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ABSTRACT

Complex causal systems with interdependent variables require inference from het-
erogeneous observations that vary in spatial resolution, temporal frequency, and
noise characteristics due to data acquisition constraints. Existing multi-modal fu-
sion approaches assume uniform data quality or complete observability — assump-
tions often violated in real-world applications. Current methods face three limita-
tions: they treat causally-related variables independently, failing to exploit causal
relationships; they cannot integrate multi-resolution observations effectively; and
they lack theoretical frameworks for cascaded approximation errors. We intro-
duce the Score-based Variational Graphical Diffusion Model (SVGDM), which
integrates score-based diffusion within causal graphical structures for inference
under heterogeneous incomplete observations. SVGDM introduces causal score
decomposition enabling information propagation across causally-connected vari-
ables while preserving original observation characteristics. Diffusion provides a
natural way to model scale-dependent sensing noise, which is common in remote-
sensing, climate, and physical measurement systems, while the causal graph en-
codes well-established mechanistic dependencies between latent processes. We
provide theoretical analysis and demonstrate superior performance on both syn-

thetic and real-world datasets compared to relevant baselines.

1 INTRODUCTION

Complex causal systems, where multiple interact-
ing variables influence each other through inherent
causal dependencies, are ubiquitous in real world,
such as earth systems, epidemiological systems, etc.
A wealth of spatio-temporal data are available for
these systems and have led to an increasing develop-
ment and application of machine learning to estimate
spatio-temporal states of latent variables. However,
data acquisition constraints limit observation quality,
leading to heterogeneity in spatial resolution, tempo-
ral frequency, and noise. Figure[I]illustrates a gen-
eral scenario where causally-connected latent vari-
ables must be inferred from partial observations that
vary systematically in spatial detail, temporal sam-
pling, and measurement noise. A key challenge is
that these variables correspond to different physical
processes and are observed at different resolutions
and qualities. Thus, the problem is not multi-view
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Figure 1: Causal structure with multi-
resolution observations. Latent variables
(circles) are connected through known causal
relationships and observed through measure-
ments that vary in spatial resolution, noise
levels, and measurement precision (grids).
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fusion of a single object, but joint inference across distinct variables linked by causal mechanisms.
Latent graphical models formalize these dependencies and enable information to propagate along
causal edges, allowing high-quality observations of one variable to improve inference for others.
This causal information transfer is crucial for integrating heterogeneous, multi-resolution data in
complex systems. Joint inference of multiple latent spatio-temporal variables from such heteroge-
neous and incomplete data is thus fundamental to applications including natural hazard monitoring,
climate modeling, epidemiological surveillance, and financial system analysis (He & Chal [2018; |Xu
et al., 2022b; L1 & Xul 2025; |[Nowack et al., [2020; Reich et al., 2021; [Wang et al., 2024; |Yu et al.
2024).

Most existing multi-modal or multi-source data fusion approaches assume (1) explicit systems with
closed-form dependencies among variables (Zhao et al., 2024; |Ravi et al.,|2025; L1 et al., 2025b)), (2)
observed data of uniform quality (e.g., resolution, modality, noise level) (Li et al.|[2024; [Xinde et al.,
2024;|L1 et al., 2025a)), or (3) complete observability of all variables—assumptions often violated in
real-world applications. For instance, in earth systems, remote sensing observations of key variables
such as soil moisture, precipitation, and geophysical properties range from 30 m (Vergopolan et al.,
2021) to 5 km in resolution and exhibit distinct noise characteristics due to different measurement
principles and satellite capabilities. Several works explore using diffusion processes to assimilate
multi-resolution data, but mainly focus on single-variable systems (Batchu et al.| [2022; Tu et al.,
2025).

We use diffusion models because their forward SDE naturally encodes scale-dependent noise, a
central property of remote sensing, InSAR, radar, and optical imagery where noise accumulates as
resolution coarsens. This makes diffusion uniquely suited for multi-resolution inference, enabling
resolution-aware score functions that normalizing flows or standard variational inference cannot
capture. Our problem setup is therefore to estimate multiple causally related physical processes
from observations that are (i) multi-resolution, (ii) uneven in quality, and (iii) incomplete, by lever-
aging partially known causal structure to propagate information across variables and scales. This
corresponds directly to real-world systems such as earthquake cascades, wildfire dynamics, and
climate teleconnections. We introduce a novel framework that enables effective inference for inter-
dependent systems with implicit and complex causal dependencies and heterogeneous, incomplete
observations. Specifically, we introduce diffusion processes to approximate complex causal de-
pendencies among variables and between variables and observations. Integrating diffusion process
modeling with complex causal structure substantially improves the ability to model interdependent
systems. However, effectively inferring large numbers of latent variables remains challenging due
to the coupled complexity of intractable causal paths and diffusion processes.

To address the challenges, we introduce the Score-based Variational Graphical Diffusion Model
(SVGDM), a framework that integrates known causal graphical structures with score-based diffusion
processes for latent variable inference under multi-resolution observations. The causal graph is pro-
vided by established physical or mechanistic knowledge (e.g., earthquake — landslide — damage),
allowing information to propagate across variables that are observed at incompatible spatial resolu-
tions. Diffusion serves as a natural model for scale-dependent, resolution-dependent sensing noise,
such as speckle, atmospheric delay, and resampling artifacts, offering advantages over flow-based
methods that do not explicitly model noise accumulation across spatial scales. We address these
limitations through causal score decomposition, enabling joint inference while preserving original
resolutions and borrowing strength across causal structures. We make the key contributions:

1. We introduce the Score-based Variational Graphical Diffusion Model (SVGDM), which
integrates probabilistic graphical models (Koller & Friedman) 2009) with score-based dif-
fusion processes (Song & Ermonl [2019; [Song et al., 2020b). Unlike existing approaches
that treat variables independently, SVGDM leverages causal dependencies to propagate
information across variables with heterogeneous observation quality.

2. We develop a causal score decomposition that respects graphical structure while maintain-
ing the efficiency of score-based inference. This enables coherent integration of multi-
resolution observations without information loss or artifacts, borrowing strength across
causally-connected variables rather than using ad-hoc preprocessing.

3. We provide theoretical analysis of our approach, establishing conditions under which our
locally Gaussian approximation remains valid and deriving error bounds for the cascading
effects in our inference procedure.
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4. We demonstrate SVGDM’s effectiveness on synthetic causal systems and real-world appli-
cations where causal relationships are well-established and multi-resolution observations
are prevalent, showing consistent improvements over variational inference and deep learn-
ing baselines, with superior performance on both synthetic and real-world datasets.

2 PRELIMINARIES

We briefly review the foundations of graphical models, score-based diffusion models, and their
limitations for multi-variable inference with known causal structure and heterogeneous observations.

Probabilistic Graphical Models: Probabilistic graphical models (PGMs) (Jordan, |2003; Koller &
Friedman, 2009) provide a structured representation of joint distributions over high-dimensional
variables by encoding conditional dependencies in a graph (Jordan, 2003; Koller & Friedman), 2009;
Pearl, |2009; Wainwright et al.|, [2008). Let X = (X3, --,X,) denote a collection of random
variables. A directed acyclic graph (DAG) specifies a factorization of the joint distributions as
P(X) = [, p(Xi|P(X;)), where P(X;) denotes the parent nodes of X;. This representation
enables efficient inference and learning in complex systems, but often requires approximation when
dependencies are nonlinear, stochastic, or latent. In dynamic settings, latent states evolve in time ac-
cording to transition models, leading to state-space formulations of graphical models. While PGMs
provide a general factorization formalism, existing PGM-based inference methods for continuous
systems typically assume aligned spatial supports and compatible noise models across variables.
In practice, most message-passing and variational inference algorithms break down when different
nodes are observed at vastly different resolutions, noise scales, or spatial supports, as they require a
common discretization or homogeneous likelihood families (Zhang et al.,|2021; Wang et al.| 2018;
Akbayrak et al.|[2022). Our method addresses precisely this limitation.

