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ABSTRACT

In this paper, we study the expressivity of Markovian reward functions, and iden-
tify several limitations to what they can express. Specifically, we look at three
classes of reinforcement learning tasks (multi-objective reinforcement learning,
risk-averse reinforcement learning, and modal reinforcement learning), and then
prove mathematically that most of the tasks in each of these classes cannot be ex-
pressed using scalar, Markovian reward functions. In the process, we provide nec-
essary and sufficient conditions for when a multi-objective reinforcement learn-
ing problem can be reduced to ordinary, scalar reward reinforcement learning.
We also call attention to a new class of reinforcement learning problems (namely
those we call “modal” problems), which have so far not been given any systematic
treatment in the reinforcement learning literature. In addition, we also show that
many of these problems can be solved effectively using reinforcement learning.
This rules out the possibility that those problems which cannot be expressed using
Markovian reward functions also are impossible to learn effectively.

1 INTRODUCTION

To use reinforcement learning (RL) to solve a task, it is necessary to first encode that task using a
reward function (Sutton & Barto, 2018). Usually, these reward functions are Markovian functions
from state-action-next-state triples to reals. In this paper, we study the expressivity of Markovian
reward functions, and identify several limitations to what they can express. Specifically, we will
examine three classes of tasks, all of which are both intuitive to understand, and useful in practical
situations. We will then show that almost all tasks in each of these three classes are impossible to
express using Markovian reward functions. Moreover, we also show that many of these problems can
be solved effectively with RL, either by providing references to existing literature, or by providing
an outline of a possible approach. This rules out the possibility that those problems which cannot be
expressed using Markovian reward functions also are impossible to learn effectively.

The first class of problems we look at, in Section 2, is the single-policy version of multi-objective
RL (MORL). In such a problem, the agent receives multiple reward signals, and the aim is to learn a
single policy that achieves an optimal trade-off of those rewards according to some criterion (Roijers
et al., 2013; Liu et al., 2015). For example, a single-policy MORL algorithm might attempt to
maximise the rewards lexicographically (Skalse et al., 2022b). We will look at the question of
which MORL problems can be reduced to ordinary RL, by providing a scalar reward function that
induces the same preferences as the original MORL problem. Moreover, we will provide a complete
solution to this problem, in the form of necessary and sufficient conditions. We find that this can
only be done for MORL problems that correspond to a linear weighting of the rewards, which means
that it cannot be done for the vast majority of all interesting MORL problems.

The next class of problems we look at, in Section 3, is risks-sensitive RL. There are many contexts
where it is desirable to be risk averse. In economics, and related fields, this is often modelled using
utility functions U : R → R which are concave in some underlying quantity. Can the same thing
be done with reward functions? Is it possible to take a reward function, and then create a version
of that reward function which induces more risk-averse behaviour? We show that the answer is no
– none of the standard risk-averse utility functions can be expressed using reward functions. This
demonstrates another limitation in the expressive power of Markovian rewards.
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The last class of problems we look at, in Section 4, is something we call modal tasks. These are
tasks where the agent is evaluated not only based on what trajectories it generates, but also based on
what it could have done along those trajectories. For example, consider the instruction “you should
always be able to return to the start state”. We provide a formalisation of such tasks, argue that
there are many situations in which these tasks could be useful, and finally prove that these tasks also
typically cannot be formalised using ordinary reward functions.

In Section 5, we discuss how to solve tasks from each of these classes using RL. We provide ref-
erences to existing literature, and then sketch both an approach for learning a wide class of MORL
problems, and an approach for learning a wide class of modal problems. Finally, in Section 6, we
discuss the significance and limitations of our results, together with ways to extend them.

1.1 RELATED WORK

There has been a few recent papers which examine the expressivity of Markovian reward functions.
The first of these is the work by Abel et al. (2021), who point to three different ways to formalise
the notion of a “task” (namely, as a set of acceptable policies, as an ordering over policies, or as an
ordering over trajectories). They then demonstrate that each of these classes contains at least one
instance which cannot be expressed using a reward function (by using the fact that the set of all
optimal policies forms a convex set, and the fact that the reward function is Markovian). They also
provide algorithms which compute reward functions for these types of tasks, by constructing a linear
program. We greatly extend their work by providing new results that are significantly stronger.

Another important paper is the work by Vamplew et al. (2022), who argue that there are many
important aspects of intelligence which can be captured by MORL, but not by scalar RL. Like
them, we also argue that MORL is a genuine extension of scalar RL, but our approach is quite
different. They focus on the question of whether MORL or (scalar) RL is a better foundation for
the development of general intelligence (considering feasibility, safety, and etc), and they provide
qualitative arguments and biological evidence. By contrast, we are more narrowly focused on what
incentive structures can be expressed by MORL and scalar RL, and our results are mathematical.

There is also other relevant work that is less strongly related. For example, Icarte et al. (2022) point
out that there are certain tasks which cannot be expressed using Markovian rewards, and propose a
way extend their expressivity by augmenting the reward function with an automaton that they call a
reward machine. Similar approaches have also been used by e.g. Hasanbeig et al. (2020); Hammond
et al. (2021). There are also other ways to extend Markovian rewards to a more general setting, such
as convex RL, as studied by e.g. Hazan et al. (2019); Zhang et al. (2020); Zahavy et al. (2021); Geist
et al. (2022); Mutti et al. (2022), and vectorial RL, as studied by e.g. Cheung (2019a;b). Also related
is the work by Skalse et al. (2022c), who show that there are certain relationships that are never
satisfied by any pair of reward functions. This paper can also be seen as relating to earlier work on
characterising what kinds of preference structures can be expressed using utility functions, such as
the famous work by von Neumann & Morgenstern (1947), and other work in game theory.

There is a large literature on (the overlapping topics of) single-policy MORL, constrained RL, and
risk-sensitive RL. Some notable examples of this work includes Achiam et al. (2017); Chow et al.
(2017); Miryoosefi et al. (2019); Tessler et al. (2019); Skalse et al. (2022b). This existing literature
typically focuses on the creation of algorithms for solving particular MORL problems, and has so
far not tackled the problem of characterising when MORL problems can be reduced to scalar RL.
Modal RL has (to the best of our knowledge) never been discussed explicitly in the literature before.
However, it relates to some existing work, such as side-effect avoidance (Krakovna et al., 2018;
2020; Turner et al., 2020), and the work by Wang et al. (2020).

