
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AUTOMATED KNOWLEDGE CONCEPT ANNOTATION
AND QUESTION REPRESENTATION LEARNING
FOR KNOWLEDGE TRACING

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge tracing (KT) is a popular approach for modeling students’ learning
progress over time, which can enable more personalized and adaptive learning.
However, existing KT approaches face two major limitations: (1) they rely heav-
ily on expert-defined knowledge concepts (KCs) in questions, which is time-
consuming and prone to errors; and (2) KT methods tend to overlook the semantics
of both questions and the given KCs. In this work, we address these challenges and
present KCQRL, a framework for automated knowledge concept annotation and
question representation learning that can improve the effectiveness of any existing
KT model. First, we propose an automated KC annotation process using large
language models (LLMs), which generates question solutions and then annotates
KCs in each solution step of the questions. Second, we introduce a contrastive
learning approach to generate semantically rich embeddings for questions and
solution steps, aligning them with their associated KCs via a tailored false negative
elimination approach. These embeddings can be readily integrated into existing
KT models, replacing their randomly initialized embeddings. We demonstrate
the effectiveness of KCQRL across 15 KT models on two large real-world Math
learning datasets, where we achieve consistent performance improvements.

1 INTRODUCTION

The recent years have witnessed a surge in online learning platforms (Adedoyin & Soykan, 2023;
Gros & García-Peñalvo, 2023), where students learn new knowledge concepts, which are then tested
through exercises. Needless to say, personalization is crucial for effective learning: it allows that new
knowledge concepts are carefully tailored to the current knowledge state of the student, which is
more effective than one-size-fits-all approaches to learning (Cui & Sachan, 2023; Xu et al., 2024).
However, such personalization requires that the knowledge of students is continuously assessed,
which highlights the need for knowledge tracing (KT).

In KT, one models the temporal dynamics of students’ learning processes (Corbett & Anderson,
1994) in terms of a core set of skills, which are called knowledge concepts (KCs). KT models are
typically time-series models that receive the past interactions of the learner as input (e.g., her previous
exercises) in order to predict response of the learner to the next exercise. Early KT models were
primarily based on logistic or probabilistic models (Corbett & Anderson, 1994; Cen et al., 2006;
Pavlik et al., 2009; Käser et al., 2017; Vie & Kashima, 2019), while more recent KT models build
upon deep learning (Piech et al., 2015; Abdelrahman & Wang, 2019; Long et al., 2021; Liu et al.,
2023b; Huang et al., 2023; Zhou et al., 2024; Cui et al., 2024).

Yet, existing KT models have two main limitations that hinder their applicability in practice (see
Fig. 1). 1 They require a comprehensive mapping between KCs and questions, which is typically
done through manual annotations by experts. However, such KC annotation is both time-intensive and
prone to errors (Clark, 2014; Bier et al., 2019). While recent work shows that LLM-generated KCs
may be more favorable for human subjects (Moore et al., 2024), its success has not yet translated into
improvements in KT. 2 KT models overlook the semantics of both questions and KCs. Instead, they
merely treat them as numerical identifiers, whose embeddings are randomly initialized and are learned
throughout training. Therefore, existing KT models are expected to “implicitly” learn the association
between questions and KCs and their sequential modeling for student histories, simultaneously. In

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

/ / /Question / KC IDs

Randomly
initialized

embeddings

Knowledge
states

KT model

Predictions

Limitations:

 Requiring manual annotations of
question-KC mappings from domain experts

 Overlooking the semantics of questions
and KCs.

Student

History of
exercises

1

2

Figure 1: Overview of standard KT formulation and its limitations.

this paper, we hypothesize – and show empirically – that both 1 and 2 are key limitations that limit
the predictive performance.

In this work, we propose a novel framework for automated knowledge concept annotation and
question representation learning, which we call KCQRL1. Our KCQRL framework is flexible and can
be applied on top of any existing KT model, and we later show that our KCQRL consistently improves
the performance of state-of-the-art KT models by a clear margin. Importantly, our framework is
carefully designed to address the two limitations 1 and 2 from above. Technically, we achieve this
through the following three modules:

1. We develop a novel, automated KC annotation approach using large language models (LLMs)
that both generates solutions to the questions and labels KCs for each solution step. Thereby, we
effectively circumvent the need for manual annotation from domain experts (→ limitation 1).

2. We propose a novel contrastive learning paradigm to jointly learn representations of question
content, solution steps, and KCs. As a result, our KCQRL effectively leverages the semantics of
question content and KCs, as a clear improvement over existing KT models (→ limitation 2).

3. We integrate the learned representations into KT models to improve their performance. Our
KCQRL is flexible and can be combined with any state-of-the-art KT model for improved results.

Finally, we demonstrate the effectiveness of our KCQRL framework on two large real-world datasets
curated from online math learning platforms. We compare 15 state-of-the-art KT models, which
we combine with our KCQRL framework. Here, we find consistent evidence that our framework
improves performance by a large margin.

2 PRELIMINARIES: STANDARD FORMULATION OF KNOWLEDGE TRACING

Knowledge tracing: We consider the standard formulation of KT (e.g., Piech et al., 2015; Sonkar
et al., 2020; Zhou et al., 2024), which is the performance prediction of the next exercise for a student
based on time-series data (see Fig. 1). Specifically, for each student, the history of t exercises are
modeled as {ei}ti=1 with exercises ei. Each exercise ei is a 3-tuple, i.e. ei = {qi, {ci,j}

Nqi

j=1 , ri},
where qi ∈ Q is the question ID, ci,j ∈ C is a KC ID of qi, and ri ∈ {0, 1} is the binary response
(=incorrect/correct) of student s for exercise ei.

The aim of a KT model Fθ is to predict the binary response r̂t+1 of a student given the history of
exercises and information about the next exercise. We denote the predicted response by r̂t+1 =

Fθ(qt+1, {ct+1,j}
Nqt+1

j=1 , {ei}ti=1).

Limitations: In practice, the above KT formulation has two key limitations: 1 It requires thousands
of questions from Q to be manually annotated with each relevant KC from C among hundreds of
categories Choi et al. (2020b); Wang et al. (2020); Liu et al. (2023c). Domain experts must ensure
the consistency of manual annotations, a process that is not only resource-intensive but also prone
to human error (Moore et al., 2024). 2 Existing KT models overlook the semantic context of both
questions and knowledge concepts (KCs), which weakens their ability to model learning sequences
effectively. Typically, KT models initialize random embeddings Emb(qi) for each question qi ∈ Q
and/or Emb(ci,j) for each KC ci,j ∈ C (Abdelrahman et al., 2023; Zhu et al., 2023). The embeddings
are then trained as part of the supervised learning objective of the KT task. As a result, the parameters
θ of a KT model Fθ are trained simultaneously for both (a) learning the relationships between
questions and KCs and (b) sequential dynamics of student learning histories.

1Our code is available at https://anonymous.4open.science/r/KCQRL and also in the supplementary material.
Upon acceptance, we will move our codes to a public GitHub repository.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

/ / /Question / KC IDs

Randomly
initialized

embeddings

Knowledge
states

KT model

Understanding of multiplication

Understanding of addition

Factoring out a common factor

Simplifications of expressions

Distributive property

Retrieve question
content from corpus

1) Solution step
generation

2) KC annotation

3) Step-KC mapping

Encoder

Representation
learning of
a question

Representation
learning of

a solution step

initialize the
embeddings with

 learned representations

KC Annotation
via LLM (Sec 3.1)

Representation learning
of questions (Sec. 3.2)

Improving KT algorithms
via learned question

embeddings (Sec. 3.3)

x

Predictions

text of a question text of a solution step text of a KC postive pair in CL negative pair in CL false-negative pair in CL

Standard KT Formulation

Figure 2: Overview of our KCQRL framework and how it can be applied on top of existing
KT models. Top left: simplified illustration of the standard KT formulation, where the embeddings
of questions and/or KC identifiers are initialized randomly for the prediction task. Our KCQRL
improves the standard KT formulation via three modules: (1) Bottom left: shows how question
IDs are translated into question content, solution steps (simplified for readability), and KCs via KC
annotation (Sec. 3.1). (2) Bottom right: shows how these annotations are leveraged for representation
learning of questions via a tailored contrastive learning and false negative elimination (Sec. 3.2).
(3) Top right: shows how these learned representations initialize the embeddings of a KT model to
improve the performance of the latter (Sec. 3.3).

Proposed KT formulation: In our work, we address the limitations 1 and 2 from above, and for
this purpose, we propose a new formulation of the KT task. Specifically, our framework proceeds as
follows: 1) We propose an automated KC annotation framework (Sec. 3.1) using chain-of-thought
prompting of large language models (LLMs). Thereby, we effectively circumvent the need for
manual annotation by domain experts (→ limitation 1). (2) We disentangle the two objectives of KT
algorithms and intentionally integrate the semantic context of both questions and KCs (→ limitation
2). Here, we first introduce a contrastive learning framework (Sec. 3.2) to generate representations
for questions and KCs independently of student learning histories. Then, we leverage the learned
representations of questions (Sec. 3.3 to model the sequential dynamics of student learning histories
via existing KT algorithms. Importantly, our proposed framework is generalizable and can be
combined with any existing KT model for additional performance improvements.

3 PROPOSED KCQRL FRAMEWORK

Our KCQRL framework has three main modules (see Fig. 2): (1) The first module takes the question
content and annotates the question with a step-by-step solution and the corresponding knowledge
concepts (KCs) (Sec. 3.1). (2) The second module learns the representations of questions by
leveraging solution steps and KCs via a tailored contrastive learning objective (Sec. 3.2). (3) The
third module integrates the learned question representations into existing KT models (Sec.3.3).

3.1 KNOWLEDGE CONCEPT ANNOTATION VIA LLMS (MODULE 1)

Our KCQRL leverages the complex reasoning abilities of an LLM Pϕ(⋅) and annotates the KCs of a
question in a grounded manner. This is done in three steps: (i) the LLM generates the step-by-step
solution to reveal the underlying techniques to solve the problem. (ii) The LLM then annotates the
required KCs to solve the problem, informed by the solution steps. (iii) Finally, it further maps each
solution step with its underlying KCs, which is particularly important for the second component of
our framework. The details of these three steps are given below:2

2For each step, we provide the exact prompts in Appendix H.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(i) Solution step generation: For a question q ∈ Q, our framework generates the solution steps
s1, . . . , sn via chain-of-thought (CoT) prompting (Wei et al., 2022) of Pϕ(.). Here, each sk is a
coherent language sequence that serves as an intermediate step towards solving the problem q. To
solve the problems, sk is sampled sequentially using a decoding algorithm; in our framework, we use
temperature sampling, i. e., sk ∼ Pϕ(sk ∣ prompt(q), s1, . . . , sk−1), where sk is the k-th solution
step of a question q and prompt(q) is the CoT prompt for q. Note that CoT prompting allows us to
decompose the solutions in multiple steps, which is especially relevant for questions that require
complex problem-solving such as in Maths, Computer Science, Physics, Chemistry, and Medicine.

(ii) KC annotation: For the question q from above, the LLM further generates relevant KCs
c1, . . . , cm based on the question content of q and the solutions steps {sk}nk=1 generated from
the previous step (i). Similar to previous step, the cj are sampled sequentially, i. e., cj ∼

Pϕ(cj ∣ prompt(q, {sk}nk=1), c1, . . . , cj−1), where cj is the j-th generated KC of question q and
prompt(q, {sk}nk=1) is the prompt for an LLM that leverages the question content and solution steps.

(iii) Solution step → KC mapping: Not all KCs have been practiced at each solution step of a
problem. To better understand the association between each solution step and KC, our KCQRL
framework further maps each solution step to its associated KCs. Specifically, Pϕ(.) is presented
with the question content q, the solution steps {sk}nk=1, and the KCs {cj}mj=1. Then, the LLM is asked
to sequentially generate the relevant pairs of solution step and KC, i. e.,

(sπs(l), cπc(l)) ∼ Pϕ((sπs(l), cπc(l)) ∣ prompt(q, {sk}nk=1, {cj}mj=1), (sπs(1), cπc(1)), . . . , (sπs(l−1), cπc(l−1))),
with the following variables: (sπs(l), cπc(l)) is the l-th generated pair of solution step and KC; πs(l)
denotes the index of a solution step (from 1 to n) for the l-th generation; πc(l) analogously denotes
the index of a KC (from 1 to m) for the l-th generation; and prompt(q, {sk}nk=1, {cj}mj=1) is the
prompt that incorporates the question content, the solution steps, and the KCs.