Diffusion Models and Score-based Methods: Diffusion models have emerged as powerful tools
for generative modeling of complex and high-dimensional data (Dhariwal & Nichol, [2021;|Ho et al.,
2020; Dhariwal & Nicholl 2021} Song et al.l 2020b; Kingma et al.| 2021; [Rombach et al., [2022). A
forward process gradually corrupts the the data with Gaussian noise through a stochastic differential
equation (SDE), while training a reverse-time SDE to recover the distribution. Central to this frame-
work is the score function sg(z,t) ~ V;logp:(x), where p;(x) denotes the marginal distribution
of the perturbed data at time ¢. Current score-based approaches treat variables independently during
training and inference: (1) No causal structure awareness: Score functions are typically learned for
each variable in isolation, ignoring known causal dependencies that could improve estimation qual-
ity. (2) Independent gradient estimation: The score V, log p(x) is approximated without leveraging
information flow through causal pathways, missing opportunities to borrow strength from well-
observed variables to improve poorly-observed ones. (3) No multi-resolution coherence: Existing
score matching objectives cannot handle observations of the same latent phenomena at different
scales, requiring artificial preprocessing that discards information.

Neither PGMs nor standard score-based methods can address the fundamental challenge of joint
inference with known causal structure and heterogeneous observations. Causal score decomposition
is necessary because: (1) It enables score functions to respect graphical structure, allowing infor-
mation propagation through causal pathways during inference. (2) It provides a principled way to
integrate multi-resolution observations by borrowing statistical strength across causally-connected
variables. (3) It maintains the computational efficiency of score-based methods while incorporating
the structured dependencies of PGMs. Variational inference (Blei et al., 2017 Hoffman et al.| [2013)
provides a scalable framework for approximating intractable posteriors p(Z|X) via tractable fami-
lies g4(Z|X), but standard variational families may fail to capture complex posterior geometries in
high-dimensional nonlinear systems. Recent advances suggest that score-based diffusion processes
can serve as flexible variational distributions, motivating the development of causal score-based
approaches that unify structured dependencies with generative flexibility.

3 SVGDM: SCORE-BASED VARIATIONAL GRAPHICAL DIFFUSION MODEL
Problem Formulation: Given
1. A known causal DAG G = (V, £) with N latent variables {z;(t)};_, where each variable

N
evolves according to dz;(t) = fi(zi(t), zp)(t), t)dt + g; (t)dW;(g , where P(i) denotes
the causal parents of variable 1.
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2. Multi-resolution observations Y = {yF : (I,k) € T} where l indexes spatial locations, k
indexes resolution/modality, related to latent variables via yl’C = 'ylk (zp,) + €1ks €15~
N(0,% 1), where Py C V are the latent parents of observation yf.

The assumption of a known prior graph G is realistic in many scientific and engineering domains
where latent variables represent concrete physical processes with well-established causal relation-
ships. Such dependencies arise from decades of experiments, mechanistic modeling, and field ob-
servations and are standard in spatio-temporal data assimilation (Reich & Cotter, 2015} |Cressie
& Wikle, 2011). Importantly, our method does not require the DAG to be perfectly known. Even
partial causal directionality provides useful information pathways for integrating heterogeneous,
multi-resolution observations (Evaluation is shown in Appendix[B).

We follow the standard diffusion convention where z;(t) denotes latent variable i at diffusion time
t € [0,1], with t = O representing the true latent state and larger t injecting noise, while our
observation-constrained SDE (Equation |1) keeps z(1) anchored to observations rather than col-
lapsing to N'(0, I) as in classical DDPMs.

Goal: Find the posterior distribution: p(Z|Y) = %, while (1) preserving orginal observa-

tion resolutions, (2) leveraging causal dependencies to propagate information from well-observed
to poorly-observed variables, and (3) providing theoretical guarantees for inference quality.

Assumption 1 (Observation noise). For the heterogeneous observations Y, we assume (1) additive
Gaussian noise with variance schedule o2, (2) conditional independence of multi-resolution obser-
vations given latent variables, and (3) smooth log-densities permitting interchange of gradient and
expectation. These assumptions align with prior work on diffusion probabilistic models and causal
Bayesian inference.

Assumption 2 (Lipschitz and boundedness). For each i € V, the drift f;() is Lipschitz contin-
uous and has at most linear growth, and the diffusion g;(t) is bounded and strictly positive. The
observation operators ¢¥ are measurable and bounded on compact domains.

Theorem 1 (Existence and locality of node-wise causal SDEs). Under Assumption[2] the system

dzi(t) = fi(2i(t), zp@i)(£), ) dt + gi(t) AW;(t), i€V, (1)
with parent-dependent drift functions f; and independent Brownian motions W;(t), which is an
independent standard Wiener process associated with node i. All Wiener processes W; are mutually
independent, admits a unique strong solution. Moreover, the infinitesimal generator of the joint
process decomposes as

L;= Zﬁi,t, Lit = fi(zi,2p(),t) 0z + 29:(t)* 02, )
icy
so that each local operator L; ; depends only on z; and its parents zp; in the causal graph G. This
expresses locality of the generator, not conditional independence of p;. If the initial distribution pg
Jactorizes according to G as

po(2) = Hpo (zi | 2p(s)) 3)

then the factorization holds only at t = 0 by definition of the initial condition. For t > 0, the
marginal law p; of the SDE solution need not preserve this global factorization, in general it may
exhibit additional dependencies induced by the dynamics. In our framework, we use the generator-
level decomposition L, = ). L; ; as an architectural prior for an approximate score-based causal
decomposition (Theorem[2)), rather than as an exact distributional Markov property of p;.

This result follows from standard SDE existence-and-uniqueness theory applied to each node-wise
equation, together with the independence of the driving Wiener processes and the conditional de-
pendence structure encoded by G. For general SDE preliminaries, see |Sarkkéd & Solin|(2019).

To address our problem, each latent variable is constrained by heterogeneous observations through:
dzi(t) = fi(zi 200, DA+ > X k(O0F (WF, 2p()) — 2i(1)]dE + gi ()W (L) 4)

k
where ¢%(-) maps observation y¥ to the latent space and \; x(t) controls the influence of resolu-

tion k obsevations. This formulation naturally handles information flow across different resolutions
through the diffusion process while preserving orginal observation characteristics.
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Assumption 3 (Time-reversal regularity). The forward diffusion satisfies: (i) non-degenerate diffu-
sion coefficient o (t) > 0, (ii) drift f is locally Lipschitz, and (iii) the marginal density p; exists and
is continuously differentiable in 2.

Under Assumption (3| classical results on time-reversed diffusion (Anderson, |1982; Bhattacharya
& Waymire, [2009) and the score-based SDE f0rm~ulation (Song et al., |2020b) guarantee that the
reverse-time process exists with well-defined drift f.

Lemma 1 (Node-wise reverse SDE with observations). For each i € V, the reverse-time SDE
incorporating multi-resolution observations is:

dz = [fi(zi, 2p() )+ Y Nk O[S (UF, 2p0) — 2i (1)) — 97 () V2, log pi(2il2p (i)t + gi () AW
k
where W; is a standard Wiener process in reverse time. ©)

The key challenge in our problem formulation is that standard score-based methods cannot leverage
causal structure during inference. Theorem 1 establishes that we have a valid causal SDE system,
but the reverse-time SDE (Lemma requires computing the causal score V., log p;(2i|2p(s)). This
causal score is crucial because it enables information flow through causal pathways during in-
ference (2) allows well-observed variables to improve inference of poorly-observed downstream
variables; and (3) maintains causal consistency while preserving multi-resolution observation char-
acteristics. Without causal score decomposition, we would be forced to either treat variables in-
dependently (losing causal information) or downsample all observations to a common resolution
(losing fine-grained information). The following theoretical development shows how causal score
decomposition addresses this fundamental limitation.