1.2 PRELIMINARIES

The standard RL setting is formalised using Markov Decision Processes (MDPs), which are tuples
⟨S,A, τ, µ0,R, γ⟩ where S is a set of states, A is a set of actions, τ : S × A ⇝ S is a transition
function, µ0 is an initial state distribution over S, R : S × A × S ⇝ R a reward function, where
R(s, a, s′) is the reward obtained if the agent moves from state s to s′ by taking action a, and
γ ∈ (0, 1) is a discount factor. Here, f : X ⇝ Y denotes a probabilistic mapping f from X to Y . A
state is terminal if τ(s, a) = s and R(s, a, s) = 0 for all a. A trajectory ξ is a path s0, a0, s1 . . . in an
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MDP that is possible according to µ0 and τ . We use G to denote the trajectory return function, where
G(ξ) =

∑∞
t=0 γ

trt. A policy is a mapping π : S ⇝ A, and Π is the set of all policies. Given a policy
π, its value function V π : S → R is the function where V π(s) is the expected future discounted
reward when following π from s, and its Q-function Qπ : S × A → R = ES′∼τ(s,a)[R(s, a, S′) +
γ · V π(S′)]. The policy evaluation function J : Π → R is J(π) = ES0∼µ0

[V π(So)]. If a policy
maximises J , then we say that this policy is optimal. We denote optimal policies by π⋆, and their
value function and Q-function by V ⋆ and Q⋆. Moreover, given an MDP M, we say that M’s policy
order is the ordering ≺ on Π induced by π1 ≺ π2 ⇐⇒ J(π1) < J(π2) for all π1, π2. For a more
comprehensive overview, see Sutton & Barto (2018).

In this paper, we will say that a reward function R is trivial if J(π1) = J(π2) for all π1, π2.
Moreover, we say that R1 and R2 are equivalent if J1(π1) < J1(π2) ⇐⇒ J2(π1) < J2(π2) for
all π1, π2, and that they are opposites if J1(π1) < J1(π2) ⇐⇒ J2(π1) > J2(π2) for all π1, π2.

MORL problems are formalised using Multi-Objective MDPs (MOMDPs), which are tuples
⟨S,A, τ, µ0, R⃗, γ⟩. The only place where MOMDPs differ from MDPs are R⃗, which is a func-
tion R⃗ : S ×A× S ⇝ Rk that, for each transition s, a, s′, returns k different rewards (for some k).
We denote the reward function that returns the i’th component of R⃗ as Ri, and use V π

i , Qπ
i , Ji, Gi,

etc, to refer to its value functions, Q-functions, evaluation function, return function, etc. Since there
may not be any single policy which maximises each component of R⃗, a MORL problem additionally
needs a rule for how to combine and trade off each reward.

1.3 A REMARK ON “TASKS”

In order to determine if a given task can be expressed by Markovian reward functions, we must
first determine what it means for a reward function to express a task. One answer to this question
is to say that a task corresponds to a desired policy π, and that a reward function R expresses the
task if π is optimal under R (possibly with the additional requirement that π is the only policy that
is optimal under R). With this definition, we find that any task can be expressed as a Markovian
reward function, at least as long as π is stationary and deterministic (see Appendix B).

Another possible definition is to say that a task corresponds to an ordering ≺ on Π, which encodes a
preference ordering over all policies, and that a reward function R expresses the task if J orders Π
according to ≺. It is primarily this latter definition that we will use in this paper. The main reason
for this is that it often is impossible to find the optimal policy in complex environments. This means
that it is not enough for R to have the right optimal policy; it must also induce the right preferences
between the (sub-optimal) policies that the policy optimisation algorithm actually considers. The
only way to robustly ensure that this is the case is if R induces the right policy ordering.

These are not the only two reasonable definitions. As mentioned previously, more definitions can be
found in Abel et al. (2021).

2 MULTI-OBJECTIVE REINFORCEMENT LEARNING

In this section, we examine the MORL setting. We first need a general definition of what a single-
policy MORL problem is. Recall that a MOMDP ⟨S,A, τ, µ0, R⃗, γ⟩ by itself has no one canonical
objective to maximise. We therefore introduce the notion of a MORL objective:
Definition 1. A MORL objective over k rewards is a function O that takes k policy evaluation
functions J1 . . . Jk and returns a (total) ordering ≺O over the set of all policies Π.

Given a MOMDP M = ⟨S,A, τ, µ0, R⃗, γ⟩, a MORL objective O gives us an ordering over Π that
tells us when a policy is preferred over another. We use ≺M

O to denote the policy ordering that is
obtained when we apply O to M’s policy evaluation functions. For the purposes of this paper, we
will not need to impose any further requirements on ≺O. For example, we will not insist that ≺O
must have a greatest element in Π, or that π1 ≺O π2 whenever π2 is a Pareto improvement over π1,
etc, even though a reasonable MORL objective presumably would have these properties. We next
give a few examples of some interesting MORL objectives:
Definition 2. Given J1 . . . Jk, the LexMax objective ≺Lex is given by π1 ≺Lex π2 if and only if
there is an i ∈ {1 . . .m} such that Ji(π1) < Ji(π2), and Jj(π1) = Jj(π2) for j < i.
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Definition 3. Given J1 . . . Jk, the MaxMin objective ≺Min is given by π1 ≺Min π2 ⇐⇒
mini Ji(π1) < mini Ji(π2).
Definition 4. Given J1 . . . Jk and some c1 . . . cm ∈ R, the MaxSat objective ≺Sat is given by
π1 ≺Sat π2 if and only if the number of rewards that satisfy Ji(π1) ≥ ci is larger than the number
of rewards that satisfy Ji(π2) ≥ ci.
Definition 5. Given J1, J2 and some c ∈ R, the ConSat objective ≺Con is given by π1 ≺Con π2 if
and only if either J1(π1) < c and J1(π1) < J1(π2), or if J1(π1), J1(π2) ≥ c and J2(π1) < J2(π2).

In other words, the LexMax objective has lexicographic preferences over R1 . . . Rm, so that policies
are first ordered by their expected discounted R1-reward, and then policies that obtain the same
expected discounted R1-reward are ordered by their expected discounted R2-reward, and so on.
The MaxMin objective orders policies by their worst performance according to any of R1 . . . Rm

(which could be used to obtain worst-case guarantees). The MaxSat objective only cares about
whether a policy reaches a certain threshold for each reward, and ranks policies based on how many
thresholds they reach. The ConSat objective wants to maximise J2, but under the constraint that J1
reaches a certain threshold. These MORL objectives are simply a short list of illustrative examples,
demonstrating the flexibility of the framework. A few more examples are given in Appendix D. We
next need to define what it means to reduce a MORL problem to a (scalar) RL problem:

Definition 6. A MOMDP M = ⟨S,A, τ, µ0, R⃗, γ⟩ with objective O is equivalent to the MDP
M̃ = ⟨S,A, τ, µ0, R̃, γ⟩ if and only if M̃ ’s policy order is ≺M

O .

Note that M̃ must have the same states, actions, transition function, initial state distribution, and
discount factor, as M. This definition therefore says that M with O is equivalent to M̃ if M̃ is given
by replacing R⃗ = ⟨R1 . . . Rk⟩ with a single reward function R̃, and R̃ induces the same preferences
between all policies as O(J1 . . . Jk). We can now derive necessary and sufficient conditions for
when a MORL problem can be reduced to a scalar-reward RL problem.

Theorem 1. If a MOMDP M = ⟨S,A, τ, µ0, R⃗, γ⟩ with objective O is equivalent to an MDP
M̃ = ⟨S,A, τ, µ0, R̃, γ⟩, then J̃(π) =

∑k
i=1 wi ·Ji(π) for some w1 . . . wk ∈ R. Moreover, M with

O is also equivalent to the MDP with reward R(s, a, s′) =
∑k

i=1 wi ·Ri(s, a, s
′).