3.2 REPRESENTATION LEARNING OF QUESTIONS (MODULE 2)
Our KCQRL framework provides a tailored contrastive learning (CL) approach to generate embed-
dings for questions and solution steps that are semantically aligned with their associated KCs.3 A
naïve approach would be to use a pre-trained LM, which can then generate general-purpose em-
beddings. However, such general-purpose embeddings lack the domain-specific focus required in
education. (We provide evidence for this in our ablation studies in Sec. 5.2.) To address this, CL
allows us to explicitly teach the encoder to bring question and solution step embeddings closer to the
representations of their relevant KCs. After CL training, these ‘enriched’ embeddings are aggregated
and used as input for the downstream KT model to improve the modeling capabilities of the latter.

We achieve the above objective via a carefully designed CL loss. CL has shown to be effective in
representation learning of textual contents in other domains, such as information retrieval (Karpukhin
et al., 2020; Khattab & Zaharia, 2020; Zhu et al., 2023), where CL was used to bring the relevant
query and document embeddings closer. However, this gives rise to an important difference: In
our framework, we leverage CL to bring question embeddings closer to their KC embeddings, and
solution step embeddings to their KC embeddings, respectively.

To bring the embeddings of relevant texts closer, our CL loss should learn similar representations for
the positive pair (e. g., the question and one of its KCs) in contrast to many negative pairs (e. g., the
question and a KC from another question) from the same batch. In our setup, different questions in the
same batch can be annotated with semantically similar KCs (e. g., UNDERSTANDING OF ADDITION
vs. ABILITY TO PERFORM ADDITION). Constructing the negative pairs from semantically similar
KCs adversely affects representation learning. This is an extensively studied problem in CL for other
domains, and it is called false negatives (Chen et al., 2022; Huynh et al., 2022; Yang et al., 2022;
Sun et al., 2023b; Byun et al., 2024). Informed by the literature, we carefully design a mechanism
to pick negative pairs from the batch that avoids false negatives. For this, we consider the semantic
information in annotated KCs, i. e., before the CL training, which we use to cluster the KCs that share
similar semantics. Then, for a given KC in the positive pair, we discard other KCs in the same cluster
when constructing the negative pairs.

Formally, after the annotation steps from the previous modules, a question qi has Ni solution steps
{sik}Ni

k=1 and Mi knowledge concepts {cij}Mi

j=1. To avoid false negatives in CL, we cluster all KCs of

3For an introduction to CL, we refer to (Oord et al., 2018; Chen et al., 2020; He et al., 2020).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

all questions in the corpus {ci′j ′}
N,Mi′

i′=1,j ′=1
via a clustering algorithm A(⋅). As a result, we have that, if

cij and ci′j ′ are semantically similar, then A(cij) = A(ci′j ′).

To train the encoder LM Eψ(⋅) with our tailored CL objective, we first compute the embeddings of
question content, solution steps, and KCs via

z
q
i = Eψ(qi), z

s
ik = Eψ(sik), z

c
ij = Eψ(cij). (1)

We then leverage the embeddings to jointly learn (i) the representation of the question content and
(ii) the representation of the solution steps. We describe (i) and (ii) below, as well as the training
objective to learn both jointly.

(i) Learning the representation of a question content (via Lquestioni
): Each question in the corpus

can be associated with more than one KCs. Hence, the objective here is to simultaneously achieve
two objectives: (a) bring the embeddings of a given question closer to the embeddings of its KCs
(≙positive pairs) and (b) push it apart from the embeddings of irrelevant KCs (≙negative pairs
without false negatives). For a question qi and its KC cij , we achieve this by the following loss

Lq(zqi , z
c
ij) = − log

sim(zqi , z
c
ij)

sim(zqi , zcij) +∑
i
′
∈B
i
′
≠i

∑Mi′

j ′=1
I{A(cij)≠A(ci′j′)} sim(zqi , zci′j ′)

, (2)

where sim(zqi , z
c
ij) = exp (z

q
i ⋅z

c
ij

τ∥zqi ∥⋅
ÂÂÂÂÂz

c
ij
ÂÂÂÂÂ
) and where B is the set of question IDs in the batch. The

indicator function I{A(cij)≠A(ci′j′)} (in blue) eliminates the false negative question-KC pairs. Note
that the latter distinguishes our custom CL loss from the standard CL loss.

Recall that each question qi can have multiple KCs, i. e., {cij}Mi

j=1. Hence, we bring the embedding of
qi closer to all of its KCs via

Lquestioni =
1

Mi

Mi

∑
j=1

Lq(zqi , z
c
ij). (3)

(ii) Learning the representation of a solution step (via Lstepi
): We now proceed similarly to our

KC annotation, which is also grounded in the solution steps. Hence, we carefully train our encoder
Eψ(⋅) in a grounded manner to the solution steps. Here, our objective is two-fold: (a) to bring the
embedding of a solution step closer to the embeddings of its KCs, and (b) to separate it from the
embeddings of irrelevant KCs. For a solution step sik and its KC cij , we achieve this by the following
loss

Ls(zsik, zcij) = − log
sim(zsik, zcij)

sim(zsik, zcij) +∑i′∈B ∑Mi′

j ′=1
I{A(cij)≠A(ci′j′)} sim(zsik, zci′j ′)

, (4)

where sim(⋅, ⋅), B and the indicator function (in blue) are defined in the same as earlier.

Different from (i), not all KCs {cij}Mi

j=1 of a question qi are relevant to a particular solution step sik.
For this, we leverage the mapping from solution step to KC from the first module of our KCQRL
framework. Based on this mapping, we define P(sik) as the set of relevant KCs (i. e., cij) for sik, so
that we can consider only the relevant KCs in the loss. Overall, for a question qi, we compute the
loss via

Lstepi =
1

Ni

Ni

∑
k=1

1

∣P(sik)∣
∑

j∈P(sik)
Ls(zsik, zcij). (5)

Training objective: Our framework jointly learns the representations of the questions and the
representations of the corresponding solution steps. Specifically, for a batch of questions B, the
overall training objective is given by

L =
1

∣B∣ ∑
i∈B

Lquestioni + αLstepi , (6)

where α controls the balance between the contributions of Lquestioni and Lstepi .
4

4Since both losses are already normalized by the number of KCs and steps, our initial experiments indicated
that a choice of α = 1 yields very good performance and that the need for additional hyperparameter tuning can
be circumvented. Hence, we set α = 1 for all experiments.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3 IMPROVING KNOWLEDGE TRACING VIA LEARNED QUESTION EMBEDDINGS (MODULE 3)

The final component of our KCQRL framework proceeds in a simple yet effective manner by
integrating the learned representations of each question into existing KT models. To achieve this, we
simply replace the randomly initialized question embeddings of the KT model Fθ with our learned
representations. To keep the dimensionality of the embeddings consistent across the questions with
different number of solution steps, we calculate the embedding of a question via

Emb(qi) = [zqi ; z̃
s
i], z̃

s
i =

1

Ni

Ni

∑
k=1

z
s
ik. (7)

After this step, the KT model Fθ is trained based on its original loss function.

Note that, without loss of generality, the above approach can be applied to KT models that capture
sequences of KCs over time. Here, the KC embeddings are replaced with our learned question
embeddings, and, for the training/testing, question IDs are provided instead of KC IDs. If a KT model
leverages both question and KC embeddings, we then replaced the question embeddings with our
learned embeddings and fix KC embeddings to a vector with zeros to have a fair comparison and to
better demonstrate the effectiveness of our work.

4 EXPERIMENTAL SETUP

Datasets: We show the effectiveness of our framework on two large-scale, real-world datasets for
which high-quality question contents are available (Table 1). These are: XES3G5M (Liu et al.,
2023c) and Eedi (Eedi, 2024). Both datasets are collected from online math learning platforms
and are widely used to model the learning processes of students. Both datasets include data from
thousands of students and questions, and millions of interactions, and, hence, these datasets are ideal
for benchmarking various KT models and effectively demonstrating the impact of question semantics.
Of note, the XES3G5M dataset was originally composed in Chinese, which we translated into English
and made it available for future research. We additionally provide KC annotations of our KCQRL
framework (i. e., the output of our module 1 in Sec. 3.1) for the XES3G5M dataset. We provide
further details in Appendix B.

Table 1: Overview of datasets.
Dataset # Students # KCs # Questions # Interactions Language

XES3G5M (Liu et al., 2023c) 18,066 865 7,652 5,549,635 English (translated from Chinese)
Eedi (Eedi, 2024) 47,560 1,215 4,019 2,324,162 English

Baselines: Note that our framework is highly flexible and works with any state-of-the-art KT model.
We thus consider a total of 15 KT models: DKT (Piech et al., 2015), DKT+ (Yeung & Yeung, 2018),
KQN (Lee & Yeung, 2019), qDKT (Sonkar et al., 2020), IEKT (Long et al., 2021), AT-DKT (Liu
et al., 2023a), QIKT (Chen et al., 2023), DKVMN (Zhang et al., 2017), DeepIRT (Yeung, 2019),
ATKT (Guo et al., 2021), SAKT (Pandey & Karypis, 2019), SAINT (Choi et al., 2020a), AKT
(Ghosh et al., 2020), simpleKT (Liu et al., 2023b). and sparseKT (Huang et al., 2023). For all
the baselines, we make the following comparison: (a) the original implementations without our
framework versus (b) the KT model together with our KCQRL framework. Hence, any performance
improvement must be attributed to our framework.

We leverage pykt library (Liu et al., 2022b) for the implementation. We follow prior literature (e.g.,
Piech et al., 2015; Sonkar et al., 2020; Zhou et al., 2024) and evaluate the performance of KT models
based on the AUC.

Implementation details of KCQRL: We leverage the reasoning abilities of GPT-4o5 for our LLM
Pϕ(⋅) in Sec. 3.1. We provide the exact prompts in Appendix H. We use BERT (Devlin, 2019)
as our LLM encoder Eψ(⋅) for representation learning in Sec. 3.2. For the elimination of false
negative pairs, we use HDBSCAN (Campello et al., 2013) as the clustering algorithm A(⋅) over
Sentence-BERT (Reimers & Gurevych, 2019) embeddings of KCs. For training Eψ(⋅), we use
Nvidia Tesla A100 with 40GB GPU memory. We follow the standard five-fold cross-validation
procedure to tune the parameters of the KT models Fθ(⋅) in Sec. 3.3 and report results on the test set.
For the KT models, we use NVIDIA GeForce RTX 3090 with 24GB GPU memory. Further details
are given in Appendix D.

5The exact version is gpt-4o-2024-05-13 at https://platform.openai.com/docs/models/gpt-4o

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 RESULTS

5.1 PREDICTION PERFORMANCE

Main results: Table 2 reports the performance of different KT models, where we each compare
in two variants: (a) without (i. e., Default) versus (b) with our framework. We find the following:
(1) Our KCQRL framework consistently boosts performance across all KT models and across all
datasets. The relative improvements range between 1 % to 7 %. (2) Our framework improves the
state-of-the-art (SOTA) performance on both datasets. For XES3G5M, the AUC increases from
82.24 to 83.04 (+0.80), and, for Eedi, from 75.15 to 78.96 (+3.81). (3) For KT models that have
otherwise a lower performance, the performance gains from our KCQRL framework are particularly
large. Interestingly, this helps even low-performing KT models to reach near-SOTA performance
when provided with semantically rich inputs from our framework. Takeaway: Our framework leads
to consistent performance gains and achieves SOTA performance.

Table 2: Improvement in the performance of KT models from our KCQRL framework. Shown:
AUC with std. dev. across 5 folds. Improvements are shown as both absolute and relative (%) values.

Model XES3G5M Eedi

Default w/ KCQRL Imp. (abs.) Imp. (%) Default w/ KCQRL Imp. (abs.) Imp. (%)

DKT 78.33 ± 0.06 82.13 ± 0.02 +3.80 +4.85 73.59 ± 0.01 74.97 ± 0.03 +1.38 +1.88
DKT+ 78.57 ± 0.05 82.34 ± 0.04 +3.77 +4.80 73.79 ± 0.03 75.32 ± 0.04 +1.53 +2.07
KQN 77.81 ± 0.03 82.10 ± 0.06 +4.29 +5.51 73.13 ± 0.01 75.16 ± 0.04 +2.03 +2.78
qDKT 81.94 ± 0.05 82.13 ± 0.05 +0.19 +0.23 74.09 ± 0.03 74.97 ± 0.04 +0.88 +1.19
IEKT 82.24 ± 0.07 82.82 ± 0.06 +0.58 +0.71 75.12 ± 0.02 75.56 ± 0.02 +0.44 +0.59
AT-DKT 78.36 ± 0.06 82.36 ± 0.07 +4.00 +5.10 73.72 ± 0.04 75.25 ± 0.02 +1.53 +2.08
QIKT 82.07 ± 0.04 82.62 ± 0.05 +0.55 +0.67 75.15 ± 0.04 75.74 ± 0.02 +0.59 +0.79
DKVMN 77.88 ± 0.04 82.64 ± 0.02 +4.76 +6.11 72.74 ± 0.05 75.51 ± 0.02 +2.77 +3.81
DeepIRT 77.81 ± 0.06 82.56 ± 0.02 +4.75 +6.10 72.61 ± 0.02 75.18 ± 0.05 +2.57 +3.54
ATKT 79.78 ± 0.07 82.37 ± 0.04 +2.59 +3.25 72.17 ± 0.03 75.28 ± 0.04 +3.11 +4.31
SAKT 75.90 ± 0.05 81.64 ± 0.03 +5.74 +7.56 71.60 ± 0.03 74.77 ± 0.02 +3.17 +4.43
SAINT 79.65 ± 0.02 81.50 ± 0.07 +1.85 +2.32 73.96 ± 0.02 75.20 ± 0.04 +1.24 +1.68
AKT 81.67 ± 0.03 83.04 ± 0.05 +1.37 +1.68 74.27 ± 0.03 75.49 ± 0.03 +1.22 +1.64
simpleKT 81.05 ± 0.06 82.92 ± 0.04 +1.87 +2.31 73.90 ± 0.04 75.46 ± 0.02 +1.56 +2.11
sparseKT 79.65 ± 0.11 82.95 ± 0.09 +3.30 +4.14 74.98 ± 0.09 78.96 ± 0.08 +3.98 +5.31
Best values are in bold. The shading in green shows the magnitude of the performance gain.

