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ABSTRACT

Designing novel proteins that bind to small molecules is a long-standing challenge
in computational biology, with applications in developing catalysts, biosensors,
and more. Current computational methods rely on the assumption that the binding
pose of the target molecule is known, which is not always feasible, as conforma-
tions of novel targets are often unknown and tend to change upon binding. In
this work, we formulate proteins and molecules as unified biotokens, and present
ATOMFLOW, a novel deep generative model under the flow-matching framework
for the design of ligand-binding proteins from the 2D target molecular graph alone.
Operating on the positions of biotokens, ATOMFLOW captures the flexibility of
ligands and generates ligand conformations and protein backbone structures it-
eratively. We consider the multi-scale nature of biotokens and demonstrate that
ATOMFLOW can be effectively trained on a subset of structures from the Protein
Data Bank, by matching the flow vector field using an SE(3) equivariant structure
prediction network. Experimental results demonstrate that our method generates
high-fidelity ligand-binding proteins, matching or surpassing the performance of
RFDiffusionAA across multiple metrics—without requiring bound ligand struc-
tures. As a general framework, ATOMFLOW can be readily extended to diverse
biomolecule design tasks in the future.

1 INTRODUCTION

Proteins are indispensable macromolecules that drive the essential processes of living organisms. A
crucial mechanism by which they accomplish this is through binding with small molecules (Schreier
et al., 2009). Continuous progress has been made to design ligand-binding proteins with various
biological functions, such as catalysts and biosensors (Bennett et al., 2023). However, the problem
remains challenging due to the complex interactions between proteins and molecules, as well as the
inherent flexibility of ligands. The most well-established approaches depend on shape complementar-
ity to dock molecules onto native protein scaffold structures (Bick et al., 2017; Polizzi & DeGrado,
2020), which are computationally expensive.

OQO (ideal) OQO (orange: 7v11, green: ideal)

Figure 1: The conformer of OQO deforms upon
binding to coagulation factor XIa. Green: ideal
conformer. Orange: bound conformer.

RFDiffusionAA (Krishna et al., 2024) is cur-
rently the leading model for de novo pro-
tein design targeting small molecule ligands.
Based on the all-atom structure prediction
model RoseTTAFoldAA (Krishna et al., 2024),
it achieves strong performance in generating
ligand-binding proteins and improves upon its
predecessor RFDiffusion (Watson et al., 2023),
which does not directly model protein-ligand
interaction. A key limitation of RFDiffusionAA
is its assumption that the ligand adopts a known
and rigid binding conformation. This assump-
tion does not hold for many ligands, especially
those without known binding poses (Bick et al., 2017). Although diverse conformers can be sampled
and filtered using expert heuristics (Krishna et al., 2024), this process is computationally intensive.
In addition, ligands often exhibit conformational flexibility upon binding (Mobley & Dill, 2009), as
shown in Figure 1. Recently, AlphaFold 3-like models have shown the ability to capture ligand flexi-
bility during docking (Abramson et al., 2024). While they can be repurposed for binder design (Yang
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et al.), achieving practical performance has so far required large-scale post-training, and existing
work remains limited to CDR loop design and constrained by the fixed model architecture.

ATOMFLOW RFDiffusionAA RFDiffusion AlphaFold 3
De novo Design Capability ✓ ✓ ✓ ✓with repurposing
Contact-Based Modeling ✓ ✓ ✗ ✓

Ligand Flexibility ✓ ✗ ✗ ✓
Pretrained Model Independence ✓ ✗ ✗ ✗

Table 1: Comparison of key features across the methods.
To address the aforementioned issues, we present Atomic Flow-matching (ATOMFLOW), a novel
deep generative model with a flow-matching framework (Lipman et al., 2022; Liu et al., 2022) on
atomic biotokens for the design of ligand-binding proteins from 2D molecular graphs alone. Key
features of ATOMFLOW are compared in Table 1. We model different types of biomolecules within
a unified framework that operates in a shared spatial representation, which maximizes information
aggregation (Bryant et al., 2024), with a flow matching model that directly designs the interactions.
Instead of relying on a fixed ligand conformer, ATOMFLOW learns to update the ligand structure
along with the structure of the protein binder. We define a flow on the representative atoms of
the tokens as a linear interpolation between the bound protein-ligand complex structures and noisy
structures and demonstrate that, with minor approximations, the vector field of the defined flow can
be effectively learned using an SE(3)-equivariant structure module and a variant of Frame Aligned
Point Error (FAPE) loss (Jumper et al., 2021) that compensates for the multi-scale nature of their
geometric features.1 The concept of regressing the vector field through structure denoising has also
been explored in Jing et al. (2024), though their work focuses on conformer prediction and depends
on a pre-trained structure prediction model.

We designed an in silico evaluation pipeline for this task, evaluating ATOMFLOW on multiple metrics
following previous works (Krishna et al., 2024). We also introduce an alternative binding affinity
metric based on the confidence scores of AlphaFold 3-like models (Abramson et al., 2024; team et al.,
2024), which is experimentally validated to correlate strongly with binding potential in minibinder
design (Zambaldi et al., 2024). The performance of ATOMFLOW outperforms or is comparable to
RFDiffusionAA, with flexible ligand conformer modeling and more than 5x faster inference speed.
A case study further highlights that when the bound structure is unknown, ATOMFLOW successfully
designs protein binders with more interatomic contacts, whereas RFDiffusionAA can be constrained
by its dependence on a fixed, suboptimal ligand structure.

2 RELATED WORK

Ligand-binding Protein Design. Traditional approaches to ligand-binding protein design mainly rely
on docking molecules onto large sets of shape-complementary protein pockets (Polizzi & DeGrado,
2020; Lu et al., 2024). While the screening process can be accelerated with deep learning models (An
et al., 2023), conventional methods are computationally expensive and often depend on domain
experts (Bick et al., 2017). Recent advances in deep generative models have paved the way for
data-driven approaches, and a variety of models have been proposed to design proteins conditioned on
binding targets (Shi et al., 2022; Kong et al., 2023; Watson et al., 2023; Zhang et al., 2024). Focusing
on molecule binder design, RFDiffusion (Watson et al., 2023) generates novel proteins from scratch,
using a heuristic attractive-repulsive potential to measure shape complementarity. The follow-up
work RFDiffusionAA (Krishna et al., 2024) improves the performance by explicitly modeling the
interactions between proteins and molecules with an all-atom formulation. These approaches assume
binding poses of ligands are known and impose rigidity constraints on ligand structures. Another
line of research focuses on designing binding pockets for small molecules (Stark et al., 2024; Zhang
et al., 2024). While taking ligand flexibility into consideration, they can only design the portions of
proteins that interact with the ligands and require the rest part of the proteins as input. Our model
also accounts for the ligand flexibility, but is able to design full ligand-binding proteins from 2D
molecular graph alone.

