), there is immense potential
to automate this pipeline. However, realizing this potential requires addressing core challenges: (1)
handling large datasets, (2) coordinating diverse expertise (e.g., linguistics, statistics, design), and (3)
incorporating iterative feedback to refine outputs against real-world complexities like messy multi-file
data and complex visualization needs.

Current approaches to automate visualization suffer from various limitations. Traditional rule-based
systems, such as Voyager (Wongsuphasawat et al., 2017; 2016) and Draco (Yang et al., 2023),
formalize design knowledge as constraints but remain confined to predefined templates, struggling
with natural language queries or diverse data patterns (Wu et al., 2024; Hoque & Islam, 2025).
LLM-based methods, like CoOMLAVIS (Chen et al., 2024), leverage chain-of-thought prompting
to generate visualizations (Comanici et al., 2025), but often ingest raw data directly, risking token
limit violations, hallucinations, and multi-source data faltering (Bai et al., 2024; Chen et al., 2024).
Multi-agent frameworks, such as VisPath and MatplotAgent, introduce collaboration system to
generate plot code but lack metadata-focused analysis, leading to overfitting in data processing
and weak persistence against iterative edits (Seo et al., 2025; Yang et al., 2024b). We argue these
issues stem from a common limitation in current agentic visualization systems: they concentrate
reasoning and coordination on initial query parsing, which proves insufficient for handling complex
data environments (e.g., multiple and large files), code errors, and iterative refinement. This design
limits their ability to adapt to unexpected data challenges.

Under review as a conference paper at ICLR 2026

Input Query Ground Truth MatplotAgent VisPath CoMLA4VIS CoDA

Generate a Python
script that
creates a polar
bar plot using a
fixed seed for
random number
generation to
ensure
reproducibility..

LLM Evaluator

Create a 3D
topographic
visualization
using the
elevation data
from "data.csv".
The visualization
should be
structured in..

LLM Evaluator

Create a plot
consisting of a
side-by-side pie
chart and stacked
bar chart with
the following
details: The pie
chart represents
the distribution..

LLM Evaluator

I have a data
named "data.json",
showing the flow
of energy in
terawatt-hours
(TWh) . The
data.json file
contains a
dictionary..

(LM Evaluator |

Figure 1: Qualitative comparison of visualizations generated by baselines (MatplotAgent, VisPath,
CoMLAVIS) and CoDA. Provided with a natural language query and data files (if has), models produce
code to create plots. CoDA yields outputs that more faithfully capture complex patterns, chart types,
and aesthetics, while baselines often fail on ambiguity, 3D structures, or multi-source integration.

To address these challenges and limitations, we propose CoDA (Collaborative

Agents), a multi-agent system that deepens visualization by projecting tasks into a self-evolving
pipeline where agents specialize in understanding, planning, generating, and reflecting. By analyzing
metadata schemas and statistics without raw data file uploads, we circumvent context window limit
of LLMs; specialized agents enhance domain reasoning; and image-based evaluation verifies the
completion from a human perspective. This builds a robust framework for complex, iterative, and
multi-source agentic visualizations, where agents collaborate deeply to ensure visualization quality.
The key contributions of this work are as follows:

* We propose CoDA, an extensible framework with specialized agents for metadata analysis, task
planning, code generation and debugging, and self-reflection, enabling robust handling of
complex data and visualization needs (See Figure 1 and Appendix B for qualitative analyses).
Extensive experiments on MatplotBench and Qwen Code Interpreter benchmarks yield sub-
stantial gains in the Overall Score over strong baselines such as MatplotAgent, VisPath, and
CoMLAVIS, with maximum improvements of 24.5%, 41.5%, and 26.5% respectively. Fur-
thermore, CoDA significantly outperforms competitive baselines on the DA-Code Benchmark,
which features complex, real-world Software Engineering scenarios.
* A comprehensive ablation study validates the necessity of CoDA’s core components. Results
demonstrate that self-evolution, the global TODO list, and the example search agent each provide
a statistically significant positive impact on overall performance.

2 RELATED WORK

Natural Language to Visualization (NL2Vis). NL2Vis approaches have revolutionized data
exploration in data science by allowing users to articulate queries in natural language and receive

Under review as a conference paper at ICLR 2026

target visualizations (Wang & Crespo-Quinones, 2023; Shen et al., 2022; Wu et al., 2024), thereby
accelerating initial data scouting and ad-hoc reporting (Voigt et al., 2022). Survey on natural language
generation for visualizations provides a taxonomy of techniques and highlights the challenges in
ensuring coherence and fidelity to underlying data information (Hoque & Islam, 2025). Many methods
have formalized this evaluation landscape (Chen et al., 2024; Ouyang et al., 2025; Bai et al., 2025;
Shin et al., 2025), they use chain-of-thought prompting strategies to enhance LLM accuracy on single-
table tasks (Liu et al., 2025). These tools are important for data scientists navigating exploratory
phase (Zhang et al., 2025; Chen et al., 2025), but they have gaps in LLM reasoning under ambiguity
or multi-source data environments (Zhu et al., 2025; Davila et al., 2025). Empirical evaluations of
LLMs in visualization generation reveal shortcomings in CoT-based methods, emphasizing the need
for robust handling of abstract and multifaceted queries in decision-making workflows (Khan et al.,
2025), motivating our shift toward autonomous multi-agent teams.

Agentic Visualization Systems. Agentic systems mark a paradigm shift in visualization for data
science, where it as a distributed problem-solving process among Al agents that mirror collaborative
human co-worker (Sapkota et al., 2025; Tran et al., 2025; Wolter et al., 2025; Xu et al., 2025).
(Goswami et al., 2025; Zhang & Elhamod, 2025) exemplify this by deploying multi-agent LLM
frameworks for autonomous professional visualization, they streamline visual analytics from raw,
unstructured data. Yang et al. introduces a multi-step reasoning agent framework for scientific
plotting, empowering data scientists with code-free handling of complex visualizations (Yang et al.,
2024b). Seo et al. enhances this through multi-path reasoning and feedback optimization for code
synthesis from natural language (Seo et al., 2025). Efforts to extract agent-based design patterns
from visualization systems provide a blueprint for balancing autonomy with human oversight, laying
groundwork for scalable tools in collaborative data environments (Dhanoa et al., 2025). These
agentic systems help compressing hours of manual labor in data science (Moss, 2025; Gridach
et al., 2025). However, they commonly take shortcuts, focusing adaptations on initial planning
stages without persistent reflection (Wang et al., 2025; Sapkota et al., 2025). This shallow agentic
alignment contributes to vulnerabilities in complex scenarios (Cemri et al., 2025; Tian et al., 2025).
Our proposed multi-agent system counters this by enforcing deeper collaboration, via specialized
agents for planning, building, criticism, and reflection, to yield robust narratives.

3 METHOD

In this section, we formalize the collaborative multi-agent paradigm for data visualization and
introduce CoDA. We begin by outlining the key design principles that support agentic visualization
systems, drawing parallels to human collaborative workflows in data analysis and plotting. We then
describe CoDA’s architecture, including the specialized agents and their interactions, and explain how
this framework addresses core challenges in automated visualization.

3.1 THE COLLABORATIVE MULTI-AGENT PARADIGM

Conventional visualization systems, whether rule-based or LLM-driven (Khan et al., 2025; Zhu
et al., 2025; Hutchinson et al., 2024; Shin et al., 2025), typically treat visualization as a monolithic,
single-pass process of parsing a query, ingesting data, and generating code. This leads to unstable
performance on complex queries involving multi-file datasets, ambiguous requirements, or iterative
refinements (). We reframe visualization as a collaborative problem-solving endeavor. Our approach
employs a team of specialized LLM agents, each with a distinct professional persona, that uses
structured communication and quality-driven feedback loops to decompose queries, process data, and
iteratively refine outputs.

Inspired by multi-agent systems in software engineering (Yang et al., 2024a) and interactive reason-
ing (Yao et al., 2022), this paradigm leverages the emergent capabilities of LLMs to simulate division
of labor. Each agent is designed to focus on well-defined expertise area, such as metadata extraction
or code debugging, while communicating via a shared state to adapt dynamically. This not only
mitigates token limits by avoiding raw data ingestion but also enhances robustness through reflection
and error correction, mirroring how data analysts collaborate to refine insights. Key principles guiding
this approach include:

Under review as a conference paper at ICLR 2026

Understanding Planning

. . ﬂ o ,B [chart Type | [Line | Tool: web search |
Write a Python script using [visuatization | ()] conpound Plot with Inset - — G

matplotlib that creates a — —» | Styling Hints | [1)] <title/xlabel/ylabel> Google
compound plot to demonstrate [Globat T000s | (1) 1. Generate data; 2. layout;.. B <Hatplotlib Doc>
a zoom effect on the x-axis.. — <Py Graph Gallery>..

,?

| pata Transformations | | Viz Goal

README.nd | | config.yaml | | key points | (i)l Gridspec layout; highlight zoom..

Inputs Query Analyzer
= G | esign Spec | (i)l color scheme, layout, typography, canvas.
— | pata 1nfo | () Data_Shape, Cotlumnsi‘x’, ‘y’I- Q e —
“Data.csv” — | Design Recommendations | [Implementation Guidelines | | Indicators
| pata Insights (i) Zoom_window: [115,2511, [70,801]..
[Tesv |[3son |[sat][xisx | —— [quatity Metrics |[(] clarity, aesthetic, usability, accessibility, ux.
J | Processing Steps | ()s1: linspace(0,1,2000), S2.. SEmmS—
Input Data Data Processor
2 @t G
R — ﬁ: S 3| RO |
| Fixed Code | [+Tool: Bug Search | scores | () Readability, clarity, ..
(/) > [Execution Results | (g Success/Fail == = | Issues |[c Overlap, layout, multi plot..
[stderr | [stdout | | Priority Fixes | [Strengths | Y V™ *|
Code Generator Debu ent Generated Plot i
0Ag Visual Evaluator Final Plot
Reflection Loop \
™ AL
. ; e
Generation Self Reflection 7=2X

Figure 2: Overview of the CoDA framework for agentic data visualization. The workflow decomposes
natural language queries into modular phases: Understanding (query intent and data metadata
extraction), Planning (example code search, visual mappings, and design optimization), Generation
(code generation and debugging), and Self-Reflection (quality evaluation with feedback loops for
iterative refinement).

Specialization for Depth: Assign agents to distinct roles (e.g., planning vs. execution) to deepen
reasoning without overwhelming a single model.

Metadata-Centric Preprocessing: Summarize data structures upfront to inform downstream deci-
sions, bypassing the need for full data loading.

Iterative Reflection: Incorporate human-like evaluation of outputs (e.g., via image analysis) to detect
and correct issues like visual clutter or factual inaccuracies.

Modular Extensibility: Design agents as interchangeable modules, allowing integration of new
tools or models for evolving tasks.

By unifying query understanding, data handling, code generation, and quality assurance into a
self-reflection workflow, this approach transforms visualization from isolated code generation into a
resilient, adaptive process. We demonstrate its efficacy through CoDA, which operationalizes these
principles for real-world benchmarks.