The central quantity in the reverse drift is the causal score V., log p(2|2p(;)). This causal score
is essential for our problem formulation because it enables joint inference while preserving orginal
observation resolutions, the core challenge identified in our problem definition.

3.1 CAUSAL SCORE DECOMPOSITION VIA MARKOV BLANKETS

Recent work in score-based generative modeling for sequences (Rozet & Louppe, [2023) demon-
strates that for Markov chains .7, the global score can be decomposed using Markov blanket
properties: V,, logp(x1.1) = V., log p(x;, xp, ), where xp, represents the Markov blanket of x;.
For first-order Markov chains, this blanket consists of immediate neighbors: xp, = {x;—1,Zi41}.

In our setting, we extend this principle by recognizing that the causal parents P(¢) form a natural
“causal blanket” for each variable z;. The key insight is that the causal Markov property ensures:

z; 1 NonDescendants(z;) | P () (6)

This conditional independence structure provides the foundation for our score decomposition.

Theorem 2 (Causal Blanket Preservation under Diffusion). Under Assumptions for diffusion-
perturbed variables {z;(t)}Y.,, the causal blanket relationship is approximately preserved:

V..t logpe(z1:n (1)) & Vo, (1) log pe(2i (1), 2p(i (1)) (7

The diffusion process preserves the conditional independence structure of the original causal graph
up to noise-dependent approximation errors. As ¢ — 0, the approximation becomes exact since
z;(t) — 2;(0) and the original causal structure is recovered. For ¢ > 0, the approximation quality
depends on the noise level o(¢) and the strength of causal dependencies. Full proof in Appendix
The local nature of this decomposition ensures computational scalability even for large causal
graphs, as detailed in Appendix [D] This extends the pseudo-blanket/local score decomposition idea
of Rozet & Louppe|(2023) to the causal graphical setting.

Proposition 1 (Causal score decomposition). For any i € V and the causal blanket zp;(t):
Ve, logpe(zilzpi)) = Vz, logpe(zi) + Ve, log pi(2p (i) 2:) ®)

This decomposition separates two influences: (1) Marginal term V_, ;) log p;(z;(t)) captures the
unconditional score of z;(%); (2) Causal consistency term V., ;) log p¢ (2p(;)(t)|2i(t)) ensures com-
patibility with causal parents. The second term is not backwards causation but rather represents
the constraint that z;(¢) must remain consistent with the joint distribution over the causal family
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{zi(t), 2p(;)(t)}. During reverse diffusion, this term helps maintain causal structure by ensuring
that updates to z;(t) preserve plausible relationships with its parents (Proof in Appendix|C.2).

The causal score decomposition enables coherent integration of observations at different resolutions
because the marginal term V., log p;(z;) incorporates direct observational evidence for variable z;
from all available resolutions. The causal consistency term V., log p;(zp(;y|2:) allows observations
of parent variables to inform child variable inference through causal pathways. Besides, this de-
composition preserves orginal resolutions by avoiding the need to downsample observations to a
common scale, instead leveraging the natural information flow through the causal structure

3.2 SCORE FUNCTION ESTIMATION

We estimate the first term in Equation [§] using continuous-time denoising score matching (DSM)
(Hyvérinen & Dayan, 2005}, [Vincent, 2011} [Song et al., 2020b). Given samples z;(0) ~ po(z;),
the forward SDE generates z;(t) with known perturbation kernel p;(z;|2;(0)). We approximate the
marginal score with a neural network sy, (z;,t) trained via:

Lpsari(¥i) = Ei i 0),2:0) [N 59, (2: (1), 1) = V., 1) log pe(2i(1)]2:(0)) %] )

where A(t) > 0 is a weighting function. This corresponds to the continuous-time DSM objective
(Hyvirinen & Dayanl 2005; |Vincent, |2011;|Song & Ermon, |[2019).

Proposition 2 (DSM consistency). Under Assumption [2| the population minimizer satisfies
sy, (2i,t) = V., log pi(z;). (Proofis shown in Appendix

For the second term in Equation we adopt a locally Gaussian approximation that avoids the z(0)
dependency inconsistency. We model:

2p(ey (D)7 (8) ~ M (pe(5:(1)), Ze) (10)

Theorem 3 (Validity of Local Gaussian Approximation). The locally Gaussian approximation in
Eq. is valid when the true conditional p;(2p(;)|2;) is log-concave in a neighborhood of 2;(t), the
diffusion noise dominates higher-order nonlinearities such that o(t)* > ||V log p¢(2p()|2i) || so»
and the Tweedie reconstruction error remains bounded as ||2;(t) — E[z;(0)|2;(¢)]|| < 0 for small 6.
Under these conditions, the approximation error satisfies:

Hv% log pt(2p(iy|2i) — V2, log N (pe(2), EC)H = 0(62 + U(t)_Q)

The approximation is most accurate during early diffusion stages (small ) when noise levels are low,
and deteriorates gracefully as ¢ — 1. While our theoretical analysis uses Gaussian and locally log-
concave noise assumptions for tractability, the implementation does not rely on these assumptions.
We empirically tested heavy-tailed and skewed noise regimes, and SVGDM remains stable with
only modest degradation, indicating that the assumptions are sufficient for analysis but not required
in practice (see Appendix E]) The posterior mean estimate 2;(¢) in the Gaussian model is obtained
via Tweedie’s formula:

2i(t) = 2i(t) + 03(t) sy, (2:(t), 1)/ pi(t) (11

This follows Tweedie’s formula (Efron} 2011} Kim & Ye||2021)) and the decomposition of the poste-
rior score into prior and likelihood components (Song et al., 2020b; |Chung et al., 2022). Under this
model, the causal consistency score becomes:

_ 610g./\/'(uc(7:’,;(t)),zc) . auc ) 87:'7@)
8uc aéz(t) 6zz(t)

V. log pe(zp() (t)|2i(t)) (12)

The validity of Eq. [12]requires that y.(-) is differentiable in a neighborhood of Z;(t), the Gaussian
model provides a reasonable local approximation with KL[p;(zp(;)|2i) |V (pe(2:), Xc)] < € for
small ¢, and score estimates are sufficiently accurate such that ||s,, (z;,t) — V2, log pi (%) < M.
When these conditions are violated, we employ adaptive regularization: if |V ||r > 7, we add
penalty Areg||Viic||% to the causal loss. This formulation ensures complete consistency between
training and inference. The causal model parameters p., 2. are trained on forward samples (see
Appendix [F| for implementation details). This formulation resolves training consistency through
iterative refinement procedures described in Appendix [G|

6
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3.3 STOCHASTIC VARIATIONAL INFERENCE

Given the learned reverse-time SDE dynamics, we perform posterior inference over the latent vari-
ables Z = {z; : i € V} from multi-resolution observations Y = {yF : (I,k) € I}, where I
indexes spatial locations and k indexes observation resolution or modality. The variational poste-
rior g, (Z|Y) is implicitly defined as the distribution of samples generated by the reverse SDE with
posterior score:

V., log q%t(zi\zmi), Y) = sy, (2i(t),t) + V., logp(Y|Z(2)) (13)

The variational parameters 1) = {1;}}¥, directly parameterize the reverse drift through the learned
score functions. By Jensen’s inequality:

logp(Y) > Lv1(qy) = Eq, [logp(Y|Z)] + Ey, [log p(Z)] — By, [log gy (Z]Y)] (14)

Each observation y* depends on latent parents P, C )V via observation map ¢F(-) as yr|zp, ~
N (¢F(2p,),=F). This formulation explicitly connects our multi-resolution observations to the

causal structure, enabling the information propagation mechanisms described in our causal score
decomposition. The likelihood contribution becomes:

1
Eqw [1ng(Y|Z)] = _5 Z Eqw [Hylk - flk(Z'Pz)H?E;C)fl] +C (15)
(I,k)eT

The forward SDE induces a graph-structured prior E,, [log p(Z)] = E,, {Zz‘ev log p(z; |zp(i))} .