Protein Generative Model and Structure Prediction. Recently, various deep generative models
for protein generation have emerged (Ingraham et al., 2023; Lin & AlQuraishi, 2023; Yim et al.,

1The size of a protein is often much larger than that of a molecule. The size disparity should be considered
when designing flow-matching models for stable training and inference.
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2023b;a; Wu et al., 2024; Watson et al., 2023; Krishna et al., 2024). For example, Genie (Lin &
AlQuraishi, 2023) introduces a diffusion process defined on Cα coordinates of proteins and allows
for the incorporation of motif structures as conditions. FrameDiff (Yim et al., 2023b) takes a step
further by generating novel protein backbone structures using an SE(3) diffusion process applied to
residue frames. Its successor, FrameFlow (Yim et al., 2023a), accelerates the generation process by
leveraging the flow-matching framework. However, these approaches are tailored for single-chain
protein generation and fall short in modeling multiple biomolecules. Recent development of all-
atom strucutre prediction models such as RoseTTAFoldAA (Krishna et al., 2024) and AlphaFold
3 (Abramson et al., 2024) tokenize various types of biomolecules into unified tokens, aiming to
develop a universal structure prediction model for all molecular types presented in the Protein Data
Bank. Emerging work has explored repurposing structure prediction models like AlphaFold 3 as
generators, though current efforts are limited to antibody CDR design rather than complete protein
generation (Yang et al.). Our method adopts a similar formulation, leveraging unified tokenization to
enhance information exchange between proteins and other biomolecules (Bryant et al., 2024).

3 PRELIMINARIES

3.1 NOTATIONS AND PROBLEM FORMULATION

Notations. In this work, a protein-ligand complex is represented as a series of N biotokens {ai |
ai = (si, xi), i = 1, 2, . . . , N}, where each token ai corresponds to either a protein residue or a
ligand atom, si denotes the token type, and xi ∈ R3 denotes the token position, i.e. the coordinate of
its representative atom. Let Sprotein and Satom be the set of amino acid types and chemical elements,
respectively. For protein residues, si ∈ Sprotein, with xi being the position of the C-α carbon. For
ligand atoms, si ∈ Satom, with xi being the atomic position. We define the protein token set as
P = {ai | si ∈ Sprotein}, with Np = |P| being the number of protein residues, and the ligand token
set asM = {ai | si ∈ Satom}, with Nm = |M| representing the number of ligand atoms. In our
settings, N = Np +Nm. The biotokens are attributed with token-level features f token ∈ RN×ct and
pair-level features f pair ∈ RN×N×cp , where ct and cp denote the feature dimensions.

Problem Formulation. Given a ligand molecule represented as a chemical graph G = (V, E) and a
residue count Np for the protein binder to be designed, we aim to generate a protein-ligand complex,
where a conformer of G is docked to a protein binder with Np residues. Specifically, by describing
the target protein-ligand complex as a series of biotokens, we generate the token positions {xi}, with
xm = {xi | ai ∈M} being a valid conformer for G, and xp = {xi | ai ∈ P} being a protein binder
with high binding affinity to xm. Following previous works (Krishna et al., 2024; Yim et al., 2023b),
we additionally generate the token frames {Ti = (ri, ti) | ai ∈ P} for protein tokens as described in
Appendix A.1, which can be used to recover full backbone coordinates of residues. The design of
residue types {si | ai ∈ P} is delegated to an existing reverse folding model (Dauparas et al., 2023).

3.2 FLOW MATCHING

Building upon the significant success of diffusion models in various generative tasks, flow matching
models (Albergo & Vanden-Eijnden, 2022; Liu et al., 2022) allow for faster and more reliable
sampling from a distribution learned from data. The generative process of flow matching models
is usually defined by a probability path pt(x), t ∈ [0, 1] that gradually transforms from a known
noisy distribution p0(x) = q(x), such as N (x|0, I) for x ∈ R, to an approximate data distribution
p1 ≈ pdata(x). A vector field ut(x), which leads to an ODE dϕt(x)

dt = ut(ϕt(x)), is used to generate
the probability path via the push-forward equation,

pt = [ϕt]∗p0 = p0(ϕ
−1
t (x))det

[
∂ϕ−1

t

∂x
(x)

]
, (1)

which could be approximated with a trainable network v̂t(x; θ).

Due to the complexity of defining an appropriate pt and ut, we could alternatively define a conditional
probability path pt(x|x1), which is usually derived through a conditional vector field ut(x|x1) for
each data point x1 (Lipman et al., 2022). The conditional vector field is then approximated with a
trainable network v̂t(x; θ). The conditional flow matching loss,

LCFM(θ) = Et,pdata(x1),pt(x|x1)∥v̂t(x; θ)− ut(x|x1)∥, (2)

is proved to have identical gradients w.r.t. θ with LFM = Et,pdata(x)||v̂t(x; θ) − ut(x)|| (Lipman
et al., 2022), which means the model can generate a marginal vector field by simply learning from
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the x1-conditioned vector fields, without access to pt(x) and ut(x). After training, a neural ODE is
obtained, ready for sampling from p0 to pt with an ODE solver (Jardine, 2011).

4 METHOD

ATOMFLOW uses a unified biotoken representation to jointly generate protein and ligand structures
by learning the distribution of token positions conditioned on a ligand chemical graph G. Figure 2
illustrates the overall framework. We introduce a rectified flow on token positions x ∈ RN×3 and
approximate its vector field with an SE(3)-equivariant structure prediction network. In this section,
we introduce the flow matching model in Section 4.1, the biotoken feature representation in Section
4.2, the structure prediction module in Section 4.3, and the training and inference procedures in
Section 4.4. The overview of our method is illustrated in Figure 2.

N C O ...... UNKUNKC UNK ...... UNK

Ligand Bond Features Residue Distance Features

Distance Map

Structure Prediction
Network              

Flow Matching Trajectory

Result

Piror Distribution

Feature
Embedder

token feat.

pair feat.

seq repr.

pair repr.
Extract

Pair Features

Nm ligand atom tokens Np protein residue tokens

Token Features

A

B

Interpolate (eq.11)

Predicted
Positions

Previous
Input

Input
Positions

Next Iteration

Initialization

Figure 2: The inference process of ATOMFLOW. We represent the protein-ligand complex as a series
of biotokens and embed their token and pair-level features. Starting from a noisy sample, the flow
matching procedure gradually generates the designed structure x1 with a structure prediction network.

