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ABSTRACT

With the rising prominence and fluency of large language models (LLMs), developing
technologies to identify LLM-generated text has become increasingly critical. However,
existing technologies depend on static linguistic features, which can be evaded as advanced
models increasingly mimic a wide range of writing styles. This study reveals two crucial
vulnerabilities in existing detection systems:(1) State-of-the-art detectors suffer a substan-
tial accuracy decline, reaching up to 16.45% when exposed to style-based adversarial at-
tacks generated by LLMs. (2) While general-purpose LLMs exhibit remarkable zero-shot
capabilities, their performance in detecting adversarially manipulated text is lower than
specialized detectors fine-tuned for robustness. To address these vulnerabilities, we pro-
pose a novel style-agnostic detection framework named SAFD that enhances detection ac-
curacy and robustness by prioritizing content-driven features over stylistic attributes. Our
approach integrates a style-invariant training paradigm to disentangle content semantics
from stylistic variations. We leverage adversarially enriched datasets constructed using
LLMs fine-tuned for diverse style-based attacks. Furthermore, we utilize advanced rep-
resentation learning techniques to extract content-centric features, emphasizing semantic
coherence, logical consistency, and factual alignment. Experimental results across mul-
tiple datasets and detection models validate the effectiveness of our framework, showing
improvements in detection accuracy and robustness against diverse adversarial manipula-
tions. The dataset and code are in the link 1.

1 INTRODUCTION

Large language models (LLMs) have recently demonstrated remarkable capabilities in generating textual
data Zhao et al. (2023); Minaee et al. (2024), and have garnered widespread attention. However, malicious
actors abuse LLMs to generate various-style text, creating misleading public-opinion content such as fake
news or academic papers with false data to distort the truth Wu et al. (2023). Considering this, it is an
extremely pressing matter to develop detection technologies that remain unaffected by text styles and can
precisely identify the text’s origin.

Many state-of-the-art detection methods heavily rely on stylistic attributes Wu et al. (2023); Wang et al.
(2023a); Liu et al. (2023), i.e., lexical choice, sentence structure, and syntactic patterns. Although effec-
tive under normal conditions, these features are highly susceptible to adversarial style-based attacks, where
generated text mimics human writing styles. This reliance undermines the robustness of these detectors, as
adversaries can easily manipulate style while preserving semantic coherence. These limitations highlight
the pressing need for detection frameworks that are less reliant on stylistic attributes, incorporate content-
focused strategies, and are rigorously evaluated against a comprehensive set of adversarial attacks.

1https://anonymous.4open.science/status/A-Style-Agnostic-Framework-for-Detecting-LLM-Generated-Text-90B7
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In this work, we aim to develop a technique independent of stylistic attributes and unaffected by text styles,
enabling precise identification of the text’s origin. Specifically, we identify two critical vulnerabilities: (1)
state-of-the-art detectors for generated text are significantly compromised by LLM-induced stylistic vari-
ations, and (2) general-purpose LLMs exhibit markedly inferior performance in detecting adversarially
manipulated text. Motivated by two critical vulnerabilities, we present a novel style-agnostic detection
framework named SAFD. We incorporate a style-invariant training paradigm that involves disentangling
content features from stylistic attributes during training using adversarial learning techniques. The model is
explicitly trained to disregard stylistic variations by introducing adversarially perturbed examples that mimic
diverse human writing styles. Then, we generate a comprehensive adversarial dataset leveraging LLMs fine-
tuned for style attacks. This dataset includes diverse stylistic manipulations across genres and domains,
exposing the model to various adversarial scenarios. Experimental results across various datasets and mod-
els demonstrate that our method achieves substantial improvements in detection accuracy. Our contributions
are as follows:

• We observe that current detectors for LLM-generated text exhibit considerable limitations when
encountering texts with styles purposefully altered by other LLMs. To our knowledge, this work
is the first to systematically investigate the impact of these LLM-driven stylistic alterations on the
performance of text detection systems.

• We introduce a novel training framework that enhances the resilience of text generation detectors
by learning style-invariant features. To our knowledge, this is the first approach to forgo stylistic
artifacts in favor of content-driven analysis, ensuring its broad applicability.

• We construct an adversarially enriched dataset by leveraging LLMs fine-tuned for style-based at-
tacks. Extensive experiments on advanced and commercial LLMs (LLAMA-13B, GPT-4, Qwen-2,
etc.) show that SAFD outperforms state-of-the-art detection methods by up to 6.11%.

2 RELATED WORK

In this section, we discuss two critical dimensions of LLMs-generated text analysis, i.e., representative
detection approaches and adversarial attacks.