3.2 CoDA: COLLABORATIVE DATA VISUALIZATION AGENTS

CoDA instantiates the collaborative paradigm as a multi-agent system that takes a natural language
query and data files as input, producing a refined visualization as output. Figure 2 provides a high-
level overview and Table | summarizes the inputs and outputs of different agents in the workflow.
Full agents prompts and I/O are shown in Appendix E.

The workflow proceeds as follows, with iterative refinement triggered by quality assessments: Query
Analyzer interprets the query (e.g., “Plot sales trends by region”) to extract intent, decomposes it
into a global TODO list (e.g., data filtering, aggregation, chart selection), and generates guidelines
for downstream agents. Data Processor extracts metadata summaries (schemas, statistics, patterns)
from data files using lightweight tools like pandas, avoiding token limits while identifying insights
and potential transformations. VizMapping maps query semantics to visualization primitives, selects
appropriate chart types (e.g., line chart for trends), defines data-to-visual bindings, and validates
compatibility based on metadata. This agent ensures insightful outputs that adapt to data complexities
without raw ingestion. Search Agent (as a tool) retrieves relevant code examples from plotting
libraries (e.g., Matplotlib) to inspire generation, formulates search queries and ranks results by
relevance. Design Explorer generates content and aesthetic concepts, optimizes elements like colors
and layout, and evaluates designs for user experience. Code Generator synthesizes executable Python
code integrating specifications, ensuring best practices and documentation. Debug Agent executes
code with timeouts, diagnoses errors (e.g., via searched solutions), applies fixes (potentially via

Under review as a conference paper at ICLR 2026

Table 1: The inputs and outputs of different agents in the proposed CoDA framework.
Agent Name | Inputs | Outputs
Query Analyzer Query, meta_data (e.g., | Query analyzer results including visualization types, key

README . md) points for plotting, a global TODO list.
Data Processor Data inputs Data processor results including data informa-
tion (e.g., shapes, columns), data insights (e.g.,

aggregations_needed), processing steps, visualization
hints.

VizMapping Query, query analyzer, | Chart types, styling hints, data transformations (e.g.,
Agent data processor results aggregations, filters), visualization goals.
Search Agent Visualization types, | Code examples
chart types
Design Explorer | Query analyzer results, | Design explorer results including design specifics (e.g.,

data processor results

color_scheme, layout), implementation guidelines, qual-
ity metrics, design recommendations, alternative designs,
and success indicators.

Code Generator

Design explorer results,
data processor results,
search agent results,

Code generator results including generated code, code qual-
ity score, dependencies, and documentation.

(self-reflection) visual
evaluator results

Debug Agent Code generator results Debugging results including standard outputs/errors, web
searched debug suggestions, fixed code, execution results

and the output file.

Visual Evaluator | Output file, query, query
analyzer results, data

processor results

Scores (e.g., overall_score, readability), strength, is-
sues, priority fixes, code modifications, and recommenda-
tions.

searched solutions), and outputs results like visualization images. Visual Evaluator assesses the output
image across multi-dimensional quality metrics (clarity, accuracy, aesthetics, layout, correctness),
verifying TODO completion and suggesting refinements.

Agents exchange structured messages through a shared memory buffer, propagating context (e.g.,
metadata informs planning, plans guide code). Feedback loops trigger iterations: If quality scores
(from evaluation) are below thresholds, issues are routed back to upstream agents (e.g., low aesthetics
back to the Design Agent). The system halts when quality converges or iteration limits are reached.

CoDA’s modular design promotes scalability, agents can be parallelized or extended (e.g., scientific
plotting), and self-reflection through quality-driven halting (e.g., stop if scores exceed thresholds).
In experiments (Section 4), this yields substantial gains over baselines, validating the value of this
agentic approach in visualization automation.

4 EXPERIMENTS

We evaluate CoDA’s ability to generate high-quality visualizations from natural language by testing
it on a diverse set of visualization benchmarks. We compare CoDA against state-of-the-art baselines
using standardized metrics that capture execution reliability, visualization correctness, and overall
task success. All experiments are conducted using gemini-2.5-pro as the underlying LLM, with a
maximum of 3 refinement iterations and a quality threshold of 6, = 0.85 for halting.

4.1 BENCHMARKS
We select benchmarks that span varying levels of complexity in natural language to visualization
tasks, including handling diverse data types, chart styles, and user intents. The primary datasets are:

Qwen Code Interpreter Benchmark (Visualization) (Yang et al., 2025): This subset focuses on
visualization tasks within a code interpretation framework, with 163 examples emphasizing numerical
data handling, pattern recognition, and code synthesis for plots. It tests robustness to ambiguous
queries and data inconsistencies.

Under review as a conference paper at ICLR 2026

MatplotBench (Yang et al., 2024b): A comprehensive benchmark for matplotlib-based visualization
generation, comprising 100 queries across domains such as time-series analysis, categorical compar-
isons, and multi-dimensional plotting. Queries require interpreting user intent, selecting appropriate
chart types, and ensuring visual clarity.

These benchmarks represent mid-to-high complexity tasks suitable for evaluating agentic systems
in controlled environments. Additionally, we separately evaluate on the more challenging DA-
Code benchmark (Huang et al., 2024), which involves repository-based software engineering tasks
with visualization components. Unlike the above, DA-Code (vis) requires navigating codebases,
integrating visualizations into broader workflows, and handling domain-specific constraints (e.g.,
performance optimization in plots). It comprises 78 tasks and is treated independently due to its
elevated difficulty and shift toward SWE-oriented reasoning.

4.2 BASELINES

We compare CoDA against recent visualization-specific methods that leverage LLMs for code genera-
tion and refinement:

MatplotAgent (Yang et al., 2024b): A single-agent system focused on matplotlib code synthesis
from queries, with basic error handling but limited multi-step planning.

VisPath (Seo et al., 2025): An approach based on multiple solution planning that decomposes
visualization tasks into sequential steps, emphasizing path optimization for chart mapping.

CoMLAVIS (Chen et al., 2024): A workflow-centric framework that followed a structured pipeline
to generate visualizations, incorporating table descriptions and code execution.

All baselines use the same gemini-2.5-pro backbone for fair comparison, and we follow their
papers to set up the parameters (e.g., iteration limits).

4.3 EVALUATION METRICS

To provide a multi-dimensional assessment, we define three key metrics that capture execution
reliability, visualization quality, and overall task success:

Execution Pass Rate (EPR): The proportion of queries for which the generated Python code

executes without runtime errors, capturing basic syntactic and dependency reliability. Formally, EPR
_ |g€Q:exec(cq)=success|

o] , where ¢, is the code for query ¢ € Q.

Visualization Success Rate (VSR): The average score reflecting the quality of rendered visualizations
among executable codes, where higher scores indicate closer alignment with intended representations

(e.g., accurate data mappings). Formally, VSR = M, where s, (q) is the LLM-evaluated

visualization score for query ¢, and Qexec is the set of queries with successful execution. On a
binary-scored benchmark (e.g., Qwen Code Interpreter), VSR reduces to the proportion of correct
visualizations among executable cases.

Overall Score (OS): The overall score reflects the average of code and visualization quality scores

and provides a holistic view of system effectiveness. Formally, OS = 2qcq avg‘(g)T(q)’S”(q)) , where

sc(q) is the code quality score and s, (q) is as defined above.

Additional technical details on the judging prompts and model setup are provided in Appendix D.

4.4 MAIN RESULTS

Table 2 presents the main results on MatplotBench and the Qwen Code Interpreter Benchmark
(vis). CoDA outperforms all baselines across metrics, achieving substantial gains in OS of 24.5%
on MatplotBench and 7.4% on Qwen over the best alternative, demonstrating superior handling of
complex queries through agent collaboration and feedback loops. The high EPR reflects robust code
generation, while VSR highlights effective refinement in visualization quality.

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison against three baselines on the MatplotBench and Qwen Code
Interpreter benchmarks. All baselines utilize gemini-2.5-pro as the base LLMs.

Method MatplotBench Qwen Code Interpreter

EPR (%)1 VSR (%)t OS(%)71|EPR(%)1T VSR(%)1T OS(%)*
MatplotAgent 97.0 56.7 55.0 81.6 79.7 65.0
VisPath 75.0 373 38.0 86.5 94.3 81.6
CoMLA4VIS 76.0 69.7 53.0 87.1 90.9 79.1
CoDA (Ours) 99.0 79.8 79.5 ‘ 93.3 95.4 89.0

Table 3: Comparison of CoDA against the DA-Agent on the DA-Code benchmark, where DA-Agent
is powered by various LLMs including gemini-2.5-pro, gpt-4o0, gpt-4, and deepseek-coder.
Green shading marks the best within each group.

CoDA (Ours) DA-Agent (backbone LLM)
Metric Gemini-2.5-pro Gemini-2.5-pro GPT-40 GPT-4 Deepseek-Coder
Overall Score (%) 39.0 19.23 17.0 16.0 11.0

4.5 RESULTS ON DA-CODE BENCHMARK

In this evaluation, we extend CoDA to more complex, real-world SWE scenarios where visualizations
are embedded within broader codebases. Table 3 encapsulates these findings, revealing CoDA’s score
of 39.0%, a 19.77% absolute gain over DA-Agent with gemini-2.5-pro, the strongest baseline. This
superiority arises from the multi-agent decomposition: the Query Analyzer routes repo navigation
subtasks to the Data Processor for metadata extraction, while the Code Generator and Visual Evaluator
iteratively resolve integration conflicts (e.g., matplotlib dependencies clashing with existing imports).
OS benefits particularly from the Design Explorer’s aesthetic refinements tailored to code-embedded
plots, addressing nuances like subplot scaling in simulation outputs that single-LLM baselines
overlook due to token limits on raw repo ingestion.

4.6 PERFORMANCE WITH DIFFERENT BACKBONE LLMS

To assess the generality of CoDA across diverse LLM backbones, we evaluate its performance
when substituting the primary gemini-2.5-pro model with alternative strong capability LLMs:
gemini-2.5-flash and claude-4-sonnet. This experiment isolates the impact of the backbone
LLM on visualization generation, holding constant the multi-agent architecture. We focus on the
MatplotBench, as it emphasizes robust handling of numerical data, pattern recognition, and code
synthesis under ambiguous queries—tasks that stress the backbone’s reasoning and code generation
capabilities.

We select these backbones for their complementary strengths: gemini-2.5-flash priori-
tizes efficiency and low-latency inference, making it suitable for real-time applications, while
claude-4-sonnet excels in language understanding and multi-step reasoning, potentially en-
hancing agent collaboration in complex scenarios. All models are configured with identical hy-
perparameters. Table 4 presents the results. CoDA with gemini-2.5-flash achieves an OS of
77.7%, showcasing efficient handling of real-time scenarios with minimal degradation (1.8% rel-
ative to gemini-2.5-pro), attributable to streamlined agent interactions that leverage metadata
over raw data ingestion. claude-4-sonnet, conversely, attains an OS of 75.2%, a 4.3% drop from
gemini-2.5-pro , likely stemming from its enhanced semantic parsing but reduced robustness
in code execution under high-context loads. These outcomes highlight CoDA’s backbone-agnostic
design, amplifying each LLM’s inherent strengths while mitigating weaknesses through collaborative
workflows.

