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Abstract

Predictive simulations are essential for applications ranging from weather forecasting to material design. The
veracity of these simulations hinges on their capacity to capture the effective system dynamics. Massively
parallel simulations predict the systems dynamics by resolving all spatiotemporal scales, often at a cost
that prevents experimentation. On the other hand, reduced order models are fast but often limited by the
linearization of the system dynamics and the adopted heuristic closures. We propose a novel systematic
framework that bridges large scale simulations and reduced order models to extract and forecast adaptively
the effective dynamics (AdaLED) of multiscale systems. AdaLED employs an autoencoder to identify
reduced-order representations of the system dynamics and an ensemble of probabilistic recurrent neural
networks (RNNs) as the latent time-stepper. The framework alternates between the computational solver
and the surrogate, accelerating learned dynamics while leaving yet-to-be-learned dynamics regimes to the
original solver. AdaLED continuously adapts the surrogate to the new dynamics through online training.
The transitions between the surrogate and the computational solver are determined by monitoring the
prediction accuracy and uncertainty of the surrogate. The effectiveness of AdaLED is demonstrated on
three different systems - a Van der Pol oscillator, a 2D reaction-diffusion equation, and a 2D Navier-Stokes
flow past a cylinder for varying Reynolds numbers (400 up to 1200), showcasing its ability to learn effective
dynamics online, detect unseen dynamics regimes, and provide net speed-ups. To the best of our knowledge,
AdaLED is the first framework that couples a surrogate model with a computational solver to achieve
online adaptive learning of effective dynamics. It constitutes a potent tool for applications requiring many
computationally expensive simulations.

Keywords: adaptive reduced-order modeling, computer simulations, machine learning, online real-time
learning, continuous learning, Navier-Stokes equations

1. Introduction

Simulations of complex systems have transformed our predictive capabilities in areas ranging from health
and epidemiology [1] to physics [2], meteorology [3], and fluid mechanics. Large-scale, simulations are
prominent in fields where experiments may be unavailable, such as astrophysics and climate sciences, or
where they require expensive infrastructure, equipment, and personnel.

The predictive fidelity of the simulations depends on their capacity to resolve all relevant spatiotemporal
scales of the physical phenomenon under study. However, high fidelity implies high computational cost,
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which hinders experimentation and optimization. Many scientific and engineering tasks, such as parameter
and design optimization [4], multi-objective optimization [5], reinforcement learning (RL) [6, 7, 8], and
high-throughput computing [9], require a large number of system evaluations. While using highly accurate
simulations for these tasks is desirable, it can also be cost-prohibitive and potentially infeasible. As a
result, numerous research efforts have focused on developing accurate and efficient surrogate models that
can replicate and accelerate simulations.

While computationally costly simulations are essential in resolving all scales of a complex system, key
quantities of interest can be often described by a coarse-grained, averaged behavior. Selecting the proper
degrees of freedom for such coarse grained representations is a long standing problem in science and en-
gineering. Furthermore, appropriate combinations of coarse-grained and fine-scale simulations, predictions
offer the potential for accelerated simulations at a controlled accuracy. Pioneering hybrid methods include
the Equation-Free Framework (EFF) [10, 11, 12], the Heterogeneous Multiscale Method (HMM) [13, 14],
and the FLow AVeraged integratoR (FLAVOR) [15]. Hybrid methods distinguish between a detailed high-
dimensional physical space (micro scale) which is expensive to simulate, and a coarse-grained, reduced-order,
or latent space (macro scale). More specifically, in EFF, a system is first advanced in the expensive micro-
scale for a given time. Then, a transition is made into the macro scale using a compression mechanism, such
as Principal Component Analysis, Dynamic Mode Decomposition [16], or diffusion maps [17]. EFF then
employs time-stepping schemes such as Euler or Runge-Kutta to advance the macro-scale dynamics. After
several time steps, the macro-scale dynamics are mapped back onto the fine scale for detailed simulation. By
alternating between the micro-scale and the macro-scale dynamics at timescales of interest, EFF can achieve
significant computational savings. However, the generalization of EFF to complex high-dimensional systems
has been limited by the proper information transfer between micro and macro and the use of inefficient
macro-scale propagator.

In recent years there have been numerous efforts to develop reduced-order models and accelerate complex
simulations using machine learning (ML) [18, 19, 20, 21, 22, 23]. In a previous works, we extended the EFF
with ML algorithms that learn the time integrators and the transfer operators in a data-driven manner.
The resulting framework of Learning the Effective Dynamics (LED) [24] of complex dynamical systems
employs convolutional autoencoders (CAEs) for the identification of the micro-to-macro and macro-to-micro
mappings and recurrent neural networks (RNNs) to propagate the macro dynamics. The autoencoder and
the RNN are trained offline using data from the micro propagator, i.e., the original simulator. LED has
been applied to a variety of dynamical systems [25], from fluid flows to molecular simulations [26].

We note that frameworks related to LED include the Latent Evolution of Partial Differential Equations
(LE-PDE) [27]. Meanwhile, CAEs coupled with Long Short-Term Memory networks (LSTMs) have been
applied in modeling complex flows [28, 29, 30, 31, 32, 33, 34]. Other autoencoders (AEs),coupled with
LSTM networks have been employed for surrogate modeling of high-dimensional dynamical systems [35],
e.g., unsteady flows over a circular cylinder [36, 37], or structural modeling of a two-story building [38].
Other notable works are based on Proper Orthogonal Decomposition (POD) [39, 40, 41, 42, 43], local
approximations with POD [44, 45], Dynamic Mode Decomposition (DMD) [16], and Dynamics Identification
(ID) [46, 47]. Adaptive extensions that utilize low-rank updates are proposed in [48, 49].

However, to the best of our knowledge, the above mentioned frameworks do not entail one or more of
the following characteristics:

1. They lack continuous training, which limits their ability to adapt to changing dynamics or to generalize
to regions underrepresented in the initial training data.

2. They do not quantify prediction uncertainty or monitor prediction error.

3. They overlook that a surrogate should only be used when it is reliable.

4. They do not exploit the capability of restarting a computer simulation from any time point.

5. They do not control the balance between speed-up and accuracy.

6. They do not account for variations in parameters of the fine-scale dynamics.
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Although multiple works present robust surrogate modeling frameworks, the need for real-time applica-
tions and tasks involving non-stationary dynamics or state-space exploration calls for continual learning
frameworks to address the problem of distribution shift [50].

Adaptivity and continual learning in forming surrogates are key components of the present paper. The
proposed method of Adaptive Learning of Effective Dynamics (AdaLED) accelerates computationally ex-
pensive simulations by learning an online surrogate model that replaces the original simulator only when
its predictions are sufficiently reliable. More specifically, AdaLED extends the LED framework with uncer-
tainty quantification. The surrogate monitors its prediction accuracy and provides a confidence level for its
predictions. In turn, the surrogate is utilized only in state-space regions (parts of the trajectories) that it has
learned and is confident about its prediction. Otherwise, the computational solver is employed to simulate
dynamics unknown to the surrogate model. Finally, we extend LED with continuous learning capabilities
to address the distribution shift problem in environments/dynamical systems with time-varying dynamics.

We demonstrate that AdaLED can adaptively learn complex dynamics, produce reliable surrogate model
predictions, and accelerate computationally expensive simulations while maintaining high accuracy. AdaLED
provides control over the accuracy-speed trade-offs by adaptively specifying error thresholds for the simula-
tion.

The paper is organized as follows: in section 2, we present a detailed description of the AdaLED frame-
work while in sections 3 and 4, we demonstrate the efficiency and efficacy of AdaLED on the Van der Pol
oscillator and a 2D reaction-diffusion system, respectively. In section 5, we show how AdaLED can accelerate
a 2D Navier-Stokes simulation of flow past a cylinder at varying Reynolds numbers. Section 6 concludes
the paper. Technical information on the neural networks and handling of very high-dimensional fluid flow
states are provided in the appendix.

2. Method

We consider the evolution of a dynamical system at a micro/fine scale, with a state denoted by xt ∈ Rdx
at time t. The state is advanced by δt using a micro propagator F , so that

xt+δt = F(xt, ft). (1)

where and by ft ∈ Rdf the time-varying external forcing that affects the dynamics. Examples of such
system dynamics are Direct Numerical Simulations for turbulent flows and molecular dynamics in materials
processes. The simulation provides access to quantities of interest denoted by qt ∈ Rdq , qt = Q(xt).
We postulate that the effective system dynamics can be approximated by lower-dimensional latent states
zt ∈ Mz, where Mz ∈ Rdz (with dz << dx)is a low-order manifold of the system state space. Here we
identify the latent space by employing an encoder EθE : Rdx → Rdz with trainable parameters θE . The
encoder maps micro states xt to latent (macro) states zt = EθE (xt). In the other direction, a decoder
DθD : Rdz → Rdx , with trainable parameters θD, maps the latent state zt to the micro state x̃t = DθD (zt).
The optimal parameters θ∗E and θ∗D minimize an application-specific reconstruction loss `(xt, x̃t):

(θ∗E ,θ
∗
D) = arg min

θE ,θD

` (xt, x̃t) = arg min
θE ,θD

`
(
xt,DθD (EθE (xt))

)
. (2)

A non-linear macro propagator (HθM ,ZθM ,QθM ,SθM ), with parameters θM and an internal hidden
state ht capturing non-Markovian effects, is trained to predict the system dynamics in the macro scale:

ht+∆t = HθM (zt,qt, ft,ht), z̃t+∆t = zt + ZθM (ht+∆t), q̃t+∆t = qt +QθM (ht+∆t). (3)

where ∆t is the time step of the macro propagator, with ∆t being an integer multiple of δt. The macro
propagator is trained with backpropagation through time [51] to minimize the combined mean square error
(MSE) loss ‖z̃t+∆t − zt+∆t‖+ ‖q̃t+∆t − qt+∆t‖. Optional weights can be added to each loss component to
control their relative importance.

We note that the present framework also predicts physical quantities of interest while evolving the
latent space dynamics. Such quantities of interest q̃t+∆t could be computed by reverting to the fine-scale
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Figure 1: The stages of the inference, the AdaLED cycle. � denotes the micro propagator, • the macro propagator, the
encoder, the decoder, black line the micro (high-dimensional) state xt, purple the macro (latent) state zt, and gray the
hidden state ht of the macro propagator. Quantities of interest qt and external forcing ft are hidden for brevity. Depending on
the prediction error Et of the model and uncertainty σt at the end of the online validation stage, either the macro-only or the
micro-only stage is performed. The macro-only stage is performed as long as the uncertainty is below the threshold (possibly
for 0 steps) or limited to a given number of steps.

representation of the system dynamics, i.e., q̃t+∆t = Q(DθD (z̃t+∆t)). However, this approach has two
drawbacks: (i) it requires evaluation of the relatively expensive decoder DθD (ii) the function Q might not
be explicitly available. Consequently, the macro propagator is trained to predict q̃t+∆t directly. In addition,
the macro propagator outputs the uncertainty σt+∆t ∈ R, i.e.

σt+∆t = SθM (ht+∆t). (4)

The uncertainty is used to robustly control the transitions between the micro and the macro propagator, as
explained later in the text.