Since our reverse SDE defines a normalizing flow from noise to data, we leverage the flow Jacobian
for stable entropy computation (Rezende & Mohamed, 2015} |Kingma et al.l 2016):
K
Hlgy] = H[p(zr)] + Y By, [log | det(9F,/02,)] (16)
k=1
where z;_1 = Fj(z1) represents the discretized reverse SDE step. For computational efficiency,

we use Hutchinson’s trace estimator (Hutchinson, [1989; [Pearlmutter, 1994; (Chen et al., 2018)):
log | det(0F}/0zk)| =~ €1 (OF) /021 )e, where € ~ N (0, 1) is a random probe vector.

Combining all components, our final objective is:

Lo =M1 > Loswi (i) + Ao Y Leawsat(Be.i) + As Ly (17)

where Lpgwm,; is the score matching loss (Equation E[); Lausal 18 the causal model training loss (Ap-
pendix lﬂ); Ly is the variational bound; \’s are weighting hyperparameters.

The “normalizing flow” interpretation refers to the deterministic probability-flow ODE associ-
ated with the reverse SDE, while in practice our implementation uses the stochastic reverse-SDE
predictor-corrector sampler for numerical stability (Appendix [H).

4 ERROR ANALYSIS AND APPROXIMATION CASCADE

Our method involves a sequence of approximations whose errors may compound. We provide a
systematic analysis of how these errors propagate and establish conditions under which the method
remains stable.

4.1 APPROXIMATION HIERARCHY

Letey, e, €3, €4, €5 denote the approximation errors from: (1) €;: Euler-Maruyama SDE discretiza-
tion (Kloeden & Platen, |1992)); (2) e5: Neural score function approximation (DSM) (Hyvirinen &
Dayan, [2005; |Vincent, [201 1} [Song et al.l 2020b)); (3) €3: Locally Gaussian conditional model (Tier-
ney & Kadanel |1986; Rue et al.l[2009; Wainwright et al., 2008)); (4) £4: Tweedie’s formula posterior
estimation (Robbins|, {1992} [Efron, [2011} Song et al., [2021); (5) e5: KDE entropy estimation (Joe},
1989; Tsybakov} 2008; Singh & Poczos, 2014).

Theorem 4 (Cascade Error Bound). Under appropriate regularity conditions, the total approxima-
tion error in the posterior score satisfies:

[|V.t)log gy (2(t)y) — V. log p(2(t)|y)||2 < Cier + Caea + Czez + Cyeq + O(e2e3) (18)

where C; are problem-dependent constants and the cross-term O(g9e3) captures the interaction
between score approximation and Gaussian modeling errors (Li et al.} |20254).
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4.2 INDIVIDUAL ERROR ANALYSIS

The main error contributions of our framework can be decomposed into five parts. First, the
Euler-Maruyama discretization introduces an error e; = O(At!/?) for step size At, following
standard SDE discretization theory, which directly affects the perturbation kernel py)o(2;(t)|2;(0)).
Second, the neural score approximation yields an error e = O(1/ \/N + )\reg), where N is the
training set size and A, is the regularization strength; the DSM objective ensures this vanishes as
N — oo. Third, when replacing true conditionals with local Gaussian approximations, the error
ez = O(||V3log pi(2p(i)|2i)|lec - 02) arises, which remains small if the conditional distribution
is approximately log-concave. Fourth, Tweedie’s formula introduces an error ¢4 = O(o(t)? - e2),
showing that score approximation errors are amplified at higher noise levels o (¢). Finally, entropy
estimation via kernel density estimation contributes 5 = O(h® + (log N)%?2/+/N), where « re-
flects the smoothness of the underlying density and d the dimensionality.

4.3 CRITICAL ERROR INTERACTIONS

The most significant error interaction occurs between score approximation and Gaussian conditional
modeling. Since Tweedie reconstruction 2; depends on the approximate score sy, errors in score
estimation directly impact Gaussian conditional parameters:

|l11e(Zi 4 €20) — pe(Zi)ll2 < Lyle2d]l2 (19)
where L, is the Lipschitz constant of ..

4.4 ERROR PROPAGATION ANALYSIS

The chain rule computation in Eq. [I2]involves multiple approximation stages whose errors can
compound. The total error decomposes as €iotal = EGaussian + ETweedie + EChain + Elnteractions Where
EGaussian = O(|| V2 log p¢]|oo - 02) represents Gaussian approximation error, etyeegie = O(0(t)? -
Escore ) Captures Tweedie formula error, ecpyin = O(L Lo -ETweedie) accounts for chain rule propagation,
and Eqeraction = O (Escore * EGaussian) TEPrEsents cross-term interactions.

The interaction term €peraction can dominate when both score approximation and Gaussian modeling
are poor. Our iterative training procedure mitigates this by improving score quality first, then refining
causal parameters, ensuring errors do not compound catastrophically.

4.5 STABILITY CONDITIONS
Condition 1 (Bounded Propagation). The score approximation error remains bounded during re-

verse diffusion:
|Isy, (2i(t),t) = V=, log pe(2i)||2 < M < 00 (20)

forallt € [0,1] and z; in the support.

Condition 2 (Lipschitz Causal Functions). The conditional mean functions satisfy ||p.(z") —
we(2)|l2 < L||2" — z||2, ensuring that score errors don’t explode in the causal consistency term.

Condition 3 (Variance Scheduling). The noise schedule satisfies o(t)? /u(t) < K for some constant
K, preventing Tweedie amplification from becoming unbounded.

4.6 PRACTICAL ERROR MITIGATION

Use smaller Euler-Maruyama steps At in regions where the score gradient is large Atygapive =
min(Atpase; /]| V sy (2(t), t)]|2). Train score networks on multiple noise levels to improve robust-
ness Loui = »_, w(t)Lpsm(t) with weights w(t) emphasizing critical time regions. Add regular-
ization to prevent overfitting in the Gaussian conditional model Leusa = Lesm + A||Vite| %

Theorem 5 (Convergence under Error Control). If each approximation error €; can be made arbi-
trarily small, then im,, ¢, o4 c, es—0 G (2|y) = p(2]y), in the weak sense, ensuring that SVGDM
converges to the true posterior as approximation quality improves.

5 RESULTS

Evaluation Metrics: We adopt task-appropriate evaluation metrics depending on the estimation
setting. For synthetic datasets with ground truth latent trajectories, we use Normalized Root Mean
Square Error (NRMSE), Mean Absolute Percentage Error (MAPE), and Continuous Ranked Proba-
bility Score (CRPS) to assess latent state reconstruction quality and posterior calibration. For real-
world seismic hazard modeling (landslides, liquefaction, and building damage), we use Area Under
the ROC Curve (AUROC) to measure discrimiorginal performance across classification thresholds.
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For wildfire spread prediction, which is formulated as a spatiotemporal binary classification prob-
lem, we follow prior work (Gerard et al., | 2023)) and report F1 Score and Average Precision (AP).
This flexible choice of metrics ensures that each task is evaluated with the most informative and
widely accepted measures.

Table 1: Evaluation on synthesized data. We report mean =+ std for MAPE, NRMSE, and CRPS

across multiple runs (lower is better).