Universal Detection Frameworks for LLM-Generated Content. Numerous methodologies leverage the
sophisticated mechanisms of LLMs, encompassing intermediate layer outputs as well as weight parameters,
to differentiate between texts authored by humans and those generated by LLMs Taguchi et al. (2024); Wang
et al. (2023b); Bao et al. (2023); Su et al. (2023); Bakhtin et al. (2019). These methodologies introduce sub-
tle text modifications to monitor changes in log probabilities, where a notable decrease typically indicates
LLM-generated text, while an increase or minor fluctuations suggest human authorship. To detect text gen-
erated by smaller models, statistical analyses are employed to examine features,i.e., word choice, sentence
structure, and stylistic elements Taguchi et al. (2024); Gao et al. (2018); Wang et al. (2023b); Shi et al.
(2024). These features are compared against known human and LLMs-generated patterns to identify dis-
crepancies indicative of non-human authorship. Despite their innovations, these methods largely depend on
stylistic cues, which are easily manipulated by adversaries using style-based transformations Waghela et al.
(2024); Fu et al. (2024); Wang et al. (2024a). This reliance exposes a critical vulnerability, as demonstrated
by accuracy degradation under adversarial conditions.

Adversarial Attacks in Text Generation. Adversarial attacks have now emerged as a formidable threat
to the detection of generated text Alzantot et al. (2018); Zhang et al. (2024). The existing adversarial
sample attack techniques are characterized by their high level of stealth and aggressiveness, enabling them
to effectively evade the current detection methods Huq et al. (2020); Kadhim et al. (2025). Many approaches
subtly perturb parts of the text or embed feature-specific text snippets Li et al. (2018); Wang et al. (2019);
He et al. (2021); Boreshban et al. (2023), causing NLP models to produce targeted incorrect outputs while
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preserving semantic and syntactic integrity. Although adversarial examples in other domains, i.e., image
recognition Zhang et al. (2021); Wei et al. (2018); Cui et al. (2024); Navaneet et al. (2024) and fake news
detection Zhu et al. (2024); DSouza & French (2024); Wu et al. (2024a), have been extensively studied,
similar efforts in the context of LLMs-generated text are limited. Existing detection frameworks are not
specifically designed to address these sophisticated style transformations, leading to accuracy degradation
in adversarial scenarios.

3 PROBLEM DEFINITION

Let D = {(xi, yi)}Ni=1 represent a dataset where xi is the input text sample, and yi ∈ {0, 1} is the cor-
responding label, with yi = 1 indicating LLMs-generated text and yi = 0 for human-written text. The
goal is to train a detector fθ(x) : X → {0, 1} parameterized by θ, which can accurately classify xi while
maintaining robustness against adversarial manipulations.

An adversarial example x′
i is defined as a perturbed version of xi generated by an adversary A, and ϕ

represents adversarial parameters.:

x′
i = A(xi;ϕ) (1)

The X ′ denotes the set of adversarially perturbed samples. . The detector fθ(x) should satisfy the following
robustness criterion:

fθ(xi) = fθ(x
′
i), ∀xi ∈ D, x′

i ∈ X ′, (2)

4 MOTIVATION

In this section, we employ LLMs to generate texts with diverse stylistic variations. We conduct a preliminary
analysis to assess the performance of state-of-the-art detections in identifying this generated content.

4.1 DIVERSE STYLISTIC VARIATIONS

The advanced capabilities of LLMs enable users to transform text styles through tailored prompts, challeng-
ing the robustness of detection systems against such stylistic alterations. In this study, we investigate a direct
style-based attack by employing distinctive writing styles characteristic of texts such as Andersen’s fairy
tales and the scientific prose found in prestigious academic journals like Nature and Science as prompts.
These writing styles are marked by distinctive narrative elements and tonal qualities, making them viable
options for adversarial manipulations. For instance, a modern narrative might be rewritten with whimsical
language, moral undertones, and vivid imagery characteristic of fairy tales. Our general prompt format for
these transformations is structured as follows:

Rewrite the following text using the style of [publisher/book]: [input text]

For narrative texts, we employ the writing style of Andersen’s fairy tales to transform stories generated by
LLMs. For political texts, we adopt the style of CNN, while for scientific texts, we utilize the writing style
of Nature and Science. We employ these stylistically transformed test samples to systematically evaluate the
performance of detection systems when subjected to style-oriented adversarial attacks.

4.2 STYLE-RELATED DETECTOR VULNERABILITY

3
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Method Story PolitiFact Science
O A (↓) O A (↓) O A (↓)

DetectGPT 78.24 70.13 75.91 71.96 69.72 60.43
GLTR 63.24 54.88 59.24 52.32 60.66 53.73
LLMDet 72.35 60.69 70.08 62.57 60.52 57.63

LLaMA-7B 69.34 61.45 73.45 60.59 68.59 52.14
Neo-2.7B 62.25 50.82 65.39 52.75 60.97 48.33

Figure 1: The performance comparison of different meth-
ods across Story, PolitiFact, and Scientists datasets. O rep-
resents the original accuracy, and A (↓) represents the ad-
versarial accuracy.