To achieve significant acceleration of the simulations, the macro propagator operates with a time step
∆t� δt. Here, the encoder and decoder are the two halves of a convolutional autoencoder, and the macro
propagator is an ensemble of probabilistic recurrent neural networks (PRNNs)(see section 2.3). We note that
AdaLED can incorporate various encoders and decoders and accommodate any macro propagator that can
estimate the uncertainty of its own predictions. We will refer to the combination of the encoder, decoder,
and propagator as the Machine-Learned Model (MLM).

2.1. AdaLED cycle (inference)
Inference in AdaLED proceeds in an iterative fashion. In each iteration, AdaLED assesses the accuracy

of the MLM and temporarily shifts the simulation from the micro to the macro scale if the accuracy is
sufficiently high. This alternation between the scales allows the micro propagator to correct errors introduced
by the MLM and guide the simulation back to the manifoldMz. Additionally, the short cycles enable the
MLM to replace the simulation in sections of trajectories that it has learned so far. Other sections that are
underrepresented in the training data or require more extended training are left to the micro propagator.
Finally, frequent evaluation of the micro propagator also enables continuous gathering of training data.

Each computational cycle in AdaLED consists of three stages: (i) the warm-up stage, (ii) the online
validation stage, and (iii) either the micro-only or the macro-only stage (fig. 1). In the warm-up stage,
both micro and macro propagators are running. In each time step, the micro state xt is passed through
the encoder EθE and fed into the macro propagator in order to warm up its hidden state ht (starting from
ht = 0). In the online validation stage, micro and macro propagators run independently, in order to estimate
the macro propagator’s prediction accuracy for the current section of the system trajectory. At the end of
the online validation stage, the final latent state z̃t is decoded back to the high-dimensional space, and an
application-specific MLM prediction error Et = E(xt,DθD (z̃t)) between the micro state (the ground truth)
and the MLM’s prediction is computed. If either the MLM prediction error Et or the uncertainty σt of the
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Figure 2: The inference and training loops. For performance reasons, training and inference are optionally performed in separate
processes. Such division naturally extends to multiprocess training, multiprocess simulations, and to multiple simulations.

macro propagator are above the transition thresholds Emax and σmax, respectively, the macro prediction
is discarded, and the simulation continues with the micro-only stage. However, if both are below error
thresholds, the prediction z̃t of the macro propagator is accepted, and the simulation continues with the
macro-only stage. Cycles are described as accepted or rejected, depending on whether the macro prediction
was accepted or not.

In accepted cycles, the online validation stage is followed by the macro-only stage, where the micro
propagator is paused, and the only computation is done in the latent state using the inexpensive macro
propagator. This stage continues as long as the prediction uncertainty σt is below the threshold σmax. Once
the threshold is violated, the prediction for that step is dropped. Then, the latent state from the previous
time step is decoded to the high-dimensional state and passed to the micro propagator. An important
assumption is that the micro propagator can be reinitialized to an arbitrary state. Additionally, this stage
is optionally limited to Nmax

macro-only steps. In fig. 1, values NX represent the number of time steps in the
stage X.

2.2. Dataset and training
The trajectories xt produced by the micro propagator are sliced into trajectories of L time steps and

stored in a dynamic dataset of capacity D � 1. The length L is set equal to the number of recorded states in
accepted cycles: L = 1+Nwarm-up+Nonline-validation. Once the dataset is filled, when adding a new trajectory,
an existing trajectory selected uniformly at random is deleted. Randomly removing trajectories ensures that
old trajectories are preserved for a long time, alleviating the problem of catastrophic forgetting [52], i.e.,
neural network predictions deteriorating in continuous learning for samples that they have seen in the past.

The autoencoder and the macro propagator are trained separately, one after the other, on a random subset
of the dataset. Training is performed continuously, either after each AdaLED cycle or asynchronously in
parallel with AdaLED cycles (fig. 2). For inference, during one AdaLED cycle, the autoencoder and macro
propagator parameters are fixed.

2.3. Estimation of Prediction Uncertainty
In the macro stage of AdaLED, the trajectory predicted by the macro propagator will eventually diverge

from the ground truth , that the micro propagator would have produced, at a rate that depends on the
complexity of the system dynamics [19]. In this study, rather than manually selecting the number of macro
steps, we adopt a robust mechanism for estimating the duration of reliable coarse-grained predictions. To
achieve this, we use probabilistic networks and network ensembles [53].

The input data are denoted by x ∈ RNx , and the output data (targets) of a network whose prediction
uncertainty we want to estimate by y ∈ RNy . The output of the system is predicted via two networks. The
first network is parameterized with θµ and outputs the mean µθµ(x). This network is trained to minimize
the MSE between the target and the mean output, i.e.,

`MSE(θµ,x,y) =
1

Ny

Ny∑
i=1

(
µθµ(x)i − yi

)2
. (5)
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A second network with parameters θσ outputs the variance Σθσ (x) = diag(σθσ (x)2) of a Gaussian dis-
tribution with mean µθµ , i.e., pθ(y|x) = N (y;µθµ(x),Σθσ (x)) [54, 53], where θ = {θµ,θσ}. A diagonal
covariance matrix is considered here for simplicity. The details of the neural architecture are shown in
appendix A. This second network is trained to minimize the negative log-likelihood loss (NLL):

`NLL(θσ,x,y) = − log pθ(y|x)

=
1

2
log
(
σθσ (x)

)2
+

(
y − µθµ(x)

)2
2
(
σθσ (x)

)2 + const.
(6)

The networks are trained together, and can be viewed as a single network with parameters θ, while the
weights θµ are considered fixed in the computation of the NLL loss. The total sample loss can be written
as:

`(θ,x,y) = `MSE(θµ,x,y) + `NLL(θσ,x,y), θ = {θµ,θσ}. (7)

This combination of MSE and NLL losses with decoupled gradients for θµ achieved higher accuracy than
solely the NLL loss.

Moreover, we consider an ensemble of K such probabilistic networks, each randomly initialized with its
own parameters θk, k ∈ {1, . . . ,K} and trained separately on the same data to minimize the loss `(θk,x,y).
For a given input x, the outputs µ(k) = µθkµ(x) and σ(k) = σθkσ (x) are combined into the final prediction
µ(x) and uncertainty σ(x) of the ensemble as follows [53]:

µ(x) =
1

K

∑
k

µ(k)(x),

σ2(x) =
1

K

∑
k

(
σ(k)

)2
(x)︸ ︷︷ ︸

σ2
ind(x)

+
1

K

∑
k

(
µ(k)

)2
(x)− µ2(x)︸ ︷︷ ︸

σ2
std(x)

. (8)

The term σind in eq. (8) refers to the prediction uncertainties as estimated by each network individually. On
the other hand, the term σstd measures the disagreement of the ensemble in the prediction of y. Thus, this
term provides an estimate of the training inaccuracy for the given input x. For unseen states x or states
underrepresented in the training data, we expected σind and σstd to be larger than for frequently seen states.
From the vector uncertainty σ, the scalar uncertainty σ is defined as either σ = ‖σ‖2 or σ = ‖σ‖2/Ny.

2.4. AdaLED hyper-parameters
The error thresholds Emax and σmax are application-specific and determine the trade-off between speed-

up and accuracy. The latent state dimension dz of the autoencoder should be chosen based on the system
dynamics and its effective degrees of freedom [24]. The remaining hyperparameters, such as network size
and the number of layers, can be determined through small-scale experiments and hyperparameter tuning.

3. Case study: Van der Pol oscillator

We first demonstrate the capabilities of AdaLED on the Van der Pol oscillator (VdP), a system used as
a benchmark for a variety of multiscale frameworks [15, 10, 13]. In contrast to these frameworks, we do not
distinguish a priori between fast and slow dynamics. Instead, we arbitrarily change the oscillator limit cycle
and oscillation time scale, which is controlled by the damping parameter µ, to demonstrate that AdaLED
can adapt to these changes. In this case study, no autoencoder is used, i.e., the encoder and the decoder are
identity operators.

The Van der Pol oscillator [55, 56] is a non-linear damped oscillator governed by the following equations:

dx

dt
= µ

(
x− 1

3
x3 − y

)
,

dy

dt
=

1

µ
x,

(9)
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where µ = µ(t) > 0 is a time-varying system parameter that controls the system’s non-linearity and damping.
The micro propagator is an ODE integrator based on the Euler method that integrates eq. (9) with a time

step of δt = 0.001 starting from a random initial condition (x0, y0) ∼ U([−5, 5]2). The macro propagator is an
ensemble of five LSTMs. Their architecture is explained in appendix A. The ensemble is trained to predict
the dynamics with a macro time step of ∆t = 0.1. Each LSTM takes the tuple (x(t), y(t), µ(t)) as input and
outputs the means and variances (µ∆x(t), µ∆y(t), σ2

∆x(t), σ2
∆y(t)) for residuals ∆x(t) = x(t+ ∆t)− x(t) and

∆y(t) = y(t+ ∆t)− y(t).
For a constant µ, the system enters a limit cycle whose shape depends on µ (fig. B.1). For the values of

µ and ∆t considered here, a single limit cycle is completed in about 60 to 90 macro time steps ∆t.
AdaLED cycles are configured to have 7 warm-up steps and 25 online validation steps. The maximum

number of macro and micro steps is selected for each AdaLED cycle uniformly at random between 80 and 120
steps in order to avoid synchronizing the AdaLED cycle with the system limit cycle. We observed that such
synchronization causes the training dataset to be filled with data from the same limit cycle region while the
rest of the cycle is underrepresented. For a given cycle c, we define the macro utilization ηc = N c

macro-only/N
c

as the fraction of steps performed in the macro-only stage, where N c
macro-only is the number of macro-only

steps and N c the total number of steps of the cycle c. In rejected cycles, ηc = 0. The total macro utilization
η is defined as η = (

∑
cN

c
macro-only)/(

∑
cN

c). Given the selected stage durations, the maximum attainable
total macro utilization is η ≈ 75.6%.

The maximum capacity of the dataset is set to 1280 trajectories. The training is performed at a fixed
rate of 2 trajectories for each simulation macro step.

The prediction error is defined as E =
√

(xmicro − xmacro)2 + (ymicro − ymacro)2 and the prediction un-

certainty as σ =
√
σ2

∆x + σ2
∆y. The AdaLED transition thresholds are set to Emax = 0.10 and σmax = 0.10.

We note that the error threshold Emax refers to the accumulated error after 25 online validation steps and
not a single-step prediction error.

3.1. Results
We analyze the performance of AdaLED on three different cases of µ(t):

• µALT(t), a piecewise constant function alternating between values µ = 1.0 and µ = 3.0 every 50 000
time steps,

• µRAND(t), a piecewise constant function with multiple randomly selected values µ ∈ [1.0, 3.0], and

• µBROWN(t), a piecewise constant function µRAND(t) augmented with Brownian-like noise (details ex-
plained in appendix B).

The system is integrated for 400 000 time steps. The hyper-parameters of the LSTMs are tuned in a
preliminary study reported in appendix B.1.