Setting

Variable

MAPE

NRMSE

CRPS

VFO

Z1
22
Z3

0.0526 £ 0.0029
0.0991 £ 0.0056
0.0763 £ 0.0043

0.0683 £ 0.0037
0.1239 + 0.0068
0.1031 £ 0.0059

0.0396 £ 0.0021
0.0756 £ 0.0049
0.0567 + 0.0036

LFO

z21
22
Z3

0.0756 £ 0.0048
0.1214 £ 0.0079
0.1451 £ 0.0086

0.0922 £ 0.0065
0.1557 £ 0.0084
0.1814 £ 0.0098

0.0572 £ 0.0039
0.0919 £ 0.0067
0.1088 £ 0.0074

LPO

Z1
22

0.1067 & 0.0061
0.1470 £ 0.0088

0.1227 £ 0.0077
0.1730 £ 0.0109
0.2228 £+ 0.0129

0.0810 £ 0.0048
0.1107 £ 0.0071
0.1515 £ 0.0096

23 0.1961 £+ 0.0117

Evaluation on Synthetic Data: We evaluate our framework on synthetic datasets that replicate
multi-resolution observation patterns found in real-world systems while providing ground truth for
quantitative assessment. We construct synthetic causal systems with known DAG structures where
latent variables evolve according to mean-reverting stochastic differential equations, incorporating
realistic spatial correlations through FFT-generated Gaussian random fields.

We create observations y with varying information content by sampling from different stages of the
forward diffusion process—earlier stages provide high-resolution observations (less noise, more spa-
tial detail), while later stages yield low-resolution observations (more noise, less detail). This sim-
ulates realistic scenarios where different variables are observed with different measurement quality
and spatial resolution. We evaluate three scenarios: (1) Varying-resolution Full Observation (VFO):
each variable observed at different resolution levels to test information flow through causal structure;
(2) Low-resolution Full Observation (LFO): all variables observed uniformly at low resolution; (3)
Low-resolution Partial Observation (LPO): only subset of variables observed at low resolution.

Table [I] demonstrates our multi-resolution approach’s effectiveness, with VFO achieving the best
performance and systematic degradation from VFO to LFO to LPO. This validates that causal struc-
ture enables effective information propagation between variables with different observation quali-
ties. Figure[2]shows SVGDM substantially outperforms all baselines, achieving 2—3x better perfor-
mance than domain-specific methods (VBCI, DisasterNet) and 10 —20x improvements over general
variational inference methods. The poor VI baseline performance (MAPE > 60%) highlights the
importance of incorporating causal structure for effective latent variable inference. Figure [3]in Ap-
pendix [[.1| provides visual confirmation that our reconstructions closely match ground truth while
substantially outperforming baselines.

We additionally conducted synthetic experiments with 10—15 latent variables under both sparse and
dense causal graphs. Accuracy remains stable as the system size increases, while runtime scales
approximately linearly with the number of causal edges |E|. Full results, including all settings
(VFO/LFO/LPO), are provided in Appendix [D.1]

To further clarify the relation to multi-modal / multi-view methods, we also evaluate a family of
multi-view VAEs (JMVAE, MMVAE, MoPoE-VAE) that treat all observations as different views of
a single shared latent representation. As reported in Appendix J; SVGDM achieves substantially
lower NRMSE and MAPE across all latent variables. This gap quantifies how much accuracy is lost
when collapsing causally linked, multi-resolution physical processes into a single shared latent and
ignoring both the causal graph and resolution-specific noise diffusion.

To evaluate contributions of individual loss components (local DSM score, causal-blanket score, and
observation-consistency term), we conducted an ablation on the synthetic 3-node system; removing
any single component leads to consistent degradation (Appendix [K).

Evaluation on Real-World Disaster Systems: Multi-Hazard Seismic Assessment. We evaluate
our model on three major earthquake events: the 2020 Puerto Rico, 2021 Haiti, and 2023 Turkey-
Syria earthquakes |Xu et al.| (2022bja). These events provide diverse geological settings and data
availability conditions for comprehensive evaluation. Our approach simultaneously estimates mul-
tiple earthquake-induced hazards, including landslides (z1,5), liquefaction (21, ), and building dam-
age (2pDp).
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Figure 2: Comparison of model performance on synthesized data. Bars show normalized root
mean squared error (NRMSE; top row) and mean absolute percentage error (MAPE; bottom row)
across three target variables (z1, 22, z3). Our proposed model (red, bold outline) consistently
achieves the lowest error across all variables, substantially outperforming existing baselines.

Table 5] in Appendix [[.2] presents AUROC scores across all three events. For the 2020 Puerto Rico
earthquake, our method achieves AUROC scores of 0.9331, 0.9317, and 0.9512 for the three hazards
respectively, demonstrating consistent performance across interconnected phenomena. Compared
to variational inference baselines (BBVI, ADVI, NUTS), our approach shows substantial improve-
ments of 14-21%. The performance advantage over recent deep learning methods (VCBI, Disaster-
Net) further validates the effectiveness of our causal modeling approach. Results generalize across
events: the 2021 Haiti earthquake yields AUROC scores of 0.9550 (landslides) and 0.9587 (building
damage), while the 2023 Turkey-Syria earthquake achieves 0.9488 for building damage estimation.
Performance remains robust even when ground truth is partially available, demonstrating practical
applicability under real-world constraints.

Evaluation on Real-World Disaster Systems: Wildfire Spread Prediction. We evaluate our tem-
poral extension on large-scale wildfire spread prediction, following the benchmark setup of
2023)). Our method achieves an F1 score of 0.5913 and an Average Precision (AP) of 0.4430,
outperforming both classical models (e.g., logistic regression) and deep learning baselines such as
U-Net, ConvLSTM, and UTAE. These results demonstrate the framework’s ability to capture com-
plex spatiotemporal dependencies in wildfire dynamics. Full quantitative results are provided in
Appendix [[] These results across diverse disaster scenarios validate our method’s capability to han-
dle multi-resolution observations while maintaining interpretable causal structure, addressing key
challenges in real-world disaster modeling applications.

6 CONCLUSION

We propose SVGDM, a novel framework that integrates score-based diffusion with causal graphical
models for inference on latent systems under multi-resolution observations. We leverage varia-
tional inference to approximate posterior distributions over latent variables while respecting known
causal dependencies through our causal score decomposition approach. Theoretically, we establish
sufficient conditions for structural identifiability and prove convergence guarantees under our error
cascade analysis framework. Empirically, we demonstrate that SVGDM consistently outperforms
baseline methods across both synthetic and real-world datasets, achieving superior performance in
disaster estimation tasks with AUROC scores exceeding 0.93 across multiple earthquake events and
wildfire scenarios. There are several limitations that warrant future investigation. First, our method
assumes known causal structure, limiting applicability when graph topology must be inferred. Sec-
ond, the locally Gaussian approximation may deteriorate under strong nonlinearities that violate
our theoretical conditions. Third, computational complexity scales with the number of causal de-
pendencies, potentially limiting scalability to very large systems. Future work could explore joint
structure discovery, more flexible approximation families, and extensions to time-varying causal
relationships. We leave these challenges for future work.

10
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A USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model as a writing assistant to improve grammar and readability. The
model was not used for research ideation, technical derivations, experiments, or analysis. All scien-
tific content, methodology, results, and conclusions were solely developed by the authors.

B SENSITIVITY TO CAUSAL GRAPH MISSPECIFICATION

In many physical systems, the qualitative causal directionality is known from scientific understand-
ing, but some edges may be uncertain. To quantify the robustness of SVGDM under such uncer-
tainty, we systematically perturb the causal DAG in the synthetic benchmark by: (1) dropping parent
edges, (2) reversing edges, and (3) adding spurious edges. Table 2]reports performance degradation
relative to the correct DAG.

Table 2: Sensitivity of SVGDM to causal graph misspecification.

Graph variant NRMSE MAPE (%) ANRMSE
Correct DAG 0.098 £0.006 7.6 £0.5 —
Drop 1 parent 0.112 £ 0.008 8.7+£0.6 +14%
Reverse 1 edge 0.118 £0.010 93 =£0.7 +20%
Two wrong edges  0.162 £ 0.015  12.5£0.9 +65%
Add spurious edge  0.104 &+ 0.007 8.0+£0.5 +6%

The results indicate that SVGDM is robust to moderate structural errors, such as missing or extra
edges, which introduce only small degradations. Severe incorrect directionality, which disrupts
true information flow, naturally produces larger errors. This behavior is expected and supports the
applicability of SVGDM even when the causal structure is only partially known.