As shown in Table 1, the original accuracy
(O) reflects the detection methods’ perfor-
mance on unaltered texts, while the adversar-
ial accuracy (A) represents their robustness
when faced with style-based adversarial at-
tacks, with a drop in accuracy indicated by
(↓). DetectGPT Mitchell et al. (2023) demon-
strates the highest original and adversarial ac-
curacies across all datasets, particularly ex-
celling in Story (O: 78.24%, A: 70.13%) and
PolitiFact (O: 75.91%, A: 71.96%). However,
its performance drops more significantly in
the Science dataset (O: 69.72%, A: 60.43%),
highlighting the challenge of adversarial at-
tacks in more structured or technical domains. GLTR Gehrmann et al. (2019) and LLMDet Wu et al.
(2023) exhibit weaker performance, with GLTR demonstrating notable vulnerability under adversarial con-
ditions. For instance, GLTR’s accuracy drops on the PolitiFact dataset (O: 59.24%, A: 52.32%). LLMDet
performs moderately better, particularly on the PolitiFact dataset (O: 70.08%, A: 62.57%). The LLaMA-7B
and Neo-2.7B models exhibit relatively lower original and adversarial accuracies overall, particularly in the
Science dataset where Neo-2.7B struggles the most (O: 62.25%, A: 48.33%), underlining the challenges of
handling adversarial attacks with smaller or less robust LLMs. Existing detectors and general large language
models perform inadequately under adversarial attacks, particularly when handling specialized or technical
texts, where their performance degradation is especially pronounced.

Observation 1 (Style-related vulnerability of LLMs generated text detectors). State-of-the-art detectors for
generated text are found to be impacted by LLM-driven stylistic variations. This impact results in the
performance drop, as evidenced by an accuracy decline of up to 16.45% when evaluated on stylistically
altered test sets.

Observation 2 (Limitations of LLMs in text robustness detection). While LLMs demonstrate remarkable
zero-shot capabilities as general-purpose foundational models, their performance in detecting adversarially
manipulated text is notably inferior compared to specialized LLMs-generated text detection systems and
pre-trained language models fine-tuned for specialized or technical tasks.

5 METHODOLOGY

In this section, we propose a method to detect LLM-generated content by transforming human texts into var-
ious styles using an LLM for diverse training data. Features combine contextual embeddings and statistical
metrics. The training uses three loss functions: style alignment, classification, and pseudo-label supervision.
This ensures robustness to stylistic variations and adaptability to different generation patterns.

5.1 STYLE-BASED REFRAMING

To simulate the diverse styles that LLM-generated content may exhibit in real-world scenarios, we adopt a
data augmentation strategy based on style transformation. Specifically, each human-written text phuman ∈
Dhuman is transformed into multiple stylistic variants by leveraging an LLM MLLM. Ns is the number of
stylistic transformations, si represents a specific style (e.g., ”formal,” ”narrative,” or ”scientific”), and the
equation 3 describes the transformation process.

pgen,i = MLLM(phuman, style = si), i = 1, . . . , Ns (3)

4
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In a tranquil forest, Mia, a courageous little mouse, stumbled upon a 

hidden garden filled with glowing flowers. Enchanted by its beauty, she 

eagerly shared her discovery with her friends …

In a tranquil forest, Mia, a brave little mouse, discovered a hidden garden 

of glowing flowers. Enchanted, she shared her find with friends, turning 

the garden into a nightly gathering spot, where stories and laughter filled 

the air, creating a magical haven for all …

In a quiet forest, Mia, a brave little mouse, found this hidden garden full of 

glowing flowers. She was so amazed that she told all her friends about it. 

Soon, it became their favorite spot to hang out every night, sharing stories 

and laughter. It turned into a magical place for everyone …
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Figure 2: Overview of the SAFD framework. It consists of three main components, e.g., style alignment loss,
class detection Loss, veracity attribution loss. SAFD is designed to enhance the robustness of text genera-
tion detectors against style-based adversarial attacks by focusing on content-driven features and minimizing
reliance on stylistic cues.

The augmented training dataset D is subsequently constructed by integrating stylistic variants derived from
human-written texts with equation 4, thereby ensuring a diverse and comprehensive sample set for robust
model training.

Dtrain = Dhuman ∪ {pgen,i | i = 1, 2, . . . , Ns}. (4)

5.2 STYLE ALIGNMENT LOSS

To improve robustness to stylistic variations, our style alignment loss enforces consistent predictive distri-
butions across Ns stylistic variants {pgen,i}. We achieve this by passing the hidden representation hpgen,i of
each variant through an MLP classifier M to obtain the output probability distributions:

yi = Softmax(M(hpgen,i)) (5)

The style alignment loss Lstyle, is then formulated as the average pairwise Kullback-Leibler (KL) divergence
between the predictive distributions of all variant pairs:

Lstyle =
1

N2
s

Ns∑
i=1

Ns∑
j=1

KL(yi ∥ yj) (6)

where KL(yi ∥ yj) denotes the KL divergence from yj to yi Wu et al. (2024c). This encourages the classifier
to produce a consistent output, irrespective of superficial stylistic features.