4.1 FLOW MATCHING FOR PROTEIN-LIGAND COMPLEX GENERATION

For all types of tokens, we only consider their token positions to simplify the flow matching process.
Thus, the positions of all tokens lie in the Euclidean space RN×3. Since a complex could be arbitrarily
moved or rotated without changing its structure, we need to treat different coordinate representations
as the same if they could be aligned with an SE(3) translation. Thus, every sample lies in the quotient
space RN×3/SE(3). We define a rectified flow on Q using a conditional vector field

ut(x | x1) =
1

1− t

(
alignx(x1)− x

)
, (3)

where x1 is the target structure from the data distribution, and alignx(x1) is its best RMSD alignment
to x. We train the network to approximate ut(x | x1) by minimizing LCFM(θ). With approximation
(Appendix A.3), we find it more numerically stable to use an FAPE-based loss (Jumper et al., 2021),
which does not change the final training target.

LCFM−FAPE(θ) = Et,pdata(x1),pt(x|x1)

[ 1

1− t
FAPE

(
x̂1(x, t; θ),x1

)]
. (4)

Here, x̂1 is predicted by our structure network. We partition the FAPE loss into protein-protein,
protein-ligand, and ligand-ligand interactions with appropriate scaling factors.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.2 REPRESENTATION OF CONDITIONAL FEATURES

The generation process of ATOMFLOW is conditioned on the ligand chemical graph G and a designated
protein length Np. We model such conditions as an additional condition to the vector field u. As a
result, the inputs of the prediction network x̂1 are augmented to accept conditional features. With the
biotoken representation, we embed all such features as f token and f pair as illustrated in Figure 2A.

For a ligand chemical graph G, we embed the chemical properties as f token of ligand tokens. The
chemical bonds E are embedded in f pair as a multi-dimensional adjacency tensor, each dimension
representing a bond type. For residue tokens, we embed the relative residue position (Shaw et al.,
2018) in f pair, while f token may represent other known conditions. We concatenate the protein and
ligand features to form a unified feature tensor, eliminating the need to distinguish different types of
tokens when processing the features. Further details are provided in Appendix A.2.

4.3 STRUCTURE PREDICTION NETWORK

The structure prediction network x̂1(x, t; θ)
2 predicts the token frames {Ti}, which can be used

to extract token positions x1, given a series of noisy positions x at timestamp t. It encodes x,
along with f token and f pair, with an SE(3) invariant encoding module, processing the representation
with a transformer stack, and generates the predicted structure with a structure module based on
invariant-point attention (IPA) (Jumper et al., 2021), as illustrated in Figure 2B. The network jointly
processes two kinds of biotokens, protein residues and ligand atoms, with different spatial scales, and
handles such differences with special care.

Distance Map. The input coordinates x are encoded by projecting the one-hot binned distance map
between input coordinates for each token pair to the feature space

ti,j = Linear(BinRepr(∥x(i) − x(j)∥)), (5)

where the bins are not divided equally considering the different precision requirements between
residues and atoms. This representation is SE(3) invariant, since the internal distance does not change
under rigid transformation.3

Feature Embedder. The feature embedder generates a single representation s ∈ RN×cs and pair
representation z ∈ RN×N×cz from distance map h, noise level t, f token and f pair for the following
steps. The noise level is encoded with Gaussian Fourier embedding (Song et al., 2021). The
local features are concatenated and projected to single representation s and pair representation z,
si = Linear(f local

i ). The pair features and input encoding are projected and added to z

zi,j = Linear(f local
i ) + Linear(f local

j ) + f pair
i,j + ti,j . (6)

As described in Section 4.2, different token types can be treated the same and processed uniformly.

Structure Module. The structure module generates a predicted complex structure, represented as a
series of token frames TN . For ligand atoms, the rotation of the predicted frame is always identity
rotation, while the translation equals its position. It first processes z through a deep transformer stack
(Appendix A.4) to obtain a denoised pair representation z′, and converts s and z′ to TN through a
series of shared-weight IPA block

T1···N = IPAStack(s1···N ,TransformerStack(z1···N,1···N )). (7)

The IPA stack outputs a sequence of frames for each token, while the rotations for atom tokens are
dropped and replaced with the atom frame demonstrated in Section 4.2. The final output represents
the full complex structure x̂, while token positions x̂1 are calculated as previously described.

Auxiliary Head. We add an auxiliary head to predict the pairwise binned distance from the denoised
pair representation z′, hi = softmax(Linear(z′i)), which directly supervises the input of structure
module and has been proved to be helpful during training (Jumper et al., 2021). The bins are also
unevenly divided to accommodate the multi-scale characteristics of the predicted complex.

2Though x̂1 is a function of x, t, f token, f feat, we omitted certain parameters to simplify the text.
3To accommodate the precision differences between ligands and proteins, the bin intervals are dense between

1Å (approximate length of a chemical bond) and 3.25Å (approximate distance between adjacent amino acids)
and sparser beyond 3.25Å.
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4.4 TRAINING AND INFERENCE

We train the network x̂1 by sampling data points and timestamps, calculating the noisy input, and
supervising the predicted results. At inference time, we transform the token positions sampled from
the prior distribution through the predicted vector field with an ODE solver, and output the structure
obtained at the final step.

Training. We sample the timestamp t from the logit normal distribution, assigning more weight on
intermediate steps, which helps the model to achieve better performance on hard timestamps (Esser
et al., 2024; Karras et al., 2022). The prior distribution q(x) is selected as N (0, σdata), where
σdata = 10. The input x is given by interpolating the data point and a sample from the prior
distribution. The training procedure is shown in Algorithm 1.

Inference. A scheduler of noise levels {ti}mi=0, t0 = 0, tm = 1 is used to determine the noise level
ti of each sampling step xti . Starting from a noisy sample xti = x0 as the initial model input, the
structure prediction network predicts the vector field, which gives xti+1

with the Euler’s Method, i.e.

xti+1 = xti +
ti+1 − ti
1− ti

(
alignxti

(
Extract

(
x̂1(xti , ti; θ)

))
− xti

)
, (8)

where the Extract function extracts the token positions from the predicted token frames. The model
output at the last step is adopted as the final result. The inference procedure is shown in Algorithm 2.

Algorithm 1 Training

Require: data distribution p(x), prior distribu-
tion q(x), trainable model parameters θ

1: while not converged do
2: sample complex structure x1 and its cor-

responding ligand chemical graph G from
p(x), t ∼ [0, 1),x0 ∼ q(x)

3: N, f token, f pair ← Embedder(G, Np)
4: xt ← t · x1 + (1− t) · alignx(x0)
5: θ ← Optimizer(θ, (xt, f

token, f pair, t),L)
6: end while
7: return θ

Algorithm 2 Inference

Require: Chemical graph G, residue count Np,
scheduler t0···m, prior distribution q(x),
model parameters θ

1: N, f token, f pair ← Embedder(G, Np)
2: sample token positions xt0 ∼ q(x)
3: for i = 0 to m− 1 do
4: T1···N ← x̂1(xti , f

token, f pair, ti; θ)
5: x̂1 ← Extract(T )
6: calculate xti+1

as Equation 8
7: end for
8: return T

5 EXPERIMENTS

Following previous protein design models (Yim et al., 2023a; Lin & AlQuraishi, 2023; Watson
et al., 2023) and binder design models (Krishna et al., 2024), we evaluate ATOMFLOW through in
silico experiments on key metrics of our generated binder including self-consistency, binding affinity,
diversity and novelty.