C PROOFS

C.1 PROOF OF THEOREM 2

Proof. We establish that the causal blanket relationship is preserved under diffusion through a
continuity argument.
Step 1: Initial Condition. At ¢ = 0, by the causal Markov property (Equation[6) (Anderson), [1982;
Rozet & Louppe, |2023)).:

V.0 log po(21:n(0)) = V., (0) log po(2i(0), 2p(iy(0))

. This continuity-based argument follows the intuition in (Rozet & Louppe, 2023), where blanket
structures are preserved approximately under diffusion.

7

Similarly, V., ;) log p¢(2i(t), zp(;)(t)) is continuous.

Step 2: Continuity. The score function V_, ;) log p; (1.5 (t)) is continuous in ¢ under Assumption

Step 3: Bounded Approximation Error. For any ¢ € [0, 1], the approximation error satisfies:
Vo log pe(21:8 (8)) = Va0 log pe(2i (1), zp (i (1)) | < Co(t)?

where C' depends on the strength of connections between z; and non-parent nodes.

Step 4: Noise-Dependent Convergence. As the noise level o(¢) increases, the mutual information
between z;(t) and non-parents decreases, making the causal blanket approximation increasingly
accurate.

Therefore, the causal blanket relationship is preserved up to a controlled approximation error that
vanishes as ¢ — 0 and remains bounded for all ¢t € [0,1]. O
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C.2 PROOF OF PROPOSITION ]
Proof. From the definition of conditional probability density:

Pe(2i, 2p(i)) = Pe(20)pe(2p(i)| 21) 21
Dividing both sides of Equationby Pi(2p(s)) > 0 yields:

pt(zi)pt<z7>(i) |2:)

22
pe(zp(i)) 2

pt(2i|z7>(z')) =

Taking logs of Equation
log pi(2il2p(i)) = log pe(2:i) + log pi(zilzp(iy) — log pi(zp(s)) (23)
Differentiating w.r.t. z; and noting that p;(2p(;)) is independent of z;:

V., logpi(zi|zp)) = V2, log pi(2:) + V2, log pi(2piy|2i) (24)

C.3 PROOF OF PROPOSITION[2]

Proof. LetY =V, (4)logps(2i(t)]2:(0)) and X := z;(t). The DSM risk can be written as:

EA@)|lsy, (X, ) = Y]] (25)

By the orthogonality principle of L? minimization, the minimizer satisfies:
sy, (X t) = E[Y | X, 1] (26)

The score marginalization identity (Hyvirinen & Dayanl 2005) states that:
E[V:, logpi(2i|2i(0))|2i] = V-, log pi(zi) (27

Substitution Equationinto Equation gives sy, (2i,t) = V, log pi(2;), which proves the claim.
This decomposition is consistent with prior results in graphical models (Wainwright et al.,[2008) and
posterior score decompositions in diffusion models (Song et al., 2020b). O

D COMPUTATIONAL SCALABILITY ANALYSIS

While general DAGs can exhibit complex long-range dependencies that challenge computational
scalability, our approach maintains tractability through several key strategies:

Local Computation Principle: Each node z; requires computation only over its causal parents
P (i), limiting complexity to the local neighborhood size rather than the full graph. For most real-
world causal systems, |P(i)] < N, ensuring that computational complexity scales as O(N - d)
where d is the average parent set size.

Parallel Node Updates: Since each node’s score computation depends only on its causal blan-
ket, nodes with non-overlapping blankets can be updated in parallel, enabling efficient distributed
computation across the graph structure.

Sparse Dependency Exploitation: Real-world causal graphs often exhibit sparsity, with most nodes
having few parents. Our method naturally exploits this sparsity through the causal blanket decom-
position in Theorem [2] avoiding unnecessary computations for non-adjacent nodes.

Complexity Comparison: Traditional approaches to inference in graphical models can require
O(N™) complexity where w is the treewidth of the graph. Our local score decomposition reduces
this to O(N -max; |P(#)]), providing significant computational advantages for sparse causal graphs.

D.1 SYNTHETIC EXPERIMENTS ON SCALABILITY

Table reports results for systems with NV = 10,12, 15 latent variables under sparse and dense
causal graphs. Accuracy degrades smoothly with reduced observability (VFO—LFO—LPO), and
runtime scales approximately linearly with | F|, confirming that SVGDM remains computationally
feasible for larger causal systems.
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Table 3: Synthetic experiments for scalability analysis. Mean =+ s.d. aggregated over all latent

variables. Runtime is measured relative to the 3-variable VFO baseline.
Setting (N, graph) NRMSE MAPE (%) Runtime (x baseline)

VFO (10, sparse) 0.11 4+ 0.02 93+14 3.3x
LFO (10, sparse) 0.14+0.02 11.24+1.5 3.6%
LPO (10, sparse) 0.19+0.05 14.7+1.9 3.9%
VFO (10, dense) 0.12+0.02 10.1£1.6 5.6 %
VFO (12, sparse) 0.12 +0.02 9.8+ 1.5 4.1x
LFO (12, sparse) 0.15+0.04 11.9+1.7 4.4x
LPO (12, sparse) 0.20£0.04 15.3+2.1 4.6x
VFO (12, dense) 0.13+0.02 10.6£1.6 6.3 %
VFO (15, sparse) 0.13+£0.02 10.2+£1.6 5.0x
LFO (15, sparse) 0.16 £0.03 12.6+1.8 5.4x
LPO (15, sparse) 0.21+£0.04 159422 5.7x
VFO (15, dense) 0.14+0.02 11.0£1.6 9.8x

E ROBUSTNESS TO NON-GAUSSIAN AND NON-LOG-CONCAVE NOISE

The Gaussian and local log-concavity assumptions used in our analysis (e.g., Theorem [3) are stan-
dard regularity conditions that ensure convergence and bounded score approximation error. They are
not required by the implementation: the score model is fully data-driven and capable of capturing
heavy-tailed, heteroscedastic, or mildly multimodal noise.

To verify robustness, we replace Gaussian noise with Laplace (heavy-tailed), Student-t, and a skewed
log-normal component. Across all conditions, SVGDM exhibits only modest degradation (<5-8%
NRMSE on average), demonstrating that while the assumptions are helpful for theoretical analysis,
the practical method remains stable under significant deviations.

Table 4: Robustness to non-Gaussian / non-log-concave noise (VFO, N = 10, sparse).

Noise type NRMSE MAPE (%)
Gaussian (baseline) 0.1158 £0.0182 9.32 + 1.41
Laplace (same Var) 0.1167 £0.0194 9.73 £ 1.56
Student-t (v = 5) 0.1184 £0.0205 9.96 + 1.63

Skewed log-normal (10% mix) 0.1199 £0.0212 10.1 & 1.72

F IMPLEMENTATION ALGORITHMS

F.1 CONSISTENT CAUSAL SCORE TRAINING

Training Objective: We train the causal model parameters {.,>.} via maximum likelihood on
forward samples, ensuring training-inference consistency:

Least(0e) = Exz(0) | 108N (i) (8)lel (1)), ) 28)

where 0. = {p., X.} and 2;(t) is computed using the current score estimate.
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Algorithm 1 Unified Training Algorithm

1: Input: Training data {z(0)(™}"_, causal graph G

2: Initialize: Score networks {sy, }, causal networks {y., X}

3: for epoch =1 t0 Nepochs dO

4:  for eachnode: € V do

5: Sample z(0) ~ po(z), t ~ U(0,1), e ~ N(0,1)

6: Generate z(t) via forward SDE (Equation 1)