Proof. Suppose M with O is equivalent to an MDP M̃ = ⟨S,A, τ, µ0, R̃, γ⟩. First, let m : Π →
R|S||A| be the function that maps each policy π to the |S||A|-dimensional vector where

m(π)[s, a] =

∞∑
t=0

γtPξ∼π(St = s,At = a).

Moreover, for a reward function R, let R⃗ ∈ R|S||A| be the |S||A|-dimensional vector where

R⃗[s, a] = ES′∼τ(s,a)[R(s, a, S′)].

Note that we now have that J(π) = m(π) · R⃗, for any reward function R. Recall also that multipli-
cation by an |S||A|-dimensional vector induces a linear function over R|S||A|. This means that, for
any reward function R, we can express its policy evaluation function J : Π → R as L ◦m, where L
is a linear function. In particular, J̃ = L̃ ◦m, and Ji = Li ◦m for each of Ri ∈ R⃗.

From the definition of MORL objectives, we have that J̃(π) is a function of J1(π) . . . Jk(π). This,
in turn, means that L̃(v) is a function of L1(v) . . . Lk(v), for any v ∈ Im(m). Let M be the
(|S||A| × k)-dimensional matrix that maps each vector v ∈ R|S||A| to ⟨L1(v), . . . , Lk(v)⟩ (in other
words, the matrix whose rows are R⃗1 . . . R⃗k). Since L̃(v) is a function of L1(v) . . . Lk(v), we have
that L̃ can be expressed as f ◦ M for some function f . Since L̃ is a linear function, and since M
is a linear transformation, we that f must be a linear function as well. This means that there are
w1 . . . wk ∈ Rk such that f(x) =

∑k
i=1 wi · xi, which implies that L̃(v) =

∑m
i=1 wi · Li(v), and

further that J̃(π) =
∑k

i=1 wi · Ji(π). This completes the first part.

Next, let R(s, a, s′) =
∑

i1
kwi ·Ri(s, a, s

′). Straightforward algebra shows that J(π) =
∑k

i=1 wi ·
Ji(π). Now, since J = J̃ , and since M with O is equivalent to M̃, we have that M with O is
equivalent to the MDP with reward R. This completes the second part.
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This theorem effectively tells us that only linear MORL objectives can be represented using scalar-
reward RL! This imposes a harsh limitation on what kinds of tasks can be encoded using scalar
rewards. Theorem 1 also has the following corollary, which is useful for demonstrating when some
MORL objective cannot be expressed using scalar reward functions. Given an ordering ≺ over Π
dependent on some evaluation functions J1 . . . Jk, we say that a function U : Π → R represents
≺ if U(π1) < U(π2) ⇐⇒ π1 ≺ π2. We say that U is a linear representation if U(π) =

f(
∑k

i=1 wi · Ji(π)) for some w1 . . . wk ∈ R and some f that is strictly monotonic.

Corollary 1. If O(J1 . . . Jk) has a non-linear representation U , and M is a MOMDP whose J-
functions are J1 . . . Jk, then M with O is not equivalent to any MDP.

Proof. Assume for contradiction that M with O is equivalent the MDP M̃ = ⟨S,A, τ, µ0, R̃, γ⟩.
Then J̃ represents O(J1 . . . Jk), and this in turn means that U must be strictly monotonic in J̃ .
Moreover, Theorem 1 implies that J̃ =

∑k
i=0 wi · Ji for some w1 . . . wk ∈ Rk. However, this

contradicts our assumptions.

Therefore, we can prove that M with O is not equivalent to any MDP by finding a non-linear
representation of ≺M

O . We will now show that none of the MORL objectives given in Definition 2-5
can be expressed using single-objective RL, except in a few degenerate edge cases.

Theorem 2. There is no MDP equivalent to M with LexMax, as long as M has at least two reward
functions that are neither trivial, equivalent, or opposites.

Proof. Suppose M with LexMax is equivalent to M̃ = ⟨S,A, τ, µ0, R̃, γ⟩. Let i be the smallest
number such that Ri is non-trivial, and let j be the smallest number greater than i such that Rj is
non-trivial, and not equivalent to or opposite of Ri. Then there are π1, π2 such that Ji(π1) = Ji(π2)

and Jj(π1) < Jj(π2), which means that π1 ≺M
Lex π2. Moreover, since J̃ represents ≺M

Lex, it follows
that there are no π, π′ such that Ji(π) < Ji(π

′) and J̃(π) > J̃(π′). Then Theorem 1 in Skalse et al.
(2022c) implies that Ri is equivalent to R̃. However, then J̃(π1) = J̃(π2), which means that J̃
cannot represent ≺M

Lex.

Theorem 3. There is no MDP equivalent to M with MaxMin, unless M has a reward function Ri

such that Ji(π) ≤ Jj(π) for all j ∈ {1 . . . k} and all π.

Proof. OM
Min is represented by the function U(π) = miniJi(π). Moreover, if M has no reward

function Ri such that Ji(π) ≤ Jj(π) for all j ∈ {1 . . . k} and all π then this representation is
non-linear. Corollary 1 then implies that M with MaxMin is not equivalent to any MDP.

Theorem 4. There is no MDP equivalent to M with MaxSat, as long as M has at least one reward
Ri where Ji(π1) < ci and Ji(π2) ≥ ci for some π1, π2 ∈ Π.

Proof. Note that MaxSat(M) is represented by the function U(π) =
∑k

i=1 1[Ji(π) ≥ ci], where
1[Ji(π) ≥ ci] is the function that is equal to 1 when Ji(π) ≥ ci, and 0 otherwise. Moreover, U is
not strictly monotonic in any function that is linear in J1 . . . Jk. Corollary 1 thus implies that M
with MaxSat is not equivalent to any MDP.

Theorem 5. There is no MDP equivalent to M with ConSat, unless either R1 and R2 are equiv-
alent, or maxπ J1(π) ≤ c.

Proof. OM
Con is represented by U(π) = {J1(π) if J1(π) ≤ c, else J2(π)−minπ J2(π) + c}. More-

over, this representation is non-linear, unless either R1 and R2 are equivalent, or maxπ J1(π) ≤ c.
Corollary 1 then implies that M with ConSat is not equivalent to any MDP.

Theorem 2-5 show that none of the MORL objectives given in Definition 2-5 can be expressed using
single-objective RL, except in a few degenerate cases where those MORL objectives are uninterest-
ing. This demonstrates that there is no satisfactory way to reduce MORL problems to scalar-reward
RL (and hence that scalar RL is unable to express many natural task specifications).
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3 RISK-SENSITIVE REINFORCEMENT LEARNING

The next area we will look at is that of risk-sensitive reinforcement learning. An ordinary RL agent
tries to maximise the expectation of its reward function. However, there are many cases where it
is natural to want the agent to be risk-averse. In economics, risk-aversion is typically modelled by
using utility functions U(c) that are concave in some relevant quantity c (which might be money,
for example). A natural question is then whether a similar trick may be used with reward functions?
That is, given a reward function R1 and a concave function f , can we construct a reward function
R2 such that G2(ξ) = f(G1(ξ)) for all trajectories ξ? We will examine this question.