The macro utilization for all three cases, together with the functions µ(t), are shown in fig. 3. The case
µALT(t) is depicted in the top figure. The macro utilization at the start of the run is equal to zero, which
is expected since the macro propagator is untrained and produces inaccurate predictions. After about 8000
time steps, the prediction error reaches the desired threshold and AdaLED starts accepting the prediction of
the macro propagator. As a result, the macro utilization increases gradually to 60%. At the time step 50 000,
the value of µ(t) suddenly changes, putting the system into an unseen regime. AdaLED correctly detects
the change and starts rejecting the predictions of the macro propagator, which suddenly became unreliable.
However, soon after, the macro propagator learns the new regime and its predictions are accepted again,
leading to an increase in macro utilization, which approaches the maximum of 75.6%. After 50 000 more
time steps, the system switches back to µ = 3. The macro propagator has already observed and learned this
regime, as demonstrated by the fact that AdaLED resumes uninterruptedly with a very high acceptance
rate.

The results for the case µRAND(t), shown in the middle plot of fig. 3, display similar behavior as the
previous case. At the beginning of the simulation, all cycles are rejected until the network learns the
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Figure 3: Macro utilization (fraction of steps performed in macro-only stage) for the Van der Pol oscillator case study for three
different variants of µ(t). The light green histograms show the macro utilization of each individual AdaLED cycle, and the
dark green line the macro utilization smoothed using a Gaussian blur (for visualization purposes only).
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Figure 4: Visualization of the prediction error for each accepted cycle in the case µALT(t) of the Van der Pol oscillator case
study. Left: error at the end of the online validation stages, right: error at the end of macro-only stages. Diamonds denote
micro states and empty circles the macro states, colored with respect to the error E (Euclidean distance). The AdaLED cycles
with endpoints outside of limit cycles correspond to those during which the value of µALT(t) changed. The first such change
at the time step 50 000 (encircled pair) is visualized in detail in fig. 5.
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Figure 5: AdaLED cycle around the time step 50 000 at which µALT(t) switches from value 3.0 to 1.0. Blue diamonds � denote
the micro states, red circles • the macro states, and red ellipses the ensemble covariance. The plot shows that, due to the
different responses of individual LSTMs in the ensemble to the value of µ(t), AdaLED quickly detected the change in dynamics
and stopped the execution of the macro propagator.

corresponding regime. This trend repeats after the first two changes in µ. From the third change onwards,
we observe that AdaLED can interpolate between previously seen values of µ and can continue to produce
accurate predictions despite changes on µRAND(t). This demonstrates the ability of AdaLED to learn and
interpolate on unseen dynamical regimes adaptively.

Finally, the more complex case of a noisy µBROWN(t) is depicted in the bottom plot in fig. 3. AdaLED
again gradually learns to replace the micro propagator and adaptively learns the different dynamical regimes.
However, here it takes longer for the macro propagator to reach the highest acceptance rate compared to
the cases µALT and µRAND. We argue that this is due to the increased difficulty of the learning task, as
data are generated from various limit cycles with varying time scales.

The online validation errors and final testing errors (prediction error at the end of the macro-only stage)
for each accepted cycle in case µALT(t) are depicted in fig. 4. The testing error is calculated by running the
micro propagator even during the macro-only stage, solely for evaluation purposes. In production runs, the
micro propagator is inactive during the macro-only stages.

We observe that errors are generally small and almost every cycle ends very close to the limit cycles.
Exceptions to this trend occur during sudden changes of µ(t). It is important to note that the online
validation errors (left plot) can be directly controlled by adjusting the value of Emax. On the other hand,
the testing error (right plot) can be controlled only indirectly through Emax and σmax, and thus serves as
a measure of the robustness and quality of the surrogate model. This highlights the advantage of AdaLED
compared to other multiscale frameworks, as it allows for control over the error thresholds a priori.

The behavior of the system during the first change of µALT, happening at time step 50 000, is visualized
in fig. 5. Prior to that change, the LSTMs were trained only on trajectories with µ = 3. As a result,
the predictions of individual networks in the ensemble are alike and accurate for this particular regime.
However, once the value of µALT(t) changes, different LSTMs in the ensemble respond differently to µ = 1,
since the predictions for the unseen regimes are arbitrary and depend on weight initialization. This causes
the predictions to diverge and the uncertainty to increase (as defined in eq. (8)). When the uncertainty
crosses the threshold σmax after seven steps, the cycle terminates. The 7th step is rejected and therefore
excluded from the plot.

Additional results on the dependence of the testing error on the uncertainty threshold σmax and the
ensemble size K are presented in appendix B.2.
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Figure 6: Performance on AdaLED on the reaction-diffusion case study with a time-varying diffusion parameter d (blue line).
Top: macro utilization (fraction of steps performed in macro-only stage). The light green histograms show the macro utilization
of each individual AdaLED cycle, and the dark green line shows the macro utilization smoothed using a Gaussian blur (for
visualization purposes only). Bottom: test error of the reconstructed state w. The per-step errors (faded red) alternate between
low values at the beginning of the macro-only stage and higher errors at the end of the macro-only stage. The dark red denotes
the smoothed test error, and the dashed red the online validation threshold Emax.

4. Case study: Reaction-diffusion equation

Here, we test AdaLED on the lambda-omega reaction-diffusion system [57, 58] governed by:

∂u

∂t
= [1− (u2 + v2)]u+ β(u2 + v2)v + d1∇2u,

∂v

∂t
= −β(u2 + v2)u+ [1− (u2 + v2)]v + d2∇2v

(10)

for −10 ≤ x, y ≤ 10, where β = 1.0 is the reaction parameter and d1 = d2 = d = d(t) the time-varying
diffusion parameters. The equation is integrated on a 96×96 uniform grid using the Runge–Kutta–Fehlberg
method of fourth order with a time step of ∆t = 0.05. Thus, the state of the system is fully described by a
tensor w = (u,v) ∈ R2×96×96. The system exhibits a spiral wave whose shape depends on the parameter d.

We evaluate the performance of AdaLED with the diffusion parameter d alternating between 0.1 and 0.2
every 20 000 time steps. AdaLED cycles are configured to have 5 warm-up steps, 18 online validation steps,
10 to 15 micro-only steps, and 400 to 500 macro-only steps. The AdaLED transition thresholds are set to
Emax = 0.002 and σmax = 0.002. We use the mean square error (MSE) between the macro and the micro
state w as the error metric, i.e., E = E(w, w̃) = ‖w − w̃‖22/(2 · 96 · 96). The simulation is run for 200 000
time steps. Other details of the system, the neural networks, and the training are listed in appendix C.

The macro utilization η and test errors E are shown in fig. 6. Similar to the Van der Pol oscillator case
study, we observe that the macro utilization is initially zero, as the networks are not yet trained. However,
after approximately 10 000 time steps, the autoencoder learns to reconstruct the state, and the LSTMs
learn to predict the dynamics. Consequently, AdaLED begins to accept the macro prediction. When the
diffusion parameter d changes from 0.1 to 0.2, AdaLED recognizes the unreliability of the macro predictions
and switches back to the simulator. Once the new regime is learned, AdaLED resumes using the macro
propagator. The bottom plot of fig. 6 shows the test errors E. Overall, the macro utilization reaches
75%± 1%, with an MSE of 0.0055± 0.0013 (relative MSE of 0.012± 0.003). The reported confidence levels
are based on the variance calculated from ten repeated simulation runs.

Figure 7 shows a snapshot of the simulation at the time step 200 000, 305 time steps into the macro-only
stage. The predicted and expected states are in agreement, demonstrating the accuracy of the macro prop-
agator even after performing the simulation for a significant number of time steps in the latent space. The
micro states during macro-only stages are retrieved for testing purposes by continuing the micro simulation
even during the macro-only stage.
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Figure 7: Snapshot of the simulation at time step 200000, 305 steps into the macro-only stage. Left: the micro propagator
(ground truth), middle: the AdaLED Machine-Learned Model, right: absolute error. The mean square error amounts to
E = 0.0021 (relative error of 0.0045).

5. Case study: 2D flow past a cylinder

Finally, we employ AdaLED to accelerate a 2D Direct Numerical Simulation (DNS) of the flow past a
circular cylinder at varying Reynolds numbers. AdaLED is trained to forecast the velocity field, representing
the state of the flow. Forecasting the complete simulation state enables the alternation between macro
(latent) and micro scale (the DNS ). In addition to predicting the state, AdaLED is also tasked with
predicting the force exerted by the fluid on the cylinder. The force serves as the quantity of interest q(t)
that we want to have access to at all time steps of the simulation.

The system is governed by the incompressible Navier-Stokes equations and the no-slip boundary conidi-
tion is enforced via the Brinkman penalization [59]:

∇ · u = 0, (11)
∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u + λ(us − u)χ, (12)

where u = u(x, t) is the fluid velocity field, ρ = 1 the fluid density, p = p(x, t) the pressure, ν = 10−4

the kinematic viscosity, λ = 106 Brinkman penalization coefficient, us = us(t) the velocity of the cylinder
and χ = χ(x, t) the characteristic function of the cylinder, equal to 1 inside the cylinder and 0 outside
it. The equation is solved on a [0, 1] × [0, 0.5] domain with open boundary conditions. A solid cylinder of
diameter d = 0.075 is fixed at the coordinate (0.2, 0.25) relative to the simulation domain. The cylinder and
the simulation domain are moving horizontally at the speed of usx(t) = Re(t)ν/d relative to the fluid, with
Reynolds number Re(t) (the external forcing) varying between Re = 400 and Re = 1200. In this range, for
a fixed Re, a vortex street forms behind the cylinder.

The eqs. (11) and (12) are solved using a pressure projection method [60] on an adaptive Cartesian mesh
of maximum resolution of 1024 × 512 cells. For the purpose of this study, the adaptive, non-uniform mesh
is interpolated to the maximum resolution of 1024 × 512 cells and is thus treated as a uniform mesh when
used by AdaLED.
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Figure 8: Schematic view of the multiresolution AE. To accelerate the training and reduce the storage and memory requirements,
the AE operates on two downsampled variants of the velocity field. The yellow region denotes the blending mask used for
reconstructing the full resolution field.

In an effort to reduce the computational demands of the high-dimensional grid and speed up the training
process of AdaLED, we propose a novel multiresolution physics-based AE. The proposed AE takes advantage
of the characteristics of the flow and uses a reduced-resolution grid far to the cylinder where the flow
exhibits simpler features compared to the vicinity of the cylinder. Concretely, the AE operates on two
downsampled grids: a half-resolution grid spanning the entire domain and a small full-resolution patch
around the cylinder (fig. 8). By utilizing this multiresolution approach, we are able to reduce the storage
and memory requirements and speed up the training. Furthermore, the AE outputs the stream function
instead of the velocity field [61]. This physics-inspired architecture ensures zero divergence of the velocity
field (as per eq. (11)). An additional physics-based vorticity loss is added to improve performance. The
specifics are outlined in appendix D.1.

In addition to the latent state z(t), which is necessary to recreate the system dynamics and support
macro-to-micro transitions, the MLM also outputs the force Fcyl(t) exerted by the fluid on the cylinder as
the quantity of interest q(t). The relative importance of Fcyl and z in the macro propagator’s training loss
and uncertainty estimation can be controlled by scaling the force with some factor αF .