Sensitivity to the number of students: Fig. 3 shows the prediction results for each KT model
under a varying number of students available for training (starting from 5 % of the actual number of
students). Our KCQRL significantly improves the performance of KT models for both datasets and
for all % of available training data. In general, the performance gain from our framework tends to be
larger for small-student settings. For instance, the performance of DKVMN on Eedi improves by
almost +6 AUC even when only 5 % of the actual number of students are available for training. This
underscores the benefits of our KCQRL during the early phases of online learning platforms and for
specialized platforms (e.g., in-house training for companies). The results for other KT models are
given in Appendix E. Takeaway: Our framework greatly helps generalization performance, especially
in low-sample size settings.

5 10 20 50 100
Students in Training Data (%)

68

70

72

74

76

78

80

82

AU
C

(%
)

AKT

5 10 20 50 100
Students in Training Data (%)

66

68

70

72

74

76

78

80

82

DKT

5 10 20 50 100
Students in Training Data (%)

66

68

70

72

74

76

78

80

82

DKVMN

5 10 20 50 100
Students in Training Data (%)

70

72

74

76

78

80

82

sparseKT

XES3G5M Default XES3G5M w/ KCQRL (ours) Eedi Default Eedi w/ KCQRL (ours)

Figure 3: Improvement of our KCQRL across different training set sizes. Plots show different
KT models, where, on the x-axis, we report the performance when varying the number of students in
our datasets. Green area covers the improvement from our framework.

Multi-step ahead prediction: We now follow Liu et al. (2022b) and focus on the task of predicting
a span of student’s responses given the history of interactions. Example: given the initial 60 % of
the interactions, the task is to predict the student’s performance in the next 40 % of the exercises.
We distinguish two scenarios (Liu et al., 2022b): (a) accumulative or (b) non-accumulative manner,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

where (a) means that KT models makes predictions in a rolling manner (so that predictions for the
n-outcome are used to prediction the (n + 1)-th) and (b) means that the KT models predict all future
values at once (but assume that the predictions are independent).

Fig. 4 presents the results. Overall, our KCQRL improves the performance of KT models for both
datasets and for both settings. The only exception is sparseKT during the early stages of accumulative
prediction on Eedi. Detailed results for other KT models are given in Appendix F. Takeaway: Our
framework greatly improves long-term predictions of students’ learning journeys and their outcomes.

20 30 40 50 60 70 80 90
Observed learning history (%)

72

74

76

78

80

AU
C

(%
)

AKT

20 30 40 50 60 70 80 90
Observed learning history (%)

66

68

70

72

74

76

78

80
DKT

20 30 40 50 60 70 80 90
Observed learning history (%)

68

70

72

74

76

78

80

DKVMN

20 30 40 50 60 70 80 90
Observed learning history (%)

70

72

74

76

78

80

sparseKT

XES3G5M Default Accum.
XES3G5M Default Non-Acc.

XES3G5M w/ KCQRL Accum. (ours)
XES3G5M w/ KCQRL Non-Acc. (ours)

Eedi Default Accum.
Eedi Default Non-Acc.

Eedi w/ KCQRL Accum. (ours)
Eedi w/ KCQRL Non-Acc. (ours)

Figure 4: Improvement of our KCQRL in multi-step-ahead prediction. Plots show different KT
models, where we vary the portion of observed learning history and predict the rest of the entire
learning journey. Green [red] area shows the improvement [decline] from using our framework.

5.2 ABLATION STUDIES

Quality of the automated KC annotation: Here, we perform an ablation for module 1 of our
framework (in Sec. 3.1) where we assess the quality of the KC annotations. We compare against two
ablations: (a) the original KC annotations from the dataset and (b) the annotations from our KCQRL
but without leveraging the solution steps. For the ablation study, we ran our automated evaluation via
a different LLM, i.e., Llama-3.1-405B (Dubey et al., 2024), to avoid the potential bias from using the
same model as in our KC annotation.

Table 3 shows the pairwise comparison of three KC annotations (i. e., ours and two ablations) based
on 5 criteria, where the LLM model is prompted to choose the best of the given two annotations
for each criterion. The two key observations are: (1) Both annotations from KCQRL (i.e., with and
without solution steps) are clearly preferred over the annotations from the original dataset, confirming
the findings from Moore et al. (2024). (2) Overall, KC annotations from our full framework are
preferred over the annotations without solution steps, confirming our motivation of our KC annotation.
Further details and example KC annotations are in Appendix G. Takeaway: A large performance gain
is due to module 1 where we ground the automated KC annotations in chain-of-thought reasoning.

Appendix J compares KC annotation quality across LLM sizes, while Appendix K presents human
evaluation results comparing LLM annotations to the original dataset. Both confirm our design.

Table 3: Ablation study showing the relevance of automated KC annotation. We report the quality
(in %) for different KC annotations.

XES3G5M Eedi

Criteria Original KCQRL w/o
sol. steps

Original KCQRL KCQRL w/o
sol. steps

KCQRL Original KCQRL w/o
sol. steps

Original KCQRL KCQRL w/o
sol. steps

KCQRL

Correctness 33.9 66.1 6.8 93.2 15.9 84.1 44.2 55.8 25.9 74.1 27.0 73.0
Coverage 41.9 58.1 13.5 86.5 13.3 86.7 25.9 74.1 7.7 92.3 22.5 77.5
Specificity 33.5 66.5 25.5 74.5 36.0 64.0 37.0 63.0 39.2 60.8 55.8 44.2
Ability of Integration 40.3 59.7 12.7 87.3 12.5 87.5 34.7 65.3 20.6 79.4 25.0 75.0

Overall 38.6 61.4 7.8 92.2 13.1 86.9 36.7 63.3 21.2 78.8 24.1 75.9

Performance of question embeddings w/o CL: We now demonstrate the effectiveness of module 2
(defined Sec. 3.2), which is responsible for the representation learning of questions. We thus compare
our framework’s embeddings against five ablations without any CL training from the same LLM
encoder. These are the embeddings of (a) question content, (b) question and its KCs, (c) question
and its solution steps, (d) question and its solution steps and KCs, and (e) only the KCs of a question.

Fig. 5 plots the embeddings of questions. For all five baselines, the representations of questions from
the same KC are scattered very broadly. In comparison, our KCQRL is effective in bundling the
questions from the same KC in close proximity as desired. Takeaway: This highlights the importance
of our CL training in Sec. 3.2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Fig. 6 shows the performance of KT models with these five baseline embeddings in comparison
to the default implementation and our complete framework. In most cases, baseline embeddings
perform better than the default implementation of KT models, which again highlights the importance
of semantic representations (as compared to randomly initialized embeddings). Further, our KCQRL
is consistently better than the baseline embeddings, which highlights the benefit of domain-specific
representation learning. Takeaway: A large performance gain is from module 2, which allows our
framework to capture the semantics of both questions and KCs.

Question Question + KC Question + Sol. steps Question + Sol. steps + KC

KC KCQRL w/o false negative pairs KCQRL w/o sol. steps KCQRL (ours)

Other questions KC 1 KC 2 KC 3 KC 4 KC 5 Original question

Figure 5: Visualization of question embeddings. For better intuition, we chose the same question
as in the example from Fig. 2, and, for each of its KCs, we color the question representations sharing
the same KC. Evidently, our CL loss is highly effective.

5 10 20 50 100

76

77

78

79

80

81

82

83

AU
C

(%
)

XE
S3

G5
M

AKT

5 10 20 50 100

75

76

77

78

79

80

81

82

DKT

5 10 20 50 100

74

76

78

80

82

DKVMN

5 10 20 50 100
75

76

77

78

79

80

81

82

83
sparseKT

5 10 20 50 100
Students in Training Data (%)

68

69

70

71

72

73

74

75

AU
C

(%
)

Ee
di

AKT

5 10 20 50 100
Students in Training Data (%)

68

70

72

74

DKT

5 10 20 50 100
Students in Training Data (%)

68

70

72

74

DKVMN

5 10 20 50 100
Students in Training Data (%)

68

70

72

74

76

78

sparseKT

Default Question Question + KC Question + Sol. steps Question + Sol. steps + KC KC KCQRL (ours)

Figure 6: Ablation studies showing the effectiveness of our representation learning. Evaluation is
done across different training set sizes.

Ablations for CL training: To demonstrate the effectiveness of our CL loss, we implement the
following ablations: (f) KCQRL w/o false negative elimination, whose CL loss is calculated without
the blue indicator function in Eq. 2 and Eq. 4, and (g) KCQRL w/o sol. steps, whose CL loss is
calculated based only on Lquestioni by ignoring Lstepi .

Fig. 5 shows the embeddings are better organized than the ablations with no CL training. Yet, our
complete framework brings the representations of questions from the same KCs much closer together.

Fig. 7 compares the different variants of the CL loss. Here, the performance improvement from
using either false negative elimination or using the representation solution steps is somewhat similar
(compared to a default CL loss), but the combination of both is best. Takeaway: Our custom CL loss
outperforms the standard CL loss by a clear margin.

6 RELATED WORK

We provide a brief summary of relevant works below. An extended related work (including represen-
tation learning and custom CL) is in Appendix A.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 10 20 50 100

76

77

78

79

80

81

82

83

AU
C

(%
)

XE
S3

G5
M

AKT

5 10 20 50 100

75

76

77

78

79

80

81

82

DKT

5 10 20 50 100

74

76

78

80

82

DKVMN

5 10 20 50 100

77

78

79

80

81

82

83
sparseKT

5 10 20 50 100
Students in Training Data (%)

68

69

70

71

72

73

74

75

AU
C

(%
)

Ee
di

AKT

5 10 20 50 100
Students in Training Data (%)

68

70

72

74

DKT

5 10 20 50 100
Students in Training Data (%)

68

70

72

74

DKVMN

5 10 20 50 100
Students in Training Data (%)

70

72

74

76

78

sparseKT

Default KCQRL w/o false negative elimination KCQRL w/o sol. steps KCQRL (ours)

Figure 7: Ablation studies showing the effectiveness of custom CL loss. Evaluation is done across
different training set sizes. Here, we assess the contributions of (i) false negative elimination and (ii)
representation learning of solution steps to the overall performance.

Knowledge tracing (KT) aims to model the temporal dynamics of students’ interactions with learning
content to predict their knowledge over time (Corbett & Anderson, 1994). A large number of machine
learning models, including deep neural networks, have been proposed for this purpose (Piech et al.,
2015; Yeung & Yeung, 2018; Lee & Yeung, 2019; Sonkar et al., 2020; Long et al., 2021; Liu et al.,
2023a; Chen et al., 2023; Zhang et al., 2017; Yeung, 2019; Guo et al., 2021; Pandey & Karypis, 2019;
Choi et al., 2020a; Ghosh et al., 2020; Liu et al., 2023b; Huang et al., 2023).

We later use all of the above-mentioned KT models in our experiments, as our KCQRL framework
is designed to enhance the performance of any KT model. However, existing works (1) require a
comprehensive mapping between knowledge concepts and questions, and (2) overlook the semantics
of question content and KCs. Our KCQRL effectively addresses both limitations, which leads to
performance improvements across all of the state-of-the-art KT models.