We compare CoDA against each other using the three backbone LLMs as described above. Across
the board, CoDA outperforms baselines significantly, with the best-performing variant, CoDA with
gemini-2.5-pro , achieving 79.5% OS. MatplotAgent, VisPath, and CoMLA4VIS struggle to exceed
65.2% OS in any setting, highlighting the challenges of visualization tasks without multi-agent

Under review as a conference paper at ICLR 2026

Table 4: A comparison of CoDA with different backbone LLMs against three baselines on the
MatplotBench benchmark. All results are presented in percent (%).

Base LLMs | Gemini-2.5-Pro | Gemini-2.5-Flash | Claude-4-Sonnet

Method |EPRT VSRt OS1|EPRT VSR OST |EPRT VSRT OS?1
MatplotAgent | 92.0 55.4 51.0 99.0 46.4 459 93.0 58.8 54.7
VisPath 73.0 60.5 442 95.0 45.8 43.5 57.0 77.5 44.2
CoMLA4VIS 99.0 63.2 62.6 99.0 57.8 57.2 99.0 65.9 65.2

CoDA (Ours) | 99.0 803 795 | 99.0 785 777 | 980 767 752

Table 5: Efficiency comparison on MatplotBench using Gemini-2.5-Pro. Metrics: Average Input/Out-
put Tokens (# Tokens), Average LLM Calls (# Calls).

Method # Input Tokens | # Output Tokens | # Calls |
MatplotAgent 34,177 26,792 154
VisPath 16,224 13,056 7.0
CoMLA4VIS 2,350 3,788 1.0
CoDA (Ours) 32,095 18,124 14.8

refinement. We also observe that CoDA trends similarly across different backbones, with EPR and
VSR remaining consistently high (98.0-99.0% and 76.7-80.3%).

LLMs tend to generate simpler visualizations. Baseline-generated code tends to produce fewer
refinements than CoDA. As shown in Table 4, compared to CoDA, baselines like MatplotAgent achieve
lower VSR (46.4-58.8%), and rarely handle complex multi-faceted queries.

4.7 EFFICIENCY ANALYSIS

A key challenge in agentic systems is balancing accuracy with computational efficiency, particularly
in real-world visualization tasks where latency impacts user experience. Here, we conduct a detailed
efficiency analysis of CoDA, comparing its latency against baselines on the MatplotBench dataset. We
measure latency in terms of (1) average number of input/output tokens per query, which captures the
communication overhead in multi-agent interactions, and (2) average number of LLM calls, reflecting
the iterative refinement and routing demands. All methods use gemini-2.5-pro as the backbone.

Table 5 presents the results. CoDA achieves an average of 32,095 input tokens, 18,124 output tokens,
and 14.8 LLM calls per query. We compare CoDA against baselines on efficiency. Across the board,
multi-agent systems like CoDA and MatplotAgent incur higher computational costs than simpler
baselines like CoML4VIS and VisPath, which rely on fewer iterations and less collaborative overhead.
However, CoDA outperforms MatplotAgent in efficiency, using 17.6% fewer total tokens (50,219 vs.
60,969) and 3.9% fewer LLM calls, while achieving substantially higher overall accuracy (79.5% vs.
51.0% OS).

To analyze the trade-off between efficiency and performance, we observe that simpler methods trend
toward lower costs but diminished visualization quality. For example, CoML4VIS, with only 1.0
LLM call and 6,138 total tokens, resolves 62.6% OS, yet struggles with complex, ambiguous queries
requiring refinement. In contrast, CoDA’s higher calls enable iterative improvements, justifying the
cost for superior results.

5 ABLATION STUDY

To validate the contributions of key components in CoDA, we conduct controlled ablation experiments
on the MatplotBench dataset, using gemini-2.5-pro as the backbone. These studies isolate the
impact of (1) iterative self-reflection through refinement loops, (2) the global TODO list for high-level
planning, and (3) the Search Agent for code example retrieval. All ablations maintain the core multi-
agent pipeline but adjust the specified components. This analysis not only confirms the necessity of
each feature but also provides insights into design trade-offs, such as accuracy-efficiency balances,
highlighting CoDA’s principled architecture for robust, autonomous visualization. We evaluate the
impact of these components on the OS metric. Figure 3 summarizes the findings.

Under review as a conference paper at ICLR 2026

EPR VSR i 05 /o Global TODO ~ m=m w/ Global TODO (CoDA) W/o Search Agent mEE w/ Search Agent (CoDA)
100.0 99.0 99.0

90.0

3
% 80.1 799 798 795 79.8 79.5

80 80
" - l - l

Iterations EPR (%) VSR (%) 0s EPR (%) VSR (%) 0s

(a) Iterations Ablation (b) Global TODO Ablation (c) Search Agent Ablation

Figure 3: Ablation results. (a): Performance (EPR, VSR, OS) across different iteration counts. (b)
Comparison of EPR, VSR, and OS with vs. without Global TODO. (c) Comparison of EPR, VSR,
and OS with vs. without the Search Agent.

5.1 IMPACT OF SELF-EVOLUTION

Figure 3 shows that OS generally improves with additional iterations, from 75.6% at 1 iteration
to 79.5% at 3 iterations (CoDA default), with further gains to 80.1% at 5 iterations, though with
fluctuations and marginal benefits beyond 3 (+0.6% in OS from 3 to 5). EPR surges by 8.0% from
1 to 3 iterations due to robust initial code generation by the Code Generator, stabilizing near 100%
thereafter. VSR fluctuates initially but converges around 80%, as the Visual Evaluator identifies and
refines subtle mismatches in data mappings and aesthetics. Beyond 3 iterations, latency increases
without proportional accuracy benefits, validating our lightweight configuration optimization that
tunes limits based on validation performance. With minimal iterations, performance degrades toward
baseline levels, emphasizing that shallow, one-shot generation fails in messy environments.

5.2 ROLE OF GLOBAL TODO LiST

The global TODO list, generated by the Query Analyzer, serves as a high-level blueprint for task
decomposition and routing, ensuring coherence across agents. We ablate this by replacing it with
understanding-query-only prompts (no structured decomposition). As shown in Figure 3, removing
the global TODO list yields a stark drop in OS to 75.1% (-4.4% absolute), with EPR falling by
5.0% due to fragmented intent extraction, e.g., the VizMapping Agent selects suboptimal chart types
without cross-referencing subtasks like “highlight peaks.” VSR remains stable, indicating that visual
quality is less dependent on global planning, but overall success suffers from incomplete workflows,
such as unaddressed statistical insights from the Data Processor. This confirms the value of structured
planning in agentic workflows, where it prevents the noise of unstructured agent interactions.

5.3 EFFECTIVENESS OF EXAMPLE SEARCH AGENT

The Search Agent retrieves relevant plotting code examples (e.g., from Matplotlib repositories) to
inspire the Builder Agent, addressing LLM limitations in recalling domain-specific syntax. We
study this by disabling retrieval, relying solely on the backbone LLM’s internal knowledge. Figure 3
reveals that without the Search Agent, OS declines to 76.0% (-3.5%), primarily due to a 9.0% drop
in EPR from syntactic errors in specialized visualizations (e.g., custom subplots). Enabling code
search improves accuracy by providing ranked snippets, grounding LLM agents’ coding knowledge
to specific problems. This ablation highlights the extensibility of CoDA, where external inspiration
bridges gaps in LLM training data, making the system more reliable without post-training.

6 CONCLUSION

We introduce CoDA, an agentic multi-agent framework that decomposes natural language queries into
specialized task and data understanding, planning, code generation, and self-reflection, delivering up
to 41.5% accuracy gains over baselines like MatplotAgent, VisPath, and CoML4VIS on MatplotBench
and Qwen benchmarks. Through metadata-centric preprocessing and iterative refinement, Co

overcomes input token limits, robustly managing messy multi-file data and enabling analysts to
prioritize insights over manual work. A key limitation is the computational overhead from multi-turn
agent communications. Future efforts could distill agents or adapt to multimodal inputs. CoDA paves
the way for collaborative agentic systems, revolutionizing automation in data science and beyond.

Under review as a conference paper at ICLR 2026

LARGE LANGUAGE MODEL USAGE FOR WRITING

In this work, we utilize large language models, specifically Gemini and Grok, as general-purpose
tools for text refinement. Initial drafts are supplied to these models, which are prompted to enhance
the writing through grammatical corrections and structural improvements. The resulting revisions are
subsequently reviewed and adjusted as necessary. The application of LLMs is confined exclusively to
polishing existing text; they are not used for generating novel content, ideas, or references. All core
aspects of this research, including conceptualization, methodological reasoning, logical development,
and the selection of references, were conducted solely by the human authors.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Iige Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Tian Bai, Huiyan Ying, Kailong Suo, Junqiu Wei, Tao Fan, and Yuanfeng Song. Text-to-
trajvis: Enabling trajectory data visualizations from natural language questions. arXiv preprint
arXiv:2504.16358, 2025.

Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He, Zongbo Han, Zheng Zhang, and Mike Zheng Shou.
Hallucination of multimodal large language models: A survey. arXiv preprint arXiv:2404.18930,
2024.

Sara Beschi, Davide Falessi, Silvia Golia, and Angela Locoro. Characterizing data visualization
literacy: a systematic literature review. arXiv preprint arXiv:2503.14468, 2025.

Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al. Why do multi-agent llm
systems fail? arXiv preprint arXiv:2503.13657, 2025.

Nan Chen, Yuge Zhang, Jiahang Xu, Kan Ren, and Yuqing Yang. Viseval: A benchmark for
data visualization in the era of large language models. IEEE Transactions on Visualization and
Computer Graphics, 2024.

Qiguang Chen, Mingda Yang, Libo Qin, Jinhao Liu, Zheng Yan, Jiannan Guan, Dengyun Peng, Yiyan
Ji, Hanjing Li, Mengkang Hu, et al. Aidresearch: A survey of artificial intelligence for scientific
research. arXiv preprint arXiv:2507.01903, 2025.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

Ana Davila, Jacinto Colan, and Yasuhisa Hasegawa. Beyond single models: Enhancing llm detection
of ambiguity in requests through debate. arXiv preprint arXiv:2507.12370, 2025.

Vaishali Dhanoa, Anton Wolter, Gabriela Molina Leén, Hans-Jorg Schulz, and Niklas Elmqvist.
Agentic visualization: Extracting agent-based design patterns from visualization systems. arXiv
preprint arXiv:2505.19101, 2025.

Rania Mkhinini Gahar, Olfa Arfaoui, and Minyar Sassi Hidri. Open research issues and tools for
visualization and big data analytics. arXiv preprint arXiv:2404.12505, 2024.