5.1 EXPERIMENT SETUP

Training Data. We train the denoising model on two datasets: PDBBind (Liu et al., 2017), a protein-
ligand conformer dataset derived from the Protein Data Bank (PDB) (Berman et al., 2000), and
SCOPe (Chandonia et al., 2022), a structure categorical dataset for protein. The model is first trained
on solely generating the protein structure for 400k steps, and then finetuned on co-generating both
the protein and ligand structure for 300k steps.

Baseline and Model Variant. We compare ATOMFLOW with the state-of-the-art binder generation
method RFDiffusionAA (Krishna et al., 2024), which is extensively trained on almost all known
data. Since RFDiffusionAA requires a fixed ligand structure at the binding state as input, we extend
our method to work under its setting. For ATOMFLOW, besides the original setting (ATOMFLOW-
N), we also train a version of our model with the pairwise distance matrix of the bound structure
as an auxiliary hint input (ATOMFLOW-H). We also compare with a repurposed version of an
AlphaFold 3 replication model Chai-1 (team et al., 2024) (see Appendix A.5 for details).4 We exclude
PocketGen (Zhang et al., 2024) and FlowSite (Stark et al., 2024) since they can only refine the pocket
residues of a given binder. We discuss them with an additional experiment in the appendix.

4Due to license restrictions, we cannot use the original AlphaFold 3. In our preliminary experiments
comparing Chai-1, Boltz (Wohlwend et al., 2024), and Protenix (Team et al., 2025), Chai-1 performed best and
is used as a substitute in this work.
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Evaluation Set. Following RFDiffusionAA, we evaluate all methods on the ligand set (evaluation
set) from RFDiffusionAA (FAD, SAM, IAI, OQO). IAI and OQO are two ligands newly added to
PDB, out of the training set of all methods. We conduct an extended evaluation on a larger set of 20
ligands (Appendix A.6). The evaluation set comprises ligands from inside and outside the training
set, with both long and short lengths. We also include a speed test demonstrating ATOMFLOW is 5
times faster than RFDiffusionAA in Appendix A.6.

5.2 SELF-CONSISTENCY AND CONFORMER LEGITIMACY

In this section, we evaluate the generated protein structure by self-consistency RMSD and the
predicted ligand structure at the binding state by detecting structural violence in the conformer.
We further evaluate the legitimacy of designed complex conformer on geometric distribution and
chemical validity.

SAM FAD

IAI

OQO

AtomFlow-H, 150 residues AtomFlow-N, 200 residues AtomFlow-H, 250 residues AtomFlow-N, 300 residues
scRMSD=0.774 scRMSD=0.552 scRMSD=1.173 scRMSD=1.032

Figure 3: Designed structures for different ligands at different lengths. We align the ESMFold
predicted structure to the designed structure, and report the scRMSD metric. Green: designed protein;
Orange: designed ligand conformer; Grey: ESMFold predicted protein.

Protein Structure. For protein structures, self-consistency RMSD is widely adopted as a metric
to evaluate their legitimacy (Lin & AlQuraishi, 2023; Watson et al., 2023), which compares the
generated structure and the folding of its sequence predicted by an accurate model. We adopt
LigandMPNN (Dauparas et al., 2023) to predict possible sequences from the generated structures.
We first generate 8 sequences for all designed structures with LigandMPNN, then predict the cor-
responding protein structure with ESMFold (Lin et al., 2023), and the metric for each generated
structure is calculated as the minimum rooted mean squared distance between the designed structure
and predicted structure (scRMSD). For each ligand in the evaluation set, we generate 10 structures
for lengths in [100, 150, 200, 250, 300]. The results are shown in Table 2. We illustrate several
generated samples in Figure 3, and the cumulative distribution of scRMSD among them in Figure 4
and Figure S2B.

Method Overall SAM FAD IAI OQO
ATOMFLOW-H 0.57 0.60 0.36 0.58 0.74
ATOMFLOW-N 0.50 0.50 0.38 0.58 0.54
RFDiffusionAA 0.52 0.60 0.58 0.48 0.42

Chai-1 0.46 0.48 0.52 0.52 0.32
RFDiffusion 0.33 0.04 0.50 0.44 0.32

Table 2: Proportion of samples with scRMSD < 2 on the
evaluation set (higher is better).
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Figure 4: scRMSD distribution of
samples on the evaluation set.

ATOMFLOW-H achieves the best overall performance on the evaluation set, ranking first on 3
out of 4 ligands. ATOMFLOW-N, the version without structural hints, also performs comparably to
RFDiffusionAA, and even outperforms it on the out-of-distribution test cases IAI and OQO. Although
not specifically designed for de novo generation, Chai-1 shows acceptable performance on protein
structure tasks. The relatively limited performance of RFDiffusion is expected, as its strong binding
potential for guiding protein-ligand interactions can lead to structural disruption. Including structural
hints from the ligand conformer slightly improves binder quality, likely because the pocket shape is
partially revealed through the input.

Conformer Legitimacy. We evaluate the chemical validity of the protein-ligand complex conformers
with PoseBusters (Buttenschoen et al., 2024) and PoseCheck (Harris et al., 2023). We also evaluate the
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geometric distribution of common chemical bond lengths generated by ATOMFLOW in comparison
to the ground truth bond lengths in our training set, as well as comparing the Ramachandran plots
between ATOMFLOW-generated proteins and natural ones. We illustrate the results in Appendix A.6.
The results indicate that ATOMFLOW generates legitimate samples with metrics close to those of the
natural proteins.

5.3 BINDING AFFINITY

In this section, we evaluate binding affinity using two in silico metrics, acknowledging that such
computational estimates can only serve as proxies. Ultimately, wet-lab experiments remain the
gold standard for validating binding affinity, though they are typically too costly for large-scale
benchmarking.

AtomFlow-H AtomFlow-N RFDiffAA RFDiff Protenix Chai
12

9

6

3

0

Vi
na

 e
ne

rg
y

Figure 5: Vina score distribu-
tion on the evaluation set.

We first report the AutoDock Vina score (Eberhardt et al., 2021),
a widely adopted docking-based energy metric (Zhang et al., 2024).
For each designed binder, we pack side chains using the Rosetta
packer (Leaver-Fay et al., 2011), and report the minimum docking
score across all generated conformations. This score serves as an
approximate measure of interaction energy between the ligand and
the designed protein.