The macro propagator is an ensemble of five probabilistic LSTMs. Each LSTM is trained to predict the
mean and the variance of the residuals ∆z(t) = z(t+∆t)−z(t) and ∆q(t) = q(t+∆t)−q(t), q(t) = αFFcyl(t).
The acceptance criterion is based on a relative reconstruction error E of the velocity field

E(ũ,u) =
‖u− ũ‖22
‖u‖22

, ‖u‖22 =
∑
ij

u2
ij , (13)

where u is the full-resolution velocity field from the micro propagator, and ũ = DθD (z̃) the prediction of
the ML model. The autoencoder itself is trained on a different loss function, explained in appendix D.1.
The total uncertainty σ of the prediction of the macro propagator is defined as the standard deviation of
the uncertainty vectors σ =

√
((σ∆z(t))2 + (σ∆q)(t)2) /(dz + 2).

The time step of AdaLED is set to ∆t = 0.005, resulting in approximately 60 AdaLED time steps per
vortex street period for Re = 1000. The internal time step of the micro propagator δt is, for simplicity, fixed
throughout the simulation. For simulations with Re(t) of up to 1000, δt = 0.005/18, and for simulations
with Re(t) of up to 1200, δt = 0.005/21, resulting in a Courant number of ∼0.4.

We use AdaLED cycles of 4 warm-up steps, 12 online validation steps, between 400 and 500 macro
steps, and between 9 and 14 micro steps. Both limits are chosen uniformly at random for each cycle to
avoid synchronizing AdaLED cycles with vortex street periods. The capacity of the dataset is set to 256
trajectories. To maximize the speed-up of AdaLED, training is performed on a separate compute node in
parallel with the inference and the micro propagator, as depicted in fig. 2. Experiments were conducted on
the Piz Daint supercomputer on two XC50 nodes, each equipped with one 12-core Intel Xeon E5-2690 CPU
running at 2.6 GHz and one Nvidia P100 16GB GPU. The simulations were performed using the CubismAMR
software [62].
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5.1. Results
In section 5.1.1, we demonstrate the effectiveness of AdaLED in accelerating the simulation of the flow

past the cylinder without sacrificing accuracy. In section 5.1.2, we highlight the importance of adaptive
training in systems with changing dynamics. Finally, in section 5.1.3, we conduct an ablation study to
evaluate the advantage of the multiresolution autoencoder.

5.1.1. Effectiveness of AdaLED
We perform the simulation for a total of 300 000 time steps, with Reynolds number transitioning cyclically

between Re = 600, Re = 750, and Re = 900 every 5000 time steps. The hyper-parameters, listed in table 2,
are tuned according to the performance on a shorter simulation, as reported in section 5.1.3. For this
simulation, the error and uncertainty thresholds are set to Emax = 0.017 and σ2

max = 0.00035, respectively.
We note that these are the key AdaLED hyper-parameters that can be adjusted to balance accuracy and
acceleration as desired.

The Re(t) profile, the macro utilization, and the errors are displayed in fig. 9. The errors correspond to
validation errors during the online validation phase and test errors during the macro-only stage. To calculate
these errors, we compare the micro states ut with the reconstructed states ũt = DθD (z̃t) produced by the
MLM. We use the velocity field error metric E from eq. (13) to quantify the error in the velocity field. For
the force Fcyl error, we define a normalized error EF as follows:

EF = EF (F′cyl,Fcyl) =

∥∥F′cyl − Fcyl
∥∥

F avg
cyl

, (14)

where F avg
cyl = 〈‖Fcyl‖〉 ≈ 0.079 is the average magnitude of the force. For testing purposes, to retrieve the

micro states ut, we continue running the simulation even in the macro-only stages. The training of the
MLM is temporarily suspended during this time.

In fig. 9, we observe the same trend as in the previous two case studies. Initially, the macro utilization
is zero. After the networks become sufficiently trained, the framework starts to accept the predictions of
the MLM. As training continues, the errors and uncertainties decrease, resulting in an increase in macro
utilization. During the macro-only stage, the testing error E and EF remain low, averaging to 1% and 5%,
respectively. The errors can be further decreased at the cost of reduced speed-up.

In fig. 10, we present a closer look at how error and uncertainty change over a selected section of the
trajectory, specifically during the transition from Re = 900 to Re = 600. The acceptance of the macro
prediction is determined by the error E and its threshold Emax. Before the Re transition, the online
validation error remains below the threshold, and AdaLED accepts the macro prediction. However, during
the transition period, which lasts for a few hundred time steps, the MLM cannot reliably predict the
dynamics. Hence, AdaLED switches to the micro propagator instead. Once the transition period ends,
AdaLED resumes utilizing the macro propagator. It should be noted that the error E may exceed the
threshold Emax at times. The threshold Emax represents the maximum error at the end of the online
validation stage, so it should be set to a value lower than the desired maximum tolerable error.

In contrast to the error E that controls whether AdaLED enters the macro-only stage, the uncertainty
σ and the threshold σmax control its duration. Once σ exceeds σmax, the macro-only stage is stopped.

The accuracy of the predicted force Fcyl is illustrated in the bottom plot of fig. 10. We observe a good
agreement between the two force profiles. A visual representation of the latent trajectory can be found in
fig. D.4 in appendix D.5.

A snapshot of the simulation during the macro-only stage is visualized in fig. 11. We observe that
AdaLED reproduces the state of the simulation accurately and captures the characteristics of the flow with
high accuracy. Notably, errors concentrate on the fine-scale structures of the flow. Arguably, the double arcs
in the error profile indicate that the error can be partially attributed to the macro propagator advancing
the dynamics at an incorrect speed.

The execution time of the standalone simulation and the AdaLED-accelerated simulation is compared
in fig. 12. The green area represents the time saved by using AdaLED. The total macro utilization over
the whole run (300 000 time steps) is 69%, achieving a speed-up of approximately 2.9x. After the training
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Figure 9: AdaLED performance on a flow behind cylinder simulation for Re(t) ∈ {600, 750, 900} (section 5.1.1). Top: Reynolds
number Re(t) profile and the macro utilization η. Middle and bottom: validation errors of the velocity (E, eq. (13)) and force
on the cylinder (EF , eq. (14)). The per-step errors (faded red) alternate between low values at the beginning of the macro-only
stage and higher errors at the end of the macro-only stage. The errors for velocity stay close to 1% on average (dark red) and
close to 5% for the force (with a cross-correlation of 0.99). The errors refer only to macro-only steps. A detailed view of errors
in a short simulation section is shown in fig. 10.

converges, the macro utilization reaches 80% in the last 15 000 time steps, resulting in a speed-up of 4.3x.
This implies that the trained MLM can be applied to other simulations with Re ∈ {600, 750, 900} achieving
similar performance.

The execution time breakdown of each simulation time step is presented in table 1. By itself, the micro
propagator takes on average 969 ms per time step for the given profile of Re(t) (larger Re are slower to
simulate). When used within AdaLED, after the first micro-to-macro transition happens, the imperfect
autoencoder reconstruction causes a slight increase in the mesh size and thus slows the micro propagator
down to 1055 ms per step (+9%). The average overhead of AdaLED (autoencoders, logging, diagnostics,
etc.) is relatively small, averaging to 42 ms per time step on average. Finally, the macro propagator requires
only 5 ms per time step.

We conclude that for computationally expensive CFD simulations, the overhead for deploying AdaLED is
minimal. In this case, the speed-up is determined effectively only by the macro utilization. Higher speed-ups
can be achieved by affording higher errors (increasing the error thresholds) or employing models with higher
accuracy. The latter can be achieved through network architecture improvements, more effective training
procedures, larger ensembles, or more extensive tuning.

The results of a run with a different Reynolds number profile are shown in appendix D.6.

5.1.2. The importance of adaptivity
In the following, we demonstrate the importance of adaptivity, i.e., constantly training throughout the

whole simulation and adapting to new states and trajectories, compared to pretraining or training only until
a given point in time. We analyze two profiles of time-varying Reynolds numbers Re(t). In the first, Re(t)
switches between values 500, 750, and 1000 in a zig-zag fashion throughout the whole simulation. In the
second, Re(t) starts as the first profile but switches to a different regime (400, 600, 800, 1000, and 1200) in
the second half of the simulation, to emulate a system that enters a new regime late in the simulation. For
each profile, two setups are tested: one with training enabled all the time (adaptive) and one with training
enabled only at the first half of the simulation (non-adaptive).

14



<latexit sha1_base64="vMe24XhQgEm4Eov+COj0VbuSCwE=">AAACA3icdVDLSgMxFM34rPVVdekmWARXQ6bWtu6KblxWsA9ox5JJ0zY0yQxJRhiGLv0Bt/oH7sStH+IP+B2mD6EVPXDhcM693HtPEHGmDUKfzsrq2vrGZmYru72zu7efOzhs6DBWhNZJyEPVCrCmnElaN8xw2ooUxSLgtBmMrid+84EqzUJ5Z5KI+gIPJOszgo2VWh3NBgLfF7q5vOeiKSByS8Uyuri0BKFypXgOf6w8mKPWzX11eiGJBZWGcKx120OR8VOsDCOcjrOdWNMIkxEe0LalEguq/XR67xieWqUH+6GyJQ2cqosTKRZaJyKwnQKbof7tTcS/vHZs+hU/ZTKKDZVktqgfc2hCOHke9piixPDEEkwUs7dCMsQKE2MjWtoSDRPNiB4vBvM/aRRcr+R6t8V89WoeUQYcgxNwBjxQBlVwA2qgDgjg4Ak8gxfn0Xl13pz3WeuKM585AktwPr4BozmY6w==</latexit>

�2

<latexit sha1_base64="3L18sNGGQRn6nJulh6Cazk8Glg0=">AAAB/HicdVDLSgNBEOyNrxhfUY9eBoPgKexqMDkGRfCYgHlAsoTZSScZMju7zMwKyxJ/wKv+gTfx6r/4A36Hm4eQiBY0FFXddHd5oeDa2PanlVlb39jcym7ndnb39g/yh0dNHUSKYYMFIlBtj2oUXGLDcCOwHSqkview5Y1vpn7rAZXmgbw3cYiuT4eSDzijJpXqt718wSnaMxB7mZQrpUvyYxVggVov/9XtByzyURomqNYdxw6Nm1BlOBM4yXUjjSFlYzrETkol9VG7yezQCTlLlT4ZBCotachMXZ5IqK917Htpp0/NSP/2puJfXicyg4qbcBlGBiWbLxpEgpiATL8mfa6QGRGnhDLF01sJG1FFmUmzWdkSjmLNmZ4sB/M/aV4UnauiUy8VqteLiLJwAqdwDg6UoQp3UIMGMEB4gmd4sR6tV+vNep+3ZqzFzDGswPr4BhAylc4=</latexit>

E

<latexit sha1_base64="mObjqy5lUv0BD6FV5Q+krUb9wn8=">AAACCXicdVBLSgNBFOzxG+Mv6tJNYxBcDTMxarILCuIygvlAMgk9nU7SpOdD9xtxGOYEXsCt3sCduPUUXsBz2PkIiWjBg6LqPepRbii4Asv6NJaWV1bX1jMb2c2t7Z3d3N5+XQWRpKxGAxHIpksUE9xnNeAgWDOUjHiuYA13dDX2G/dMKh74dxCHzPHIwOd9TgloqXPdbQN7gITGIu3E3VzeNq0JsGUWyyXrtKyJdVYsWwX8Y+XRDNVu7qvdC2jkMR+oIEq1bCsEJyESOBUszbYjxUJCR2TAWpr6xGPKSSZfp/hYKz3cD6QeH/BEnb9IiKdU7Ll60yMwVL+9sfiX14qgX3IS7ocRMJ9Og/qRwBDgcQW4xyWjIGJNCJVc/4rpkEhCQRe1kBIOY8WpSueL+Z/UC6Z9btq3xXzlclZRBh2iI3SCbHSBKugGVVENUSTRE3pGL8aj8Wq8Ge/T1SVjdnOAFmB8fAMv/ZwH</latexit>