Some of the most common risk-averse utility functions includes exponential utility, isoelastic utility,
and quadratic utility. The exponential utility function is given by U(c) = −eαc, where α > 0
is a parameter controlling the degree of risk aversion. The isoelastic utility function is given by
U(c) = c1−α, for α > 0, α ̸= 1, or by U(c) = ln(c) (corresponding to the case when α = 1). The
quadratic utility function is given by U(c) = c−αc2, where α > 0. Since this function is decreasing
for sufficiently large c, its domain is typically restricted to (−∞, 1/2α]. We will examine each of
these, and show that none of them can be expressed using reward functions.

In this section, we will consider the domain of G to be the set of all coherent trajectories, not the
set of trajectories which are possible under some transition function τ . In other words, we consider
the set of all trajectories to be (S × A)ω . The reason for this is that we do not want to presume
any prior knowledge of the environment. If we restrict the set of trajectories we consider, then some
risk-averse utility functions can become possible to express (consider the case of a tree-shaped MDP,
for example). Finally, we will say that R is constant if it has a constant value for all s, a, s′.

To prove our results, we will make use of three lemmas. The proofs of these lemmas are fairly long,
but not very illuminating, and so we have relegated them to Appendix A.

Lemma 1. If R is non-constant, then for any state s there exists trajectories ζ1, ζ2, ζ3 starting in s
such that G(ζ1) ̸= G(ζ2), G(ζ2) ̸= G(ζ3), and G(ζ1) ̸= G(ζ3).

Lemma 2. If G2(ξ) = f(G1(ξ)) for all ξ and some f , then for any transition ⟨s, a, s′⟩ and any
trajectory ζ starting in s′, R2(s, a, s

′) = f(R1(s, a, s
′) + γG1(ζ))− γf(G1(ζ)).

Lemma 3. For any non-constant reward R1 and any f that is injective on range(G1), if for any
y ∈ range(R1) and any γ ∈ (0, 1) there are at most two distinct x1, x2 such that f(y + γx1) −
γf(x1) = f(y + γx2)− γf(x2) then there is no reward R2 such that G2(ξ) = f(G1(ξ)) for all ξ.

Using these lemmas, we can now derive our main results:

Theorem 6. For any non-constant reward function R1 and any constant α ̸= 0, there is no reward
function R2 such that G2(ξ) = −eαG1(ξ) for all valid trajectories ξ.

Proof. With f(x) = −eαx, the expression in Lemma 3 becomes −eα(y+γx) + γeαx. The deriva-
tive of this expression with respect to x is γα(−eα(y+γx) + eαx), which has only one root when
γ ̸= 0 and α ̸= 0. This means that there can be at most two distinct values x1, x2 such that
−eα(y+γx1) + γeαx1 = −eα(y+γx2) + γeαx2 . Since −eαx is injective, we can thus apply Lemma 3,
which completes the proof.

Theorem 7. For any non-constant reward function R1 and any constant α > 0, α ̸= 1, there is no
reward function R2 such that G2(ξ) = G1(ξ)

1−α for all valid trajectories ξ.

Proof. With f(x) = x1−α, the expression in Lemma 3 becomes (y + γx)(1−α) − γx1−α. The
derivative of this expression with respect to x is γ(α− 1)(x−α − (γx+ y)−α), which has only one
root when γ ̸= 0 and α ̸∈ {0, 1}. This means that there can be at most two distinct values x1, x2

such that (y + γx1)
(1−α) − γx1−α

1 = (y + γx2)
(1−α) − γx1−α

2 . Since x1−α is injective, we can
thus apply Lemma 3, which completes the proof.

Theorem 8. For any non-constant reward function R1, there is no reward function R2 such that
G2(ξ) = ln(G1(ξ)) for all valid trajectories ξ.
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Proof. With f(x) = ln(x), the expression in Lemma 3 becomes ln(y+γx)−γ ln(x). The derivative
of this expression with respect to x is γ(1/(y + γx) − 1/x), which has only one root when γ ̸= 0.
Since ln(x) is injective, we can thus apply Lemma 3, which completes the proof.

Theorem 9. For any non-constant reward function R1 and any α > 0 where maxξ G1(ξ) ≤ 1
2α ,

there is no reward function R2 such that G2(ξ) = G1(ξ)− αG1(ξ)
2 for all ξ.

Proof. With f(x) = x − αx2, the expression in Lemma 3 becomes y + γx − α(y + γx)2. This is
a second-degree polynomial, which means that there can be at most two distinct values x1, x2 such
that y + γx1 − α(y + γx1)

2 = y + γx2 − α(y + γx2)
2. Moreover, if maxξ G1(ξ) ≤ 1

2α then
f(x) = x− αx2 is injective on range(G1). We can thus apply Lemma 3.

We can thus see that Lemma 3 is quite flexible. It allows us to rule out many modifications to
G as impossible, including all the standard risk-averse utility functions. It would be desirable to
strengthen these results, and provide necessary and sufficient conditions for when it is possible to
construct a reward R2 such that G2(ξ) = f(G1(ξ)) for some function f and some (non-constant)
reward R1. We consider this to be an important question for further work.

4 MODAL REINFORCEMENT LEARNING

The final class of tasks we will examine is one which we have decided to refer to as modal tasks.
Before we give a formal definition of this class, we will first provide some intuition. In analytic
philosophy, a distinction is made between categorical facts and modal facts. In short, categorical
facts only concern what is true in actuality, whereas modal facts concern what must be true, could
have been true, or cannot be true, etc. For example, it is a categorical fact that the Eiffel Tower
is brown, and a modal fact that it could have had a different colour. It is (arguably) a categorical
fact that the number 3 is prime, and a modal fact that it could not have been otherwise. To give
another example, there is a difference between stating that nothing can travel faster than light and
that nothing does travel faster than light – the former statement, which is modal, is stronger than
the latter, which is categorical. One can further distinguish between different kinds of possibility
(e.g. logical vs physical possibility, etc), and discussions about modality also involves topics such
as causality and counterfactuals, etc. A complete treatment of this subject is far beyond the scope
of this paper, but for an overview, see e.g. Menzel (2021).

Modality does of course relate to modal logic, but it also relates to temporal logic. In particular,
computational tree logic (CTL), and its extensions, can express many modal statements.

The intuition behind this section is that a reward function always is expressed in terms of categorical
facts, whereas many tasks are naturally expressed in terms of modal facts. For example, consider an
instruction such as “you should always be able to return to the start state”. This instruction seems
quite reasonable, but it is not obvious how to translate it into a reward function. Note that this
instruction is not telling the agent to actually return to the start state, it merely says that it should
maintain the ability to do so. To give a few other examples, consider instructions such as “you should
never enter a state from which it is possible to quickly enter an unsafe state”, “you should always be
able to press the emergency shutdown button”, or “you should never enter a state where you would
be unable to receive a feedback signal”. These instructions all seem very reasonable, and they are
expressed in terms of what should be possible or impossible along the trajectory of the agent, rather
than in terms of what in fact occurs along that trajectory. Given this background motivation, we can
now give a formal definition of modal tasks:
Definition 7. Given a set of states S and a set of actions A, a modal reward function R♢ is a
function R♢ : S ×A× S × (S ×A⇝ S) → R which takes two states s, s′ ∈ S, an action a ∈ A,
and a transition function τ over S and A, and returns a real number.