As a complementary signal, we compute the min PAE interac-
tion (min_ipAE)—a metric derived from the Predicted Aligned
Error (PAE) matrix of an AlphaFold 3-like model. Specifically,
min_ipAE reflects the model’s confidence in the relative positioning between ligand and protein
residues; lower values indicate higher structural confidence in the binding interface. Although origi-
nally introduced for protein–protein interactions (Zambaldi et al., 2024), this metric has demonstrated
strong correlation with binder quality. To obtain min_ipAE, we input LigandMPNN-designed se-
quences and their respective ligands into Chai-1 (team et al., 2024), and extract the lowest interaction
PAE value between protein and ligand tokens, following the AlphaProteo protocol.

AtomFlow-H AtomFlow-N RFDiffAA Chai
0

2

4

6

8
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_i
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e

Natural Binder: 0.46

SAM

AtomFlow-H AtomFlow-N RFDiffAA Chai

Natural Binder: 0.53

FAD

AtomFlow-H AtomFlow-N RFDiffAA Chai

Natural Binder: 2.06

IAI

AtomFlow-H AtomFlow-N RFDiffAA Chai

Natural Binder: 0.26

OQO

Figure 6: min PAE interaction (min_ipAE) of samples on the evaluation set (lower is better)
predicted by Chai-1. The value of natural binder in PDB is highlighted.

As shown in Figure 6, binders generated by ATOMFLOW-H achieve lower min_ipAE than those
from RFDiffusionAA on 3 of 4 ligands. ATOMFLOW-N performs slightly worse than ATOMFLOW-
H but still shows strong results, without structural hint. Both ATOMFLOW and RFDiffusionAA
produce results comparable to natural complexes. The AutoDock Vina results, shown in Figure 5
and detailed in Figure S2A, indicates that ATOMFLOW also matches or exceeds the performance of
RFDiffusionAA in terms of docking energy, aligning with the trends observed in the min_ipAE
metric. Similar results are observed on the extended evaluation set (Figure S2C,D).

Figure 7: ATOMFLOW-N designs binders with lower vina energy distribution than RFDiffusionAA on
2GJ without the bound structure. Illustrations of one sample for each method with PLIP demonstrates
that the ATOMFLOW-N designed binder has more chemical interactions with the ligand.
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We further compare ATOMFLOW with RFDiffusionAA in a realistic setting where the bound con-
former is unknown. We set the target ligand as luminespib (PDB id: 2GJ), an Hsp90 inhibitor (Pi-
otrowska et al., 2018). A designed protein binder for luminespib may act as a protein drug carrier to
enhance drug efficacy. Luminespib is a molecule ligand with 33 heavy atoms, so that the conformer
is quite flexible when docked to different receptors. We design 10 binders for luminespib using
ATOMFLOW and RFDiffusionAA. The ideal conformer from PDB is provided to RFDiffusionAA,
while no conformer is provided to ATOMFLOW. The binding energy of the designed structures and
one designed sample with PLIP (Adasme et al., 2021) to demonstrate the protein-ligand interaction
are illustrated in Figure 7. It is shown that ATOMFLOW generates more binders with higher binding
affinity than RFDiffusionAA, and significantly outperforms RFDiffusionAA on the lowest energy
among all generated structures. This demonstrates that a proper bound structure is crucial to the
performance of RFDiffusionAA, while ATOMFLOW does not rely on such structure and generates
proper conformers by co-modeling the structure space of proteins and ligands.

5.4 DIVERSITY AND NOVELTY

In this section, we report the diversity and novelty of ATOMFLOW, following common practice in
literature (Krishna et al., 2024; Yim et al., 2023b). Diversity refers to the structural divergence of the
designed binders for a certain ligand, while novelty refers to how close a designed protein is to the
known proteins. For diversity, we generate 100 structures with 200 residues for each ligand, and then
use MaxCluster (Herbert, 2008) to calculate the pairwise structural distance (TMScore) of the outputs
and report the number of clusters using different thresholds of the maximum distance within a cluster.
For novelty, we generate 4 structures with residue count in [100, 101, · · · , 300] for each ligand, and
then calculate the highest TM-score (Zhang, 2005) between a designed structure and any similar
structure searched by FoldSeek (Kempen et al., 2024) (pdbTM), as well as the protein scRMSD.
The search range of pdbTM is all known protein structures in PDB. Results of RFDiffusionAA are
provided in Figure S6.

A B

Figure 8: A: Cluster count based on different thresholds of the maximum difference (TMScore)
within the cluster for each ligand in the evaluation set. ATOMFLOW generates diverse binder folds for
all ligands, not restricted to the existing binder structure. B: Scatter plot of designability (scRMSD) vs.
novelty (pdbTM) for ligands in the evaluation set. ATOMFLOW successfully designs self-consistent
structures with high pdbTM, demonstrating high novelty.
Figure 8A shows that ATOMFLOW produces diverse structures across ligands, with variability
depending on the ligand. Incorporating protein-only data during training helps the model capture
structural patterns beyond known complexes. As shown in Figure 8B, most generated designable
folds remain close to known ones, and the degree of novelty is lower than RFDiffusionAA, likely
due to smaller training scale, consistent with previous reports (Huguet et al.).

6 CONCLUSION AND FUTURE WORK

We propose ATOMFLOW, a de novo protein binder design method for small molecule ligands that ex-
plicitly models ligand flexibility without requiring a fixed conformer. By representing protein–ligand
complexes as unified biotokens and applying an SE(3)-equivariant flow matching framework, ATOM-
FLOW achieves comparable or superior binder design quality to RFDiffusionAA while offering faster
inference and robustness when the ligand binding conformation is unknown. We further introduce
an experimentally validated binding affinity metric for comprehensive evaluation. Future directions
include enabling finer structural control, scaling up training, and extending ATOMFLOW to broader
biomolecules such as DNA, RNA, and metal ions.
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REPRODUCIBILITY STATEMENT

We include the source code of the AtomFlow model and its corresponding checkpoint with a ready-
to-use Gradio interface in the supplementary materials. Instructions for setting up the environment
and launching the web-based interface are provided as a README file. Further details on the model
implementation and training are available in Appendix A.4
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A APPENDIX

A.1 PROTEIN FRAMES

Proteins are composed of amino acid chains linked by peptide bonds, forming a backbone with
protruding side chains. Each amino acid’s position and orientation are described by a local coordinate
system, or protein frame, centered on three key backbone atoms: the alpha carbon (Cα), the carbonyl
carbon (C), and the amide nitrogen (N). These atoms act as reference points for establishing the frame.
The alpha carbon (Cα) typically acts as the origin. The vector from Cα to the amide nitrogen (N) is
normalized to define one axis of the frame. A second axis is defined by the normalized vector from
Cα to the carbonyl carbon (C). The third axis is formed by the cross product of these two vectors,
creating an orthogonal, right-handed coordinate system. The residue frame is typically represented
as an SE(3) transformation T = (R, t), which maps a vector from this local system to the global
coordinate system. In this transformation, t corresponds to the position of Cα in the global system,
and R represents the rotation needed to align the residue’s structure within the global context.