F y
cyl

<latexit sha1_base64="WzDeR1V6IZOR+x2MLlECv28cx2M=">AAACCXicdVDJSgNBEO2JW4xb1KOXxiB4GmaSOMkxKIjHCGaBbPR0OkmTnoXuGskw5Av8Aa/6B97Eq1/hD/gddhbBiD4oeLxXRVU9NxRcgWV9GKm19Y3NrfR2Zmd3b/8ge3hUV0EkKavRQASy6RLFBPdZDTgI1gwlI54rWMMdX838xj2Tigf+HcQh63hk6PMBpwS01L3utYFNIKGxmHYnvWzOMm3LuSgXsWUWygUrX9LEKTrlgo1t05ojh5ao9rKf7X5AI4/5QAVRqmVbIXQSIoFTwaaZdqRYSOiYDFlLU594THWS+dVTfKaVPh4EUpcPeK7+nEiIp1TsubrTIzBSv72Z+JfXimBQ7iTcDyNgPl0sGkQCQ4BnEeA+l4yCiDUhVHJ9K6YjIgkFHdTKlnAUK07VVAfz/T3+n9Tzpu2Y9m0xV7lcRpRGJ+gUnSMblVAF3aAqqiGKJHpET+jZeDBejFfjbdGaMpYzx2gFxvsXTuqcGw==</latexit>

F x
cyl

Figure 10: A detailed view of the part of the simulation of flow behind the cylinder from section 5.1.1 and fig. 9, during the
Re = 900 to Re = 600 transition. Top: velocity validation error E and the squared uncertainty σ2 (dotted for warm-up and
online validation stages, solid for macro-only) and their thresholds Emax and σ2

max (dashed). Bottom: horizontal force on the
cylinder (blue), vertical force (orange), and the macro’s prediction (dashed black).
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Figure 11: Snapshot of the time step 212500 (Re = 600) of the simulation from section 5.1.1, 50 time steps into the macro-only
stage, with a relative error of E ≈ 0.014 (eq. (13)). Left: micro propagator state ut and vorticity ωt, middle: the prediction of
the surrogate (MLM) and full-resolution reconstruction, right: absolute error.

without AdaLED with AdaLED saved time

Figure 12: Smoothed time step execution time with and without AdaLED for the simulation setup from section 5.1.1. The
speed-up factor converges to 4.3x (table 1). The periodic changes in the execution time correspond to the periodic changes of
the Reynolds number (see the top plot in fig. 9).
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Table 1: Average execution times and their standard deviation for different time step components for the simulation setup
from section 5.1.1.

step or partial step execution time [ms]
Without AdaLED
micro propagator 969± 104

With AdaLED
micro propagator 1055± 113
overhead of AdaLED 42± 1
macro-only step 4.6± 0.3
average 339± 183 (2.9x speed-up)
average (last 15k time steps) 225± 79 (4.3x speed-up)

Apart from testing adaptivity, we test how disabling micro-to-macro transitions in the first half of the
simulation affects the quality of the MLM in the second half. Namely, we expect that delaying initial
transitions and providing more time for training may help improve the accuracy and macro utilization in
the later stages of the simulation. Thus, for each Re(t) profile, we test in total four setups: adaptive without
delay (A; default AdaLED behavior), non-adaptive without delay (B), adaptive with delay (C), and non-
adaptive with delay (D). For each setup, five runs with different random seeds are performed to obtain the
variance in performance.

The macro utilization and relative MSE on the velocity for the first Re(t) profile are visualized in fig. 13.
We observe that training only in the first half with transitions disabled (the setup D) achieves higher accuracy
in the second half of the simulation compared to other setups. In fact, the non-adaptive setup D exhibits
higher macro utilization and lower error compared to the adaptive setup C. This is expected as the training
dataset from the first half of the run already contains all the information needed to forecast effectively the
dynamics in the second half (the profiles are similar). As a consequence, there is no need for online training.

However, we observe a different phenomenon when the system regime changes over time, as shown in
fig. 14. Here, the macro utilization in non-adaptive setups B and D drops to zero when the system enters the
previously unseen Re(t) = 1200 regime, whereas the adaptive setups A and C eventually adapt and achieve
macro utilization of 25 to 35%.

We note here that the available training time for setups D and C is higher. While setups A and B
accelerated the simulation from the start and had only 6h for training during the first half of the simulation,
setups D and C took 11h for the first half and thus had almost twice as much time for training before being
tested in the second half. We argue that this phenomenon is an important characteristic property of online
surrogates, i.e., the higher speed-up they achieve, the less time they have for training.

5.1.3. Multiresolution autoencoders
In this section, we perform an ablation study to analyze the benefit of the multiresolution convolutional

autoencoder. We compare three cases: (i) single resolution, (ii) multiresolution with a 256 × 256 patch
around the cylinder, and (iii) multiresolution with a 224 × 224 patch. For each case, we perform 80 runs
with randomized thresholds Emax and σmax, learning rates, force scaling αF , latent state size dz, number
of CNN channels, and the number of layers. The hyper-parameter search space is listed in table 2. The
CNN architecture, the remainder of hyper-parameters, and the breakdown of training execution time are
described in appendix D.4. The simulation setup matches the one from section 5.1.1 (Reynolds number
Re(t) cycles between 600, 750, and 900 every 5000 time steps), with a shorter running time of 60 000 time
steps. On average, a single simulation run takes approximately 16 hours to complete. Three performance
metrics are considered: total macro utilization η, average velocity relative MSE E (eq. (13)), and the average
force error EF (eq. (14)). The averages include only the macro-only stages.

The results of the comparison are shown in figs. 15 and 16, where the macro utilization is plotted
against the average errors E and EF , respectively. We observe a clear advantage of the multiresolution
approach compared to the single-resolution autoencoder in terms of both macro utilization and accuracy.
The encircled point in the plots refers to the hyper-parameter set used in sections 5.1.1 and 5.1.2, which
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Figure 13: The adaptivity and transition delay study from section 5.1.2 for the Re(t) with a fully repeating profile. Lines
denote: adaptive without delay (A ), non-adaptive without delay (B ), adaptive with delay (C ), non-adaptive
with delay (D ). Top: Reynolds number profile, middle: macro utilization η, bottom: smoothed relative MSE of the
velocity in macro-only stages. Shaded regions, where available, denote the standard deviation along five repeated runs of the
same setup.
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Figure 14: Analogous of fig. 13, for the Re(t) that changes the profile in the second half of the simulation. The drop in
performance in the second half is clearly visible for the non-adaptive cases (B and D ).
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Table 2: Parameter search space for the multiresolution autoencoder study, and the selected parameter set.

parameter search space selected
multiresolution? no yes yes
inner resolution N/A {256x256, 224x224} 224x224
# of CNN layers {5, 6} {4, 5} 4
channels/layer {16, 20, 24} 16

dz (per resolution) {4, 8, 12, 16, 24} 8
AE learning rate LogUniform(0.0001, 0.001) 0.00047

LSTM learning rate LogUniform(0.0003, 0.003) 0.00126
scaling αF LogUniform(0.03, 30.0) 7.2
Emax LogUniform(0.001, 0.1) 0.017
σ2

max LogUniform(0.00001, 0.1) 0.00035
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Figure 15: Multiresolution autoencoder multi-objective study (section 5.1.3), optimizing for total macro utilization η and
velocity error E. The lines represent the Pareto fronts for each autoencoder setup. Darker symbols denote samples that are
also optimal in the η–EF sense (fig. 16). The encircled sample is the reference parameter set used in the rest of the study.

resulted in a macro utilization of 54% in 60 000 time steps (69% when run for 300 000 time steps). The
performance of this hyper-parameter set on a different Reynolds number profile is shown in appendix D.6.
It is important to note that the results are subject to random variations, with errors varying by about ±5%
(relative) and macro utilization varying by ±3% (absolute), depending on the random seed.

6. Discussion

We present AdaLED, a framework that employs CAEs and an ensemble of RNN-LSTMs to learn data-
driven, online, adaptive machine-learned models to accelerate the simulations of complex systems. The
model is trained in parallel with the original simulation (micro propagator) and can adapt online to newly
discovered dynamics. More importantly, the model monitors its accuracy and prediction uncertainty and
replaces the micro propagator only when its accuracy is high, and its uncertainty is low. This mechanism
enables the acceleration of simulations for sections of the state space that are learned, even if the model
cannot or is not yet fully trained to faithfully reproduce the whole complex state space dynamics. In
regions of the state that are underrepresented or not part of the training data, AdaLED utilizes the original
computational solver.

We demonstrate AdaLED in three benchmark problems: the Van der Pol oscillator dynamics with
varying parametric nonlinearity µ ∈ [1, 3], a 2D reaction-diffusion equation with varying diffusion parameter
d ∈ [0.1, 0.2], and flows past a circular cylinder at varying Re ∈ [400, 1200]. On these benchmarks, we
demonstrate its ability to train a machine-learned model progressively, exploit its predictions only when
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Figure 16: Analogous of fig. 15, with x-axis denoting the average normalized cylinder force root MSE EF instead of the velocity
field error E. Here, darker symbols denote optimal samples in the η–E sense.

they are reliable, and detect when a system enters an unseen regime in the phase space. The trained model
demonstrates high accuracy in all dynamic regimes seen during training and does not suffer from catastrophic
forgetting.

On the flow past a cylinder at varying Re, AdaLED, starting from untrained networks, reproduces the
dynamics of vastly different dynamical regimes, achieving a net speed-up of 2.9x for a 3-day-long simulation.
This speed-up is achieved at the cost of a mean square error of only ∼1% on the velocity field, ∼5% root
mean square error of the force on the cylinder and cross-correlation of 0.99. The speed-up can be increased
further at the cost of lower accuracy by increasing Emax and σmax. We emphasize the advantage of AdaLED
compared to other frameworks to control this trade-off between speed-up and accuracy. To our knowledge,
AdaLED is the first method that can efficiently learn to propagate the high-dimensional dynamics of a
complex flow at various regimes using a single surrogate, offering a robust accuracy vs. speed-up trade-off.

Our findings suggest that AdaLED is a potent adaptive algorithm for adaptively constructig and inter-
facing surrogates that acceleratecomplex multiscale simulations. We believe that AdaLED can be employed
as a black box accelerator that takes advantage of repeating patterns in computation-heavy tasks. In the fu-
ture, we plan to investigate its acceleration capabilities on reinforcement learning tasks and model parameter
optimizations, where multiple simulations can share the same surrogate.

Moreover, we argue that the proposed framework is a valuable contribution to the digital twin litera-
ture [63, 64]. AdaLED combines data assimilation, real-time monitoring, and online adaptive data-driven
learning to build a surrogate. The proposed framework is directly applicable if the simulation of the phys-
ical system is possible from any initial condition at will. Otherwise, it can be applied only with minor
modifications (by turning off the restarting of the micro-scale solver). This way, the framework can be
employed to learn a digital replica of a physical system, i.e., the digital twin. The surrogate’s response
under different conditions and parametrizations can be tested at will, avoiding the cost and computational
burden of experiments or fully resolved simulations and the risk of exposing the original system to adverse
conditions [22, 65].