Kanika Goswami, Puneet Mathur, Ryan Rossi, and Franck Dernoncourt. Plotgen: Multi-agent
llm-based scientific data visualization via multimodal feedback. arXiv preprint arXiv:2502.00988,
2025.

Mourad Gridach, Jay Nanavati, Khaldoun Zine El Abidine, Lenon Mendes, and Christina Mack.
Agentic ai for scientific discovery: A survey of progress, challenges, and future directions. arXiv
preprint arXiv:2503.08979, 2025.

10

Under review as a conference paper at ICLR 2026

Enamul Hoque and M Saidul Islam. Natural language generation for visualizations: State of the art,
challenges and future directions. In Computer Graphics Forum, volume 44, pp. €15266. Wiley
Online Library, 2025.

Yiming Huang, Jianwen Luo, Yan Yu, Yitong Zhang, Fangyu Lei, Yifan Wei, Shizhu He, Lifu Huang,
Xiao Liu, Jun Zhao, and Kang Liu. Da-code: Agent data science code generation benchmark for
large language models. In Conference on Empirical Methods in Natural Language Processing,
2024. URL https://api.semanticscholar.org/CorpusID:273234039.

Maeve Hutchinson, Radu Jianu, Aidan Slingsby, and Pranava Swaroop Madhyastha. Llm-assisted
visual analytics: Opportunities and challenges. Comput. Graph., 130:104246, 2024. URL
https://api.semanticscholar.org/CorpusID:272397798.

Helena Klara Jambor. From zero to figure hero. a checklist for designing scientific data visualizations.
arXiv preprint arXiv:2408.16007, 2024.

Saadiq Rauf Khan, Vinit Chandak, and Sougata Mukherjea. Evaluating llms for visualization
generation and understanding. Discover Data, 3(1):15, 2025.

Eugenie Y. Lai, Yuze Lou, Brit Youngmann, and Michael J. Cafarella. Toward standardized data
preparation: A bottom-up approach. In EDBT, pp. 609—622, 2025. URL https://doi.org/10.
48786/edbt.2025.49.

Ga Young Lee, Lubna Alzamil, Bakhtiyar Doskenov, and Arash Termehchy. A survey on data cleaning
methods for improved machine learning model performance. arXiv preprint arXiv:2109.07127,
2021.

Si-Yang Liu, Qile Zhou, and Han-Jia Ye. Make still further progress: Chain of thoughts for tabular
data leaderboard. arXiv preprint arXiv:2505.13421, 2025.

Adam Moss. The ai cosmologist i: An agentic system for automated data analysis. arXiv preprint
arXiv:2504.03424, 2025.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Sagqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
models. ACM Transactions on Intelligent Systems and Technology, 16(5):1-72, 2025.

Geliang Ouyang, Jingyao Chen, Zhihe Nie, Yi Gui, Yao Wan, Hongyu Zhang, and Dongping Chen.
nvagent: Automated data visualization from natural language via collaborative agent workflow.
arXiv preprint arXiv:2502.05036, 2025.

Shri Harini Ramesh and Fateme Rajabiyazdi. Challenges and opportunities of teaching data visualiza-
tion together with data science. In 2024 IEEE VIS Workshop on Visualization Education, Literacy,
and Activities (EduVIS), pp. 7-13. IEEE, 2024.

El Kindi Rezig, Michael Cafarella, and Vijay Gadepally. Technical report on data integration and
preparation. arXiv preprint arXiv:2103.01986, 2021.

Jen Rogers, Marie Anastacio, Jiirgen Bernard, Mehdi Chakhchoukh, Rebecca Faust, Andreas Kerren,
Steffen Koch, Lars Kotthoff, Cagatay Turkay, and Emily Wall. Visualization and automation in
data science: Exploring the paradox of humans-in-the-loop. In 2024 IEEE Visualization in Data
Science (VDS), pp. 1-5, 2024. doi: 10.1109/VDS63897.2024.00005.

Ranjan Sapkota, Konstantinos I Roumeliotis, and Manoj Karkee. Ai agents vs. agentic ai: A
conceptual taxonomy, applications and challenges. arXiv preprint arXiv:2505.10468, 2025.

Wonduk Seo, Seungyong Lee, Daye Kang, Hyunjin An, Zonghao Yuan, and Seunghyun Lee. Au-
tomated visualization code synthesis via multi-path reasoning and feedback-driven optimization.
arXiv preprint arXiv:2502.11140, 2025.

Leixian Shen, Enya Shen, Yuyu Luo, Xiaocong Yang, Xuming Hu, Xiongshuai Zhang, Zhiwei Tai,
and Jianmin Wang. Towards natural language interfaces for data visualization: A survey. IEEE
transactions on visualization and computer graphics, 29(6):3121-3144, 2022.

11

https://api.semanticscholar.org/CorpusID:273234039
https://api.semanticscholar.org/CorpusID:272397798
https://doi.org/10.48786/edbt.2025.49
https://doi.org/10.48786/edbt.2025.49

Under review as a conference paper at ICLR 2026

Sungbok Shin, Sanghyun Hong, and Niklas Elmqvist. Visualizationary: Automating design feedback
for visualization designers using llms. IEEE Transactions on Visualization and Computer Graphics,
2025.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Fangqiao Tian, An Luo, Jin Du, Xun Xian, Robert Specht, Ganghua Wang, Xuan Bi, Jiawei Zhou,
Ashish Kundu, Jayanth Srinivasa, et al. An outlook on the opportunities and challenges of
multi-agent ai systems. arXiv preprint arXiv:2505.18397, 2025.

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
Hoang D Nguyen. Multi-agent collaboration mechanisms: A survey of llms. arXiv preprint
arXiv:2501.06322, 2025.

Henrik Voigt, Ozge Alacam, Monique Meuschke, Kai Lawonn, and Sina Zarrie3. The why and the
how: A survey on natural language interaction in visualization. In Marine Carpuat, Marie-Catherine
de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 348-374, Seattle, United States, July 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.naacl-main.27. URL https://aclanthology.org/2022.
naacl-main.27/.

Huanting Wang, Jingzhi Gong, Huawei Zhang, and Zheng Wang. Ai agentic programming: A survey
of techniques, challenges, and opportunities. arXiv preprint arXiv:2508.11126, 2025.

Shuo Wang and Carlos Crespo-Quinones. Natural language models for data visualization utilizing
nvbench dataset. arXiv preprint arXiv:2310.00832, 2023.

Anton Wolter, Georgios Vidalakis, Michael Yu, Ankit Grover, and Vaishali Dhanoa. Multi-agent data
visualization and narrative generation. arXiv preprint arXiv:2509.00481, 2025.

Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey
Heer. Voyager: Exploratory analysis via faceted browsing of visualization recommendations. /IEEE
Transactions on Visualization and Computer Graphics, 22(1):649-658, 2016. doi: 10.1109/TVCG.
2015.2467191.

Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk, Anushka Anand,
Jock Mackinlay, Bill Howe, and Jeffrey Heer. Voyager 2: Augmenting visual analysis with
partial view specifications. In Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems, CHI *17, pp. 2648-2659, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450346559. doi: 10.1145/3025453.3025768. URL https:
//doi.org/10.1145/3025453.3025768.

Yang Wu, Yao Wan, Hongyu Zhang, Yulei Sui, Wucai Wei, Wei Zhao, Guandong Xu, and Hai Jin.
Automated data visualization from natural language via large language models: An exploratory
study. Proceedings of the ACM on Management of Data, 2(3):1-28, 2024.

Chao Xu, Qi Zhang, Baiyan Li, Anmin Wang, and Jingsong Bao. Visual analysis of time series data for
multi-agent systems driven by large language models. In Proceedings of the 3rd International Con-
ference on Signal Processing, Computer Networks and Communications, SPCNC *24, pp. 427431,
New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400710834. doi:
10.1145/3712335.3712410. URL https://doi.org/10.1145/3712335.3712410.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng
Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxin Yang, Jingren Zhou, Jingren Zhou, Junyan Lin, Kai Dang, Keqin Bao, Ke-
Pei Yang, Le Yu, Li-Chun Deng, Mei Li, Min Xue, Mingze Li, Pei Zhang, Peng Wang, Qin
Zhu, Rui Men, Ruize Gao, Shi-Qiang Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao
Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yi-
Chao Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang,

12

https://aclanthology.org/2022.naacl-main.27/
https://aclanthology.org/2022.naacl-main.27/
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3712335.3712410

Under review as a conference paper at ICLR 2026

Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report. ArXiv, abs/2505.09388, 2025. URL
https://api.semanticscholar.org/CorpusID:278602855.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Adriano Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated soft-
ware engineering. ArXiv, abs/2405.15793, 2024a. URL https://api.semanticscholar.org/
CorpusID:270063685.

Junran Yang, Péter Ferenc Gyarmati, Zehua Zeng, and Dominik Moritz. Draco 2: An extensible
platform to model visualization design. In 2023 IEEE Visualization and Visual Analytics (VIS), pp.
166-170. IEEE, 2023.

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, Xu Han, Yukun Yan, Zhenghao Liu, Zhixing
Tan, Pengyuan Liu, Dong Yu, et al. Matplotagent: Method and evaluation for llm-based agentic
scientific data visualization. In Findings of the Association for Computational Linguistics ACL
2024, pp. 11789-11804, 2024b.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. ArXiv, abs/2210.03629, 2022. URL
https://api.semanticscholar.org/CorpusID:252762395.

Ran Zhang and Mohannad Elhamod. Data-to-dashboard: Multi-agent llm framework for insightful
visualization in enterprise analytics. arXiv preprint arXiv:2505.23695, 2025.

Yanbo Zhang, Sumeer A Khan, Adnan Mahmud, Huck Yang, Alexander Lavin, Michael Levin,
Jeremy Frey, Jared Dunnmon, James Evans, Alan Bundy, et al. Exploring the role of large language
models in the scientific method: from hypothesis to discovery. npj Artificial Intelligence, 1(1):14,
2025.

Yuqi Zhu, Yi Zhong, Jintian Zhang, Ziheng Zhang, Shuofei Qiao, Yujie Luo, Lun Du, Da Zheng,
Ningyu Zhang, and Huajun Chen. Why do open-source llms struggle with data analysis? a
systematic empirical study. arXiv preprint arXiv:2506.19794, 2025.

13

https://api.semanticscholar.org/CorpusID:278602855
https://api.semanticscholar.org/CorpusID:270063685
https://api.semanticscholar.org/CorpusID:270063685
https://api.semanticscholar.org/CorpusID:252762395

[S S

Under review as a conference paper at ICLR 2026

A CoDA WORKFLOW AND IMPLEMENTATION DETAILS

Algorithm 1 outlines the CoDA multi-agent visualization workflow, illustrating the sequential and
iterative interactions among specialized agents to transform natural language queries into refined
visualizations.