5
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5.3 CLASSIFICATION LOSS

The classification loss ensures that the model correctly predicts the source of the input text. For a given input
p, with true label y and predicted probabilities ŷ, the loss is:

Lclass = −
K∑

k=1

yk log ŷk (7)

where K = 2 corresponds to the two classes (human-written and LLMs-generated)

5.4 CONTENT-FOCUSED ATTRIBUTION SUPERVISION

The veracity attributions are generated through a process that involves querying a LLM to identify distinctive
features and patterns characteristic of text produced by LLMs. We employ the following inquiry method:

Input Texts: [LLMs-generated texts]
Question: Which of the following problems does this text have? Single language style, Too struc-
tured logical structure, Lack of background knowledge and personal experience, Repetitive or pat-
terned expression, Data biases, and errors. If multiple options are applicable, provide a comma-
separated list ordered from most to least relevant. Answer ”No” if none of the options apply.

For a given veracity attributions space C = {c1, c2, . . . , cm}, the generated-text pgen,i attribution Ai satisfy:

Ai =

{
1, if pgen,i satisfies ck,
0, otherwise.

(8)

we define a veracity attribution loss based on the binary cross-entropy between the predicted attribution
vector Âi and the ground-truth vector Ai. The attribution loss is averaged over Na samples.

Lattr =
1

Na

Na∑
i=1

BCE(Ai, Âi) (9)

5.5 FINAL OBJECTIVE FUNCTION

The overall training objective combines style alignment loss, classification loss, and veracity attribution
supervision loss:

L = Lstyle + Lclass + Lattr (10)

6 EXPERIMENTS

In this section, we describe the experimental setup, including dataset details and implementation specifics of
SAFD. Eventually, we will assess the performance of our approach, including accuracy and F1 score, etc.,
on multiple datasets and compare these metrics against state-of-the-art algorithms.

6.1 EXPERIMENT SETTING

Datasets. Our experiment employs a meticulously curated collection of three datasets to appraise the capa-
bilities of generated text detection across a spectrum of domains. The Story category features narrative-rich

6
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Table 1: SAFD demonstrates superior performance compared to competitive baselines across four adversarial
test scenarios under LLM-powered style attacks, evaluated in terms of F1 Score (%). The strategies for text
stylization are in Table 3. Bold denotes the overall best results.

Method Story PolitiFact

A B C D A B C D
GLTR (ACL 2019) 52.09 ± 1.43 52.98 ± 0.69 50.37 ± 1.55 49.40 ± 1.30 56.17 ± 1.20 54.05 ± 1.86 53.41 ± 0.98 52.85 ± 0.70

Detectllm (Emnlp 2023) 65.57 ± 0.35 62.81 ± 0.61 65.26 ± 0.63 62.27 ± 1.01 64.60 ± 1.64 66.91 ± 1.17 63.40 ± 1.28 61.04 ± 1.00

LLMDet (Emnlp 2023) 61.94 ± 0.28 60.31 ± 0.76 58.83 ± 1.84 59.91 ± 1.27 61.81 ± 1.64 63.82 ± 0.90 59.38 ± 0.44 58.14 ± 1.93

DetectGPT (ICML 2023) 68.92± 5.67 67.85± 4.42 62.81± 0.82 66.35± 2.19 65.83± 1.58 68.74± 2.71 72.49± 0.38 65.52± 1.58

SeqXGPT (Emnlp 2023) 59.63 ± 0.61 57.41 ± 1.47 59.81 ± 1.01 64.75 ± 0.97 69.58 ± 0.61 61.98 ± 0.49 55.55 ± 1.07 57.90 ± 1.66

COCO (Emnlp 2023) 70.28 ± 0.86 69.11 ± 0.52 69.90 ± 0.96 68.84 ± 1.26 71.75 ± 0.48 71.86 ± 1.33 68.39 ± 1.24 69.55 ± 1.19

BERT-finetuned (ACL 2024) 51.25 ± 0.49 54.28 ± 1.67 55.75 ± 0.93 52.22 ± 2.24 55.19 ± 1.01 56.58 ± 1.28 57.43 ± 1.17 55.34 ± 1.92

RoBERTa-finetuned (ACL 2024) 65.28 ± 1.35 66.69 ± 2.51 67.47 ± 1.95 79.00 ± 1.88 70.32 ± 1.28 77.00 ± 2.35 68.37 ± 1.11 66.52 ± 1.47

T5-Sentinel (Emnlp 2024) 62.93 ± 1.49 71.84 ± 2.03 72.37 ± 1.57 71.76 ± 1.02 72.39 ± 1.80 78.23 ± 2.41 73.07 ± 2.41 70.59 ± 1.26

OUTFOX (AAAI 2024) 78.03 ± 0.87 72.91 ± 1.26 70.99 ± 1.23 72.58 ± 2.01 80.55 ± 1.02 79.84 ± 1.58 70.05 ± 1.84 76.45 ± 1.10