Cα
N C

x
y

z

Figure S1: A protein frame illustration. The Cα, C, N atoms form a panel, which is the xy panel. The
x-axis is defined as the orientation from Cα to N, while the y-axis is on the panel and perpendicular
to the x-axis. The z-axis is perpendicular to the xy panel.

A.2 DETAILS ON BIOTOKENS

Token Features. For ligand atom tokens, the token-level feature set includes: chirality, degree, formal
charge, implicit valence, number of H atoms, number of radical electrons, orbital hybridization,
aromaticity, and ring size. The pair-level feature is provided as one-hot embedding of the bond type.
For residue tokens, no token-level feature is known, while the pair-level feature only contains the
binned distance of residue index between residues. All features are encoded as a one-hot vector and
concatenated.

Token Frames. The final loss we adopted LCFM-FAPE requires aligning the predicted structure to the
local frame of every token. The frames of protein residues can be naturally defined as in Section 3.
However, the frames of ligand atoms could not be chosen directly. Since a frame could be calculated
from the coordinate of 3 atoms, we need to choose an atom triplet for every atom token.

We first obtain a canonical rank of every atom that does not depend on the input order (Schneider
et al., 2015). The atoms are then renamed to their rank. For atoms x with a degree greater than or
equal to 2, we select the lexicographically smallest triplet (u, x, v) to define the frame, where u and
v are neighbors of x. For atoms with a degree of 1, u is the only neighbor of x, and v is chosen as
one of u ’s neighbors. This method ensures that each atom’s frame is defined in a consistent manner,
irrespective of its position in the input sequence, thereby facilitating the model to learn a consistent
structural target.

Extending Token Types and Features. Though ATOMFLOW only considers the interaction between
protein and molecule ligands, the unified biotoken has the potential to extend to all biological entities,
including DNA, RNA, etc, by defining the token position, token frame, local and pair features, and
the representation of the internal structure. For example, an RNA can be represented as a sequence of
nucleotides, with the token position defined as its mass center, and the token frame calculated from
an atom triplet, such as C2-N1-C6.
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The token features can also be extended to support more types of known information. For example,
the local features could also contain an embedding to indicate the preferred secondary structure, or
whether a ligand atom is required to be closer to the designed protein; the pair features could also
contain the motif information with a distance map.

A.3 DETAILS ON THE FLOW MATCHING PROCESS

For all types of tokens, we only consider their token positions to simplify the flow matching process.
Thus, the positions of all tokens lie in the Euclidean space RN×3. Since a complex could be arbitrarily
moved or rotated in the coordinate space without changing its structure, we need an algorithm that
treats different position series as the same if they could be aligned with an SE(3) translation. Thus,
every data point we consider now lies in the quotient space RN×3/SE(3). This quotient space is
proved to be a Riemannian manifold (Diepeveen et al., 2024).

For a Riemannian manifold, the flow matching process could be defined using a premetric (Chen &
Lipman, 2024). A premetric d :M×M→ R should satisfy: 1. d(x, y) ≥ 0 for all x, y ∈ M; 2.
d(x, y) = 0 iff x = y; 3. ∇d(x, y) ̸= 0 iff x ̸= y.

We define our premetric as the minimum point-wise rooted sum of squared distance (RMSD) among
all pairs of possible structures in the original space RN×3 for two elements in the quotient space
d(x, y) = ∥alignx(y)− x∥, which satisfies all three conditions.

Proof. Since the premetric is defined as a norm, it satisfies condition 1 by nature. When x = y, the
best alignment that aligns y to x could derive the exact same position as x, yielding a zero norm.
When x ̸= y, when y is aligned to x, there’s still a structural difference between the structures, thus
the premetric is not zero. For condition 3, by defining y′ = alignx(y), we have

∇d(x, y) = ∇

√√√√ n∑
i=1

(y′i − xi)2 =
y′ − x

||y′ − x||
=

alignx(y)− x

||alignx(y)− x||
≥ 0. (9)

Thus d(x, y) satisfies all the conditions as a qualified premetric.

With such premetric, and a monotonically decreasing differentiable scheduler κ(t) = 1− t, we could
obtain a well-defined conditional vector field that linearly interpolates between the noisy and real
data (Chen & Lipman, 2024)

ut(x|x1) =
d log κ(t)

dt
d(x, x1)

∇d(x, x1)

∥∇d(x, x1)∥2
=

1

1− t
(alignx(x1)− x). (10)

The vector field in equation 10 is calculated by substituting equation 9 into the left side. This vector
field provides the direction for moving straight towards x1, and generates a probability flow that
interpolates linearly between noisy sample x0 and data sample x1.

Since the vector field is defined as a function of x1, we could learn the vector field with a structure
prediction model x̂1(x, t; θ). By substituting equation 10 into equation 2, we obtain the training loss

LCFM(θ) = Et,pdata(x1),pt(x|x1)

∥∥∥∥ 1

1− t
(alignx(x̂1(x, t; θ))− alignx(x1))

∥∥∥∥ . (11)

Loss Function LCFM calculates an aligned RMSD by aligning x1 and x̂1 to x, while the FAPE loss
calculates an averaged RMSD by aligning x̂1 to each residue frame of x1, which could be extended
to the token frame (Appendix A.2). Let alignx,i(y) denote aligning y to the i-th token frame of x, we
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have

LCFM = Et,pdata(x1),pt(x|x1)

∥∥∥∥ 1

1− t
(alignx(x̂1(x, t; θ))− alignx(x1))

∥∥∥∥
≈ Et,pdata(x1),pt(x|x1)

∥∥∥∥∥ 1

1− t
· 1
N

N∑
i=1

(
alignx,i(x̂1(x, t; θ))− alignx,i(x1))

)∥∥∥∥∥
≈ Et,pdata(x1),pt(x|x1)

∥∥∥∥∥ 1

1− t
· 1
N

N∑
i=1

(
alignx1,i

(x̂1(x, t; θ))− alignx1,i
(x1)

)∥∥∥∥∥
≈ Et,pdata(x1),pt(x|x1)

∥∥∥∥∥ 1

1− t
· 1
N

N∑
i=1

(
alignx1,i

(x̂1(x, t; θ))− x1

)∥∥∥∥∥
= LCFM-FAPE

Proposition 1. alignx1
(x̂1) = x1 ⇐⇒ LCFM = 0 ⇐⇒ LCFM-FAPE = 0.