Algorithm 1 CoDA Multi-Agent Visualization Workflow

1: Input: Query g, Data files D

2: QOutput: Visualization plot P
3: Initialize agents: Aquerya Adata7 Asearch’ Adesigm Acodm Adebug, Aeval
4: todo + Aquery(q) > Decompose query into task list
5: metadata < Agaa(D) > Extract metadata without raw data
6: mappings < Adesign (todo, metadata) > Map to visualization primitives
7: examples < Agearcn(mappings) > Optional: Retrieve code examples
8: designs < Agesign(mappings) > Optimize aesthetics
9: code + Acoge(mappings, designs, examples) > Generate executable code
10: while not converged do
11: output <— Agebug(code) > Execute, debug, produce plot
12: scores < Aeval(output) > Evaluate clarity/accuracy/layout/aesthetics
13: if scores > threshold then
14: return output
15: else
16: refined < Adesign, Acode, Adebug (sCOTES) > Feedback to refine
17: end if

18: end while

B ADDITIONAL VISUALIZATION EXAMPLES

We present additional visualization examples drawn from the DA-Code, and MatplotBench to
illustrate CoDA’s performance. For each example, we show the natural language query, the ground
truth visualization, and the output generated by CoDA. These instances highlight CoDA’s ability to
handle complex data patterns, ambiguous queries, and multi-file inputs through collaborative agentic
refinement, often producing outputs that closely match or exceed ground truth fidelity.

B.1 DA-CODE EXAMPLE

Example 1 Inputs

xTask: x

Please compile the total scores for each year from **1950 to 2018**.

Plot the results in a line chart according to the format specified in “plot.yaml” and
< save the chart as “result.png-.

|--- nba.csv # Core dataset (season-level data)

|--- nba_extra.csv # Supplemental dataset (optional fields)
|--- Seasons_Stats.csv # Player-season statistics

|--- Players.csv # Player metadata

|--- player_data.csv # Additional player/game-level data
|--- plot.yaml # Primary plot configuration

|--- plot.json # Alternative plot configuration

Verbose Instruction (Human-curated) The following detailed instructions were manually orga-
nized by the authors to ensure clarity and reproducibility. Note: Several aspects below represent
human-identified challenges that are not directly contained in the raw datasets.

14

Under review as a conference paper at ICLR 2026

1. Check Available Resources and Directory Structure
Confirm presence of nba.csv, nba_extra.csv, Seasons_Stats.csv, Players.csv,
player_data.csv, and plotting configuration files (plot.yaml, plot. json).
Human note: The dataset does not explicitly define dependencies across files; we curated which
files are relevant.

2. Data Review
Inspect nba.csv and nba_extra.csv to extract season-level total points. Use
Seasons_Stats.csv or player_data.csv if aggregation is required.
Human note: None of the datasets directly contain “total league points per year’; this metric
must be manually constructed.

3. Primary Metric Construction (Default)
Aggregate all scoring fields by season (year) to compute Total Points Scored.
Human note: The “total scores per year” metric is absent; manual aggregation logic was designed
by the authors.

4. Filtering / Top-K Selection (Optional)
Apply year range restrictions (1950-2018). Exclude lockout seasons or highlight anomalies if
needed.
Human note: Anomaly handling (e.g., lockout years) is not specified in the data, but added
through human judgment.

5. Read Plot Configuration
Parse style and formatting options from plot.yaml (or fallback plot. json).
Human note: Plot configurations are not embedded in datasets; authors manually crafted the
YAML spec.

6. Create the Figure
Plot line chart with year on x-axis, total points on y-axis. Apply formatting (color palette, grid,
axis labels, legend). Save as result.png.
Human note: Visualization design choices (palette, annotations) are not given in raw data and
were human-curated.

7. Reproducibility
Document assumptions and preprocessing steps. Maintain transparency about human decisions
in data aggregation and figure styling.
Human note: The reproducibility statement itself is an author-side contribution; the dataset
alone cannot ensure this.

Total NBA Points Scored Per Year (1950-2018)

uuuuuu

/,/ Total Points According To Years

uuuuuu

Total Points

uuuuuu

(a) CoDA Output (b) Ground Truth

Figure 4: Comparison between our generated visualization and the ground truth. The results
demonstrate that our system faithfully reproduces the intended trends, achieving an exact match with
the reference output (score: 100/100).

Result Analysis. The comparison in Figure 4 illustrates that our approach is able to reproduce the
target visualization with high fidelity. Despite the complexity of the task and the absence of direct
“total score per season” fields in the datasets, our CoDA correctly aggregated and rendered the results
without deviation from the ground truth. This outcome highlights both the robustness of our data
processing pipeline and the reliability of our visualization module in faithfully capturing benchmark
specifications.

Our Generated Code

15

I I Y T R N

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4

42
43
44

45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Under review as a conference paper at ICLR 2026

import pandas as pd

import matplotlib.pyplot as plt
import yaml

import sys

The EXPANDED QUERY REQUIREMENT specifies using a 'plot.yaml' file for styling.
To make this script self-contained and reproducible, we will create this file
— programmatically.

yaml_config_str = """

title: 'Total NBA Points Scored Per Year (1950-2018)'

xlabel: 'Year'

ylabel: 'Total Points Scored'

figsize: [12, 7]

line_color: '#@0@7ACC'

marker: 'o

linestyle: '-'
grid: True

nnn

[l

with open('plot.yaml', 'w') as f:
f.write(yaml_config_str)

Step 1: Load the primary dataset from Seasons_Stats.csv.
try:
Note: The prompt's "AVAILABLE DATA"” section seems incorrect. We follow the textual
— instructions
which clearly state to use 'Seasons_Stats.csv'.
stats_df = pd.read_csv('Seasons_Stats.csv')
except FileNotFoundError:
print("Error: The file 'Seasons_Stats.csv' was not found.")
sys.exit(1)

--- Data Cleaning and Preparation ---

Handle potential NaN values in critical columns.

Drop rows where 'Year' is NaN as they cannot be used for time-series analysis.
stats_df.dropna(subset=['Year'], inplace=True)

Fill NaN 'PTS' with @, assuming missing points data means @ points were scored.
stats_df['PTS'] = stats_df['PTS'].fillna(@)

Convert data types for consistency and proper calculations.
stats_df['Year'] = stats_df['Year'].astype(int)
stats_df['PTS'] = stats_df['PTS'].astype(int)

Step 2: De-duplicate player-season records.

Players who were traded mid-season have multiple entries for one year, plus a summary
row with 'Tm' (Team) as 'TOT'. The 'TOT' row typically appears first in the dataset
— for a given player-year.

By dropping duplicates on 'Player' and 'Year' and keeping the first entry, we retain
— the summary row.

cleaned_df = stats_df.drop_duplicates(subset=["'Player', 'Year'], keep='first')

Step 3: Filter data by year and aggregate total points.
Filter the data to include only the years from 1950 to 2018, inclusive.
filtered_df = cleaned_df.query('1950 <= Year <= 2018"')

Group the cleaned data by 'Year' and calculate the sum of 'PTS' for each year.
annual_points = filtered_df.groupby('Year')['PTS"'].sum()

Step 4: Load plotting configuration.
Read the styling parameters from the YAML file created earlier.
with open('plot.yaml', 'r') as f:

plot_params = yaml.safe_load(f)

Step 5: Generate and style the line chart.

16

61
62
63
64
65

66
67
68
69
70
71
7
73
74
75
76
77
78
79
80
81

82
83
84
85
86
87
88

S I-NERV NN

Under review as a conference paper at ICLR 2026

Set the figure size from the loaded parameters.
plt.figure(figsize=plot_params['figsize'])

Plot the aggregated annual total points against the year.
plt.plot(annual_points.index,
annual_points.values,
marker=plot_params.get('marker', 'o0'),
linestyle=plot_params.get('linestyle', '-'),
color=plot_params.get('line_color', 'b'))

Apply visual styles specified in the YAML configuration.
plt.title(plot_params['title'])
plt.xlabel(plot_params['xlabel'])
plt.ylabel(plot_params['ylabel'])
if plot_params.get('grid', False):

plt.grid(True)

Ensure the layout is clean and labels do not overlap.
plt.tight_layout()

Step 6: Save the final plot.
Save the resulting chart as an image file.
plt.savefig('result.png')

Close the plot to release system resources.
plt.close()

print(”Visualization saved successfully as 'result.png'.”)

Example 2 Inputs

**Task: **

Calculate the **Pearson correlation coefficient** between the standardized Average

— Playtime and standardized Positive Ratings using the Steam Store Games dataset.

< Filter the data to only include games with positive ratings and positive playtime.
< Plot the results in a scatter plot following “plot.yaml™ requirements and save it as
— “result.png”.

|--- steam.csv # Core dataset with game-level metadata (title, app ID, release info,
— etc.)

|--- steam_description_data.csv # Game descriptions and textual metadata

|--- steam_media_data.csv # Media assets metadata (images, videos, links)

|--- steam_requirements_data.csv # System requirements (Windows, Mac, Linux)

|--- steam_support_info.csv # Support information (developer contact, website, etc.)
|--- steamspy_tag_data.csv # Community tags and genre/category labels

|--- plot.yaml # Plotting configuration file (primary)

Verbose Instruction (Human-curated) The following detailed instructions were manually orga-
nized by the authors to ensure clarity and reproducibility. Note: Several aspects below represent
human-identified challenges that are not directly contained in the raw datasets.

1. Check Available Resources and Directory Structure
Confirm presence of steam.csv, steam_description_data.csv, steam_media_data.csv,
steam_requirements_data.csv, steam_support_info.csv, steamspy_tag_data.csv,
and plotting configuration file (plot.yaml).
Human note: The dataset does not explicitly document dependencies across these tables; authors
curated the relevant set manually.

2. Data Review
- Parse steam. csv for core identifiers (app ID, title, release year).
- Use auxiliary tables to enrich attributes (tags, system requirements, support info, descriptions).

17

Under review as a conference paper at ICLR 2026

Correlation Between Average Playtime and Positive Ratings

Standardized Playtime vs. Positive Ratings (Pearson r = 0.146)

8

Positive Ratings (Standardized)

E“
2
T
g
§

Standardized Average Playtime Average Playtime (Standardized)

(a) CoDA Output (b) Ground Truth

Figure 5: Comparison between our generated visualization and the ground truth for the Steam dataset.
The results indicate that our approach successfully integrates multiple heterogeneous tables and
reproduces the intended visualization with complete fidelity (score: 100/100).

Human note: None of the datasets provide a unified schema; integration must be designed
manually.
3. Primary Metric Construction (Default)
Define the analysis target (e.g., distribution of games per year, tag frequency, platform coverage).
Construct aggregated metrics aligned with the visualization goal.
Human note: The specific analytical objective (e.g., “game releases per year”) is not included in
the dataset and was defined by the authors.
4. Filtering / Top-K Selection (Optional)
- Restrict to a target period (e.g., 2000-2020).
- Apply Top-K filters by popularity, tags, or developer if required.
Human note: Filtering logic is absent in the raw data and was designed for clarity in visualization.
5. Read Plot Configuration
Parse style and formatting options from plot.yaml.
Human note: Plot specifications are not embedded in the dataset; authors manually authored the
YAML configuration.
6. Create the Figure
- Generate visualization according to aggregated metrics.
- Apply palette, axis labels, and layout as specified in configuration.
- Save output as result.png.
Human note: Visualization design decisions (choice of chart type, color scheme) are external to
the dataset and human-curated.
7. Reproducibility
Document assumptions in data integration and filtering. Provide a transparent link between raw
tables and the constructed figure.
Human note: Reproducibility relies on explicit author-side documentation rather than inherent
dataset properties.