GECScore (ACL 2025) 70.13 ± 0.48 77.44 ± 0.58 76.99 ± 1.16 67.04 ± 1.09 63.34 ± 0.95 83.29 ± 1.53 67.60 ± 0.32 67.42 ± 1.56

GPT-2 (2019) 55.20± 2.42 56.96± 2.45 50.51± 1.01 49.40± 2.06 50.86± 1.93 52.03± 5.52 55.32± 3.47 55.89± 5.18

Neo-2.7B (2020) 61.46 ± 0.95 55.77 ± 1.84 58.82 ± 0.40 69.48 ± 1.27 71.01 ± 1.61 62.49 ± 2.08 56.99 ± 1.80 59.13 ± 0.82

OPT-2.7B (2022) 54.30± 0.99 57.29± 6.56 52.51± 5.36 51.27± 5.02 52.85± 3.72 51.53± 1.72 49.24± 0.58 48.68± 0.50

LLaMA-7B (2023) 57.56± 2.75 51.93± 2.63 51.45± 6.89 52.26± 0.71 53.12± 3.82 56.10± 3.12 56.64± 0.94 54.39± 4.17

LLaMA2-13B (2023) 62.60 ± 1.38 60.61 ± 0.60 61.69 ± 1.04 57.14 ± 0.22 61.64 ± 1.91 63.60 ± 0.23 59.07 ± 1.00 59.92 ± 1.14

GPT-3.5-turbo (2023) 72.92± 0.58 76.41± 0.75 68.68± 4.85 69.85± 2.63 69.77± 0.05 71.08± 0.40 65.50± 0.87 68.62± 2.53

GPT-NeoX (2024) 71.83 ± 1.46 71.64 ± 1.17 69.52 ± 0.33 69.30 ± 0.44 75.90 ± 1.96 74.48 ± 1.78 67.73 ± 2.00 67.90 ± 1.37

GPT-4 (2024) 73.86± 2.06 70.53± 2.32 75.75± 1.46 78.55± 0.39 77.34± 2.33 79.88± 2.20 68.78± 0.18 71.80± 1.65

Gemma (2025) 74.18± 8.32 74.06± 1.17 66.78± 0.74 69.60± 5.88 69.62± 8.61 73.74± 1.56 69.28± 9.08 72.92± 5.77

Qwen-2 (2025) 76.05± 2.12 75.95± 5.69 70.52± 0.08 74.87± 1.85 78.08± 5.38 79.66± 4.08 65.04± 2.94 72.54± 0.88

Deepseek-R1 (2025) 73.74± 0.77 73.08± 0.56 72.00± 3.74 67.77± 6.86 75.73± 3.66 82.83± 0.31 69.10± 1.24 75.95± 0.29

SAFD 79.56 ± 1.28 78.37 ± 1.99 77.60 ± 1.24 79.26 ± 1.08 81.82 ± 0.68 84.69 ± 1.35 79.18 ± 0.95 79.32 ± 1.18

texts, including literary works from the Gutenberg dataset Gerlach & Font-Clos (2020) and story-focused
articles from the X-Sum dataset Narayan et al. (2018). This category assesses the model’s capability to
comprehend long texts and generate coherent narratives. The PolitiFact category utilizes a combined dataset
from the LIAR Wang (2017) and FakeNewsNet datasets Shu et al. (2018), encompassing political state-
ments with truthfulness ratings and additional social media context. This category assesses the model’s
performance in information accuracy and factual consistency. The science category encompasses scientific
and domain-specific texts, such as medical records from the MedNLI dataset Romanov & Shivade (2018) or
scientific literature from the Gutenberg dataset, evaluating the model’s proficiency in handling specialized
terminology, logical reasoning, and domain knowledge.

Scenarios Description
A Introduce minor errors and colloquial expressions
B Increase personalization and subjectivity
C Mix topics and cite diverse resources
D Use specialized terminology and cultural references

Figure 3: Strategies for text stylization based on different
writing styles

Metrics. To evaluate the detector’s capabil-
ity to distinguish between texts generated by
LLMs and humans, especially under style-
based attacks from LLMs-powered adver-
saries, we employ three primary performance
metrics, e.g., Accuracy (A), Area Under the
Receiver Operating Characteristic Curve (AU-
ROC), and the F1 score (F1).