Application-wise, AdaLED can benefit from more advanced autoencoders, such as variational autoen-
coders [66], autoencoders that take into account temporal correlations [67], or non-uniform autoencoders
based on space-filling curves [68] and octrees [69, 70]. A topic of ongoing research is to utilize the latter to
help scale AdaLED to 3D fluid flows. Moreover, all latent state variables are currently treated as equally
important. The method could benefit from compression techniques that can estimate the relevance of each
latent dimension in the reconstruction [71].

Recently proposed hierarchical deep learning time-steppers [72], reduced-order propagators on the latent
space [73], and Autoformer networks [74] demonstrate promising results in PDEs and other complex time-
series data. These algorithms can be employed as efficient macro propagators. Having a very fast macro
propagator opens space for more advanced techniques, such as planning optimal actions in reinforcement
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learning [75].
Likewise, if the application allows it, we could detect dynamic regimes underrepresented in the data by

simulating many steps in advance and looking at the future prediction uncertainty to determine if we should
perform a macro-to-micro transition early. An additional network could be trained to estimate the decoder
reconstruction error given the current latent state. Combined with the macro propagator, the macro-to-
micro transition criteria could be based on the joint uncertainty of the ensemble and this reconstruction
error.

Finally, we plan to investigate improved scheduling and refined control of AdaLED cycles and the micro-
macro transitions to reduce the total number of time steps performed in the micro-scale and to provide more
control over the trade-off between the adaptivity versus speed-up. In this direction, AdaLED can benefit
from novel algorithms for uncertainty quantification of supervised learning algorithms [76].
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A. Macro propagator LSTMs

The macro propagator of AdaLED is an ensemble of multi-layer long short-term memory (LSTM) [77]
recurrent neural networks (RNNs). Given an input state ξt ∈ Rdξ , the current hidden state ht ∈ Rdh and
the cell state ct ∈ Rdh , each layer of each network computes the next hidden state ht+∆t and the cell state
ct+∆t as follows (layer and ensemble notation omitted for brevity):

it+∆t = σ(Wi[ξt,ht] + bi),

ft+∆t = σ(Wf [ξt,ht] + bf ),

gt+∆t = tanh(Wg[ξt,ht] + bg),

ot+∆t = σ(Wo[ξt,ht] + bo),

ct+∆t = ft+∆t � ct + it+∆t � gt+∆t,

ht+∆t = ot+∆t � tanh(ct+∆t),

(A.1)

where it, ft, gt, and ot are input, forget, cell, and output gates, respectively. Matrices Wi, Wf , Wg,
Wo ∈ Rdh×(dh+dz), and vectors bi, bf , bg, bo ∈ Rdh are trainable parameters. Square brackets [. . . ] denote
concatenation, σ the sigmoid function, and � element-wise multiplication.

The input state ξ(1)
t of the first layer is equal to ξ(1)

t = [zt,qt, ft], where zt ∈ Rdz is the latent state,
qt ∈ Rdq the quantities of interest, and ft ∈ RdF the external forcing. In the Van der Pol oscillator
(VdP) study, zt = z(t) = [x(t), y(t)], and ft = f(t) = µ(t). In the reaction-diffusion case study, zt is the
output of the autoencoder, and ft = d(t). In the CFD study, z(t) is the output of the (multiresolution)
autoencoder, q(t) = αFFcyl(t) the scaled force on the cylinder, and f(t) the normalized Reynolds number
f(t) = R̃e(t) = 2.4Re(t)/Remax − 1.2. In studies with Re ≤ 1000, Remax = 1000, and in studies with Re up
to 1200, Remax = 1200. For other layers l ≥ 2, the input state ξ(l)

t is equal to the previous layer’s hidden
state h

(l−1)
t+∆t.

The residuals ∆w(t) = w(t+ ∆t)−w(t), w(t) = [z(t),q(t)] and uncertainties σ∆w(t) are given by

∆w(t) = Wwh
(L)
t+∆t + bw,

σ2
∆w(t) = SoftPlusε(W

′
σ CELU(Wσh

(L)
t+∆t + bσ) + b′σ),

(A.2)

where h(L) is the hidden state of the final layer L. Matrices Ww ∈ R(dz+dq)×dh , Ww ∈ Rdσ×dh and
W′

σ ∈ R(dz+dq)×dσ , and biases bw,b
′
σ ∈ Rdz+dq and bσ ∈ Rdσ , with dσ = 100, are trainable parameters.

Functions CELU(x) = max(0, x)+min(0, exp(x)−1) and SoftPlusε(x) = log(1 + exp(x))+ε, with ε = 10−6,
are nonlinearities. The parameters for σ∆w are trained separately from the rest, as explained in section 2.3.
Concretely, the parameters Wσ, W′

σ, bσ and b′σ constitute the trainable parameters θσ, whereas other
parameters constitute θµ.

In the ensemble, each LSTM network, augmented with the additional layers for computing ∆w(t) and
σ2

∆w(t), is trained separately with its own trainable parameters, starting from its own randomly initialized
values. The networks are trained using the Adam optimizer [78] with backpropagation through time [51] to
minimize the trajectory sum of per-state losses described in section 2.3. Finally, in the VdP study, L = 3
layers with hidden state size of dh = 32 (per layer) were used, amounting to 8176 trainable parameters
in total. In the reaction-diffusion case study, L = 2 layers with dh = 64 were used, amounting to 60 308
parameters (for dz = 8). In the CFD case study, L = 2 layers with dh = 32 were used, amounting to 20 944
parameters (for dz = 16).

B. Details of the Van der Pol oscillator case study

The Van der Pol oscillator enters a limit cycle given a fixed µ. The limit cycles for different values of µ
are shown in fig. B.1.

The details of the three cases of µ(t) are as follows. In the µALT(t) case, µ alternates between values
µ = 1 and µ = 3 every 50 000 time steps. In the µRAND(t) case, µ changes between values 1.96, 1.23, 2.80,
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Figure B.1: The limit cycles of the Van der Pol oscillator.

Table B.1: Van der Pol oscillator hyper-parameter study and final parameters in bold. Percentages on the right denote the
highest achieved macro utilization.

parameter search space comment
learning rate LogUniform(0.0002, 0.02) 0.002
batch size {8,16, 32, 64}

LSTM hidden state size dh {8, 16,32}
number of LSTM layers L {1, 2,3, 4}

adversarial training? {no, yes} no significant effect
µ(t) as part of input? {no, yes} ∼54% vs ∼70%

2.34, 1.61, 2.57, 1.49, 3.00, 1.69, and 1.00, at the same rate as µALT(t). Finally, the µBROWN(t) profile is
computed by smoothing µRAND(t) and adding Brownian noise to it:

µBROWN(t) = µRAND(t) + α(µBROWN(t−∆t)− µRAND(t)) + βε(t), ε(t) ∼ U([−1, 1]),

µBROWN(0) = µRAND(0),
(B.1)

with α = exp(−∆t/200),∆t = 0.1 and β = 0.005.

B.1. Hyper-parameter study
The search space of hyper-parameters and their selected values are shown in table B.1. The study was

performed on 1536 samples of hyper-parameter values, randomly selected in the listed ranges, optimizing
for the total macro utilization and average online validation error E. Each simulation was run for 200 000
time steps, with µ alternating between 1.5 and 2.5 every 25 000 time steps. Thresholds of Emax = 0.14 and
σmax = 0.14 were used. The highest macro utilization achieved was 70%. As the final hyper-parameter set
(table B.1), we selected a Pareto-optimal sample that achieves 68% macro utilization and average online
validation error E of 0.008. We further explored adversarial training [79, 53], but it did not affect the
results noticeably. Moreover, we tested how significantly better the network is with µ(t) as part of the input
compared to not having access to µ(t). The results show that the macro propagator the acceptance rate
and the total utilization are still high (∼54%) without providing µ(t) to the network. However, naturally,
in that case, the uncertainty of the macro propagator’s prediction is insensitive to changes of µ(t) during
the macro-only stage.
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Figure B.2: Dependence of the prediction error on the uncertainty threshold σmax (top) and the ensemble size K (bottom), in
the Van der Pol oscillator case study (appendix B.2). Each violin plot represents one run and shows the distribution of mean
macro-only prediction errors along the AdaLED cycles.

B.2. Dependence of error on thresholds and ensemble size
The testing error E can be decreased with a stricter uncertainty threshold σmax or with a larger ensemble

size K. To analyze the extent of their effect on E, we run the µALT(t) case for varying σmax and K. The
threshold Emax is fixed to 0.1. The top plot in fig. B.2 shows the distributions of mean cycle prediction
errors Ecmax (the average over macro-only steps of a cycle c) for varying σmax and K. We notice that,
for sufficiently small σmax, the error drops approximately linearly with respect to σmax. This trend can
be explained through dimensionality analysis. Namely, E and σmax are quantities of the same units. The
bottom plot of fig. B.2 shows that E drops approximately as 1/

√
K, which is in accordance with the central

limit theorem. Concretely, if we assume that each individual LSTM produces the correct trajectory up to
the noise of zero bias, then the noise cancels out at the rate of 1/

√
K.

It should be noted, however, that although stricter σmax improves error, it decreases macro utilization
η. For example, for σmax = 0.1, 0.02 and 0.01, the macro utilization η is 60%, 29% and 18%, respectively.
Likewise, increasing the ensemble size from K = 5 to K = 20 reduces the error by ∼2x, but increases
the total training time by 4x, assuming a fixed number of epochs. Thus, depending on the situation and
objectives, decreasing σmax and increasing K may or may not be favorable.

C. Details of the reaction-diffusion study

The initial condition of the system is given by [57]

u(x, y, 0) = tanh
(√

x2 + y2 cos
(

atan2(y, x)−
√
x2 + y2

))
,

v(x, y, 0) = tanh
(√

x2 + y2 sin
(

atan2(y, x)−
√
x2 + y2

))
.

(C.1)
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Equation (10) is integrated in time using the fourth-order Runge-Kutta-Fehlberg integration scheme. A
second-order centered stencil with zero von Neumann boundary conditions is used for the diffusion term.

The capacity of the dataset is set to 1024 trajectories, each having 24 time steps. The hyper-parameters,
including the latent space dimension, RNN hidden state size, number of layers, batch size, learning rate,
the amount of training per AdaLED cycle, and the thresholds Emax and σmax are all hand-tuned. The
autoencoder is composed of an encoder and a decoder, each a 4-layer convolutional neural network with 16
channels per layer. The autoencoder architecture is provided in table C.1. The values (u,v), which span
the range [−1, 1], are downscaled by a factor of 1.1 before entering the encoder and upscaled back at the
end of the decoder. A learning rate of 0.001 and a batch size of 64 are used for both the autoencoder and
RNNs. The training is performed in partial epochs, with the autoencoder trained on 6.25% of states in the
dataset and the RNNs trained on 12.5% of stored trajectories after each AdaLED cycle.