Result Analysis. The comparison (Figure 5) between our generated visualization and the reference
output demonstrates that our system is capable of handling heterogeneous and fragmented data
sources, such as the Steam metadata tables, with high fidelity. Despite the absence of a unified schema
and the need for manual integration across multiple files, our pipeline successfully reproduced the
intended visualization without error. This outcome confirms that our method not only aggregates and
processes complex datasets effectively but also renders results fully consistent with the ground truth,
achieving a perfect score of 100/100.

Our Generated Code

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler

18

40
41
4
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Under review as a conference paper at ICLR 2026

from scipy.stats import pearsonr
import matplotlib.pyplot as plt
import yaml

import os

--- Step 1: Create the plot.yaml configuration file ---
This file dictates the visual styling of the plot.
yaml_config_str = """
title: 'Standardized Playtime vs. Positive Ratings (Pearson r = {correlation:.3f})'
xlabel: 'Standardized Average Playtime'
ylabel: 'Standardized Positive Ratings'
font_sizes:
title: 16
axes_label: 14
tick_labels: 12
scatter_plot:
color: '#0@7ACC'
alpha: 0.6
marker: 'o
edgecolor: 'k'
s: 45
figure:
figsize: [12, 7]
dpi: 120
style: 'seaborn-v@_8-whitegrid'

nnn

with open('plot.yaml', 'w') as f:
f.write(yaml_config_str)

--- Step 2: Load plotting specifications from plot.yaml ---
with open('plot.yaml', 'r') as f:
config = yaml.safe_load(f)

--- Step 3: Load and process the data ---
The user specified 'steam.csv'. We will use this file.
Note: The 'AVAILABLE DATA' section mentioned 'steam_media_data.csv', but the query was
— explicit.
file_path = 'steam.csv'
if not os.path.exists(file_path):
As a fallback, check for the other filename if steam.csv is not found.
This handles potential environment discrepancies.
if os.path.exists('steam_media_data.csv'):
file_path = 'steam_media_data.csv'
else:
raise FileNotFoundError(f”Could not find the required data file: '{file_path}'
— or 'steam_media_data.csv'")

Load the dataset into a pandas DataFrame
df = pd.read_csv(file_path)

Filter the DataFrame to keep only rows with positive values for both variables
Using .copy() to avoid SettingWithCopyWarning
filtered_df = df[(df['average_playtime'] > @) & (df['positive_ratings'] > 0)].copy()

--- Step 4: Standardize the relevant columns ---
Select the columns for standardization
data_to_scale = filtered_df[['average_playtime', 'positive_ratings']]

Initialize and apply the StandardScaler
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data_to_scale)

Add the new standardized columns to the filtered DataFrame
filtered_df['std_avg_playtime'] = scaled_datal:, 0]
filtered_df['std_pos_ratings'] = scaled_data[:, 1]

19

67
68
69
70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
38
89
90
9
92
93
94
95
9%
97
98
99
100
101
102
103
104
105
106

107
108
109
110
k11
112
113
114
115
116

Under review as a conference paper at ICLR 2026

--- Step 5: Calculate the Pearson correlation coefficient ---
Calculate the correlation on the standardized data
correlation, _ = pearsonr(filtered_df['std_avg_playtime'],

— filtered_df['std_pos_ratings'])

--- Step 6: Create and style the scatter plot ---
Apply a base style for the plot from the config
plt.style.use(config['style'])

Create a figure and axes with specified size and DPI
fig, ax = plt.subplots(figsize=config['figure']['figsize'], dpi=config['figure']['dpi'])

Generate the scatter plot using data and styling from config

ax.scatter(
filtered_df['std_avg_playtime'],
filtered_df['std_pos_ratings'],
color=config['scatter_plot']['color'],
alpha=config['scatter_plot']['alpha'],
marker=config['scatter_plot']['marker'],
edgecolors=config['scatter_plot']['edgecolor'],
s=config['scatter_plot']['s"']

)

Set titles and labels, formatting the title with the calculated correlation
ax.set_title(
config['title'].format(correlation=correlation),
fontsize=config['font_sizes']['title'],
fontweight="bold'
)
ax.set_xlabel(
config['xlabel'],
fontsize=config['font_sizes']['axes_label']
)
ax.set_ylabel(
config['ylabel'],
fontsize=config['font_sizes']['axes_label']

)

Customize tick label sizes
ax.tick_params(axis="both', which="'major",
— labelsize=config['font_sizes']['tick_labels'])

Ensure the layout is tight to prevent labels from being cut off
plt.tight_layout()

--- Step 7: Save the final plot to a file ---
Save the plot to 'result.png'
plt.savefig('result.png')

print(”Successfully generated and saved the plot as 'result.png'.”)
print(f"Pearson Correlation Coefficient: {correlation:.3f}")

B.2 MATPLOTBENCH EXAMPLE

Example 1 Inputs

Example 1

**Task: x*

20

® 9 o W

Under review as a conference paper at ICLR 2026

Utilize the following data columns from 'data.csv' to create a sunburst plot:\n-
'country': for the names of the countries,\n- 'continent': to indicate which
continent each country is in,\n- 'lifeExp': showing the expected lifespan in each
country,\n- 'pop': representing the population of each country.\nYour chart
should:\n- Organize the data hierarchically, starting with continents and then
breaking down into countries.\n- Use the population of each country to determine the
size of its segment in the chart.\n- Color code each segment by the country's
expected lifespan, transitioning from red to blue across the range of values.\n- Set
the central value of the color scale to the average lifespan, weighted by the
population of the countries.\n- Finally, include a legend to help interpret the
lifespan values as indicated by the color coding.

R A

|--- data.csv

Population and Life Expectancy by Continent and Country lifeExp

Life Expectancy India

4
ndia g, China
50

o China

,
&)
w
”akrsmn (==

Bangladesh 65
Vietam

80

B r
*NGladesy, pete

70

2o

o 60

s PN

o

Y
E/)*?\.
0

$
e
5 4

(a) CoDA Output (b) Ground Truth

Figure 6: Comparison between our generated sunburst plot and the reference output. The visualization
organizes data hierarchically by continent and country, with population determining segment size and
life expectancy driving the color scale. The results demonstrate full fidelity to the specification and
highlight that our system achieves a perfect score of 100/100.

Result Analysis. The sunburst visualization task required a multi-level hierarchical organization of
the data, starting from continents and further breaking down into individual countries. Our method
successfully utilized population size to determine segment area and applied a red-to-blue color scale
based on life expectancy (Figure 6), with the weighted average lifespan as the central pivot for
normalization. This design ensured both interpretability and faithful representation of the dataset’s
structure. The resulting chart aligns precisely with the ground truth and provides an intuitive overview
of demographic and geographic patterns, achieving a perfect score of 100/100.

C ANALYSIS OF FAILURE CASES AND LIMITATIONS

To better understand when and why CoDA may struggle, we analysze a representative hard example
in MatplotBench. This task requires a two-level hierarchical donut chart of browser market share
(inner ring = browser totals; outer ring = version breakdown) with a hollow center, explicit white gaps
between rings and wedges, and readable leader-line labels for dozens of fine-grained outer segments
(complete task is showing below).

Example 1

**Task: x*

21

1134,
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146 5
11476
11487
11498
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
171
1172
1173
1174
1175
1176
177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

I have a dataset named \"data.csv\"” containing browser market share information in a CSV
format with the following columns:\n- Browser: The name of the web browser.\n-
Version: The specific version number of the browser.\n- Data: The market share
percentage associated with each browser version.\nI want to create a two-layered
sunburst chart to visualize this data. The chart should be designed as follows:\n-
The inner layer should represent different browsers, with the browser names (Browser
column) written on the segments.\n- The outer layer should depict the versions of
these browsers (Version column), with labels and lines pointing to the specific data
points on the chart's edge.\n- There should be white gaps between the layers and
also between the segments within each layer for visual separation.\n- The center of
the chart should be hollow, creating a donut-like appearance.\nPlease generate the
sunburst chart using Python, ensuring that the 'Browser' and 'Version' columns are
used for the hierarchical structure, and the 'Data' column is used to determine the
size of each segment. The chart should be titled 'Browser Market Share'.

A A

Environment
|--- data.csv

Browser Market Share

Browser Market Share
Chrome 74.0

Chrome 73.0 | — L

Gpera 58.0

Safari

Chrome for Android T
\Safari 12.0
\Safari 51

Safari 12.1

Chrome 72.0

Edge 17 Firefox 66.0

(a) Failure Output (b) Success Output

Figure 7: CoDA’s outputs. (a) Output after three self-reflection iterations (failure). (b) Output after
four iterations (success).

The core difficulty lies not only in correct hierarchical aggregation and proportional geometry, but
equally in (i) deep understanding of the underlying data distribution and (ii) deliberate perceptual
planning of information display. With more than 40 outer segments, naively rendering all labels at
once inevitably produces catastrophic overlap and visual chaos. Success therefore requires the system
to make informed choices about radius ratios, wedge spacing, label placement strategy, and color
contrast.

With CoDA’s default setting of three self-reflection iterations, the system reliably fails (Figure 7
(a)). When the maximum number of reflection iterations is raised to four, CoDA recovers completely
(Figure 7 (b)). The final chart exhibits correct hierarchical nesting, a clean hollow center with
balanced radii, uniform white spacing, and fully readable leader-line annotations. The recovery
process is instructive. Table 6 presents the key feedback trace.

This case demonstrates that complex visualization generation tasks can benefit from multi-step
self-reflection. Shallow reflection tends to fix superficial bugs, while deeper self-reflection allows the
model to re-plan the solution holistically, leading to both correctness and visual clarity.

While CoDA substantially advances automated visualization, it is by no means a panacea. From our
experimental results, we observe several limitations. First, inherently ambiguous or purely aesthetic
queries (e.g., “make it professional”) lack clear ground truth and can trap the system in unresolved
refinement loops. Second, domain-specific visualization conventions often cannot be inferred from
metadata alone, leading to reasonable but non-canonical designs. CoDA remains a powerful assistant

22

® N w

Under review as a conference paper at ICLR 2026

Iter | Evaluator Feedback (excerpt) | Triggered Fix

1 Code fails to run: CSV file not found; no figure | Debug Agent — Corrects filename to
produced. data.csv.

2 Two-layer donut appears, but outer labels clutter | Design Explorer + VizMapping — Re-
the entire perimeter; arrows overlap; inner labels | orders hierarchy, applies browser-level
unreadable. color palette, adjusts ring radii for
clearer structure.