Baselines. We undertook a comparative anal-
ysis of our proposed methodology against sev-
eral state-of-the-art approaches dedicated to detecting text generated by LLMs. DetectLLM Su et al. (2023)
assesses text origin via log perplexity, indicating predictability. GLTR Gehrmann et al. (2019) combines sta-
tistical methods with visual analytics to highlight anomalous token probabilities, aiding in the identification
of machine-generated text. DetectGPT Mitchell et al. (2023) leverages the curvature properties of language
model probability functions within a probabilistic framework to identify synthetic text. LLMDet Wu et al.
(2023) uses surrogate perplexity calculations tailored to each LLM, offering a model-agnostic solution for
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Figure 5: The visual data presented in the graphs clearly indicates that our methodology excels in detection
accuracy across multiple categories,e.g., Story, PolitiFact, and Science. Our approach consistently outper-
forms other methods, achieving the highest accuracy in each category.

text provenance. SeqXGPT Wang et al. (2023a) represents sentences as waveforms, utilizing convolu-
tional networks and self-attention mechanisms for sentence-level detection. GECScore Wu et al. (2024b)
evaluates text similarity using a grammar error correction model, providing a robust metric for LLM-origin
detection. The OUTFOX method Koike et al. (2024) bolsters the robustness of detecting text generated by
LLMs by implementing an iterative in-context learning framework. COCO Liu et al. (2023) enhances detec-
tion through contrastive learning. T5-Sentinel Chen et al. (2023) employs a supervised learning approach,
reframing LLM-generated text detection as a token prediction task.

Method Story PolitiFact Science
OPT-2.7B 49.74± 1.19 52.42± 2.15 55.77± 1.97

SAFD-OPT-2.7B 64.03± 2.55 58.92± 2.60 58.58± 5.90

Neo-2.7B 59.95 ± 3.39 62.65 ± 3.95 60.43 ± 1.72

SAFD-Neo-2.7B 82.71 ± 2.04 80.32 ± 3.19 77.55 ± 1.64

LLaMA2-13B 59.99 ± 2.45 60.17 ± 1.43 58.27 ± 1.28

SAFD-LLaMA2-13B 80.23 ± 2.69 84.19 ± 2.38 86.31 ± 1.45

GPT-NeoX 61.29 ± 1.62 64.00 ± 2.93 67.38 ± 2.26

SAFD-GPT-NeoX 77.38 ± 1.66 83.20 ± 1.21 79.05 ± 2.27

Qwen-2 66.43± 0.59 61.32± 0.61 67.49± 2.39

SAFD-Qwen-2 85.23± 6.44 87.24± 3.14 85.57± 0.39

Figure 4: On different LMM backbones, SAFD demon-
strates stable improvements on accuracy.

General-purpose LLMs. LLMs perform
zero-shot veracity prediction, enabling the
evaluation of truthfulness without requiring
task-specific fine-tuning. We use some rep-
resentative baseline LLMs for analysis: GPT-
2 Radford et al. (2019), OPT-2.7B Zhang et al.
(2022), Neo-2.7B Gao et al. (2020), LLaMA-
7B Touvron et al. (2023), LLaMA-13B, GPT-
NeoX Black et al. (2022), GPT-3.5-turbo,
GPT-4, Gemma Team et al. (2024), Qwen-
2 Wang et al. (2024b), Deepseek-R1 Guo
et al. (2025). These models serve as bench-
marks to assess the capabilities and limita-
tions of LLMs in zero-shot detecting content-
generated tasks.

6.2 PERFORMANCE EVALUATION

F1-Score.Table 1 illustrates the performance of different methods in addressing four distinct adversarial at-
tack styles. The results clearly show that SAFD consistently exhibits advantages across all test scenarios. In
the Story scenario, SAFD achieves F1 of 79.56%, 78.37%, 77.60%, and 79.26%, respectively, with improve-
ments of over 6.69% compared to DetectGPT, demonstrating outstanding adversarial handling capabilities.
In the PolitiFact scenario, SAFD’s performance is particularly remarkable, especially under colloquial ad-
versarial attacks, where it achieves an F1 of 84.69%, surpassing COCO’s 71.86% with a performance gain
of nearly 12.83%. This result underscores SAFD’s excellent adaptability to complex politics-related text.
This further highlights SAFD’s robust capability to recognize adversarial features in complex scientific texts.

Accuracy. As illustrated in Figure 5, our method demonstrates improvements across multiple categories,
including Story, PolitiFact, and Science. Specifically, SAFD achieves detection accuracies of 0.819, 0.848,
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and 0.837, respectively. When compared to other advanced methods, SAFD consistently outperforms them
by margins ranging from 6.5% to 33.9%. These results highlight SAFD’s superior capability in analyzing
multi-dimensional textual features, effectively resisting adversarial attacks, and maintaining high precision.

Table 2: Ablation Study of SAFD Loss Components under Different attack Scenarios (F1 Score %). The
strategies for text stylization are in Table 3.