D. Details of the flow behind the cylinder study

To trigger vortex shedding, we add a short symmetry-breaking vertical movement at the start of the
simulation:

usy(t) = e−αt sin(βt)usy0, (D.1)

where α = 100, β = 200 and usy0 = 0.05d.
The simulations were performed using CubismAMR [62], an adaptive mesh refinement (AMR) CPU–GPU

hybrid C++ code for solving the incompressible Naiver-Stokes equations. To use it within AdaLED and
from Python, we added Python bindings [80], APIs for controlling the execution of the simulation, and APIs
for exporting and importing the state. The existing coarse-fine AMR interpolation schemes were reused for
exporting and importing the state as a uniform grid.

The force Fcyl that the fluid exerts on the cylinder is given by the sum of the pressure and viscous forces
and is provided by CubismAMR:

Fcyl = Fp + Fv,

Fp =

‹
−pn dS ,

Fv = νρ

‹
(∇u +∇uᵀ) · n dS ,

(D.2)

where S is the surface of the cylinder, and n the outward normal vector.

D.1. Autoencoder for the CFD state
To achieve high speed-ups, the macro propagator is not operating on the high-dimensional micro state

u ∈ Rdv , dv = 512 × 1024 × 2 ≈ 106 directly, but on a smaller low-dimensional latent state z ∈ Rdz , with
dz ∼ 10. The assumption is that this transition can indeed be performed: while we need high resolution to
simulate the flow dynamics accurately and to acquire accurate forces Fcyl, the actual dimensionality of the
dynamics may be low.

To compress the velocity field u to the latent state z, we use an autoencoder based on convolutional neural
networks (CNNs). Instead of training the autoencoder to naively reproduce u by utilizing a simple (relative)
MSE of u, we take into account the characteristics of the fluid dynamical system: (i) physically essential
quantities are also the spatial derivatives of the velocity (see eq. (12)) and the vorticity ω = (∇× u)z, (ii)
the flow is incompressible, hence the divergence must be zero (∇ · u = 0), (iii) we assume that the flow far
from the cylinder requires smaller reconstruction accuracy compared to the flow around the cylinder.

If the autoencoder is trained only to minimize the MSE of u while ignoring the value of derivatives,
the reconstructed u would have high spatial noise, resulting in inaccurate local derivatives and locally high
vorticity ω = ωz = (∇×u)z. This noisy vorticity would cause unnecessary mesh refinement in the CFD solver
used in this study [62], which uses adaptive non-uniform mesh and magnitude of local vorticity as the mesh
refinement and coarsening criterion. We extend the loss function with a relative L1 vorticity reconstruction
error to ensure the reconstructed vorticity is low where it originally is low. This helps reduce the mesh size
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Table C.1: The architecture of the convolutional autoencoder for the reaction-diffusion case study. All convolutional layers use
padding_mode=replicate. Batch normalization layers use the default parameters from PyTorch.

ID shape layer
2× 96× 96 Input

1 16× 96× 96 Conv(2, 16, kernel_size=5, padding=2)
1 16× 96× 96 BatchNorm()
2 16× 48× 48 AvgPool(kernel_size=2, stride=2)
3 16× 48× 48 CELU()
4 16× 48× 48 Conv(16, 16, kernel_size=5, padding=2)
1 16× 48× 48 BatchNorm()
5 16× 24× 24 AvgPool(kernel_size=2, stride=2)
6 16× 24× 24 CELU()
7 16× 24× 24 Conv(16, 16, kernel_size=5, padding=2)
1 16× 24× 24 BatchNorm()
8 16× 12× 12 AvgPool(kernel_size=2, stride=2)
9 16× 12× 12 CELU()

13 16× 12× 12 Conv(16, 16, kernel_size=5, padding=2)
14 16× 6× 6 AvgPool(kernel_size=2, stride=2)
15 16× 6× 6 CELU()
16 576 Flatten()
17 d

(1)
z = 8 Linear()

18 d
(1)
z = 8 Tanh()

d
(1)
z = 8 z(i)

1 576 Linear()
2 16× 6× 6 ViewLayer()
3 16× 12× 12 Upsample(scale_factor=2.0, mode=bilinear))
4 16× 12× 12 Conv(16, 16, kernel_size=3, padding=1)
1 16× 12× 12 BatchNorm()
8 16× 12× 12 CELU()
9 16× 24× 24 Upsample(scale_factor=2.0, mode=bilinear))

10 16× 24× 24 Conv(16, 16, kernel_size=5, padding=2)
1 16× 24× 24 BatchNorm()

11 16× 24× 24 CELU()
12 16× 48× 48 Upsample(scale_factor=2.0, mode=bilinear))
13 16× 48× 48 Conv(16, 16, kernel_size=5, padding=2)
1 16× 48× 48 BatchNorm()

14 16× 48× 48 CELU()
15 16× 96× 96 Upsample(scale_factor=2.0, mode=bilinear))
16 2× 96× 96 Conv(16, 2, kernel_size=5, padding=2)
17 2× 96× 96 Tanh()

50K total number of parameters
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by about 10-15% compared to having no vorticity loss, and reduces the performance degradation that would
partially cancel out the benefit of AdaLED.

Non-zero divergence ∇·u can be prevented entirely as a hard constraint by predicting the stream function
ψ instead of the velocity field u [61]. The velocity field u is then given as:

ux =
∂ψ

∂y
, uy = −∂ψ

∂x
. (D.3)

In its discretized form, the derivatives for computing u from ψ and ω from u are computed using the
2nd order accurate centered stencil. For example, for a field f and a grid spacing of ∆x, the x-derivative is
given as:

∂f

∂x

∣∣∣∣
ij

=
fi,j+1 − fi,j−1

2∆x
+O(∆x2). (D.4)

Thus, taking derivatives removes one cell from each side of each dimension. To account for that, ψ is
predicted with one cell of padding.

Finally, we want to prioritize reducing the reconstruction loss in the vicinity of the cylinder because this
part affects the force Fcyl and because any error there will propagate to the rest of the flow. Moreover,
the vortex street behind the cylinder is relatively smooth and does not require high resolution. We take
advantage of these two observations and use a multiresolution autoencoder with two encoder–decoder pairs:
One for the whole domain downsampled to half the resolution (u(1)), and one focusing on the subdomain
around the cylinder at full resolution (u(2)). The two pairs operate independently and their compressed
latent state z(k) ∈ Rd(k)z are concatenated into the final latent state z ∈ Rdz , dz = d

(1)
z + d

(2)
z . The details

are explained in the following section.

D.2. Multiresolution autoencoders
When building an autoencoder for 2D (or 3D) arrays, in cases where different parts of the flow exhibit

different features and where not all parts require the same level of accuracy, we may benefit from combining
multiple autoencoders operating at different spatial resolutions into a single one. This enables us to reduce
memory requirements and improve computational efficiency and training accuracy (accuracy is positively
affected by improved processing speed and potentially from the benefits of a specialized architecture). This
section describes how such multiresolution autoencoders can be constructed. For simplicity, we focus on
autoencoders reconstructing a 2D scalar array φ ∈ RH×W using two encoder–decoder pairs. The method
can be easily generalized to vector arrays, to more than two encoder–decoder pairs, and higher-dimensional
arrays.

For each encoder–decoder pair AEk, k ∈ {1, 2}, we define a downsampling operation D(k) : RH×W →
RH(k)×W (k)

that converts the full-resolution array φ into a smaller array φ(k) = D(k)(φ) that AEk will
operate on. In this case study, AE1 is used to reconstruct the whole domain at half the resolution (H(1) =
H/2,W (1) = W/2), whereas AE2 is used for the detailed part of some size H(2)×W (2) around the cylinder.
Functions D(1) and D(2) are thus given as:

D
(1)
ij (φ) =

1

4
(φ2i,2j + φ2i,2j+1 + φ2i+1,2j + φ2i+1,2j+1) , 0 ≤ i < H(1), 0 ≤ j < W (1)

D
(2)
ij (φ) = φi0+i,j0+j , 0 ≤ i < H(2), 0 ≤ j < W (2)

(D.5)

where i0 and j0 are offsets of φ(2) with respect to φ (indexing is 0-based).
The total reconstruction loss is defined as a weighted sum of the reconstruction losses of each individual

AEk:
`(φ̃,φ) = w(1)`(1)(φ̃(1),φ(1)) + w(2)`(2)(φ̃(2),φ(2)), (D.6)

where w(k) are weight factors. Since the AEks are independent, the weights w(k) effectively determine the
relative learning rate between them. For simplicity, we take w(1) = w(2) = 1.
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The individual losses l(k) take into consideration that we do not want to waste the limited expressiveness
of AE1 on reconstructing the part that AE2 is already focusing on. Furthermore, to reduce the boundary
effects (at which the reconstruction might be poor), we also want to exclude the edges from the reconstruction
loss of AE2. We, thus, use weighted (relative) reconstruction losses:

`(k)
(
φ̃(k),φ(k)

)
=

∑
ij α

(k)
ij

(
φ̃

(k)
ij − φ

(k)
ij

)2

∑
ij α

(k)
ij

(
φ

(k)
ij

)2

+W (k)H(k)εφ

for the relative MSE loss, or

`(k)
(
φ̃(k),φ(k)

)
=

∑
ij α

(k)
ij

∣∣∣φ̃(k)
ij − φ

(k)
ij

∣∣∣∑
ij α

(k)
ij

∣∣∣φ(k)
ij

∣∣∣+W (k)H(k)εφ

for the relative L1 loss. Here, field φ̃(k) denotes the autoencoder reconstruction, φ(k) the input and the
target, and εφ > 0 a normalization offset for preventing diverging gradients. The weight factors α(k) are
selected such that the center of the cylinder does not affect the loss of AE1 and that the edge of the second
subdomain does not affect the loss of AE2:

α(1) = 1−D(1)(S(d(1))),

α(2) = D(2)(S(d(2))),
(D.7)

where S : R→ RH×W is a 2D smoothed rectangular function:

Sij(d) = S

(
min{i′ − i0, i1 − i′} − d

s

)
× S

(
min{j′ − j0, j1 − j′} − d

s

)
,

i′ = i+
1

2
, (for cell-centered values)

j′ = j +
1

2
,

S(x) =
1

1 + e−x
, (sigmoid)

(D.8)

where (i0, j0) and (i1, j1) = (i0 +H(2), j0 +W (2)) are the start and the end bounds of AE2. Parameter s > 0
is a smoothing factor, and d(1), d(2) > 0 the spatial margins.

The final reconstruction of φ ∈ RH×W from φ(1) and φ(2) is as well done in a weighted manner:

φ = β(1) �U(φ(1)) + β(2) �U(φ(2)),

β(1) = 1− S(dr)

β(2) = S(dr)

(D.9)

where U(k) : RH(k)×W (k) → RH×W are upsampling operations, dr the reconstruction margin, and operator
� the element-wise multiplication. In this case study, U(1) is the upsampling operation with bilinear
interpolation and U(2) is a zero-padding operation.

We tested two variants of AE2 that operate on different resolutions: 256× 256 and 224× 224. As shown
in section 5.1.3, the latter variant exhibited slightly better performance for large macro utilizations and was
selected as part of the reference parameter set. The parameters are shown in table D.1, and the geometry
is visualized in fig. D.1. By using margins d(1) > dr > d(2), we ensure that both AE1 and AE2 accurately
reconstruct the part where the smoothed blending occurs (0 < β

(k)
ij < 1).
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Figure D.1: The geometry of the multiresolution autoencoder with resolution of AE2 equal to 224× 224. The solid inner box
represents the subdomain that AE2 operates on, the dashed line the distance dr = 22 from the inner subdomain boundary
(where β(1) = β(2) = 0.5). Colors represent the blending contributions (β(1) > 0.5 marked as blue, β(2) > 0.5 with orange),
and circle the cylinder.