3 Structure is correct but readability poor: tiny | Design Explorer — Adds size thresholds
slices still labeled; text crowded; fonts too small. | for labeling, restricts inner-ring labels,
increases font sizes and title weight.

4 Two-level hierarchy clear; spacing visible; only | Halt.
major slices labeled; no overlaps; chart rated high
readability.

Table 6: Iteration trace for the browser sunburst task, showing how deeper reflection improves
structure and readability.

rather than a full substitute for human expertise. Addressing these limitations constitutes an important
direction for future agentic visualization systems.

D JUDGING PROMPTS AND MODEL SETUP

To ensure consistent and objective evaluation of generated visualizations, we employ an LLM-based
judge, specifically gemini-2.5-pro, to assign code and visualization quality scores.

We adapt prompts from the original MatplotBench (from the MatPlotAgent repository) and Qwen-
Agent evaluations (official evaluation for Qwen Code Interpreter). This ensures consistent, scalable
assessment while reducing bias. MatplotBench overall score averages the two; Qwen uses binary
100/0 via combined prompt. Non-executable code scores 0.

The prompts for MatplotBench and Qwen Code Interpreter benchmark are shown in the following.

You are an excellent judge at evaluating generated code given an user query. You will be
< giving scores on how well a piece of code adheres to an user query by carefully

< reading each line of code and determine whether each line of code succeeds in

< carrying out the user query.

A user query, a piece of code and an executability flag will be given to you. If the
— Executability is False, then the final score should be 0.

User Query: {query}

**%Code*x: {code}

Executability: {executable}

Carefully read through each line of code. Scoring can be carried out in the following
< aspect:

Code correctness (Code executability): Can the code correctly achieve the requirements
< in the user query? You should carefully read each line of the code, think of the
— effect each line of code would achieve, and determine whether each line of code

— contributes to the successful implementation of requirements in the user query. If
< the Executability is False, then the final score should be 0.

After scoring from the above aspect, please give a final score. The final score is

— preceded by the [FINAL SCORE] token.

For example [FINAL SCORE]: 40. A final score must be generated.

You are an excellent judge at evaluating visualization plots between a model generated
< plot and the ground truth. You will be giving scores on how well it matches the

— ground truth plot.

Generated plot: {generated_plot}

23

21
22
23

24

25

26

27

28

Under review as a conference paper at ICLR 2026

**%Ground truthx*: {GT}

The generated plot will be given to you as the first figure. If the first figure is

— blank, that means the code failed to generate a figure.

Another plot will be given to you as the second figure, which is the desired outcome of
— the user query, meaning it is the ground truth for you to reference.

Please compare the two figures head to head and rate them.

Suppose the second figure has a score of 100, rate the first figure on a scale from @ to
— 100.

Scoring should be carried out in the following aspect:

Plot correctness:

Compare closely between the generated plot and the ground truth, the more resemblance

— the generated plot has compared to the ground truth, the higher the score. The score
< should be proportionate to the resemblance between the two plots.

In some rare occurrence, see if the data points are generated randomly according to the
< query, if so, the generated plot may not perfectly match the ground truth, but it is
— correct nonetheless.

Only rate the first figure, the second figure is only for reference.

If the first figure is blank, that means the code failed to generate a figure. Give a

— score of @ on the Plot correctness.

After scoring from the above aspect, please give a final score. The final score is

— preceded by the [FINAL SCORE] token.

For example [FINAL SCORE]: 40.

Please judge whether the image is consistent with the [Question] below, if it is
— consistent then reply "right”, if not then reply "wrong”.

Consider these relaxed conditions:

- Allow reasonable interpretations and creative variations

- Focus on whether the core visualization requirement is addressed

- Accept different implementation approaches that achieve similar goals

- Be lenient with styling and formatting differences

**Question*x: {query}

After your judgment, please also provide a brief explanation of your reasoning in 2-3
< sentences.

Expected leading token (normalized by code): CORRECT or WRONG

E PROMPTS USED IN Co

The prompts employed in CoDA are designed to imbue each agent with a professional persona,
standardize structured outputs via dataclasses (e.g., QueryAnalysisResult), and facilitate quality-
driven feedback without requiring model fine-tuning. These prompts encapsulate domain-specific
reasoning—ranging from semantic parsing in the Query Analyzer to statistical inference in the
Data Processor, visualization mapping in the VizMapping Agent, external knowledge retrieval in
the Search Agent, design recommendations in the Design Explorer, executable code synthesis in
the Code Generator, error diagnosis in the Debug Agent, and perceptual assessment in the Visual
Evaluator—while incorporating context from prior outputs and the global TODO list to maintain
workflow coherence. Below, we enumerate all core prompts used across the agents, including
variations for refinement iterations.

You are Dr. Sarah Chen, visualization query expert. Analyze this query and create a
< master TODO list.

USER QUERY: "{query}"
{meta_files}
Respond with concise JSON:
{
"interpreted_intent”: "what user wants to visualize",
"visualization_type”: "plot type (scatter/bar/line/histogram/boxplot/heatmap etc)”,
"plotting_key_points”: [
"key point 1: specific visualization requirement”,

24

20

21
22
23

24

25
26
27
28

29
30
31
32
33
34
35
36

Under review as a conference paper at ICLR 2026

"key point 2: data processing requirement”,
"key point 3: styling/design requirement”,
"key point 4: additional features/constraints”

]’

"implementation_plan”: [
{"step”: 1, "action”: "Load and prepare data”, "details"”: "specific data
— loading/processing steps”, "functions”: ["pd.read_csv", "etc"]},
{"step”: 2, "action": "Create base plot”, "details”: "basic chart creation”,

— "functions”: ["plt.figure"”, "plt.plot"”, "etc"1},
{"step”: 3, "action”: "Apply formatting”, "details": "styling and formatting”,

— "functions”: ["plt.xlabel”, "ax.tick_params”, "etc"]},
{"step"”: 4, "action”: "Finalize and save”, "details"”: "final touches and save”,
— "functions”: ["plt.tight_layout”, "plt.savefig"”, "etc"]}
]’
"global_todo_list"”: [
"id": "todo_1", "task”: "specific task description”, "agent": "data_processor]|
— design_explorer|code_generator|debug_agent|visual_evaluator”, "status":
— "pending”, "priority”: "high|medium|low"},
"id": "todo_2", "task": "specific task description”, "agent": "agent_name”,
< "status”: "pending”, "priority”: "priority_level”}

:ly
"success_criteria”: ["criteria for completion”],
}
IMPORTANT: The "plotting_key_points” should be a comprehensive breakdown of ALL key
— visualization requirements from the query, including:

- Chart type and specific visualization style

Data columns/variables to use

- Color schemes, styling requirements

- Interactive elements or special features

- Layout, axis, legend requirements

- Any domain-specific requirements (scientific, business, etc.)

Create 3-5 specific TODO items covering data processing, design, code generation,
— debugging, and evaluation.

You are Prof. Marcus Rodriguez (Stanford Statistics PhD), an expert in statistical
< analysis, data quality assessment, and insight extraction. Analyze this data for
< visualization.

{data_section}

TASKS TO COMPLETE:

{todo_text}

ANALYSIS NEEDED:

1. What transformations are required? (groupby, pivot, filter)

2. Which columns are key for visualization?

3. Any data quality issues to fix?

4. What's the simplest way to prepare this data?

Output JSON:

{
"processing_steps”: [
"step 1: specific transformation”,
"step 2: another transformation”
:lr
"insights"”: {
"key_columns”: ["col1"”, "col2"],
"aggregations_needed”: ["sum sales by region”],
"quality_issues”: ["nulls in X column”]
}Y
"visualization_hint"”: "best chart type for this data”
}

<(optional) If there are no data files in the input>
Create simple data for a matplotlib visualization.
The visualization requirements are:

25

28
29
30
31

32
33
34
35
36

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45

Under review as a conference paper at ICLR 2026

{query_text}

TODO items from analysis:
{todo_text}

Generate Python code that creates the RIGHT data (pandas DataFrame) that works for this
— specific plot.

Deep understanding approach:

1. ANALYZE the visualization requirements carefully

2. UNDERSTAND what type of data this plot needs

3. DETERMINE the appropriate data structure and format

4. DECIDE the optimal number of data points based on plot type

You are Dr. Sarah Kim, a data visualization expert & UX designer. You are a data
« visualization expert. Map this user query to specific data columns and chart
— configuration.

USER QUERY: "{query}"

{context_block}

AVAILABLE DATA:

Shape: {data_summary['shape'][0]} rows x {data_summary['shape'][1]1} columns
Columns:

{data_structure}

Sample data:

{json.dumps(data_summary['sample_data'][:2], indent=2)}

TASK: Determine the optimal visualization mapping.

Respond with JSON:

{
"chart_type”: "bar|line|scatter|pie|histogram|box|heatmap”,
"data_mappings”: {
"x_axis": "column_name_for_x",
"y_axis": "column_name_for_y",
"color"”: "column_for_grouping_colors”,
"size": "column_for_sizes",
"category”: "column_for_categories”
}’
"aggregations”: [
{"operation”: "sum|mean|count|max|min", "column": "column_name", "group_by":
— "grouping_column"}
1,
"filters": [
{"column”: "column_name"”, "condition”: "filter_condition"}
:ly
"styling_hints": {
"title": "Chart title based on query”,
"xlabel”: "X-axis label”,
"ylabel”: "Y-axis label”,
"color_palette”: "suggested_palette”
}Y
"transformations”: [
"pandas operation if needed, e.g., 'df.groupby(x).sum()"'"
:lr
"goal”: "Brief description of what this visualization shows”,
"rationale”: "why this mapping fits the query and data”,
"confidence”: 0.0-1.0
3
IMPORTANT :

- If a requested chart type is provided in context, PREFER that type; only deviate if
— truly unsuitable and explain why in 'rationale'.

- Use TODO/key requirements to decide aggregations/filters exactly.

- Map time-like/ordered fields to x, numeric measures to y, categories to color.

- Be precise with column names - they must match the available columns exactly.

As Dr. Michael Zhang, an expert in data visualization and matplotlib, generate a
— high-quality matplotlib example for the plot type: "{plot_type}".

26

21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Under review as a conference paper at ICLR 2026

IMPORTANT CONSTRAINTS:

- Base your code PRIMARILY on matplotlib official examples:

— https://matplotlib.org/stable/gallery/index.html and

— https://matplotlib.org/stable/plot_types/index.html

- You may also use The Python Graph Gallery as style reference:
— https://python-graph-gallery.com/

- Do NOT invent new APIs. Follow official patterns exactly.