Experiment Setting Dataset Attack Scenario A Attack Scenario B Attack Scenario C Attack Scenario D

Baseline (Lclass Only)
Story 64.10 ± 1.63 63.50 ± 1.86 67.00 ± 1.53 65.90 ± 1.71

PolitiFact 66.80 ± 1.95 66.20 ± 2.01 69.56 ± 1.76 68.30 ± 1.83

Science 62.04 ± 1.47 61.57 ± 1.59 64.87 ± 1.34 63.54 ± 1.24

Lclass + Lstyle

Story 71.51 ± 1.33 73.22 ± 1.49 73.08 ± 1.27 72.39 ± 1.39

PolitiFact 74.15 ± 1.63 76.59 ± 1.61 76.37 ± 1.42 75.47 ± 1.68

Science 69.48 ± 1.16 71.84 ± 1.12 70.79 ± 1.53 69.80 ± 1.10

Lclass + Lattr

Story 73.29 ± 1.58 72.37 ± 1.14 75.06 ± 1.70 74.34 ± 1.91

PolitiFact 76.68 ± 1.25 75.51 ± 1.67 79.28 ± 1.49 78.33 ± 1.96

Science 70.86 ± 1.13 69.89 ± 1.40 73.75 ± 1.62 72.20 ± 1.67

Full Model (SAFD)
(Lclass + Lstyle + Lattr)

Story 78.45 ± 1.12 78.00 ± 1.91 79.50 ± 1.50 79.08 ± 1.34

PolitiFact 80.69 ± 1.79 82.58 ± 1.35 81.88 ± 1.02 81.43 ± 1.08

Science 84.92 ± 1.15 80.47 ± 1.62 78.57 ± 1.49 83.31 ± 1.54

Different Backbones. The SAFD method demonstrates performance improvements across multiple models
and datasets. For instance, SAFD-Neo-2.7B achieves the accuracy of 82.71% on the Story dataset, compared
to 59.95% for the baseline, while SAFD-LLaMA2-13B reaches 84.19% on PolitiFact, up from 60.17%.
Using the Qwen-2 backbone, the accuracy improved from 66.43% to 85.23% for Story datasets. These
results highlight SAFD’s ability to enhance detection accuracy by leveraging style-agnostic feature extraction
and adversarial data augmentation, which ensures robustness against style-based adversarial attacks. Its
style-agnostic feature extraction forces the model to learn the intrinsic, content-centric artifacts of LLM
generation, thereby mitigating the risk of overfitting to superficial and easily manipulated stylistic cues.
The adversarial data augmentation proactively hardens the detector by exposing it to a diverse array of
synthesized edge cases that mimic sophisticated evasion attempts.

Ablation study. As shown in Figure 2, comparing (Lclass + Lstyle) with Baseline, there’s a clear increase
in F1 scores across all datasets and all attack scenarios. On the Story dataset under scenario A, F1 improves
from 64.10% to 71.51%. This strongly validates the effectiveness of the style alignment loss (Lstyle). By
enforcing consistent predictions for stylistically varied content, it demonstrably enhances the detector’s ro-
bustness against various rewriting techniques (colloquialism, subjectivity, topic mixing, specialized termi-
nology). The result demonstrates a synergistic effect between Lstyle and Lattr. While each auxiliary loss
improves performance individually, combining them in the full SAFD framework yields the best results.

7 CONCLUSION

We address critical vulnerabilities in detecting LLM-generated text, particularly against style-based adver-
sarial attacks powered by LLMs. Existing detectors exhibit performance degradation when confronted with
stylistic manipulations, highlighting the limitations of their reliance on stylistic cues. To overcome these
challenges, we proposed a robust detection framework that prioritizes content-driven features and employs a
style-agnostic training paradigm. By leveraging adversarially enriched datasets and advanced representation
learning techniques, our approach disentangles semantic content from stylistic variations, ensuring enhanced
robustness against diverse adversarial attacks. Future work could explore integrating multi-modal signals or
developing certified defense mechanisms to provide formal guarantees.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

In preparing this work, Large Language Models (LLMs) were used solely for translation and language
polishing. All content, arguments, and conclusions are entirely my own, and the use of LLMs did not
contribute to the generation of original ideas or substantive material.

A.2 ADDITIONAL EXPERIMENTAL RESULTS

AUROC. As shown in Figure 6, our method demonstrates significant advantages in distinguishing between
human-written content and content generated by LLMs. Specifically, in the Story category, SAFD achieved
an AUROC value of 0.85, ranking first among all comparative methods. This result highlights its excep-
tional performance in handling creative and narrative texts. Furthermore, in the Science category, SAFD also
performed impressively with an AUROC value of 0.84, which is not only significantly higher than that of
COCO (0.78) but also surpasses GECScore (0.73). SAFD exhibits unique strengths when confronted with
adversarial sample attacks across various text styles. Whether in literary creation, scientific discourse, or
other types of texts, SAFD effectively resists the impact of adversarial samples, maintaining high-precision
discrimination capabilities. By thoroughly analyzing multiple dimensions of textual features, including in-
trinsic content, word preferences, and logical coherence, SAFD can accurately identify and adapt to stylistic
variations in texts, thereby providing reliable and precise judgments.

F1 Score. The results on the Science dataset clearly demonstrate the superior and robust performance of our
proposed method, SAFD, across four distinct evaluation scenarios (A, B, C, and D). Our method achieves the
highest F1 scores in three of the four scenarios, posting scores of 80.52% in A, 76.61% in B, and 77.55%
in D. This consistently high performance underscores its effectiveness in detecting machine-generated text
under various conditions. When compared to established baselines, SAFD shows a significant advantage.
For instance, in scenario A, it outperforms the next best method, OUTFOX, by over 2.4 percentage points.
Similarly, in scenario D, it surpasses the second-best performer, Qwen-2, by a margin of nearly 2.7 points.
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Table 3: F1 Score (%) performance on the Science dataset.