KC annotation aims to infer the KCs of a given exercise in an automated manner. (i) One research
line infers KCs from students’ learning histories as latent states (e.g., Barnes, 2005; Cen et al., 2006;
Liu et al., 2019; Shi et al., 2023). However, these latent states lack interpretability, limiting their
use in KT. (ii) Another approach reformulates KC annotation as a classification task (e.g., Patikorn
et al., 2019; Tian et al., 2022; Li et al., 2024a;b), but this requires large annotated datasets, making it
often infeasible. (iii) Recent works have also explored KC annotation in free-text form (Moore et al.,
2024; Didolkar et al., 2024), but their annotations are not informed by the question’s solution steps,
which we show is suboptimal in our ablations. In our work, we leverage LLMs’ reasoning abilities to
generate step-by-step solutions and produce grounded KCs for each question.

7 DISCUSSION

We present a novel framework for improving the effectiveness of any existing KT model: automated
knowledge concept annotation and question representation learning, which we call KCQRL. Our
KCQRL framework is carefully designed to address two key limitations of existing KT models.
Limitation 1: Existing KT models require a comprehensive mapping between knowledge concepts
(KCs) and questions, typically done manually by domain experts. Contribution 1: We circumvent
such a need by introducing a novel, automated KC annotation module grounded in solution steps.
Limitation 2: Existing KT models overlook the semantics of both questions and KCs, treating
them as identifiers whose embeddings are learned from scratch. Contribution 2: We propose a
novel contrastive learning paradigm to effectively learn representations of questions and KC, also
grounded in solution steps. We integrate the learned representations into KT models to improve their
performance. Conclusion: We demonstrate the effectiveness of our KCQRL across 15 KT models on
two large real-world Math learning datasets, where we achieve consistent performance improvements.

Implications: Our KCQRL allows even the simplest KT models to reach near state-of-the-art (SoTA)
performance, suggesting that much of the existing literature may have “overfit” to the paradigm of
modeling sequences based only on IDs. Future KT research can advance by focusing on sequential
models “designed to” inherently understand semantics. As a first step, we release an English version
of the XES3G5M dataset with full annotations, including question content, solutions, and KCs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ghodai Abdelrahman and Qing Wang. Knowledge tracing with sequential key-value memory
networks. In SIGIR, 2019.

Ghodai Abdelrahman, Qing Wang, and Bernardo Nunes. Knowledge tracing: A survey. ACM
Computing Surveys, 2023.

Olasile Babatunde Adedoyin and Emrah Soykan. Covid-19 pandemic and online learning: The
challenges and opportunities. Interactive learning environments, 2023.

Tiffany Barnes. The Q-matrix method: Mining student response data for knowledge. In American
Association for Artificial Intelligence Educational Data Mining Workshop, 2005.

Norman Bier, Stephen Moore, and Martin Van Velsen. Instrumenting courseware and leveraging data
with the Open Learning Initiative (OLI). In Learning Analytics & Knowledge, 2019.

Jaeseok Byun, Dohoon Kim, and Taesup Moon. MAFA: Managing false negatives for vision-language
pre-training. In CVPR, 2024.

Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander. Density-based clustering based on
hierarchical density estimates. In Advances in Knowledge Discovery and Data Mining, 2013.

Hao Cen, Kenneth Koedinger, and Brian Junker. Learning factors analysis–a general method for
cognitive model evaluation and improvement. In International conference on intelligent tutoring
systems, 2006.

Jiahao Chen, Zitao Liu, Shuyan Huang, Qiongqiong Liu, and Weiqi Luo. Improving interpretability
of deep sequential knowledge tracing models with question-centric cognitive representations. In
AAAI, 2023.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In ICML, 2020.

Tsai-Shien Chen, Wei-Chih Hung, Hung-Yu Tseng, Shao-Yi Chien, and Ming-Hsuan Yang. Incre-
mental false negative detection for contrastive learning. In ICLR, 2022.

Youngduck Choi, Youngnam Lee, Junghyun Cho, Jineon Baek, Byungsoo Kim, Yeongmin Cha, Dong-
min Shin, Chan Bae, and Jaewe Heo. Towards an appropriate query, key, and value computation
for knowledge tracing. In Learning@Scale, 2020a.

Youngduck Choi, Youngnam Lee, Dongmin Shin, Junghyun Cho, Seoyon Park, Seewoo Lee, Jineon
Baek, Chan Bae, Byungsoo Kim, and Jaewe Heo. EdNet: A large-scale hierarchical dataset in
education. In AIED, 2020b.

Richard Clark. Cognitive task analysis for expert-based instruction in healthcare. In Handbook of
Research on Educational Communications and Technology. Springer, New York, NY, 2014.

Albert T Corbett and John R Anderson. Knowledge tracing: Modeling the acquisition of procedural
knowledge. User modeling and user-adapted interaction, 1994.

Chaoran Cui, Yumo Yao, Chunyun Zhang, Hebo Ma, Yuling Ma, Zhaochun Ren, Chen Zhang, and
James Ko. DGEKT: A dual graph ensemble learning method for knowledge tracing. Transactions
on Information Systems, 2024.

Peng Cui and Mrinmaya Sachan. Adaptive and personalized exercise generation for online language
learning. In ACL, 2023.

Jacob Devlin. BERT: Pre-training of deep bidirectional transformers for language understanding. In
NAACL, 2019.

Aniket Didolkar, Anirudh Goyal, Nan Rosemary Ke, Siyuan Guo, Michal Valko, Timothy Lillicrap,
Danilo Rezende, Yoshua Bengio, Michael Mozer, and Sanjeev Arora. Metacognitive capabilities
of LLMs: An exploration in mathematical problem solving. ICML, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Eedi. Eedi dataset. https://www.eedi.com/, 2024.

Zahra Fatemi, Minh Huynh, Elena Zheleva, Zamir Syed, and Xiaojun Di. Mitigating cold-start
problem using cold causal demand forecasting model. In NeurIPS, 2023.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. In ICLR, 2023.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sentence
embeddings. In EMNLP, 2021.

Aritra Ghosh, Neil Heffernan, and Andrew S Lan. Context-aware attentive knowledge tracing. In
KDD, 2020.

Begoña Gros and Francisco J García-Peñalvo. Future trends in the design strategies and technological
affordances of e-learning. In Learning, design, and technology: An international compendium of
theory, research, practice, and policy. 2023.

Xiaopeng Guo, Zhijie Huang, Jie Gao, Mingyu Shang, Maojing Shu, and Jun Sun. Enhancing
knowledge tracing via adversarial training. In ACM Multimedia, 2021.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, 2020.

Shuyan Huang, Zitao Liu, Xiangyu Zhao, Weiqi Luo, and Jian Weng. Towards robust knowledge
tracing models via k-sparse attention. In SIGIR, 2023.

Tri Huynh, Simon Kornblith, Matthew R Walter, Michael Maire, and Maryam Khademi. Boosting
contrastive self-supervised learning with false negative cancellation. In WACV, 2022.

Yoonjin Im, Eunseong Choi, Heejin Kook, and Jongwuk Lee. Forgetting-aware linear bias for
attentive knowledge tracing. In CIKM, 2023.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP,
2020.

Tanja Käser, Severin Klingler, Alexander G Schwing, and Markus Gross. Dynamic bayesian networks
for student modeling. Transactions on Learning Technologies, 2017.

Fucai Ke, Weiqing Wang, Weicong Tan, Lan Du, Yuan Jin, Yujin Huang, and Hongzhi Yin. HiTSKT:
A hierarchical transformer model for session-aware knowledge tracing. Knowledge-Based Systems,
2024.

Omar Khattab and Matei Zaharia. ColBERT: Efficient and effective passage search via contextualized
late interaction over BERT. In SIGIR, 2020.

Jinhyuk Lee, Zhuyun Dai, Sai Meher Karthik Duddu, Tao Lei, Iftekhar Naim, Ming-Wei Chang, and
Vincent Zhao. Rethinking the role of token retrieval in multi-vector retrieval. NeurIPS, 2023.

Jinseok Lee and Dit-Yan Yeung. Knowledge query network for knowledge tracing: How knowledge
interacts with skills. In Learning Analytics & Knowledge, 2019.

Unggi Lee, Jiyeong Bae, Dohee Kim, Sookbun Lee, Jaekwon Park, Taekyung Ahn, Gunho Lee, Damji
Stratton, and Hyeoncheol Kim. Language model can do knowledge tracing: Simple but effective
method to integrate language model and knowledge tracing task. arXiv preprint arXiv:2406.02893,
2024.

Hang Li, Tianlong Xu, Jiliang Tang, and Qingsong Wen. Automate knowledge concept tagging on
math questions with LLMs. arXiv preprint arXiv:2403.17281, 2024a.

12

https://www.eedi.com/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hang Li, Tianlong Xu, Jiliang Tang, and Qingsong Wen. Knowledge tagging system on math
questions via LLMs with flexible demonstration retriever. arXiv preprint arXiv:2406.13885,
2024b.

Xianming Li and Jing Li. Angle-optimized text embeddings. In ACL, 2024.

Xueyi Li, Youheng Bai, Teng Guo, Zitao Liu, Yaying Huang, Xiangyu Zhao, Feng Xia, Weiqi Luo,
and Jian Weng. Enhancing length generalization for attention based knowledge tracing models
with linear biases. In IJCAI, 2024c.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for GPT-3? In DeeLIO, 2022a.

Qi Liu, Zhenya Huang, Yu Yin, Enhong Chen, Hui Xiong, Yu Su, and Guoping Hu. EKT: Exercise-
aware knowledge tracing for student performance prediction. Transactions on Knowledge and
Data Engineering, 2019.

Zitao Liu, Qiongqiong Liu, Jiahao Chen, Shuyan Huang, Jiliang Tang, and Weiqi Luo. pyKT: A
Python library to benchmark deep learning based knowledge tracing models. In NeurIPS, 2022b.

Zitao Liu, Qiongqiong Liu, Jiahao Chen, Shuyan Huang, Boyu Gao, Weiqi Luo, and Jian Weng.
Enhancing deep knowledge tracing with auxiliary tasks. In The Web Conference, 2023a.

Zitao Liu, Qiongqiong Liu, Jiahao Chen, Shuyan Huang, and Weiqi Luo. simpleKT: A simple but
tough-to-beat baseline for knowledge tracing. In ICLR, 2023b.

Zitao Liu, Qiongqiong Liu, Teng Guo, Jiahao Chen, Shuyan Huang, Xiangyu Zhao, Jiliang Tang,
Weiqi Luo, and Jian Weng. XES3G5M: A knowledge tracing benchmark dataset with auxiliary
information. In NeurIPS, 2023c.

Ting Long, Yunfei Liu, Jian Shen, Weinan Zhang, and Yong Yu. Tracing knowledge state with
individual cognition and acquisition estimation. In SIGIR, 2021.

Steven Moore, Robin Schmucker, Tom Mitchell, and John Stamper. Automated generation and
tagging of knowledge components from multiple-choice questions. In Learning@ Scale, 2024.

Koki Nagatani, Qian Zhang, Masahiro Sato, Yan-Ying Chen, Francine Chen, and Tomoko Ohkuma.
Augmenting knowledge tracing by considering forgetting behavior. In WWW, 2019.

Hiromi Nakagawa, Yusuke Iwasawa, and Yutaka Matsuo. Graph-based knowledge tracing: Modeling
student proficiency using graph neural network. In IEEE/WIC/ACM International Conference on
Web Intelligence, 2019.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Fangwei Ou and Jinan Xu. SKICSE: Sentence knowable information prompted by LLMs improves
contrastive sentence embeddings. In NAACL, 2024.

Yilmazcan Ozyurt, Stefan Feuerriegel, and Ce Zhang. Document-level in-context few-shot relation
extraction via pre-trained language models. arXiv preprint arXiv:2310.11085, 2023a.

Yilmazcan Ozyurt, Stefan Feuerriegel, and Ce Zhang. Contrastive learning for unsupervised domain
adaptation of time series. In ICLR, 2023b.

Shalini Pandey and George Karypis. A self-attentive model for knowledge tracing. In EDM, 2019.

Shalini Pandey and Jaideep Srivastava. RKT: Relation-aware self-attention for knowledge tracing. In
CIKM, 2020.

Thanaporn Patikorn, David Deisadze, Leo Grande, Ziyang Yu, and Neil Heffernan. Generalizability
of methods for imputing mathematical skills needed to solve problems from texts. In AIED, 2019.

Philip I Pavlik, Hao Cen, and Kenneth R Koedinger. Performance factors analysis–a new alternative
to knowledge tracing. In Artificial intelligence in education, pp. 531–538. Ios Press, 2009.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas J Guibas,
and Jascha Sohl-Dickstein. Deep knowledge tracing. In NeurIPS, 2015.

Georg Rasch. Probabilistic models for some intelligence and attainment tests. ERIC, 1993.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using siamese BERT-
networks. In EMNLP, 2019.

Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and Hrishikesh Khandeparkar. A
theoretical analysis of contrastive unsupervised representation learning. In ICML, 2019.