Proof. When alignx1
(x̂1) = x1, we have ∀i, alignx1,i

(x̂1) = x1. As a result, LCFM = LCFM-FAPE =
0. This establishes that:

alignx1
(x̂1) = x1 ⇐⇒ LCFM = 0 and alignx1

(x̂1) = x1 ⇐⇒ LCFM-FAPE = 0. (12)

Now, assume LCFM = 0. Suppose alignx1
(x̂1) ̸= x1. Then for all transformations R and t, we

have Rx̂1 + t ̸= x1, which implies: ∥alignx1
(x̂1) − x1∥ ̸= 0, leading to LCFM ̸= 0. This is a

contradiction. Therefore, alignx1
(x̂1) = x1. This proves that

LCFM = 0 ⇐⇒ alignx1
(x̂1) = x1. (13)

Similarly, assume LCFM-FAPE = 0. Suppose alignx1
(x̂1) ̸= x1. Then: ∥alignx1,i

(x̂1) − x1∥ ̸= 0,

which leads to LCFM-FAPE ̸= 0, again a contradiction. Therefore, alignx1
(x̂1) = x1. This proves that:

LCFM-FAPE = 0 ⇐⇒ alignx1
(x̂1) = x1. (14)

The proposition is proved by combining equation 12,13,14.

This means that both LCFM and LCFM-FAPE provide an optimization direction towards minimizing the
SE(3) invariant structural difference between the predicted structure and the ground truth structure.
Thus, we adopt LCFM-FAPE as a realistic approximation of LCFM and adopt it as the training objective
during evaluation.

We divide the FAPE loss into protein-protein interaction, protein-ligand interaction, ligand-ligand
interaction, and assign different Zs for the three parts. For the auxiliary head, we adopt the cross-
entropy loss averaged over all token pairs for the predicted distance. The final training loss

L = α1LCFM-FAPE-pp + α2LCFM-FAPE-pl + α3LCFM-FAPE-ll + α4Laux. (15)

A.4 DETAILS ON THE PREDICTION NETWORK

Structure Module Specifications. The main components of the structure module are derived from
Alphafold 2 (Jumper et al., 2021), while our implementation builds on top of the widely acknowledged
reimplementation OpenFold (Ahdritz et al., 2024). The TransformerStack consists of 14 layers of
simplified Evoformer block, and the IPAStack consists of 4 layers of Invariant Point Attention (IPA)
blocks. The MSA operations in the Evoformer block are simplified by replacing the operations on
the MSA feature matrix with the single representation si. The weights of the IPA blocks are shared,
and the structural loss is calculated on the outputs of each block and averaged.

Training Details. During training, we equally sample data from the SCOPe dataset (v2.08) and the
PDBBind dataset (2020). We simply drop the data with more than 512 tokens, and we don’t crop
the filtered complexes since the cutoff is large enough and only filters out a relatively small portion
of the data. We train our model on 10 NVIDIA RTX 4090 acceleration cards, with a batch size set
to 10, which means the batch size on each device is set to 1. We use the Adam Optimizer (Kingma,
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2014) with a weight-decaying learning rate scheduler, starting from 10−3 and decays the learning
rate by 0.95 every 50k steps. We separate the training process into two stages: 1) initial training,
α1 = 0.5, α4 = 0.3, α2 = α3 = 0; 2) finetuning, α1 = α2 = α3 = 0.5, α4 = 0.3.

Ligand tokens are not given during the first training stage. The first stage trains an unconditional
protein generation model, while the second stage turns it to a conditional protein binder and ligand
conformer generation model. The FAPE loss is defined as an average of all pairs of tokens in the
original paper, so the calculation process first yield a FAPE matrix and then produce the average
value of the matrix. The protein-protein, protein-ligand and ligand-ligand loss calculates the average
value of the sub-matrixs defined as (row: protein, col: protein), (row: protein, col: ligand), and (row:
ligand, col:ligand).

Since training a protein design model is significantly time-consuming, the design choices of our
training strategy are largely determined by grid searching possible design space and we save the
training trajectory of the first 30∼50k steps. We compare the training trajectories and select the best
configuration that meets the following criteria: a) The final distogram loss should be close to the
minimum we get among the configurations (around 2.0). b) The LCFM-FAPE should not decline too
fast at the first 10k steps. The first 10k steps are for the transformer stack to learn a relatively steady
output, indicated by the decline of the distogram loss. A decline of LCFM-FAPE at this stage will result
in an undesired local minimum. Then LCFM-FAPE should decline fast right after the distogram loss
turns to decline much smoother. We select the configuration with the lowest LCFM-FAPE at the end of
training.

We decide the end of each training stage when the training converges, with the following criteria: a)
the decline rate of every single loss is small. b) the structural violence of sampled structures (counts
of CA atom violation) converges.

An initial study on directly training the second stage shows unsatisfactory training trajectory. Since
the ligand conformer is way easier to generate compared to protein folds, the FAPE loss declines too
fast even before the distogram loss, resulted in unstable TransformerStack output, and leading to a
diverge of the model after around 30k steps. The resulted model with minimum loss is able to predict
the ligand structure, with random protein residue position, which is unusable.

A.5 EVALUATION DETAILS

Specifications. Following RFDiffusionAA, we use FAD, SAM, IAI, and OQO as the selected
evaluation set. FAD and SAM are witnessed by both models as training data, while IAI and OQO are
not, demonstrating the generalization ability. To further investigate the performance of our method,
we conduct experiments on an extended set of 20 ligands (ligands from PDB id 6cjs, 6e4c, 6gj6, 5zk7,
6qto, 6i78, 6ggd, 6cjj, 6i67, 6iby, 6nw3, 6o5g, 6hlb, 6efk, 6gga, 6mhd, 6i8m, 6s56, 6tel, and 6ffe).
The extended dataset includes ligand sizes (including hydrogen) ranging from 21 to 104 in length.

Extended Set. We illustrate the designability (scRMSD) and binding affinity (Vina energy) of
ATOMFLOW-N in Figure S2. The extended evaluation shows that the performance of ATOMFLOW
on the extended set is similar to the evaluation set shown in the main article, and demonstrates that
ATOMFLOW is able to tackle almost all kinds of ligands.

Repurposing Chai-1 for Structure Generation. To enable protein design with Chai-1, we replace
the protein sequence with N UNK tokens as a placeholder chain and use the ligand SMILES string as
the second chain. This allows Chai-1 to treat the input as a protein–ligand complex and generate 3D
structures accordingly. No model weights or architecture were changed; only the input formatting
was adapted. Despite not being trained for design, Chai-1 can produce reasonable structures under
this setup; however, the resulting protein–ligand interfaces often lack clear or meaningful binding
patterns.