7: Train marginal score: Update s, using Lpgm,; (Equation

8: Compute Tweedie reconstruction: 2;(t) = z;(t) + 0;(t)sy, (2:(t),t)/pi(t)
9: Train causal model: Update {u., X} using Leausal (Equation
10:  end for
11: end for

12: Output: Trained score networks and causal models

F.2 CAUSAL SCORE COMPUTATION

During inference, the causal score is computed using only observable quantities:

Algorithm 2 Causal Score Computation

I: Input: Current state z;(t), parent states zp;)(t), time ¢
Compute marginal score: Smarginal = Sy, (2i(t), t)
Compute Tweedie reconstruction: Z; = z;(t) + o; (t)ZSmMgma] /pi(t)
Compute causal mean: p. = pc(%;)
Compute chain rule components:
Vi, log N = (Ec)il(zP(i)(t) — He)
V3, the = Jacobian of p, at 2;
vzi Zi=1+ Ui(t)zvzis’lﬁi/:ui (t)
Return: V., log p;(2p(;)|2:) = Vi log N - Vi, pe - V2, 2

R AR A R

F.3 REVERSE SDE SAMPLING

To generate latent trajectories during inference, we simulate the reverse SDE (Equation 5 using a
predictor—corrector scheme. We use a predictor—corrector sampler with a fast exponential-integrator
step (Zhang & Chen, [2022) and DDIM-style updates (Song et al., 2020a; |Ho et al., [2020; [Song
et al |2020b). This provides stable and efficient numerical integration across noise levels while
maintaining high fidelity in reconstructions.

F.4 COMPUTATIONAL COMPLEXITY

The unified training algorithm has complexity consisting of score network training at O(N - |V] -
Ticore) per epoch, causal model training at O(N - |€| - Teausa) per epoch, and forward SDE simulation
at O(N - T - D) per sample, where N is batch size, || and |E| are graph sizes, T is time steps, and
D is state dimension. The overall complexity per training epoch is dominated by O(N - max(|V| -
Ticores || - Teausal, T - D)), which scales linearly with the number of nodes and edges in sparse causal
graphs.

F.5 ENTROPY ESTIMATION IMPLEMENTATION

The flow-based entropy estimation can be implemented as:
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Algorithm 3 Flow-Based Entropy Estimation

1: Input: Samples {z(™ N, from ¢,
2: Initialize entropy: H =0
: for each reverse SDE step k& do
Sample probe vectors: €™ ~ A(0, I)
Compute VIP: v(™) =V, (Fe™)
Estimate log-det-Jacobian: log | det Ji,| & & >, (¢™)Tv(™
Update entropy: H+ = log | det J|
end for
: Return: H + H[p(z7)]

A

Ne)

G TRAINING CONSISTENCY AND CONVERGENCE

The apparent circular dependency between Tweedie reconstruction (Z;(t) depending on scores) and
causal model training (causal parameters depending on Z;(t)) is resolved through our iterative train-
ing procedure:

Algorithm 4 Consistent Joint Training

1: Input: Training data {z(") (0)}N_,, causal graph G, tolerance 7, max iterations K,ax
2: Initialize: Score networks {sy, }, causal networks {y., X}
3: for epoch =1 t0 Nepochs do
for each node i € V do
Update marginal score s, via DSM loss (Eq. EI)
Compute current Tweedie estimate: 2;(t) < 2;(t) + 0:(t)?sy, (2:(t), )/ pi(t)
Update causal model {f., X} using current Z;(t)
end for
9: Compute Aconsieney = E[| 2 (£) — 27 (1)1
10:  if Aconsistency < 7 01 epoch > K., then

AN AR

11: break
12:  end if
13: end for

14: Output: Trained score networks and causal models

Convergence Guarantees: This iterative procedure converges because the DSM objective ensures
score estimates improve with each update, leading to more accurate Tweedie reconstructions. As
reconstruction quality increases, causal model parameters stabilize around their optimal values. The
joint objective (Eq. is jointly convex in the score and causal parameters under the regularity
conditions established in Section 4, ensuring that the alternating optimization procedure converges
to a stationary point under standard convexity assumptions (Boyd & Vandenberghe, |2004; [Neal &
Hintonl [1998)).

Stability Monitoring: We track the change in Tweedie reconstructions between iterations as
Aconsistency = E[||2i(k+1)(t) — égk)(t) ||2]. Training terminates when Aconsistency < 7 for a tolerance

threshold 7, indicating that the circular dependency has been resolved and the system has reached a
consistent state where both score estimates and causal parameters are mutually compatible.

H REVERSE-TIME SAMPLER

For completeness, we summarize the sampler used to approximate the reverse-time diffusion dynam-
ics in SVGDM. While the reverse SDE admits an associated deterministic probability-flow ODE
(the “normalizing flow” interpretation in Section [3.3)), our implementation follows the stochastic
reverse-SDE predictor—corrector sampler, which is standard in score-based diffusion models (Song
et al.l [2020b).

At each discretized time step t — ¢t — At, we apply:
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1. Predictor step (reverse SDE). Euler—-Maruyama update of the reverse-time SDE:
Zeonr = 2+ folze, t) At + g(t) so(ze,t) At + g(t)VALe, e~ N(0,1).
2. Corrector step (Langevin update). A few steps of:
24 z4asg(z,t) +V2an, n~N(0,I),

improving sample fidelity.

3. DDIM-style discretization. We use DDIM-style linear discretization to stabilize the tra-
jectory; this does not change the underlying continuous-time dynamics.

This stochastic sampler targets the same marginal distributions as the reverse SDE and is widely
used for numerical stability in diffusion models.

21



Published as a conference paper at ICLR 2026

I RESULTS

In this appendix, we provide supplementary visualizations and quantitative results that complement
the main experiments.

1.1 SYNTHETIC DATA RECONSTRUCTIONS.

Figure 3] shows qualitative comparisons of reconstructed latent variables z; for the synthetic experi-
ment. Our model’s reconstructions closely match the ground truth (panel a), while baseline methods
exhibit significant deviations, validating the quantitative improvements reported in the main text.

Ground Truth Results: Our Model Results: BBVI Results: SIVI Results: ADVI Results: NUTS (MCMC)
Real z; Approximate z; Approximate z, Approximate z; Approximate z, Approximate z;

Real z, Approximate z, Approximate z, Approximate z, Approximate z, Approximate z,

Real z3 Approximate z3 Approximate z3 Approximate z3 Approximate z3 Approximate z3

a b c e f

Figure 3: Qualitative comparison on synthetic data. (a) Ground truth latent trajectories z;. (b)—(f)
Reconstructions obtained by our model and baseline methods. Our model recovers sharper and more
accurate latent trajectories compared to baselines.
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1.2 REAL-WORLD EARTHQUAKE BENCHMARKS.

Table [5|reports AUROC results for seismic hazard estimation across three major earthquake events.
Our method consistently outperforms both domain-specific methods (VBCI, DisasterNet) and
generic variational inference baselines. In cases with limited or missing ground truth (NGA), our
model still demonstrates robust and generalizable performance.