Shuanghong Shen, Zhenya Huang, Qi Liu, Yu Su, Shijin Wang, and Enhong Chen. Assessing
student’s dynamic knowledge state by exploring the question difficulty effect. In SIGIR, 2022.

Yang Shi, Robin Schmucker, Min Chi, Tiffany Barnes, and Thomas Price. KC-Finder: Automated
knowledge component discovery for programming problems. International Educational Data
Mining Society, 2023.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya Sachan. Distilling reasoning capabilities into
smaller language models. In ACL, 2023.

Xiangyu Song, Jianxin Li, Qi Lei, Wei Zhao, Yunliang Chen, and Ajmal Mian. Bi-CLKT: Bi-graph
contrastive learning based knowledge tracing. Knowledge-Based Systems, 2022.

Shashank Sonkar, Andrew E Waters, Andrew S Lan, Phillip J Grimaldi, and Richard G Baraniuk.
qDKT: Question-centric deep knowledge tracing. In EDM, 2020.

Weiwei Sun, Lingyong Yan, Zheng Chen, Shuaiqiang Wang, Haichao Zhu, Pengjie Ren, Zhumin
Chen, Dawei Yin, Maarten Rijke, and Zhaochun Ren. Learning to tokenize for generative retrieval.
NeurIPS, 2023a.

Weixuan Sun, Jiayi Zhang, Jianyuan Wang, Zheyuan Liu, Yiran Zhong, Tianpeng Feng, Yandong
Guo, Yanhao Zhang, and Nick Barnes. Learning audio-visual source localization via false negative
aware contrastive learning. In CVPR, 2023b.

Zejie Tian, B Flanagan, Y Dai, and H Ogata. Automated matching of exercises with knowledge
components. In Computers in Education Conference Proceedings, 2022.

Jill-Jênn Vie and Hisashi Kashima. Knowledge tracing machines: Factorization machines for
knowledge tracing. In AAAI, 2019.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
In ICLR, 2023.

Zichao Wang, Angus Lamb, Evgeny Saveliev, Pashmina Cameron, Yordan Zaykov, José Miguel
Hernández-Lobato, Richard E Turner, Richard G Baraniuk, Craig Barton, Simon Peyton Jones,
et al. Instructions and guide for diagnostic questions: The NeurIPS 2020 education challenge.
arXiv preprint arXiv:2007.12061, 2020.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In NeurIPS,
2022.

Austin Xu, Will Monroe, and Klinton Bicknell. Large language model augmented exercise retrieval
for personalized language learning. In Learning Analytics and Knowledge Conference, 2024.

Mouxing Yang, Yunfan Li, Peng Hu, Jinfeng Bai, Jiancheng Lv, and Xi Peng. Robust multi-view
clustering with incomplete information. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022.

Chun-Kit Yeung. Deep-IRT: Make deep learning based knowledge tracing explainable using item
response theory. EDM, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Chun-Kit Yeung and Dit-Yan Yeung. Addressing two problems in deep knowledge tracing via
prediction-consistent regularization. In Learning@Scale, 2018.

Yu Yin, Le Dai, Zhenya Huang, Shuanghong Shen, Fei Wang, Qi Liu, Enhong Chen, and Xin Li.
Tracing knowledge instead of patterns: Stable knowledge tracing with diagnostic transformer. In
The Web Conference, 2023.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. In ICLR, 2024.

Zhenrui Yue, Bernhard Kratzwald, and Stefan Feuerriegel. Contrastive domain adaptation for question
answering using limited text corpora. In EMNLP, 2021.

Zhenrui Yue, Huimin Zeng, Bernhard Kratzwald, Stefan Feuerriegel, and Dong Wang. Qa domain
adaptation using hidden space augmentation and self-supervised contrastive adaptation. In EMNLP,
2022.

Dejiao Zhang, Wasi Ahmad, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei Ma, and
Bing Xiang. Code representation learning at scale. In ICLR, 2024.

Jiani Zhang, Xingjian Shi, Irwin King, and Dit-Yan Yeung. Dynamic key-value memory networks
for knowledge tracing. In WWW, 2017.

Mi Zhang, Jie Tang, Xuchen Zhang, and Xiangyang Xue. Addressing cold start in recommender
systems: A semi-supervised co-training algorithm. In SIGIR, 2014.

Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-Rong Wen. Dense text retrieval based on pretrained
language models: A survey. Transactions on Information Systems, 2024.

Hanqi Zhou, Robert Bamler, Charley M Wu, and Álvaro Tejero-Cantero. Predictive, scalable and
interpretable knowledge tracing on structured domains. In ICLR, 2024.

Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu, Wenhan Liu, Chenlong Deng, Haonan Chen,
Zhicheng Dou, and Ji-Rong Wen. Large language models for information retrieval: A survey.
arXiv preprint arXiv:2308.07107, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A RELATED WORK (EXTENDED)

Knowledge tracing (KT) aims to model the temporal dynamics of students’ interactions with
learning content to predict their knowledge over time (Corbett & Anderson, 1994). Early works in
KT primarily leveraged logistic and probabilistic models (Corbett & Anderson, 1994; Cen et al.,
2006; Pavlik et al., 2009; Käser et al., 2017; Vie & Kashima, 2019). Later, many KT works focused
on deep learning-based approaches, which can loosely be grouped into different categories: 1) Deep
sequential models that leverage auto-regressive architectures such as RNN or LSTM (Piech et al.,
2015; Yeung & Yeung, 2018; Lee & Yeung, 2019; Liu et al., 2019; Nagatani et al., 2019; Sonkar
et al., 2020; Guo et al., 2021; Long et al., 2021; Shen et al., 2022; Chen et al., 2023; Liu et al.,
2023a), 2) Memory augmented models to externally capture the latent states of the students during
the learning process (Zhang et al., 2017; Abdelrahman & Wang, 2019; Yeung, 2019), 3) Graph-based
models that use graph neural networks to capture the interactions between knowledge concepts and
questions (Nakagawa et al., 2019; Song et al., 2022; Cui et al., 2024), 4) Attention-based models that
either employ a simple attention mechanism or transformer-based encoder-decoder architecture for
the modeling of student interactions (Pandey & Karypis, 2019; Pandey & Srivastava, 2020; Choi
et al., 2020a; Ghosh et al., 2020; Huang et al., 2023; Im et al., 2023; Liu et al., 2023b; Yin et al.,
2023; Ke et al., 2024; Li et al., 2024c). Outside these categories, Lee et al. (2024) fits entire history
of students exercises into the context window of a language model to make the prediction, Guo et al.
(2021) designs an adversarial training to have robust representations of latent states, and Zhou et al.
(2024) develops a generative model to track the knowledge states of the students. However, the
existing works (1) require a comprehensive mapping between knowledge concepts and questions
and (2) overlook the semantics of questions’ content and KCs. Our KCQRL framework effectively
addresses both limitations.

KC annotation aims at inferring the KCs of a given exercise in an automated manner. (i) One line of
research infers KCs of questions by learning patterns from students’ learning histories in the form of
latent states (e.g., Barnes, 2005; Cen et al., 2006; Liu et al., 2019; Shi et al., 2023). Yet, such latent
states lack interpretability, because of which their use in KT is typically prohibited. (ii) Another
line of research reformulates KCs annotation as a classification task, typically via model training
(Patikorn et al., 2019; Tian et al., 2022) or LLM prompting (Li et al., 2024a;b). Although these works
do not require human experts at inference, they still require them to curate a large annotated dataset
for models to learn the task. (iii) Recent works also explored the KC annotation in free-text form
(Moore et al., 2024; Didolkar et al., 2024). However, their KC annotations are not informed by the
solution steps of the question. We show that this is suboptimal in our ablations.

In our work, we leverage the reasoning abilities of LLMs (Wei et al., 2022; Fu et al., 2023; Shridhar
et al., 2023; Wang et al., 2023; Yu et al., 2024) to generate the step-by-step solution steps of a given
question and generate the associated KCs in a grounded manner.

Representation learning for textual data has been extensively studied in the context of LLMs. While
pre-trained LLMs generate effective general-purpose semantic representations, these embeddings
often turn out to be suboptimal for domain-specific tasks (Karpukhin et al., 2020). Through CL
training, the model learns to bring the positive pairs of textual data closer together (but not the
negative pairs in the embeddings).

Many works designed tailored CL losses (Oord et al., 2018; Chen et al., 2020; He et al., 2020;
Ozyurt et al., 2023b) to improve the representations of textual data in various domains. Examples are
information retrieval (Karpukhin et al., 2020; Khattab & Zaharia, 2020; Lee et al., 2023; Sun et al.,
2023a; Zhu et al., 2023; Zhao et al., 2024), textual entailment (Gao et al., 2021; Li & Li, 2024; Ou
& Xu, 2024), code representation learning (Zhang et al., 2024), and question answering (Yue et al.,
2021; 2022). To our knowledge, we are the first to leverage a CL loss for the representation learning
of questions specific to KT tasks.

The prevalence of false negative pairs can significantly degrade the quality of CL (Saunshi et al.,
2019), as it causes semantically similar samples to be incorrectly pushed apart. To address this,
several works in computer vision have proposed methods to detect and eliminate false negative pairs
by leveraging the similarity of sample embeddings during training (Chen et al., 2022; Huynh et al.,
2022; Yang et al., 2022; Sun et al., 2023b; Byun et al., 2024). Different from these works, we develop
a custom CL approach that is carefully designed to our task. Therein, we detect similarities between
samples (i. e., KCs) in advance (e. g., UNDERSTANDING OF ADDITION vs. ABILITY TO PERFORM

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

ADDITION), and eliminate false negative question-KC and solution step-KC pairs during our custom
CL training.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B DATASET DETAILS

XES3G5M (Liu et al., 2023c): XES3G5M contains the history student exercises for 7,652 unique
questions. These questions are mapped to 865 unique KCs in total. It has a total of 18,066 students’
learning histories and a total of 5,549,635 interactions for all students. Fig. 8a demonstrates the
distribution of interaction numbers across students. Of note, XES3G5M dataset is original provided
in Chinese, which we translated to English to make it compatible to our framework. Details are given
below.

200 300 400 500 600 700 800 900
Number of Interactions

0

1

2

3

4

5

%
 o

f S
tu

de
nt

s

(a) XES3G5M

0 25 50 75 100 125 150 175
Number of Interactions

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

%
 o

f S
tu

de
nt

s
(b) Eedi

Figure 8: Histogram of number of interactions for each dataset.

Translation: The original XES3G5M dataset is provided in Chinese. To make it compatible with our
KCQRL framework, we first translated the question contents to English. We did the translation by
Google Translate via deep-translate Python library.

Conversion to proper question format: XES3G5M dataset contains 6,142 fill-in-the-blank style
questions out of 7,652. After the translation, we manually inspected the quality of question contents
and found that blanks are disappeared in the translation for fill-in-the-blank questions. For instance,
one question is translated as “. . . There are different ways to wear it.”, which should have been
“. . . There are ___ different ways to wear it.”

To make the fill-in-the-blank questions consistent with the others (and also consistent with our other
dataset Eedi), We prompt GPT-4o to convert these questions to proper question phrases. From the
same example, “. . . There are ___ different ways to wear it.” is converted to “. . . How many ways are
there to wear it?”. We provide our prompt template in Appendix B.1.

Eedi (Eedi, 2024): Eedi contains the history student exercises for 4,019 unique questions. These
questions are mapped to 1215 unique KCs in total. It has a total of 47,560 students’ learning
histories and a total of 2,324,162 interactions for all students. Fig. 8b demonstrates the distribution of
interaction numbers across students.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B.1 PROMPT FOR CONVERTING XES3G5M TO PROPER QUESTION FORMAT

Below we show our prompt to convert the fill-in-the-balnk style questions into proper question
phrases.

Prompt

You have narrative-based math problems that already contain all the necessary information,
including what needs to be solved. Your goal is to write "Converted" field by minimally
modifying the last part of the "Original" field to turn them into explicit questions. This should
be done in such a way that it retains the original content and context, only slightly altering
the phrasing to form a question.

Example:
Original: During the Spring Festival, Xue Xue and her parents went back to their hometown
to visit their grandparents. They had to take a long-distance bus for 2 hours. The speed of the
long-distance bus was 85 kilometers per hour. So, Xue Xue walked a total of one kilometer
from home to my grandparents’ house.
Converted: During the Spring Festival, Xue Xue and her parents went back to their hometown
to visit their grandparents. They had to take a long-distance bus for 2 hours. The speed of the
long-distance bus was 85 kilometers per hour. So, how many kilometers did Xue Xue travel
in total from home to her grandparents’ house?