Table D.1: Geometry and loss function parameters for multiresolution autoencoders, and memory usage per single u field in
single precision.

parameter variant 1 variant 2
original resolution 1024× 512

AE1 resolution 512× 256
AE2 resolution 256× 256 224× 224

AE2 begin (77, 128) (93, 144)
AE2 end (333, 384) (317, 368)

weight w(1) 1.0
weight w(2) 1.0
margin d(1) 30.0
margin dr 22.0
margin d(2) 14.0
smoothing s 3.0

original size of u 4.00 MB
reduced size of u 1.50 MB 1.38 MB

The multiresolution approach decreases the memory and storage requirements by 2.9x (for the 224×224
variant) and accelerates the training by approximately the same factor at a small cost of accuracy degrada-
tion. Concretely, the relative mean square error between the original velocity field u and the downsampled–
upsampled u′ is ‖u′ − u‖22/‖u‖

2
2 ≈ 10−6.

D.3. Autoencoder summary and loss function
The discussion above is summarized in the following. The state u is stored in the dataset in two

downsampled versions u(1) and u(2), each handled by its own encoder–decoder pair AEk. For each AEk,
k ∈ {1, 2}, the encoder k takes the downsampled velocity field u(k) ∈ RH(k)×W (k)×2 as input and compresses
it into a latent state z(k) ∈ Rd(k)z . The decoder k takes the latent state z(k) and decompresses it into the
scalar field ψ̃(k) (with one cell of padding on each side of each dimension). Then, the reconstructed velocity
ũ(k) is computed from ψ̃(k) using eq. (D.3). The reconstruction loss of AEk is defined as a weighted sum of
the relative MSE loss of u(k) and the relative L1 loss of vorticity ω(k) (notation (k) omitted in the following
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Figure D.2: Reconstructed vorticity field (A and B) and its absolute error (C and D) for the AE2, for λω = 0 (without vorticity
loss, A and C) and λω = 0.03 (with vorticity loss, B and D).

for brevity):

`(k)(ũ,u) = λu

∑
ij αij(ũij − uij)

2∑
ij αiju

2
ij +W (k)H(k)εu

+ λω

∑
ij α
′
ij‖ω̃ij − ωij‖1∑

ij α
′
ij‖ωij‖1 + (W (k) − 2)(H(k) − 2)εω

, (D.10)

ω̃ = (∇× ũ)z, ω = (∇× u)z,

α′ = α1..H−2;1..W−2 ∈ R(H−2)×(W−2), (D.11)

where λu = 1 and λω = 0.03 are the weight factors, and εu = 0.01 and εω = 0.7 the normalization offsets
used to avoid exploding gradients when training on initial states where u ≈ 0. The effect of λω is visualized
in fig. D.2. Numbers εu and εω were selected to match ≈25% of the mean (u

(1)
ij )2 and the mean

∣∣∣ω(1)
ij

∣∣∣,
respectively, for the developed flow at Re = 500. The total loss `(. . . ) is defined as the weighted sum of the
losses of AEks:

`(ũ(1), ũ(2),u(1),u(2)) = w(1)`(1)(ũ(1),u(1)) + w(2)`(2)(ũ(2),u(2)), (D.12)

where w(1) = w(2) = 1 are relative weights between AEks. Either when computing the online validation error
E in eq. (13) or when performing macro-to-micro transition, the full resolution velocity u is reconstructed
by merging u(1) and u(2) as described in eq. (D.9). The merging must be performed on velocities u and not
on the stream function ψ. This is because the stream functions are defined up to an unspecified additive
constant, making their merging impossible. Furthermore, by smoothly blending between two upscaled
velocity fields (eq. (D.9)), we ensure the spatial derivatives of u are smooth.

D.4. Hyper-parameters, the CNN architecture and training
Apart from the hyper-parameters listed in the autoencoder study in section 5.1.2, other parameters, such

as the batch size, were hand-tuned and are listed in table D.2.
The basis of the u autoencoder are two convolutional autoencoders, each operating on one downsampled

array u(k). The two autoencoders share the same architecture but are trained separately. Their final CNN
architecture after the hyper-parameter study is shown in table D.3.

The training is performed continuously in parallel with the simulation and AdaLED inference. In each
epoch, the networks are trained on 12.5% of the dataset. An epoch consists of training the autoencoder,
encoding the states to build a temporary dataset for LSTMs, and finally, training the LSTMs. The relative
execution time of the three training stages is shown in fig. D.3.

D.5. Latent trajectory
A section of the macro trajectory from the simulation from section 5.1.1 is shown in fig. D.4. The first

16 lines correspond to the latent states z(t) and the last two to the force Fcyl(t) (scaled with a factor of
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Table D.2: Hand-tuned network hyper-parameters for the flow behind the cylinder study. Other parameters are listed in
section 5.1.3.

hyper-parameter value
autoencoder batch size 8

LSTM batch size 8
LSTM hidden state size 32
number of LSTM layers 2
single vs double precision single

Table D.3: The architecture of the convolutional autoencoders for the flow behind the cylinder case study. All convolutional
layers use padding_mode=replicate.

ID AE #1 shape AE #2 shape layer
2× 256× 512 2× 224× 224 Input

1 16× 256× 512 16× 224× 224 Conv(2, 16, kernel_size=5, padding=2)
2 16× 128× 256 16× 112× 112 AvgPool(kernel_size=2, stride=2)
3 16× 128× 256 16× 112× 112 CELU()
4 16× 128× 256 16× 112× 112 Conv(16, 16, kernel_size=5, padding=2)
5 16× 64× 128 16× 56× 56 AvgPool(kernel_size=2, stride=2)
6 16× 64× 128 16× 56× 56 CELU()
7 16× 64× 128 16× 56× 56 Conv(16, 16, kernel_size=5, padding=2)
8 16× 32× 64 16× 28× 28 AvgPool(kernel_size=2, stride=2)
9 16× 32× 64 16× 28× 28 CELU()

13 16× 32× 64 16× 28× 28 Conv(16, 16, kernel_size=3, padding=1)
14 16× 16× 32 16× 14× 14 AvgPool(kernel_size=2, stride=2)
15 16× 16× 32 16× 14× 14 CELU()
16 8192 3136 Flatten()
17 d

(1)
z = 8 d

(2)
z = 8 Linear()

18 d
(1)
z = 8 d

(2)
z = 8 Tanh()

d
(1)
z = 8 d

(2)
z = 8 z(i)

1 8192 3136 Linear()
2 16× 16× 32 16× 14× 14 ViewLayer()
3 16× 32× 64 16× 28× 28 Upsample(scale_factor=2.0, mode=bilinear))
4 16× 32× 64 16× 28× 28 Conv(16, 16, kernel_size=3, padding=1)
8 16× 32× 64 16× 28× 28 CELU()
9 16× 64× 128 16× 56× 56 Upsample(scale_factor=2.0, mode=bilinear))

10 16× 64× 128 16× 56× 56 Conv(16, 16, kernel_size=5, padding=2)
11 16× 64× 128 16× 56× 56 CELU()
12 16× 128× 256 16× 112× 112 Upsample(scale_factor=2.0, mode=bilinear))
13 16× 128× 256 16× 112× 112 Conv(16, 16, kernel_size=5, padding=2)
14 16× 128× 256 16× 112× 112 CELU()
15 16× 256× 512 16× 224× 224 Upsample(scale_factor=2.0, mode=bilinear))
16 1× 258× 514 1× 224× 224 Conv(16, 1, kernel_size=5, padding=3)
17 2× 256× 512 2× 224× 224 StreamFnToVelocity() (eq. (D.3))

171K 85K total number of parameters

12%
14%

74%

training AE
encoding
training LSTMs

Figure D.3: Fraction of the execution time of stages of the training in the flow behind the cylinder case.
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Figure D.4: The trajectory z(t) and αFFcyl(t) from the simulation from section 5.1.1, as predicted by the ensemble. The
solid line represents the ensemble mean prediction, and the faded region is the prediction uncertainty (the ensemble’s stan-
dard deviation). For clarity, the uncertainties are enhanced by 8x. The numbers range between approx. −0.5 and 0.5. See
appendix D.5.

αF = 7.2). The total uncertainty σ is defined as the root square mean of all 18 uncertainties. It can be seen
that the majority of the uncertainty comes from low-amplitude latent variables. The possibility of using
weighted uncertainties, depending on the importance of each variable, is a topic of future research.

D.6. Generalization to other Reynolds number profiles
The hyper-parameters and thresholds used in simulations reported in section 5.1.1 were fine-tuned for

that specific Reynolds number profile of cycling between Re = 600, 750 and 900, updated every 5000 time
steps, as described in section 5.1.3 (the hyper-parameter study used shorter simulations than the production
runs). To test the generalization of hyper-parameters and thresholds to another Reynolds number profile,
we simulate with Reynolds number alternating between 500 and 1000 every 10 000 time steps. The macro
utilization η, velocity field error E, and the cylinder force error EF are shown in fig. D.5. Compared to
the macro utilization of η = 69% (speed-up of 2.9x) in section 5.1.1, here, the achieved utilization is 58%
(speed-up of 2.1x). As before, the average velocity and cylinder force errors E and EF are 1% and 5%.
In this case, changing the setup resulted in smaller speed-ups. Thus, to achieve optimal performance, the
hyper-parameters (particularly learning rates and thresholds) may have to be additionally fine-tuned if the
simulation setup is updated.

33



<latexit sha1_base64="LMHi+cGUBP8RdotFeJT6EXPpz+U=">AAACB3icdVDLSsNAFJ34rPVVdelmsAiuQlJqbXdFEVxWsA9oQplMJ+3QyYOZG2kI/QB/wK3+gTtx62f4A36HSRvBih64cDjnXu69xwkFV2AYH9rK6tr6xmZhq7i9s7u3Xzo47KggkpS1aSAC2XOIYoL7rA0cBOuFkhHPEazrTK4yv3vPpOKBfwdxyGyPjHzuckoglazrgQVsColHprNBqWzojfp51TCwoRtzZKRSa1Sq2MyVMsrRGpQ+rWFAI4/5QAVRqm8aIdgJkcCpYLOiFSkWEjohI9ZPqU88puxkfvMMn6bKELuBTMsHPFd/TiTEUyr2nLTTIzBWv71M/MvrR+DW7YT7YQTMp4tFbiQwBDgLAA+5ZBREnBJCJU9vxXRMJKGQxrS0JRzHilOVBfP9Pf6fdCq6WdPN22q5eZlHVEDH6ASdIRNdoCa6QS3URhSF6BE9oWftQXvRXrW3ReuKls8coSVo7195DpsU</latexit>

Emax

Figure D.5: AdaLED performance on a flow behind cylinder simulation for Re(t) ∈ {500, 1000}, analogous to fig. 9. Top:
Reynolds number Re(t) profile and the macro utilization η. Middle and bottom: validation errors of the velocity (E, eq. (13))
and force on the cylinder (EF , eq. (14)). The per-step errors (faded red) alternate between low values at the beginning of the
macro-only stage and higher errors at the end of the macro-only stage.
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