A.6 ADDITIONAL RESULTS

Speed Comparasion with RFDiffusionAA. We conducted experiments to generate samples for
the ligand FAD using AtomFlow and RFAA, with amino acid lengths of 100, 150, 200, 250, and
300. For each length, we measured the time (in minutes) required to generate a single sample. Each
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experiment was repeated three times, and we reported the average time along with the standard error.
During the experiments, each method had exclusive access to its respective GPU.

L = 100 L = 150 L = 200 L = 250 L = 300

AtomFlow 0.49 ± 0.0 0.51 ± 0.01 0.58 ± 0.01 0.79 ± 0.01 0.88 ± 0.0
RFAA 2.48 ± 0.03 2.75 ± 0.04 3.23 ± 0.01 4.02 ± 0.04 4.58 ± 0.05

Speedup 5.06x 5.39x 5.57x 5.09x 5.2x

Table 3: Comparison of AtomFlow and RFAA at different sequence lengths L
Extended Evaluation. We compare AtomFlow-N and RFDiffusionAA on the extended set of 20
ligands. The results are shown in Figure S2. ATOMFLOW matching or surpassing the performance of
RFDiffusionAA on self-consistency RMAD, Vina energy and min_ipAE.

Discussion on Pocket Design Models. While the pocket design models address ligand-protein
interactions, their focus is limited to refining pocket residues within a predefined radius. They lack
the capacity to design full protein folds, making direct comparison with AtomFlow infeasible. We
conducted an unfair experiment with PocketGen by providing a template binder to it, as detailed in
Tabel 4. Despite this, the results demonstrate that AtomFlow consistently outperforms PocketGen in
terms of fold quality across all radii.

For this experiment, we used the natural binders of four ligands—FAD (7bkc), SAM (7c7m), IAI
(5sdv), and OQO (7v11)—as input. To evaluate the design capability of PocketGen (PG) under
different constraints, we progressively increased the design radius (minimum distance to ligand)
from 3.5 to 9.5. The masked target area expanded with the radius, requiring the model to redesign
increasingly larger regions of the protein. When the radius exceeded the protein’s dimensions, all
residues were masked, simulating our full-design setting. The table below presents the min/median
scRMSD values for designs generated by PocketGen at each radius. For reference, scRMSD <
2 is generally considered a successful design. Notably, PocketGen’s performance deteriorated
significantly as the radius increased, reflecting its reliance on template residues. At radius=8 for
OQO, PocketGen generated designs with several residues misaligned with the ligand, leading to
abnormally high scRMSD values. PocketGen does not support radius settings beyond 10, preventing
direct simulation of the fully template-free design scenario. The results of ATOMFLOW are from our
main experiment.

Ligand AtomFlow (r=∞) PG (r=3.5) PG (r=5) PG (r=6.5) PG (r=8) PG (r=9.5)
FAD 0.79/3.74 7.10/7.38 6.75/7.81 7.29/8.35 20.92/24.23 23.12/25.23
SAM 0.83/2.01 2.12/2.62 2.77/2.99 2.94/4.03 12.39/14.49 13.79/14.74
IAI 0.56/1.82 0.71/0.85 0.95/1.02 2.04/2.28 3.59/5.53 9.02/11.71
OQO 0.59/1.63 1.20/1.26 1.70/1.79 2.40/2.45 11.59/11.94 2.13/2.41

Table 4: Comparison of AtomFlow and PocketGen (PG) on ligand-protein design tasks. For each
ligand, we report the minimum/median scRMSD (in Å) of designed structures. AtomFlow results are
shown for the full-design setting (r = inf), while PocketGen results are shown for increasing design
radii (r = 3.5 to 9.5). Lower scRMSD indicates better structural accuracy. PocketGen performance
degrades as the design radius increases, highlighting its reliance on template residues.
Geometrical Distributions of Generated Structures. We evaluated the common chemical bond
length generated by AtomFlow vs. the ground truth bond length in our training set. Results shown
in Figure S3 demonstrate that the AtomFlow generated ligands have similar geometric distribution
to ground truth. We further evaluated the generated structures by plotting the Ramachandran plots.
Results shown in Figure S4 suggests that the proteins generated by AtomFlow effectively capture the
key structural characteristics of natural proteins.

Chemical Validity of Generated Structures. We use PoseCheck, a toolkit developed as part of
a benchmark for structure-based drug design. While our primary objective is to develop a ligand-
binding protein, instead of drug design, we find their metrics valuable for assessing the interaction
and chemical validity of the protein-ligand complex. We report the following three metrics:

Clash (lower is better) evaluates the plausibility of protein-ligand binding poses by measuring the
number of atomic pairs within a distance smaller than their van der Waals radii.
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Strain (lower is better) assesses ligand conformational plausibility by calculating the difference in
internal energy before and after ligand relaxation.

Interactions (higher is better) quantifies the number of chemical interactions formed in protein-ligand
complexes, focusing on four types: Hydrogen Bond Acceptors, Hydrogen Bond Donors, Van der
Waals Contacts, and Hydrophobic Interactions. Hyrophobic interactions and Van der Waals Contacts
are illustrated separately.

Diversity and Novelty Results of the Baseline. We conducted the diversity and novelty experiment
on RFDiffusion-AA with the same configuration as our results reported in the main text. The results
are shown in Figure S6. The diversity of AtomFlow designs is better than RFDiffusion-AA, while
the AtomFlow generated results tend to be more conservative in terms of pdbTM novelty. We believe
this is because we didn’t train AtomFlow on a full training set including all PDB structures and the
distillation data. This is our future work and we’ll release an updated model once available.

A.7 LLM USAGE

We use large language models (LLMs) for polishing writing, performing grammar checks, and
implementing various utility scripts. LLMs made no contribution to experimental data analysis or the
generation of research ideas. All outputs produced by LLMs were carefully reviewed and verified by
the authors.
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B

C

A

D

Figure S2: A: scRMSD and Vina energy of designs for the evaluation set; B: scRMSD of designs
for the extended set; C: Vina energy of designs for the extended set; D: min_ipAE results for the
extended set.
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Dataset AtomFlow

Figure S3: Chemical bond distribution of AtomFlow generated ligands for the extended set and
ground truth ligands in the PDBBind dataset.

Figure S4: The Ramachandran plots for the generated protein (left) and the PDBBind protein (right),
which demonstrate comparable coverage in the primary secondary structure regions.
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AtomFlow RFDiffusionAA Ground Truth

Figure S5: Chemical bond distribution of AtomFlow generated ligands for the extended set and
ground truth ligands in the PDBBind dataset.

BA

Figure S6: A: Cluster count based on different thresholds of the maximum difference within the
cluster for each ligand in the evaluation set. B: Scatter plot of designability (scRMSD) vs. novelty
(pdbTM) for ligands in the evaluation set.
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