R♢(s, a, s′, τ) is the reward that is obtained when transitioning from state s to s′ using action a in
an environment whose transition function is τ . Here we allow R♢ an unrestricted dependence on
τ , to make our results as general as possible, even if a practical algorithm for solving modal tasks
presumably would require restrictions on what this dependence can look like (see Appendix E).
Modal reward functions can be used to express instructions such as those we gave above. For
example, a simple case might be “you get 1 reward if you reach this goal state, and -1 reward if
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you ever enter a state from which you cannot reach the initial state”. This reward depends on the
transition function, because the transition function determines from which states you can reach the
initial state. As usual, R♢ then induces a Q-function Q♢, value function V ♢, and evaluation function
J♢, etc. We say that a modal reward R♢ and an ordinary reward R are contingently equivalent given
a transition function τ if J♢ and J induce the same ordering of policies given τ , and that they are
robustly equivalent if J♢ and J induce the same ordering of policies for all τ . We use R♢

τ to denote
the reward function R♢

τ (s, a, s
′) = R♢(s, a, s′, τ). We will also use the following definition:

Definition 8. A modal reward function R♢ is trivial if there is a reward function R such that for all
τ , R and R♢

τ have the same policy ordering under τ .

The intuition here is that a trivial modal reward function does not actually depends on τ in any
important sense. Note that this is not necessarily to say that R♢

τ = R for all τ . For example, it could
be the case that R♢

τ is a scaled version of R, or that R♢
τ and R differ by potential shaping Ng et al.

(1999), or that R♢
τ is modified in a way such that ES′∼τ(s,a)[R

♢
τ (s, a, S

′)] = ES′∼τ(s,a)[R(s, a, S′)],
since none of these differences affect the policy ordering.

Theorem 10. For any modal reward R♢ and any transition function τ , there exists a reward function
R that is contingently equivalent to R♢ given τ . Moreover, unless R♢ is trivial, there is no reward
function that is robustly equivalent to R♢.

Proof. This is straightforward. For the first part, simply let R(s, a, s′) = R♢(s, a, s′, τ). The second
part is immediate from the definition of trivial modal reward functions.

In other words, every modal task can be expressed with ordinary reward function in each particular
environment, but no reward function expresses a (non-trivial) modal task in all environments. Is this
enough? We argue that it is not, because the construction of R♢

τ will invariably be laborious, and
require detailed knowledge of the environment. For example, consider the task “you should always
be able to return to the start state”; here, constructing R♢

τ would amount to manually enumerating all
the states from which the start state is reachable. This is very much against the spirit of reinforcement
learning, where much of the point is that we want to be able to specify tasks which can be pursued in
unknown environments. In short, a method which requires a model of the environment is arguably
not a reinforcement learning method. We thus argue that reward functions are unable to capture
modal tasks in a satisfactory way.

One remaining question might be why one would want to express instructions for reinforcement
learning agents in terms of modal properties. After all, what benefit is there to the instruction
“never enter a state from which it is possible to quickly enter an unsafe state” over the instruction
“never enter an unsafe state”? One reason is that the former task might lead to behaviour that is
more robust to changes in the environment. For example, if an RL agent is trained in a simulated
environment, and deployed in the real world, then it seems like it would be preferable to tell the
agent to avoid risky states, rather than unsafe states, since imperfections in the simulation could lead
to an underestimation of the risk involved. Another example is the existing work on avoiding side
effects (Krakovna et al., 2018; 2020; Turner et al., 2020), which it is natural to express in modal
terms. This work can be viewed as being aimed at making the behaviour of an RL agent more robust
to misspecification of the reward function.

5 SOLVING “INEXPRESSIBLE” TASKS

We have pointed to three classes of tasks which cannot be expressed using reward functions (namely
multi-objective tasks, risk-sensitive tasks, and modal tasks). A natural next question is whether these
tasks could be solved using RL, or whether only the tasks which correspond to Markovian reward
functions can be effectively learnt? We discuss this issue below.

In short, it is possible to design RL algorithms for tasks in each of these categories. Multi-objective
reinforcement learning is well-explored, with many existing algorithms (see Section 1.1). Most of
these algorithms are designed to solve a specific MORL objective; for example, Skalse et al. (2022b)
solve the LexMax objective, and Tessler et al. (2019) solve the ConSat objective. There is (to the
best of our knowledge) not yet any algorithm for the solving e.g. the MaxMin objective, but there
is no good reason to believe that such an algorithm could not be made. Similarly, there are existing
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algorithms for risk-sensitive RL (e.g. Chow et al. (2017)), and even algorithms that solve certain
modal tasks (Krakovna et al., 2018; 2020; Turner et al., 2020; Wang et al., 2020).

It should also be possible to design algorithms which can flexibly solve many different tasks from
the classes we have discussed (instead of having to be designed for just one particular task). For
example, suppose a MORL objective can be represented by a function U : Rk → R, such that
π1 ≺ π2 when U(J1(π1) . . . Jk(π1)) < U(J1(π2) . . . Jk(π2)), and that U is differentiable. We give
a few examples of such objectives in Appendix D, including e.g. a “soft” version of MaxMin. With
such an objective, if we have a policy π that is differentiable with respect to some parameters θ, then
it should be possible to compute the gradient of U(J1(π) . . . Jk(π)) with respect to θ, and then use a
policy gradient method to increase U . This means that it should be possible to design an actor-critic
algorithm which can solve any differentiable MORL objective. We consider the development and
evaluation of such methods to be a promising direction for further work.

We outline a possible approach for solving a wide class of modal tasks in Appendix E.

6 DISCUSSION

In this paper, we have studied the ability of Markovian reward functions to express different kinds of
problems. We have looked at three classes of tasks; multi-objective tasks, risk-sensitive tasks, and
modal tasks, and found that Markovian reward functions are unable to express most of the tasks in
each of these three classes. We have also provided necessary and sufficient conditions for when a
single-policy MORL problem can be expressed using a single reward function (which, as it turns out,
is almost never), and also drawn attention to a class of tasks which have just barely been explored
previously (namely modal tasks). Finally, we have also shown that many of these problems still can
be solved with RL, and even outlined some methods for how to extend these solutions.

There are several ways to extend our work. First of all, while we have given many examples of tasks
which cannot be formalised using Markovian reward functions, we have not given a general charac-
terisation of what reward functions are or are not able to express. It would be very desirable to have
a set of intuitive necessary and sufficient conditions, which exactly describe those policy orderings
that can be expressed using reward functions, similar to what the VNM axioms provide in the case of
utility functions. We outline some initial steps towards such a characterisation in Appendix B. Note
that the VNM axioms themselves cannot be directly applied to RL, see Appendix C. Additionally,
it would also be desirable to provide necessary and sufficient conditions for when it is possible to
construct a reward R2 such that G2(ξ) = f(G1(ξ)) for some function f and some (non-constant)
reward R1, as we discussed at the end of Section 3.