Now, convert the "Original" field into a question and write it into "Converted" field.
Original: <CHINESE QUESTION CONTENT>
Converted:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C KT MODELS DETAILS

In our KCQRL framework, we enhanced the performance of 15 KT algorithms on two real-world
large online math learning datasets. The summary of these KT algorithms are given below:

• DKT (Piech et al., 2015): It is the first deep learning based KT algorithm. It uses the LSTM
to model the temporality in students’ learning histories. The original DKT turns each KC
into a one-hot or a random vector. The recent implementation from pykt (Liu et al., 2022b)
learns the embeddings for each KC, which are then processed by an LSTM layer.

• DKT+ (Yeung & Yeung, 2018): It adds regularization to the existing DKT model. Specif-
ically, it adds a reconstruction loss to the last exercise’s prediction. Further, it adds a
regularization term to make the predictions of the same KC consistent across the time
dimension.

• KQN (Lee & Yeung, 2019): It models the students’ learning histories via RNN. Further, it
has an explicit neural network mechanism to capture the latent knowledge states.

• qDKT (Sonkar et al., 2020):It is a variant of DKT that learns the temporal dynamics of
students’ learning processes via the questions rather than KCs.

• IEKT (Long et al., 2021): It models the students’ learning histories via RNN. In addition,
it has two additional neural network modules, namely student cognition and knowledge
acquisition estimation.

• AT-DKT (Liu et al., 2023a): It has the same model backbone as in DKT. On top of it,
AT-DKT has two auxiliary tasks, question tagging prediction and student’s individual prior
knowledge prediction.

• QIKT (Chen et al., 2023): It combines three neural network modules to model the learning
processes, question-centric knowledge acquisition module via LSTM, question-agnostic
knowledge state module via another LSTM and question centric problem solving module
via MLP.

• DKVMN (Zhang et al., 2017): It employs key-value memory networks to model the
relationships between the latent concepts and output the student’s knowledge mastery of
each concept.

• DeepIRT (Yeung, 2019): It incorporates the architecture of DKVMN and further leverages
the item-response theory (Rasch, 1993) to make interpretable predictions.

• ATKT (Guo et al., 2021): It models the students learning histories via LSTM. Further,
it employs an adversarial training mechanism to increase the generalization of model
predictions.

• SAKT (Pandey & Karypis, 2019): It develops a simple self-attention mechanism to model
the learning histories and make the prediction.

• SAINT (Choi et al., 2020a): It employs a Transformer-based model that is using mulitple
layers of encoders and decoders to model the history of exercise information and responses.

• AKT (Ghosh et al., 2020): This model employs a monotonic attention mechanism between
the exercises via exponential decay over time. It also employs Rasch model (Rasch, 1993)
to characterize the question’s difficulty and the learner’s ability.

• simpleKT (Liu et al., 2023b): As a simple but tought to beat baseline, this model employs
and ordinary dot product as an attention mechanism to the embeddings of questions.

• sparseKT (Huang et al., 2023): On top of simpleKT, this model further introduces a sparse
attention mechanism such that for the next exercise’s prediction, the model attends to at
most K exercises in the past.

The implementation details of the KT models are given in Appendix D.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D IMPLEMENTATION DETAILS

Here we explain the implementation details of each part of our KCQRL framework.

KC Annotation (Sec. 3.1): We leverage the reasoning abilities of OpenAI’s GPT-4o6 model as our
LLM Pϕ(⋅) at each step. We set its temperature parameter to 0 to get the deterministic answers from
the model. For each question in the dataset, GPT-4o model is prompted three times in total: one for
solution steps generation, one for KC annotation and one for solution step-KC mapping. Overall, the
cost is around 80 USD for XES3G5M dataset with 7,652 questions and 50 USD for Eedi dataset with
4,019 questions.

Representation learning of questions Sec. 3.2: We train BERT (Devlin, 2019) as our LLM encoder
Eψ(⋅). For the elimination of false negative pairs, we use HDBSCAN (Campello et al., 2013) as the
clustering algorithm A(⋅). The clustering is done over the Sentence-BERT (Reimers & Gurevych,
2019) embeddings of KCs, which is a common practice in identifying relevant textual documents
(Liu et al., 2022a; Ozyurt et al., 2023a). For HDBSCAN clustering, we set minimum cluster size
to 2, minimum samples to 2, metric to cosine similarity between the embeddings. For contrastive
learning training, we train BERT (Devlin, 2019) as our LLM encoder. To better distinguish three
types of inputs, i. e. question content, solution step, and KC, we introduce three new tokens [Q], [S],
[KC] to be learned during the training. These new tokens are added to the beginning of question
content, solution step, and KC, respectively, for both training and inference. For all input types, we
use [CLS] token’s embeddings as the embeddings of the entire input text. For the training objective,
we set α = 1. Since both losses Lquestioni and Lstepi are already normalized by the number of KCs and
steps, our initial exploration (α varying from 0.2 to 5.0) indicated that setting α = 1 yields the best
performance. We train the encoder for 50 epochs with the following hyperparameters: batch size =
32, learning rate = 5e-5, dropout = 0.1, and temperature (of similarity function) = 0.1. For training of
Eψ(⋅), we use Nvidia Tesla A100 with 40GB GPU memory. The entire training is completed under
4 hours.

After the training, the question embeddings are acquired by running the inference on question text
and solution step texts for each question in the dataset. Specifically, we take the embeddings of "[Q]
<question content>" for the question content and "[S] <solution step>" for each solution step. Then,
we aggregate these embeddings as explained in Sec. 3.3. As a result, the inference does not require
the KC annotations. This has the following advantage: When a new question is added to the dataset,
the earlier KC annotation module can be skipped completely and one can directly get the embeddings
in this module and start using them for the downstream KT model.

Improving KT via learned question embeddings: We adopt the following strategy for the fair
evaluation of KT algorithms and their improvements via our novel KCQRL framework. We first did
a grid search over the hyperparameters of each KT model (see Table 4 for parameters) to find the
best configuration for each model. Then, we replaced their embeddings with our learned question
embeddings and trained/tested the KT models with the same configurations found earlier (i. e., no
grid search is applied). To ensure the fair evaluation between the KT algorithms, and between their
default versions and improved versions (via our framework), we fixed their embedding dimensions
to 300. As BERT embeddings’ default dimensionality is larger (i. e., 768), we just added a linear
layer (no non-linear activation function is added) on top of the replaced embeddings to reduce its
dimensionality to 300 to ensure that model capacities are subjected to a fair comparison. As KT
models are much smaller than the LLM encoders, this time we used NVIDIA GeForce RTX 3090
with 24GB GPU memory for even larger batch sizes.

Evaluation of KC-centric KT models: Some KT models (such as DKT (Piech et al., 2015),
simpleKT (Liu et al., 2023b) etc.) expand the sequence of questions into the sequence of KCs for
both training and inference. For instance, if there are 3 questions with 2 KCs each, they transform the
sequence {q1, q2, q3} into {c11, c12, c21, c22, c31, c32} and assign the labels of original questions
to each of their corresponding KCs for training. This paradigm causes information leakage in the
evaluation as highlighted by Liu et al. (2022b). The reason is, during the prediction of c32, the label of
c31 is already given as the history, which is the same label (to be predicted) for c32. To eliminate the
information leakage, we followed the literature (Liu et al., 2022b; 2023c) and applied the following
procedure. Again from the same example, to predict the label of q3, 1) we provided the expanded KC

6https://platform.openai.com/docs/models/gpt-4o

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

sequence of earlier questions as before, i. e., {c11, c12, c31, c32}. 2) Then we appended c31 and c32
separately to the given sequence and run the predictions independently. 3) Finally we aggregated
these predictions by taking their mean, and used it as the model’s final prediction. Important note:
With our KCQRL framework, these KT models do not suffer the information leakage anymore, as all
models learn from the sequence of questions with our improved version.

Scalability: Our novel KCQRL framework scales well to any KT model with no additional computa-
tional overhead. Specifically, our KC annotation and representation learning modules are completed
independently from the KT models, and they need to run only one time in the beginning. After the
embeddings are computed, they can be used in any standard KT model without impacting the models’
original runtimes.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 4: Hyperparameter tuning of KT algorithms.

Method Hyperparameter Tuning Range

All methods Embedding size 300
Batch size 32, 64, 128
Dropout 0, 0.1, 0.2
Learning rate [1 ⋅ 10−4, 1 ⋅ 10−3]

DKT LSTM hidden dim. 64, 128

DKT+ λr 0.005, 0.01, 0.02
λw1

0.001, 0.003, 0.05
λw2

1, 3, 5

KQN # RNN layers 1, 2
RNN hidden dim. 64, 128
MLP hidden dim. 64, 128

qDKT LSTM hidden dim. 64, 128

IEKT λ 10, 40, 100
Cognitive levels 5, 10, 20
Knowledge Acquisition levels 5, 10, 20

AT-DKT λpred 0.1, 0.5, 1
λhis 0.1, 0.5, 1

QIKT λqall
0, 0.5, 1

λcall
0, 0.5, 1

λqnext
0, 0.5, 1

λcnext
0, 0.5, 1

DKVMN # Latent state 10, 20, 50, 100

DeepIRT # Latent state 10, 20, 50, 100

ATKT Attention dim. 64, 128, 256
ϵ 5, 10, 20
β 0.1, 0.2, 0.5

SAKT Attention dim. 64, 128, 256
Attention heads 4, 8
Encoders 1, 2

SAINT Attention dim. 64, 128, 256
Attention heads 4, 8
Encoders 1, 2

AKT Attention dim. 64, 128, 256
Attention heads 4, 8
Encoders 1, 2

simpleKT Attention dim. 64, 128, 256
Attention heads 4, 8
L1 0.2, 0.5, 1
L2 0.2, 0.5, 1
L3 0.2, 0.5, 1

sparseKT Attention dim. 64, 128, 256
Attention heads 4, 8
L1 0.2, 0.5, 1
L2 0.2, 0.5, 1
L3 0.2, 0.5, 1
Top K 5, 10, 20

Other than specified parameters, we use the default values from pykt library.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E SENSITIVITY TO THE NUMBER OF STUDENTS

Fig. 9 demonstrates the extended prediction results for KT models with varying numbers of students
available for training (starting from 5 % of the total number of students). Across all 15 KT models, our
KCQRL consistently improves performance on both datasets and for all ranges of student numbers.
Overall, our framework significantly enhances generalization, especially in low-sample settings. This
highlights the advantages of KCQRL in the early phases of online learning platforms, where the
number of students using the system is limited.

5 10 20 50 100
Students in Training Data (%)

66

68

70

72

74

76

78

80

82

AU
C

(%
)

DKT

5 10 20 50 100
Students in Training Data (%)

66

68

70

72

74

76

78

80

82

DKT+

5 10 20 50 100
Students in Training Data (%)

70

72

74

76

78

80

82
KQN

5 10 20 50 100
Students in Training Data (%)

68

70

72

74

76

78

80

82
qDKT

5 10 20 50 100
Students in Training Data (%)

72

74

76

78

80

82

AU
C

(%
)

IEKT

5 10 20 50 100
Students in Training Data (%)

68

70

72

74

76

78

80

82

AT-DKT

5 10 20 50 100
Students in Training Data (%)

70

72

74

76

78

80

82

QIKT

5 10 20 50 100
Students in Training Data (%)

66

68

70

72

74

76

78

80

82

DKVMN

5 10 20 50 100
Students in Training Data (%)

66

68

70

72

74

76

78

80

82

AU
C

(%
)

DeepIRT

5 10 20 50 100
Students in Training Data (%)

68

70

72

74

76

78

80

82

ATKT

5 10 20 50 100
Students in Training Data (%)

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5
SAKT

5 10 20 50 100
Students in Training Data (%)

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

SAINT

5 10 20 50 100
Students in Training Data (%)

68

70

72

74

76

78

80

82

AU
C

(%
)

AKT

5 10 20 50 100
Students in Training Data (%)

68

70

72

74

76

78

80

82

simpleKT

5 10 20 50 100
Students in Training Data (%)

70

72

74

76

78

80

82

sparseKT

XES3G5M Default XES3G5M w/ KCQRL (ours) Eedi Default Eedi w/ KCQRL (ours)

Figure 9: Improvement of our KCQRL across models and datasets with varying availability of
training data. Green area covers the improvement from our framework.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

F PERFORMANCE ON MULTI-STEP AHEAD PREDICTION TASK

Fig. 10 demonstrates the extended prediction results for KT models for multi-step ahead prediction
task with both scenarios: (a) accumulative and (b) non-accumulative prediction. Of note, we excluded
IEKT from this task due to its slow inference. As detailed in the implementation section (Sec.D), our
KCQRL does not affect the models’ original runtimes, so the slow inference is solely attributed to
IEKT’s original implementation.

Across 14 KT models, our KCQRL improves the prediction performance for both datasets and for
both settings. The only exception is sparseKT during the early stages of accumulative prediction
on Eedi. As a result, our framework greatly improves long-term predictions of students’ learning
journeys and their outcomes.