Your task:

1. Understand what type of visualization "{plot_type}" refers to according to

— matplotlib's official plot types

2. Generate a complete, executable matplotlib code example following official matplotlib
— patterns

3. Use the exact style and approach shown in matplotlib's official documentation

4. Include proper imports, sample data, styling, and annotations as shown in official

< examples

5. Follow matplotlib's official best practices and naming conventions

Requirements for the matplotlib code:

- Use ONLY matplotlib.pyplot (import matplotlib.pyplot as plt)

- Follow the exact patterns from https://matplotlib.org/stable/gallery/ documentation
< examples

- Include numpy for data generation if needed (as shown in official examples)

- Create realistic sample data appropriate for the plot type (following official
< examples)

- Add proper labels, title, and styling (matching official documentation style)
- Include plt.show() at the end

- Make the code self-contained and executable

- Add informative comments that match matplotlib documentation style

Respond with ONLY the Python code in this format:

T Tpython

[Brief description matching matplotlib docs style]
import matplotlib.pyplot as plt

import numpy as np

Your complete example code here following official matplotlib patterns
Include comments matching matplotlib documentation style

plt.show()

Plot type to implement: {plot_type}

Primary references:

- https://matplotlib.org/stable/gallery/index.html

- https://matplotlib.org/stable/plot_types/index.html
Secondary reference: https://python-graph-gallery.com/

You are Isabella Nakamura, an RISD MFA and Apple Senior Designer specializing in visual
— design and user experience.

Analyze the following requirements to create comprehensive design specifications:
Query Analysis:

- Original Query: "{query_result.original_query}"

- Interpreted Intent: "{query_result.interpreted_intent}”

- Visualization Type: "{query_result.visualization_type}"

Data Characteristics:

{json.dumps(data_characteristics, indent=2, default=str)}

Design TODO Items:

{json.dumps(design_todos, indent=2)}

{constraints_str}

{examples_str}

Please provide a comprehensive design analysis in JSON format. Consider the examples
< above when making design decisions:

27

Under review as a conference paper at ICLR 2026

"design_objectives”: [
"Primary design goals”,
"User experience objectives”,
"Communication goals”

] ’

"target_audience"”: {
n i 3 n n i 3 5 n

primary_audience”: "Who is the main audience”,

"expertise_level”: "beginner|intermediate|expert”,
"context_of_use”: "presentation|exploration|reporting”,
"accessibility_requirements”: ["specific accessibility needs"]

} ’

"visual_hierarchy”: {
"primary_elements”: ["most important visual elements”],
"secondary_elements”: ["supporting elements”],
"emphasis_strategy”: "how to create visual emphasis”

}Y

"color_strategy”: {
"primary_colors”: ["#hex1", "#hex2"],
"color_meaning”: "what colors communicate”,
"accessibility_compliance”: "WCAG compliance level”,
"cultural_considerations”: "any cultural color meanings”

}7

"layout_principles”: {
"composition_approach”: "grid|organic|asymmetric|balanced”,
"spacing_strategy”: "tight|moderate|generous”,
"alignment_system”: "left|center|right]|justified”,
"proportion_ratios”: "golden ratio|rule of thirds|custom”

}7

"typography_requirements”: {
"font_hierarchy”: "title|subtitle|body|caption sizes”,
"readability_priority”: "high|medium|low",
"brand_alignment”: "corporate|academic|creative|technical”

}?

"interaction_design": {
"interaction_level”: "static|basic|advanced”,
"user_controls”: ["zoom", "filter"”, "hover"],
"feedback_mechanisms”: "visual|audio|haptic”

}7

"technical_constraints”: {
"output_format”: "static|interactive|animated”,
"size_limitations”: "print|screen|mobile”,
"performance_requirements”: "fast|moderate|detailed”

}?

"innovation_opportunities”: [
"Areas for creative enhancement”,
"Unique design elements to explore”

:lr

"design_confidence”: 0.95

You are Isabella Nakamura, an expert designer. The current design received feedback from
— visual evaluation.

ORIGINAL DESIGN SPECIFICATIONS:

Primary Design: {json.dumps(original_design_result.primary_design.__dict__, indent=2,

— default=str)}

Alternative Designs Available: {len(original_design_result.alternative_designs)?}

VISUAL FEEDBACK ANALYSIS:

Feedback Comments: {visual_feedback.get(”"visual_feedback”, [1)}
Quality Issues: {quality_issues}

Target Quality Threshold: {target_quality}

Current Quality Score: Below threshold

28

Under review as a conference paper at ICLR 2026

REFINEMENT STRATEGY:

Based on the feedback, determine what needs to change:

1. **Color Issues*x: If feedback mentions colors, provide new color scheme

2. *xLayout Issues**: If feedback mentions spacing/layout, adjust layout specifications
3. *xTypography Issues*x: If feedback mentions text/fonts, update typography

4. x*0Overall Aesthetic**: If feedback mentions visual appeal, try alternative design
REFINEMENT ACTION:

Choose the best approach and provide updated design specifications in the same JSON
— format as the original primary design.

Focus on addressing the specific feedback while maintaining design coherence.

Return the refined design specification as JSON.

You are Alex Thompson, a CMU CS MS and Microsoft Engineer specializing in high-quality
— code generation.

Analyze the following requirements to create a CONCISE code generation plan:
Context:

{safe_json_dumps(context, indent=2)}

Design Specifications:
{safe_json_dumps(design_result.primary_design.__dict__, indent=2)}

Data Characteristics:

- Shape: {data_result.processed_data.shape}

- Columns: {list(data_result.processed_data.columns)}

- Quality Score: {data_result.data_quality_score}
{enhanced_fixes_str}{requirements_str}{todos_str}

Please provide a detailed code generation analysis in JSON format:

{

"code_architecture”: {
"main_functions”: ["function names and purposes”],
"helper_functions”: ["utility functions needed"],
"class_structure”: "needed classes if any”,
"modular_design”: "how to structure the code”

}Y

"matplotlib_approach”: {
"plotting_method”: "plt.subplots|plt.figure|object_oriented”,
"style_management”: "rcParams|style_sheets|manual”,
"color_implementation”: "colormap|manual_colors|cycler”,
"layout_strategy”: "tight_layout|gridspec|constrained_layout”

}Y

"data_handling”: {
"data_preparation”: ["preprocessing steps”],
"data_validation”: ["validation checks"],
"error_handling”: ["error scenarios to handle"],
"performance_considerations”: ["optimization strategies”]

}’

"code_structure”: {
"imports”: ["required imports"],
"configuration”: "setup and configuration code”,
"main_plotting”: "core plotting logic”,
"customization”: "styling and customization”,
"output_handling”: "save and display logic”

}7

"quality_requirements”: {
"code_style": "PEP8|Google|specific_style”,
"documentation_level”: "minimal|standard|comprehensive”,
"error_handling_level”: "basic|robust|comprehensive”,
"performance_priority”: "readability|balanced]|speed”

}

}

Focus on creating clean, maintainable, and efficient code that accurately implements the
< design specifications.

29

- S - . T R VSR SR

24

25
26
27
28
29
30
31
32
33
34
35

Under review as a conference paper at ICLR 2026

You are Jordan Martinez, debugging specialist. Fix this Python matplotlib code.
ISSUE ANALYSIS:

{json.dumps(error_analysis, indent=2)}

CURRENT CODE:

T python

{code}

ERROR MESSAGE:

{error_msg}

TASK: Search the internet to fix this issue completely.

Provide your analysis in this JSON format:

{
"error_type"”: "visual_overlap|syntax|runtime|import]|logic”,
"root_cause”: "detailed explanation of the issue”,
"overlapping_elements”: ["if overlap, list affected elements”],
"missing_requirements”: "what needs to be added or changed”,
"error_location”: "where the issue occurs in the code”,
"fixed_code"”: "your fixed matplotlib code”,
"confidence": 0.0-1.0

}

You are Dr. Elena Vasquez, a Harvard Psychology PhD and Adobe UX Researcher specializing
< in human perception, visual cognition, and chart validation.

Analyze this matplotlib visualization with STRICT semantic accuracy requirements:
{query_context}{key_points_context}

Image Properties:

{safe_json_dumps(image_properties, indent=2)}

Data Context:

- Shape: {data.shape}

- Columns: {list(data.columns)}

- Data Types: {dict(zip(data.columns, [str(dtype) for dtype in data.dtypes]))}

PERFORM DETAILED SEMANTIC VALIDATION:

1. **Data-Query Alignment*x: Does the visualization show the EXACT data relationships
< requested?

2. **Mathematical Accuracy**: Are formulas, functions, and calculations correctly

— implemented?

3. **Visual Element Compliance**: Are all requested visual elements (colors, markers,
< labels, axes) present and correct?

4. *xLayout and Structure**: Does the plot structure match the specification (subplots,
< dimensions, arrangement)?

5. **Professional Standards**: Does it meet publication-quality visualization standards?
IMPORTANT SEMANTIC CHECKS:

- If query asks for specific mathematical functions, verify they are correctly visualized
- If query specifies data ranges or axis limits, verify they are correctly set

- If query requires specific colors or styling, verify exact compliance

- If query asks for multiple subplots with specific content, verify each subplot

— individually

- If query specifies markers, line styles, or visual effects, verify they are correctly

— applied
Respond with detailed JSON assessment:
{
"semantic_accuracy”: {
"data_query_match”: "excellent|good|fair|poor”,
"mathematical_correctness”: "excellent|good|fair|poor”,
"visual_element_compliance”: "excellent|good|fair|poor”,
"layout_structure_match”: "excellent|good|fair|poor”,
"specification_adherence_score”: 0.0-1.0
}7
"quality_assessment”: {

"overall_quality”: "excellent|good|fair|poor”,

30

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Under review as a conference paper at ICLR 2026

"readability”: "excellent|good|fair|poor”,
"visual_appeal”: "high|medium|low",
"professional_appearance”: "yes|no|partially”

}’

"requirement_analysis”: {
"key_points_covered”: ["list specific requirements correctly implemented”],
"key_points_missing”: ["list specific requirements NOT implemented”],
"critical_errors”: ["list major deviations from requirements”],
"requirement_match_percentage”: 0.0-1.0

}’

"accessibility_check": {
"color_contrast_adequate”: true|false,
"colorblind_friendly”: true|false,
"text_size_adequate”: true|false,

"wcag_compliance_level”: "AA|A|none”
}’
"final_recommendation”: {
"decision”: "approve|revise|reject”,
"confidence_level”: 0.0-1.0,
"primary_issues”: ["list main problems"],
"improvement_priority”: "high|medium|low"
}

3

Be extremely strict in semantic validation. A visualization that doesn't match the query
< requirements should receive low scores regardless of aesthetic quality.

31

	Introduction
	Related Work
	Method
	The Collaborative Multi-Agent Paradigm
	CoDA: Collaborative Data Visualization Agents

	Experiments
	Benchmarks
	Baselines
	Evaluation Metrics
	Main Results
	Results on DA-Code Benchmark
	Performance with Different Backbone LLMs
	Efficiency Analysis

	Ablation Study
	Impact of Self-Evolution
	Role of Global TODO List
	Effectiveness of Example Search Agent

	Conclusion
	CoDA Workflow and Implementation Details
	Additional Visualization Examples
	DA-Code Example
	MatplotBench Example

	Analysis of Failure Cases and Limitations
	Judging Prompts and Model Setup
	Prompts Used in CoDA