Our work also provides a strong motivation for developing more RL algorithms that can learn tasks
which cannot be expressed using Markovian reward functions. There are several ways to to this.
In section 5, we outline an approach for learning any differentiable MORL objective using policy
gradients, and in Appendix E, we outline an approach for learning a large class of modal tasks. It
would also be very interesting to explore more general ways to express RL tasks, and study their
expressivity. For example, it would be interesting to know if (and to what extent) MORL tasks can
be expressed using reward machines (Icarte et al., 2022), and similar.
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Sobhan Miryoosefi, Kianté Brantley, Hal Daumé III, Miroslav Dudı́k, and Robert E. Schapire. Rein-
forcement learning with convex constraints. In Proceedings of the 33rd International Conference
on Neural Information Processing Systems, pp. 14070–14079, 2019.

Mirco Mutti, Riccardo De Santi, Piersilvio De Bartolomeis, and Marcello Restelli. Challenging
common assumptions in convex reinforcement learning. In Proceedings of the 33rd International
Conference on Neural Information Processing Systems, 2022.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Proceedings of the Sixteenth International Con-
ference on Machine Learning, pp. 278–287, Bled, Slovenia, 1999. Morgan Kaufmann Publishers
Inc.

D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley. A survey of multi-objective sequential
decision-making. Journal of Artificial Intelligence Research, 48:67–113, 10 2013. ISSN 1076-
9757. doi: 10.1613/jair.3987. URL http://dx.doi.org/10.1613/jair.3987.

10

https://proceedings.neurips.cc/paper/2019/file/a02ffd91ece5e7efeb46db8f10a74059-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a02ffd91ece5e7efeb46db8f10a74059-Paper.pdf
https://arxiv.org/abs/1806.01186
https://arxiv.org/abs/1806.01186
https://arxiv.org/abs/2010.07877
http://dx.doi.org/10.1613/jair.3987


Under review as a conference paper at ICLR 2023

Satinder Singh, Tommi Jaakkola, Michael L. Littman, and Csaba Szepesvári. Convergence results
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A PROOFS OF LEMMAS

In this Appendix, we provide the proofs of the lemmas from Section 3.

Lemma 1. If R is non-constant, then for any state s there exists trajectories ζ1, ζ2, ζ3 starting in s
such that G(ζ1) ̸= G(ζ2), G(ζ2) ̸= G(ζ3), and G(ζ1) ̸= G(ζ3).

Proof. First note that if R is non-constant, then there must be some state s and some trajectories
ξ1, ξ2 starting in s such that G(ξ1) ̸= G(ξ2) (this follows from Theorem 3.8 in Skalse et al. (2022a)).
We will establish that there is a ξ3 starting in s such that G(ξ3) ̸= G(ξ1) and G(ξ3) ̸= G(ξ2), and
then show that this implies that such trajectories exist for all states.

Suppose for contradiction that for any ξ3 starting in s, either G(ξ3) = G(ξ1) or G(ξ3) = G(ξ2).
Consider a transition ⟨s, a, s⟩, and let ζ1 = ⟨s, a, s⟩ + ξ1 and ζ2 = ⟨s, a, s⟩ + ξ2; we will do a
case enumeration, and show that either G(ζ1) or G(ζ2) must be distinct from both G(ξ1) and G(ξ2).
Note that G(ζ1) = R(s, a, s) + γG(ξ1) and G(ζ2) = R(s, a, s) + γG(ξ2).

Case 1: G(ζ1) = G(ξ1), G(ζ2) = G(ξ2). If R(s, a, s) + γG(ξ1) = G(ξ1) then R(s, a, s) =
(1− γ)G(ξ1), and similarly, if R(s, a, s) + γG(ξ2) = G(ξ2) then R(s, a, s) = (1− γ)G(ξ2). This
is a contradiction, since G(ξ1) ̸= G(ξ2) and γ ̸= 1.

Case 2: G(ζ1) = G(ζ2) = G(ξ1). If R(s, a, s)+ γG(ξ1) = G(ξ1) then R(s, a, s) = (1− γ)G(ξ1).
Using R(s, a, s) + γG(ξ2) = G(ξ1), we get (1 − γ)G(ξ1) + γG(ξ2) = γG(ξ1). By rearranging,
we get γ(G(ξ1)−G(ξ2)) = 0. This is a contradiction, since G(ξ1) ̸= G(ξ2) and γ ̸= 0.

Case 3: G(ζ1) = G(ζ2) = G(ξ2). This is analogous to Case 2.

Case 4: G(ζ1) = G(ξ2), G(ζ2) = G(ξ1). If R(s, a, s) + γG(ξ1) = G(ξ2) then R(s, a, s) =
G(ξ2)− γG(ξ2), and similarly, if R(s, a, s) + γG(ξ2) = G(ξ1) then R(s, a, s) = G(ξ1)− γG(ξ2).
Combining this, and rearranging, gives (1+γ)G(ξ1) = (1+γ)G(ξ2). This is a contradiction, since
G(ξ1) ̸= G(ξ2) and γ ̸= −1.

This exhausts all cases, which means that if R is non-constant, then there must be some state s and
some trajectories ζ1, ζ2, ζ3 starting in s such that G(ζ1) ̸= G(ζ2), G(ζ2) ̸= G(ζ3), and G(ζ1) ̸=
G(ζ3). Finally, note that this means that we can construct such trajectories for any state s′, by simply
composing a transition ⟨s′, a, s⟩ with each of ζ1, ζ2, ζ3.

Lemma 2. If G2(ξ) = f(G1(ξ)) for all ξ and some f , then for any transition ⟨s, a, s′⟩ and any
trajectory ζ starting in s′, R2(s, a, s

′) = f(R1(s, a, s
′) + γG1(ζ))− γf(G1(ζ)).

Proof. Suppose that G2(ξ) = f(G1(ξ)) for all trajectories ξ. Let ⟨s, a, s′⟩ be an arbitrary transition,
let ζ be an arbitrary trajectory starting in s′, and let ξ = ⟨s, a, s′⟩ + ζ. We have that G2(ξ) =
R2(s, a, s

′) + γG2(ζ), and also that G2(ξ) = f(G1(ξ)), which implies that

R2(s, a, s
′) + γG2(ζ) = f(G1(ξ)).

Since G1(ξ) = R1(s, a, s
′) + γG1(ζ), this implies that

R2(s, a, s
′) + γG2(ζ) = f(R1(s, a, s

′) + γG1(ζ)).

By using the fact that G2(ζ) = f(G1(ζ)), and rearranging, we get that

R2(s, a, s
′) = f(R1(s, a, s

′) + γG1(ζ))− γf(G1(ζ)).

Since ⟨s, a, s′⟩ and ζ were chosen arbitrarily, this completes the proof.

Lemma 3. For any non-constant reward R1 and any f that is injective on range(G1), if for any
y ∈ range(R1) and any γ ∈ (0, 1) there are at most two distinct x1, x2 such that f(y + γx1) −
γf(x1) = f(y + γx2)− γf(x2) then there is no reward R2 such that G2(ξ) = f(G1(ξ)) for all ξ.