20 30 40 50 60 70 80 90
Observed learning history (%)

66

68

70

72

74

76

78

80

AU
C

(%
)

DKT

20 30 40 50 60 70 80 90
Observed learning history (%)

68

70

72

74

76

78

80
DKT+

20 30 40 50 60 70 80 90
Observed learning history (%)

66

68

70

72

74

76

78

80
KQN

20 30 40 50 60 70 80 90
Observed learning history (%)

70

72

74

76

78

qDKT

20 30 40 50 60 70 80 90
Observed learning history (%)

66

68

70

72

74

76

78

80

AU
C

(%
)

AT-DKT

20 30 40 50 60 70 80 90
Observed learning history (%)

72

74

76

78

80

QIKT

20 30 40 50 60 70 80 90
Observed learning history (%)

68

70

72

74

76

78

80

DKVMN

20 30 40 50 60 70 80 90
Observed learning history (%)

68

70

72

74

76

78

80

DeepIRT

20 30 40 50 60 70 80 90
Observed learning history (%)

64

66

68

70

72

74

76

78

80

AU
C

(%
)

ATKT

20 30 40 50 60 70 80 90
Observed learning history (%)

66

68

70

72

74

76

78

80

SAKT

20 30 40 50 60 70 80 90
Observed learning history (%)

72

74

76

78

80

SAINT

20 30 40 50 60 70 80 90
Observed learning history (%)

72

74

76

78

80

AKT

20 30 40 50 60 70 80 90
Observed learning history (%)

72

74

76

78

80

AU
C

(%
)

simpleKT

20 30 40 50 60 70 80 90
Observed learning history (%)

70

72

74

76

78

80

sparseKT

XES3G5M Default Accum.
XES3G5M Default Non-Acc.

XES3G5M w/ Framework Accum. (ours)
XES3G5M w/ Framework Non-Acc. (ours)

Eedi Default Accum.
Eedi Default Non-Acc.

Eedi w/ Framework Accum. (ours)
Eedi w/ Framework Non-Acc. (ours)

Figure 10: Improvement of our KCQRL across models and datasets in multi-step ahead prediction
scenario. Green/red area covers the improvement/decline from our framework.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

G QUALITY OF AUTOMATED KC ANNOTATION

In this section, we provide the details how we evaluate the quality of our KCQRL’s KC annotations
as part of our ablation study in Sec. 5.2.

For this, we compared our annotations against two baselines: 1) KC annotations from the original
datasets and 2) KC annotations of our KCQRL without leveraging the solution steps.

We picked 1,000 random questions from each dataset, XES3G5M and Eedi. We used Llama-3.1-405B
(Dubey et al., 2024) for the evaluations of these questions. Here, we chose a Llama-based model
instead of GPT-based models (e. g., GPT-4o) to prevent the potential bias of GPT models towards
their own generations, as we already used GPT-4o for our KC annotations earlier.

For a structured comparison, we defined 5 criteria. Correctness is to measure which annotation has
correct KC(s), relative to the other annotations. Coverage is an evaluation criterion for questions
with multiple KCs. It measures how well the KCs from an annotation cover the set of KCs that
the question is associated with. Specificity is a measure to compare which annotation has a more
modular set of KCs rather than long and complicated ones. Of note, modular and simpler KCs enable
identifying the common skills required for different questions. We additionally defined ability of
integration to evaluate how well the described KCs are widely applicable to other Math problems,
beyond the question being solved. Finally, overall is about choosing the best KC annotation by
considering all criteria.

As explained in Sec. 5.2, we made a pair-wise comparison between KC annotations: (i) Original vs.
KCQRL w/o sol. steps, (ii) Original vs. KCQRL, and (iii) KCQRL w/o sol. steps vs. KCQRL. To
eliminate any potential bias from the order of KC annotations in the prompt, each time we randomly
assigned KC annotations to groups A and B. Our prompt is given in Appendix G.2.

G.1 EXAMPLE KC ANNOTATIONS

Here, we follow our example question from Fig. 2 and provide the KC annotations of two baselines
and our framework.

Question: 65 ⋅ 34 + 65 ⋅ 45 + 79 ⋅ 35 =?

Solution steps: Below is the extended version of the solution steps, provided by our framework:

• First, factor out the common factor from the first two terms, which is 65. So, the expression
becomes 65 × (34 + 45) + 79 × 35.

• Next, simplify the addition inside the parentheses: 34 + 45 = 79. So, the expression now is
65 × 79 + 79 × 35.

• Notice that 79 is a common factor in both terms, so factor it out: 79 × (65 + 35).
• Simplify the addition inside the parentheses: 65+35 = 100. So, the final result is 79×100 = 7900.

For the above Math question, the KC annotations are the following:

Original from the dataset: a) Extracting common factors of integer multiplication (ordinary type).

KCQRL w/o solution steps: a) Understanding of addition. b) Ability to perform multiplication.

Our complete KCQRL framework: a) Understanding of multiplication. b) Understanding of
addition. c) Factoring out a common factor. d) Simplifications of expressions. e) Distributive
property.

Takeaway: The original KC annotation is just one phrase with complex combinations of multiple
KCs. It is also missing out some KCs such as addition and simplifications of expressions. On the
other hand, KC annotations of KCQRL w/o solution steps are missing the important techniques asked
by the problem, such as extracting the common factor. The reason is, this technique is hidden in
the solution steps, which need to be provided for a better KC annotation. Overall, our complete
framework provides correct set of KCs with better coverage and in a modular way in comparison to
two baseline annotations.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

G.2 PROMPT FOR QUALITY COMPARISON OF KC ANNOTATIONS

Below is the prompt for comparing the qualities of different KC annotations via LLMs.

Prompt

You are provided with a Math question. First, you are asked to solve the given question step
by step. Your task is to choose the best knowledge concept (KC) annotation (A or B) for each
of the following criteria.

- Correctness: You will choose the KC annotations in terms of the correctness, considering
the question and your answer to that question.
- Coverage: KC annotations may contain multiple KCs. If you think the question is originally
linked to multiple KCs, choose the KC annotation that covers the most of them. If you think
the question is linked to only one KC, choose the KC annotation that covers it. If both covers
it, then choose the KC annotation with the last number of KCs.
- Specificity: Choose the least specific KC annotation, ie, consisting of multiple simple
elements instead of consisting of a single complex element or a few highly detailed elements.
In other words, consider the complexity and specificity of the individual sub-concepts, rather
than just the overall number of concepts. A knowledge concept with multiple simple sub-
concepts should be ranked as less specific than a knowledge concept with a single, highly
detailed sub-concept.
- Ability of integration: Choose the KC annotation that best represents a skill or concept that
is widely applicable to other problems or contexts. In other words, select the KC that is more
transferable and versatile across various types of math questions, beyond the specific question
being solved.
- Overall: Choose the best KC annotation, considering all the metrics above.

The presented KC annotations might have different formats (one with bullet points and the
other with new lines etc.). For your evaluation, do not pay attention to the formatting of them,
and only focus on their textual content.

These two knowledge concept annotations are given as Group A and B. You will output your
selection for each criterion. Please follow the example output (between “””s) below as a
template when structuring your output.

“””Solution: <Your solution to the Math question>
Correctness: <A or B>
Coverage: <A or B>
Specificity: <A or B>
Ability of integration: <A or B>
Overall: <A or B>“””

Math Question: <QUESTION CONTENT>
Knowledge Concept Annotations:
- Group A: <KC ANNOTATIONS 1>
- Group B: <KC ANNOTATIONS 2>

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

H PROMPTS FOR KC ANNOTATION VIA LLMS

Our framework leverages the reasoning abilities of LLMs to annotate the KCs of each question in a
grounded manner, which is at the core of our Module 1: KC annotation via LLMs (Sec. 3.1). This is
done in three steps. Below, we provide the prompts for each step in order.

H.1 SOLUTION STEP GENERATION

As the first step, our framework generates the solution steps for the given question. The prompt is
given below.

Prompt

Your task is to generate clear and concise step by step solutions of the provided Math problem.
Please consider the below instructions in your generation.

- You will also be provided with the final answer. When generating the step by step solution,
you can leverage those information pieces, but you can also use your own judgment.
- It is important that your generated step by step solution should be understandable as
stand-alone, meaning that the student should not need to additionally check final answer or
explanation provided.
- Please provide your step-by-step solution as each step in a new line. Don’t enumer-
ate the steps. Don’t put any bullet points. Separate the solution steps only with one newline \n.

Question: <QUESTION TEXT>
Final Answer: <FINAL ANSWER>
Step by Step Solution:

H.2 KC ANNOTATION

For the given question and its generated solution steps from the earlier part, our KCQRL framework
annotates the KCs in a grounded manner. The prompt of this step is given below.

Prompt

You will be provided with a Math question, its final answer and its step by step solution. Your
task is to provide the concise and comprehensive list of knowledge concepts in the Math
curriculum required to correctly answer the questions. Please carefully follow the below
instructions:

- Provide multiple knowledge concepts only when it is actually needed.
- Some questions may require a figure, which you won’t be provided. As the step-by-step
solution is already provided, Use your judgment to infer which knowledge concept(s) might
be needed.
- For a small set of solutions, their last step(s) might be missing due to limited token size. Use
your judgment based on your input and your ability to infer how the solution would conclude.
- Remember that knowledge concepts should be appropriate for Math curriculum between 1st
and 8th grade. If the annotated step-by-step solution involves more advanced techniques, use
your judgment for more simplified alternatives.

Question: <QUESTION TEXT>
Final Answer: <FINAL ANSWER>
Step by Step Solution: <SOLUTION STEPS>

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

H.3 SOLUTION STEP-KC MAPPING

As the final part, our framework maps each solution step to its associated KCs for a given question.
This step is particularly needed for the Module 2 of our framework: representation learning of
questions (Sec. 3.2). The prompt of this step is given below.

Prompt

You are expert in Math education. You are given a Math question, its solution steps, and
its knowledge concept(s), which you have annotated earlier. Your task is to associate
which solution steps require which knowledge concepts. Note that all solution steps and all
knowledge concepts must be mapped, while many-to-many mapping is indeed possible.

Each solution step and each knowledge concept is numbered. Your output should enumerate
all solution step - knowledge concept pairs as numbers.

Your output should meet all the below criteria:
- Each solution step has to be paired.
- Each knowledge concept has to be paired.
- Map a solution step with a knowledge concept only if they are relevant.
- Your pairs cannot contain artificial solution steps. For instance, If there are 4 solution steps,
the pair "5-2" is indeed illegal.
- Your pairs cannot contain artificial knowledge concepts. For instance, If there are 3
knowledge concepts, the pair "3-5" is indeed illegal.

You will output solution step - knowledge concept pairs in a comma separated manner and
in a single line. For example, if there are 4 solution steps and 5 knowledge concepts, one
potential output could be the following: "1-1, 1-3, 1-5, 2-4, 3-2, 3-5, 4-2, 4-3, 4-5".

Observe that this output also meets all the criteria explained above.

Now, for the given question, solution steps and knowledge concepts, please provide your
mapping as the output.

Question: <QUESTION TEXT>
Solution steps: <SOLUTION STEP>
Knowledge concepts: <ANNOTATED KCS>
Solution step - KC mapping:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

I SUMMARY STATISTICS OF KC ANNOTATION

For XES3G5M dataset, our KCQRL framework annotated 8378 unique KCs for 7652 questions in
total. Fig. 11 shows the distribution of the number KCs annotated per question. Compared to the
original dataset with 1.16 KCs per question, our framework identifies 4 or 5 KCs for the majority of
questions. It shows that our framework annotates the questions with more modular KCs in comparison
to the original dataset.

3 42 5 6 7 8 109
Number of Knowledge Concepts in a Question

0

500

1000

1500

2000

2500

Nu
m

be
r o

f Q
ue

st
io

ns

Figure 11: Distribution of questions with different numbers of KCs annotated by our KCQRL
framework for XES3G5M dataset.