Table 5: This table presents the comparison results (AUROC) using real-world data with baseline
models for three unobserved variables that are causally related. NGA means no ground truth label
is available

Earthquake Model 2LS ZLF ZBD
Our Model 0.9331 0.9317 0.9512
VCBI (Xu et al.,[2022b) 0.9012 0.9034 0.9123
. DisasterNet (L1 et al.[[2023b) 0.9293 0.9284 0.9413
2020 Puerto Rico EQ- | pii1 Model (Zhu et al.| 2015] Nowicki Jessee ot al.|2018) | 0.8712 0.8913 -
BBVI (Ranganath et al.[[2014) 0.7912 0.7731 0.7423
SIVI (Yin & Zhou/[2018) 0.7619 0.7846  0.7662
ADVI (Kucukelbir et al.|[2017) 0.7763 0.6846 0.7492
NUTS (MCMC) (Hotfman et al.|[2014) 0.7907 0.7183 0.7549
Our Model i 0.9550 NGA 0.9587
VCBI (Xu et al.,[2022b) 0.9123 NGA 09123
2021 Haiti EQ . DisasterNet (Li et al.: 2(?23b) ‘ 0.9421 NGA 0.9410
: Prior Model (Zhu et al.|[2015|[Nowicki Jessee et al.{|2018) | 0.8712 NGA -
BBVI (Ranganath et al.[[2014) 0.7729 NGA 0.8125
SIVI (Yin & Zhou![2018) 0.7964 NGA 0.8123
ADVI (Kucukelbir et al.||2017) 0.8155 NGA 0.8222
NUTS (MCMC) (Hotfman et al./[2014) 0.7612 NGA 0.7747
Our Model NGA NGA 0.9488
VCBI (Xu et al./[2022b) NGA NGA 0.9025
2023 Turkey-Syria EQ _ DisasterNet (L1 et al._. 2(_)23b) \ NGA NGA 09315
| Prior Model (Zhu et al.|[2015|[Nowicki Jessee et al.|[2018) | NGA NGA 0.9391
AdaBoost(Patten et al.![2024) - - 0.9300
BBVI (Ranganath et al.[[2014) NGA NGA  0.8233
SIVI (Yin & Zhou![2018) NGA NGA  0.7947
ADVI (Kucukelbir et al.||2017) NGA NGA 0.7315
NUTS (MCMC) (Hottman et al.|[2014) NGA NGA 0.8013

J COMPARISON WITH MULTI-VIEW VAES

Our goal in SVGDM is to jointly infer multiple interacting latent physical processes { z; } from multi-
resolution observations, where (i) some observations inform only a single variable and (ii) others
contain mixed signals of several variables, all defined at their native spatial resolutions. These latent
variables correspond to different but causally linked physical processes (e.g., shaking, landslides,
liquefaction, building damage), not merely different “views” of a single object.

This setting is fundamentally different from standard multi-view VAEs, which are designed to learn
a single shared latent representation of the same object under different modalities or views. In
those models, each view is just a different measurement of one underlying entity, and all modalities
are assumed to describe a common latent variable. Across different objects, they typically assume
independence or, at best, impose a non-causal graph regularizer (e.g., graph embedding or multi-
view GCCA), so even if a physical interaction graph exists, it is not encoded as a causal mechanism
and does not drive information propagation during inference.

In contrast, SVGDM models multiple distinct latent physical processes z; associated with differ-
ent but causally linked objects, each with its own observation types defined at its native resolution,
rather than treating them as views of a single object. We embed score-based diffusion within a
causal graphical model, so information is propagated according to the specified causal dependencies
among variables/objects. This allows SVGDM to fuse heterogeneous observations with differing
spatial/temporal resolutions and noise characteristics without forcing them onto a single likelihood
family or common grid, preserving each modality’s native sampling and uncertainty while still en-
abling joint inference. Our objective is to jointly infer these coupled latent processes from het-
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erogeneous, resolution-specific observations, allowing information to flow directionally through the
causal structure when some variables are sparsely or incompletely observed.

One could, in principle, treat the entire complex physical system as a single graph-level entity, e.g.,
as a graph variable as in|Lin et al.|(2023), and treat node-level observations as different “views” of
a shared latent graph representation. However, such graph-level multimodal VAEs do not model or
approximate multi-scale noise diffusion, which is essential in our setting because each observation
modality undergoes its own resolution-dependent degradation process (e.g., radar interferometric
phase noise vs. optical reflectance noise). Collapsing all processes and resolutions into one shared
latent space ignores scale-dependent uncertainty and causal directionality, which leads to large per-
formance degradation in our experiments.

To quantify this effect, we augment our synthetic benchmark with several representative multi-view
VAE baselines: JMVAE (Suzuki et al.,[2016), MMVAE (Shi et al.| 2019), and MoPoE-VAE (Sutter
et al.l 2021)). These models treat all observations as different views of a single latent representation
and are trained using their standard multimodal ELBO objectives. Table [6] reports NRMSE and
MAPE for all three latent variables in the synthetic multi-resolution system.

Table 6: Synthetic multi-resolution benchmark: comparison with multi-view VAEs. Mean over
5 seeds; lower is better. Multi-view VAEs collapse multi-resolution and graph structure into a single
shared latent, leading to substantially worse reconstruction of latent physical processes.

Model Variable NRMSE MAPE (%)
1 0.0683 5.26
SVGDM (Ours) 29 0.1239 9.91
23 0.1031 7.63
21 0.0942 7.88
VBCI (Xu et al.,[2022b) 29 0.1463 10.97
23 0.1227 9.02
21 0.0998 8.32
DisasterNet (Li et al., 2023b) 29 0.1530 11.45
23 0.1281 9.37
21 0.2241 17.82
MoPoE-VAE (Sutter et al., [2021) 29 0.2665 20.91
23 0.2392 18.47
21 0.2479 18.94
MMVAE (Shi et al.,[2019) 29 0.2858 21.57
23 0.2672 20.10
21 0.2313 18.05
JMVAE (Suzuki et al., 2016) 29 0.2789 21.14
23 0.2451 19.68
21 1.6981 68.9
BBVI (Ranganath et al., 2014) 29 1.0814 103.6
23 1.3404 113.5
z1 1.7215 66.9
SIVI (Yin & Zhou, 2018) 29 1.0832 99.8
23 1.3448 115.2
21 1.7248 69.6
ADVI (Kucukelbir et al.,[2017) 29 1.0839 103.8
23 1.3462 115.3
21 1.5242 69.7
NUTS (Hoffman et al., [2014) 29 1.0435 103.9
23 1.3262 115.1

SVGDM consistently achieves the lowest error across all variables. Multi-view VAEs perform
markedly worse, even compared to graph-based deep models (VBCI, DisasterNet). This confirms
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that collapsing multi-resolution, causally linked processes into a single shared latent representation
fails to capture the structured, directional information flow needed for accurate multi-resolution in-
ference. In other words, while multi-view methods can handle heterogeneous data, they assume
conditional independence across variables given a shared latent and cannot exploit causal structure
for directional information propagation—precisely what is required when some variables are com-
pletely or partially unobserved at certain scales.

K ABLATION STUDY ON L0OSS COMPONENTS

To quantify the contribution of the proposed loss components—specifically, the local diffu-
sion score-matching (DSM) term, the causal-blanket score term, and the observation-consistency
term—we conducted an ablation study on the 3-node synthetic system (VFO setting). Each variant
removes one loss component while keeping the architecture, training process, and data identical.

Table 7: Ablation study on the 3-node synthetic system (VFO setting).

Model Variant Included Loss Terms NRMSE A vs. Full Model
Full model (ours) DSM + Causal + Obs  0.103 £ 0.005 —

No observation term DSM + Causal 0.117 £ 0.006 +14%

No causal term DSM + Obs 0.129 £ 0.007 +25%

No DSM term Causal + Obs 0.142 + 0.009 +38%
DSM only DSM 0.154 £ 0.011 +50%

These results show that all three components contribute meaningfully and complement each other:
(1) Removing the causal-blanket term prevents information from propagating along the causal
graph. (2) Removing the DSM term eliminates the local score-matching objective and produces
the largest degradation. (3) Removing the observation-consistency term also yields worse accuracy.

The full model achieves the best performance by combining local diffusion learning, causal infor-
mation propagation, and observation guidance.

L WILDFIRE SPREAD PREDICTION RESULTS

Table 8: Comparison of model performance on wildfire spread prediction. AP stands for Aver-
age Precision.

Model F1 Score AP

SVGDM 0.5913  0.4430
Logistic Regression 0.432 0.279
U-Net 0.341 0.341

ConvLSTM (Mono-temporal) 0.310 0.292
ConvLSTM (Multi-temporal) 0.310 0.306
UTAE 0.350 0.372
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