Proof. Suppose for contradiction that G2(ξ) = f(G1(ξ)) for all ξ. Let ⟨s, a, s′⟩ be an arbitrary
transition. Applying Lemma 2, we get that

R2(s, a, s
′) = f(R1(s, a, s

′) + γG1(ζ))− γf(G1(ζ))
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for all trajectories ζ starting in s′. For clarity, let x = G1(ζ) and y = R1(s, a, s
′), so that f(y +

γx)−γf(x). By assumption, there can be at most two distinct values x1, x2 such that f(y+γx1)−
γf(x1) = f(y + γx2) − γf(x2). However, Lemma 1 implies that there are at least three ζ1, ζ2, ζ3
starting in s′ with distinct values of G1. Since f is injective on range(G1), this means that there
are at least three distinct values of x for which f(y + γx) − γf(x) must be constant (and equal to
R2(s, a, s

′)), which is a contradiction.

B TOWARDS NECESSARY AND SUFFICIENT CONDITIONS

In this paper, we have provided several examples of “natural” policy orderings which cannot be
represented using a reward function. It would be desirable to have a set of necessary and sufficient
conditions to characterise those orderings over Π that can be expressed by reward functions, similar
to that provided by the VNM axioms (the VNM axioms themselves do not provide this, see Ap-
pendix C). We consider this to be an important topic for future work. In this section, we will discuss
a few interesting properties which are shared by all policy orderings which can be represented by re-
ward functions. We believe that these examples will help with building an intuition for what reward
functions can and cannot express.

We would first like to point out that, while it seems difficult to characterise the policy orderings
which can be expressed by reward functions, it is fairly straightforward to exactly characterise the
sets of policies Π̂ that can be optimal under some reward function:

Proposition 1. A set of policies Π̂ is the optimal policy set for some reward function if and only if
there is a function o : S → P(A)\∅ that maps each state to a (non-empty) set of “optimal actions”,
and π ∈ Π̂ if and only if supp(π(s)) ⊆ o(s).

Proof. For the “if” part, consider the reward function R where R(s, a, s′) = 0 if a ∈ o(s), and
R(s, a, s′) = −1 otherwise. The “only if” part follows from the fact that the optimal Q-function Q⋆

is the same for all optimal policies, so we can let o(s) = argmaxa Q
⋆(s, a).

This immediately lets us rule out many policy orderings as inexpressible. For example, consider
the task “always go in the same direction” — this task cannot be expressed as a reward function,
because any policy that mixes the actions of two other optimal policies must itself be optimal. It
also shows that Markovian reward functions cannot be used to encourage stochastic policies. For
example, there is no Markovian reward function under which “play rock, paper, and scissors with
equal probability” is the unique optimal policy.

The next thing we would like to point out is that no reward function can express an ordering over
Π that has a countable number of equivalence classes (except trivial reward functions, which have
only one equivalence class). This simple fact also rules out many orderings.

Proposition 2. If R is non-trivial then J has an uncountable number of equivalence classes.

Proof. This follows from the intermediate value theorem, and the fact that J is continuous in Π.

This simple observation can be used to e.g. create an alternative proof of Theorem 4, which says
that the MaxSat objective cannot be represented as a (scalar) reward function. It also shows that
objectives such as e.g. J(π) = minξ∈supp(π) G(ξ), which evaluates policies according to the worst
trajectory in their support, cannot be represented (since any policy then has the same value as some
deterministic policy, and since there is only a finite number of deterministic policies).

C A DIGRESSION ON THE VON NEUMANN–MORGENSTERN AXIOMS

The famous VNM axioms, due to von Neumann & Morgenstern (1947), provide necessary and
sufficient conditions for when a utility function can be used to represent a preference ordering for
lotteries over a finite choice set. In an MDP, a policy induces a distribution over trajectories, and
a reward function assigns a value to each trajectory. One might then wonder if the VNM axioms
could provide necessary and sufficient conditions for when an ordering over Π can be realised using
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a reward function. This is not the case, and in this appendix, we briefly point out why. These results
are not novel to this paper, but are instead provided to help with intuition building.

First of all, the VNM theorem assumes that the choice set is finite, whereas in an MDP, the number
of trajectories is (countably) infinite. There are preferences between distributions over countable
choice sets which satisfy the VNM axioms, but which can nonetheless not be represented using
utility functions.1 Second, not all distributions over trajectories can be represented as a policy (unless
we allow both the policy and the transition function to be non-stationary). Third, there is a special
structure to how a reward function assigns value to a trajectory, and not all functions Ξ → R can
be represented in this way. This means that the VNM axioms are not applicable to RL. However, it
may still be possible to provide similar intuitive necessary and sufficient conditions for the RL case.
We consider this to be an important topic for future work.

D MORE MORL OBJECTIVES

In this Appendix, we give even more examples of MORL objectives, and some comments on how
to construct them – the purpose of this is mainly just to show how rich this space is. First, similar to
the MaxMin objective, we might want to judge a policy according to its best performance:
Definition 9. Given J1 . . . Jk, the MaxMax objective ≺Max is given by π1 ≺Max π2 ⇐⇒
maxi Ji(π1) < maxi Ji(π2).

We would next like to point out that it is possible to create smooth versions of almost any MORL
objective. In Section 5, we outline an approach for learning any continuous, differentiable MORL
objective, so this is quite useful. We begin with a soft version of the MaxMax objective:
Definition 10. Given J1 . . . Jk and α > 0, the Soft MaxMax objective ≺MaxSoft is given by

JMaxSoft(π) =

(
k∑

i=1

Ji(π)e
αJi(π)

)/(
k∑

i=1

eαJi(π)

)
.

This is of course not the only way to continuously approximate MaxMax, it is just an example of
one way of doing it. Here α controls how “sharp” the approximation is – the larger α is, the closer
JMaxSoft gets to the sharp max function, and the smaller α is, the closer it gets to the arithmetic
mean function (so by varying α, we can continuously interpolate between them). Similarly, we can
also create a smooth version of MaxMin:
Definition 11. Given J1 . . . Jk and α > 0, the Soft MaxMin objective ≺MinSoft is given by

JMinSoft(π) =

(
k∑

i=1

Ji(π)e
−αJi(π)

)/(
k∑

i=1

e−αJi(π)

)
.

As before, the larger α is, the closer JMinSoft gets to the sharp min function, and the smaller α is,
the closer it gets to the arithmetic mean function We can also smoothen MaxSat:
Definition 12. Given J1 . . . Jk, c1 . . . ck, and α > 0, the Soft MaxSat objective ≺SatSoft is

JSatSoft(π) =

k∑
i=1

(
1

1 + e−α(Ji(π)−ci)

)
.