Our framework identifies 2024 clusters for these 8378 unique KCs annotated. Fig. 12 shows
the most frequent clusters across all the questions. To keep the plot informative, we discard the
clusters that include basic arithmetic operations as they appear in the majority of the questions. To
provide reproducibility and deeper insights into our KC annotations and clusters, we provide the full
annotations in our repository.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Cluster ID

0

50

100

150

200

250

300

Nu
m

be
r o

f Q
ue

st
io

ns

1: Counting
2: Logical reasoning
3: Pattern recognition
4: Understanding of even and odd numbers
5: Solving simple linear equations
6: Problem-solving skills
7: Understanding of perimeter
8: Understanding place value
9: Order of operations
10: Understanding arithmetic sequences

11: Problem-solving with equations
12: Understanding of variables and unknowns
13: Spatial reasoning
14: Combining like terms
15: Understanding of rectangle properties
16: Understanding of distance, speed, and time relationship
17: Understanding of sequences and patterns
18: Place value understanding
19: Concept of natural numbers
20: Understanding fractions

21: Basic problem-solving strategies
22: Substitution method
23: Understanding of sets and intersection
24: Understanding of combinations
25: Setting up and solving simple equations
26: Simplification of expressions
27: Understanding of variables as unknowns
28: Understanding of days of the week
29: Understanding of magic squares
30: Understanding averages

31: Understanding of sequences
32: Understanding of square properties
33: Writing algebraic expressions based on word problems
34: Comparison of numbers
35: Basic algebraic thinking
36: Writing algebraic expressions
37: Understanding of parallelograms and their properties
38: Simplifying algebraic expressions
39: Basic graph theory concepts
40: Understanding of decimal numbers

Figure 12: Most frequent KCs annotated across all the questions in XES3G5M dataset. Result is
shown after clustering.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

J QUALITY OF KC ANNOTATION WITH VARYING SIZES OF LLMS

In this section, we inspect the impact of LLM’s capacity on the quality of automated KC annotation.
For this, we pick different LLMs from the same family of models, namely Llama-3.2-3B, Llama-3.1-
8B and Llama-3.1-70B (Dubey et al., 2024). To establish a reference annotation, we further included
the KC annotations of the original XES3G5M dataset.

We followed a similar procedure to Appendix G. Specifically, we again picked 1,000 random questions
from XES3G5M dataset. As we earlier found that LLMs provide better KC annotations by considering
the solution steps (Sec. 5.2 and Appendix G), we provided solution steps to above Llama models
for KC annotation. We used the same prompt template as in Appendix H.2. To compare four KC
annotations (one original and three Llama models), we leverage GPT-4o instead of any Llama model
to prevent the potential bias of Llama models towards their own generations. For comparison, we used
the same five evaluation metrics defined in Appendix G), namely correctness, coverage, specificity,
ability of integration and overall. We leveraged the same prompt template in Appendix G.2 by only
extending it to 4 groups of KC annotations. At each inference, we randomly shuffled the order of KC
annotations to avoid a potential bias from the order of KCs presented.

Table 5: Ablation study showing the relevance of automated KC annotations with varying sizes
of LLMs. We report the quality (in %) for different KC annotations.

Original Llama-3.2-3B Llama-3.1-8B Llama-3.1-70B
Correctness 0.7 17.0 31.2 51.1
Coverage 1.8 19.1 47.2 31.9
Specificity 11.5 17.4 24.6 46.5
Ability of integration 3.3 17.1 37.3 42.3
Overall 1.3 17.1 36.1 45.5

Table 5 compares the quality of KC annotations of varying size of Llama models and the KC
annotation of the original dataset. Specifically, it shows % of times where each model is chosen to be
the best for each criterion. Overall, larger Llama models are preferred over the smaller ones. The only
exception is the coverage where Llama-3.1-8B is found to be the best. After manual inspection, we
found that Llama-3.1-8B generates much more KCs than the other models, which leads to increasing
coverage but also decreasing correctness and specificity. Further, the overall quality of original KC
annotations is only found to be best at only ∼1 % of the questions, when compared against three other
Llama variants. This further highlights the need for designing better KC annotation mechanisms.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

K QUALITY OF KC ANNOTATIONS VIA HUMAN EVALUATION

In this section, we conduct a human evaluation to assess the quality of KC annotations. Specifically,
we randomly selected 100 questions from the XES3G5M dataset and asked seven domain expert
evaluators to compare KC annotations from three sources: (i) the original dataset, (ii) Llama-3.1-70B7

(the best-performing model among Llama versions evaluated in Appendix J), and (iii) our KCQRL
framework leveraging GPT-4o.

To ensure fairness, we randomly shuffled the KC annotations for each question and concealed their
sources. For each question, we provided step-by-step solution steps to aid the evaluators’ assessments.
While we only requested the overall preference of evaluators, we supplied detailed explanations for
additional criteria (e. g., correctness, coverage, etc.) to support their decision-making. (Of note, we
received the initial feedback that evaluating all five criteria for each question would be too exhaustive,
so we proceeded with overall evaluations only.)

Original Llama-3.1-70B KCQRL (ours)
0

20

40

60

80

Pe
rc

en
ta

ge
 o

f P
re

fe
re

nc
es

 (%
)

5.00%

39.35%

55.65%

(a) % of Preferences for Different KC Annotations

Original Llama-3.1-70B KCQRL (ours)
0

20

40

60

80

Nu
m

be
r o

f Q
ue

st
io

ns
 w

ith
 M

aj
or

ity
 V

ot
e

4

42

54

(b) Majority Vote for Different KC Annotations

Figure 13: Human evaluation on KC annotations

Fig. 13a shows the distribution of preferences for each KC Annotation method, aggregated over all
the questions and the evaluators. Only 5 % of the time the evaluators preferred the original KCs over
the LLM-generated KC annotations. This percentage is even lower than our automated evaluation of
KC annotations in our ablation studies (Sec. 5.2). We also found that the KC annotations of GPT-4o
is preferred more than Llama-3.1-70B (55.65 % vs. 39.35 %), which confirms our choice of LLM in
KC annotation module (Sec. 3.1).

Fig. 13b shows the number of questions for which each KC annotation method got the majority of the
votes. The results are similar to the earlier distribution of preferences. The original KC annotations
got the majority of the votes for only 4 questions. In comparison, for more than half of the questions,
the annotations of our framework got the majority votes.

We additionally checked if there are any questions where all seven evaluators agreed on the same KC
annotation. (Note that, the chance of such agreement at random is only around ∼ 0.14%.) We found
that all evaluators chose GPT-4o for seven questions, and chose Llama-3.1-70B for 3 questions. On
the other hand, there is no question for which all seven evaluators preferred original KC annotations.
As a result, all our findings from human evaluations show that LLMs are preferred more over the
KC annotations from the original dataset. Further, the strong preference over GPT-4o confirms our
choice in our KC annotation module.

7As in Appendix J, the model was provided with solution steps to generate KC annotations, ensuring a fair
comparison with our framework.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

L ABLATION STUDY ON DIFFERENT MODEL EMBEDDINGS

In this section, we design an ablation study to compare the quality of different question embed-
dings. Specifically, we get the question embeddings from Word2Vec (average over all the words
in a sentence), OpenAI’s text-embedding-3-small model, and BERT (our encoder LM Eψ(⋅) of
representation learning module in Sec. 3.2). We follow the same procedure as we compared the
question embeddings in Sec. 5.2: we get the embeddings of the question, its solution steps, and
KCs concatenated as in the part (d) of Sec. 5.2. We then compare these embeddings based on the
performance of downstream KT models. To establish a better reference, we further include the default
performance of these KT models (i. e., with random initialized embeddings) and the performance of
our KCQRL framework.

81.25

81.50

81.75

82.00

82.25

82.50

82.75

83.00

AU
C

AKT

78

79

80

81

82

AU
C

DKT

78

79

80

81

82

AU
C

DKVMN

79.5

80.0

80.5

81.0

81.5

82.0

82.5

83.0

AU
C

sparseKT

Models
Default (Random init) Word2Vec text-embedding-3-small (OpenAI) BERT KCQRL (ours)

Figure 14: The quality of different embedding methods compared against our KCQRL framework.

Fig. 14 shows the performance of four KT models, AKT, DKT, DKVMN and sparseKT with five
different embeddings. We have the following observations: (1) The embeddings of Word2Vec does
not yield much improvement over the default version, and it might even hurt the performance. We
explain this observation by that (i) Word2Vec is not advanced technique to get the semantics of a Math
problem and (ii) averaging over the word embeddings can lead question embeddings to concentrate
around the same region. (2) OpenAI’s text-embedding-3-small performs at a similar level to our
encoder LM Eψ(⋅). The reason is, although performing well on a variety of tasks, this model is not
specialized in Math education. (3) Our KCQRL framework outperforms other embedding methods,
which highlights the need for our representation learning module in Sec. 3.2.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

M DISCUSSION ON KCQRL USAGE IN REAL-TIME

In this section, we elaborate on how our complete KCQRL framework can be deployed and maintained
in real-world scenarios. Below, we discuss various situations that may arise when KCQRL is used for
knowledge tracing in online learning platforms.

What happens when a new student joins the platform? This scenario has no impact on Module
1 (KC annotation via LLMs in Sec. 3.1) and Module 2 (representation learning of questions in
Sec. 3.2) as the database of questions remains unchanged. KT models in our Module 3 (Sec. 3.3)
are time-series models that can adapt to new sequences during inference when a new student joins.
However, KT models often suffer from cold start issues (Zhang et al., 2014; Fatemi et al., 2023)
when students solve only a few exercises. To address this, one can determine the minimum number
of exercises required to achieve satisfactory prediction performance, as described in our multi-step
ahead prediction analysis in Sec. 5.1. Students can then be guided to follow a curriculum designed
by education experts until they complete enough exercises for the KT models to deliver effective
predictions.

What happens when an instructor adds a new question to the platform? After training the
representation learning module (Sec. 3.2), the encoder LM Eψ(⋅) learns to associate questions and
their solution steps with relevant KCs based on annotations provided by a more capable LLM, such
as GPT-48. Consequently, when instructors add a new question to the platform, they can input the
question and its solution step into the representation learning module and run the encoder LM Eψ(⋅)
to generate new embeddings. Details of the inference behavior of Eψ(⋅) are provided in Appendix D.
To evaluate student knowledge on these new questions, the downstream KT models can then run
inference using the newly generated embeddings.

What happens if the LLM used for KC annotation becomes obsolete? As mentioned earlier, the
LLM for KC annotation is required only during the training of the encoder LM in the representation
learning module. Once the encoder LM is trained, our KCQRL framework no longer depends on
the LLM from Module 1 during deployment. Therefore, even if the LLM used for KC annotation
becomes obsolete, online learning platforms can continue admitting new students and allowing
instructors to add new questions. These new questions can still be used to assess student knowledge
effectively using our KCQRL framework.

The only exception to this scenario occurs if the platform expands its knowledge tracing to a new
subject (e. g., from Math to Chemistry or Physics). In this case, KC annotation for the new question
corpus will be necessary to adapt the representation learning module to the new domain via training.
If the new subject is unrelated to the existing one (i. e., knowledge in one subject does not inform
another), we recommend training and deploying separate branches of the KCQRL pipeline to ensure
better performance for the downstream KT models.

How does KCQRL framework apply to subjects other than Math? Module 1 (KC annotation via
LLMs in Sec. 3.1) in our framework can be extended to other subjects. For subjects where questions
do not require multiple solution steps to arrive at the correct answer, the solution step generation part
of Module 1 can be skipped, starting directly with the KC annotation process. As demonstrated in our
ablation study (Sec. 5.2), our framework still outperforms the original KC annotations even without
the inclusion of solution steps. Once KC annotations are obtained, the solution step–KC mapping
part of Module 1 can also be omitted, as there are no solution steps to map.

In this scenario, the representation learning module (Sec. 3.2) can be trained solely using Lquestioni
(Eq.3). As shown in our ablation study (Sec. 5.2), this approach still improves the performance of
downstream KT models. After generating the embeddings, the downstream KT model can then be
trained as usual.

Finally, we emphasize that, at the time of writing, KT datasets with available question content are
extremely limited; we identified only two such datasets, both in Math. We hope our work highlights
the need for KT datasets in other subjects with available question corpora and inspires future research
to further integrate question semantics into downstream KT models.

8This can be viewed as a form of knowledge distillation from a larger LLM to a smaller one.

34

	Introduction
	Preliminaries: Standard Formulation of Knowledge Tracing
	Proposed KCQRL Framework
	Knowledge Concept Annotation via LLMs (Module 1)
	Representation Learning of Questions (Module 2)
	Improving Knowledge Tracing via Learned Question Embeddings (Module 3)

	Experimental Setup
	Results
	Prediction Performance
	Ablation Studies

	Related Work
	Discussion
	Related Work (Extended)
	Dataset Details
	Prompt for converting XES3G5M to proper question format

	KT Models Details
	Implementation Details
	Sensitivity to the Number of Students
	Performance on Multi-step ahead Prediction Task
	Quality of Automated KC Annotation
	Example KC Annotations
	Prompt for Quality Comparison of KC Annotations

	Prompts for KC Annotation via LLMs
	Solution step generation
	KC Annotation
	Solution Step-KC Mapping

	Summary Statistics of KC Annotation
	blueQuality of KC Annotation with Varying Sizes of LLMs
	blueQuality of KC Annotations via Human Evaluation
	blueAblation Study on Different Model Embeddings
	blueDiscussion on KCQRL Usage in Real-Time