The larger α is, the closer JSatSoft gets to the sharp MaxSat function (and the smaller α gets, the
closer JSatSoft gets to a flat 0.5). And, again, this is of course not the only way to create a smooth
version of MaxSat. It is unclear if it is possible to create a smooth version of ConSat without having
any prior knowledge of (a lower bound of) the value of minπ J1(π), but with this value it should be
reasonably straightforward (see the construction in Theorem 5). As for LexMax, we can of course
create a smooth approximation of it by taking a linear approximation of the weights, but here we
would need some prior knowledge of maxπ J1(π) . . .maxπ Jk(π).

1For example, consider the ordering that prefers all distributions with infinite support over all distributions
with finite support, and which is indifferent between any two distributions in either of these classes.
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E A METHOD FOR SOLVING MODAL TASKS

In this Appendix, we give an outline of one possible method for solving modal tasks. We mainly
want to show that it is feasible to learn modal tasks, and so we only provide a solution sketch; the
task of implementing and evaluating this method is something we leave as a topic for future work.

We will first define a restricted class of modal tasks, which is both very expressive, and also more
amenable to learning than the more general version given in Definition 7:

Definition 13. An affordance consists of a reward function and a discount factor, ⟨R, γ⟩, and an
affordance-based reward is a function R♢ : S × A × S × R2k → R, that is continuous in the last
2k arguments. An affordance-based MDP is a tuple ⟨S,A, τ, µ0, R

♢, γ, ⟨R, γ⟩k⟩, where the reward
given for transitioning from s to s′ via a is R♢(s, a, s′, V ⋆

1 (s) . . . V
⋆
k (s), V

⋆
1 (s

′) . . . V ⋆
k (s

′)), where
V ⋆
i is the optimal value function of the i’th affordance.

This definition requires some explanation. In psychology (and other fields, such as user interface
design), an affordance is, roughly, a perceived possible action, or a perceived way to use an object.
For example, if you see a button, then the fact that you can press that button, and expect something
to happen, is part of how you perceive it, in a way that might not be the case if you could somehow
show the button to a premodern human. It can also be used to refer to a choice or action that is
perceived as available in some context (without being tied to an object). Here, we are using it to
refer to a task that could be performed in an MDP. The intuition is that R♢ is allowed to depend on
what could be done from s and s′, in addition to the state features of s and s′.

Before outlining an algorithm, let us first give a few examples of how to formalise modal tasks
within this framework. First consider the instruction “you should always be able to return to the
start state”. We can formalise this using a reward function R1 that gives 1 reward if the start state
is entered, and 0 otherwise, and pair it up with a discount parameter γ that is very close to 1. We
could then set R♢ to, for example, R♢(s, a, s′, V ⋆

1 (s), V
⋆
1 (s

′)) = R(s, a, s′) · tanh(V ⋆
1 (s

′)), where
R describes some base task. In this way, no reward is given if the start state cannot be reached from
s′. Next, consider the instruction “never enter a state from which it is possible to quickly enter an
unsafe state”. To formalise this, let R1 give 1 reward if an unsafe state is entered, and 0 otherwise,
and let γ correspond to a very high discount rate (e.g. 0.7). We could then set R♢ to, for example,
R♢(s, a, s′, V ⋆

1 (s), V
⋆
1 (s

′)) = R(s, a, s′)− V ⋆
1 (s

′), where R again describes some base task.

These examples show that our “affordance-based” MDPs are quite flexible, and that they should be
able to formalise many natural modal tasks in a satisfactory way, including most of our motivating
examples.2 However, the definition could of course be made more general. For example, we could
allow the affordances to themselves be based on affordance-based reward functions, etc. However,
it is not clear if this would bring much benefit in practice.

Let us now outline an approach for solving affordance-based MDPs using reinforcement learn-
ing, specifically using an action-value method. First, let the agent maintain k + 1 Q-functions,
Q♢, Q1, . . . , Qk, one for R♢ and one for each affordance ⟨Ri, γi⟩. Next, we suppose that the
agent updates each of Q1, . . . , Qk using an off-policy update rule, such as Q-learning; this will
ensure that Q1, . . . , Qk converge to their true values (i.e. to Q⋆

1 . . . Q
⋆
k), as long as the agent ex-

plores infinitely often. Note that the use of an off-policy update rule is crucial. Next, let the agent
update Q♢ as if it were an ordinary Markovian reward function, using the reward R̂(s, a, s′) =
R♢(s, a, s′, V1(s) . . . Vk(s), V1(s

′) . . . Vk(s
′)), where Vi(s) is given by maxa Qi(s, a). In other

words, we let it update Q♢ using an estimate of the true value of R♢, expressed in terms of its
current estimates of V ⋆

1 . . . V ⋆
k . The fact that Q1, . . . , Qk converge to Q⋆

1, . . . , Q
⋆
k, and the fact that

R♢ is continuous in its value function arguments, will ensure that the estimate R̂ also converges to
the true value of R♢. The update rule used for Q♢ could be either on-policy or off-policy. We then
suppose that the agent selects its actions by applying a Bandit algorithm to Q♢, and that this Bandit
algorithm is greedy in the limit, but also explores infinitely often, as usual.

This algorithm should be able to learn to optimise the reward in any affordance-based MDP. In the
tabular case, it should be possible (and reasonably straightforward) to prove that it always converges
to an optimal policy (assuming that appropriate learning rates are used, etc), using Lemma 1 in

2This arguably excludes “you should never enter a state where you would be unable to receive a feedback
signal”. However, this instruction only makes sense in a multi-agent setting.
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Singh et al. (2000). We would also expect it to perform well in practice, when used with function
approximators (such as neural networks). However, we leave the task of implementing and properly
evaluating this approach as a topic for future work.

There are also several ways that this algorithm could be tweaked or improved. For example, the
algorithm we have described is an action-value algorithm, but the same approach could of course
be used to make an actor-critic algorithm instead. We also suspect that there could be interesting
modifications one could make to the exploration strategy of the algorithm. If a standard Bandit
algorithm (such as ϵ-greedy) is used, then the agent will mostly take actions that are optimal under
its current estimate of Q♢. In the ordinary case, this is good, because it leads the agent to spend
more time in the parts of the MDP that are relevant for maximising the reward. However, in this
case, there is a worry that it could lead the agent to neglect the parts of the (affordance-based) MDP
that are relevant for learning more about V ⋆

1 . . . V ⋆
k , which might slow down the learning. Again,

we leave such developments for future work, since our aim here only is to show that it is feasible to
learn non-trivial modal tasks.

We also want to point out that the work by Wang et al. (2020) could provide another starting point for
learning modal tasks using RL. In their work, they present some RL-based methods for determining
whether a specification in Probabilistic Computational Tree Logic (PCTL) holds in an MDP. PCTL
can be used to specify many kinds of properties of states in MDPs which depend on the transition
function, including e.g. what states can and cannot be reached from a particular state, and with what
probability, etc. We can therefore specify non-trivial modal tasks by providing a number of PCTL
formulas, and allowing the reward function to depend on the truth values of these formulas. That is,
we could consider a setup that is analogous to that which we give in Definition 13, but where the
“affordances” are replaced by PCTL formulas. It should then be possible to learn tasks specified in
this manner by using the techniques of Wang et al. (2020) to learn the values of the PCTL formulas,
and then using ordinary RL to train on the resulting reward function.
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