Method Science

A B C D

GLTR (ACL 2019) 53.86 ± 0.98 53.41 ± 0.94 50.51 ± 0.84 53.02 ± 1.16

Detectllm (Emnlp 2023) 63.13 ± 0.12 63.95 ± 1.41 63.89 ± 0.47 61.65 ± 0.56

LLMDet (Emnlp 2023) 59.35 ± 0.51 59.77 ± 0.69 59.18 ± 1.86 59.25 ± 0.47

DetectGPT (ICML 2023) 63.24 ± 0.17 64.83 ± 2.43 67.99 ± 6.27 64.01 ± 3.05

SeqXGPT (Emnlp 2023) 56.70 ± 1.59 59.56 ± 1.54 57.20 ± 0.67 59.35 ± 1.80

COCO (Emnlp 2023) 68.76 ± 0.31 68.70 ± 1.44 65.01 ± 1.33 67.43 ± 1.12

BERT-finetuned 53.27 ± 1.74 50.09 ± 1.81 52.61 ± 1.13 54.77 ± 1.66

RoBERTa-finetuned 76.33 ± 0.75 69.43 ± 1.59 70.30 ± 1.42 69.43 ± 1.56

T5-Sentinel 72.98 ± 1.05 71.07 ± 1.59 78.91 ± 2.13 74.42 ± 1.32

OUTFOX (AAAI 2024) 78.08 ± 1.33 74.57 ± 1.24 73.59 ± 1.58 70.87 ± 1.41

GECScore (ACL 2025) 66.59 ± 1.92 66.99 ± 0.73 66.78 ± 1.97 68.28 ± 1.99

GPT-2 (2019) 50.88 ± 0.75 52.06 ± 3.53 54.72 ± 4.46 50.23 ± 2.20

Neo-2.7B (2020) 59.28 ± 0.72 57.75 ± 1.04 58.19 ± 0.32 59.32 ± 0.90

OPT-2.7B (2022) 45.73 ± 2.83 54.82 ± 2.61 50.83 ± 2.33 54.64 ± 1.72

LLaMA-7B (2023) 51.52 ± 3.60 51.21 ± 2.89 59.45 ± 2.57 52.10 ± 3.25

LLaMA2-13B (2023) 57.85 ± 0.29 59.41 ± 0.31 60.22 ± 0.29 58.50 ± 0.98

GPT-3.5-turbo 68.98 ± 1.79 74.82 ± 2.75 71.90 ± 0.08 71.15 ± 3.92

GPT-NeoX (2024) 71.51 ± 1.33 74.16 ± 1.30 71.30 ± 1.95 68.62 ± 1.84

GPT-4 (2024) 75.22 ± 3.82 74.12 ± 3.26 79.15 ± 2.81 71.24 ± 4.44

Gemma (2025) 66.80 ± 3.91 75.65 ± 4.88 73.77 ± 4.31 74.34 ± 0.07

Qwen-2 (2025) 73.49 ± 3.53 74.72 ± 0.59 74.83 ± 1.97 74.88 ± 1.24

Deepseek-R1 (2025) 73.57 ± 0.54 74.11 ± 6.20 73.57 ± 0.44 70.28 ± 4.72

SAFD 80.52 ± 1.84 76.61 ± 1.20 76.80 ± 1.81 77.55 ± 1.64

Table 4: Across different sets of reframing prompts, SAFD demonstrates stable and significant improvements
over the most competitive baseline on accuracy.

Method Story PolitiFact Science
Baseline (Best) 79.14 ± 1.83 83.20 ± 1.48 75.37 ± 3.18

SAFD 82.24 ± 3.09 80.99 ± 2.17 83.50 ± 1.06
w/P1 79.95 ± 1.51 82.08 ± 2.13 83.30 ± 2.32

w/P2 78.95 ± 2.16 83.55 ± 1.54 81.66 ± 3.51

w/P3 81.95 ± 2.79 79.98 ± 1.29 81.83 ± 1.66

w/P4 80.21 ± 2.28 83.71 ± 1.31 81.97 ± 3.14

Different Prompts. The SAFD method demonstrates superior precision across multiple datasets (Story,
PolitiFact, Science) compared to the best baseline, as evidenced by the experimental results in Table 4.
SAFD not only delivers a notable precision of 82.24% on the Story dataset, eclipsing the baseline’s 79.14%,
but also demonstrates a commanding lead on the more challenging Science dataset, achieving 83.50% pre-
cision against a mere 75.37% for the baseline. The underlying drivers of this performance leap are twofold.
First, its style-agnostic feature extraction paradigm allows the model to transcend superficial stylistic finger-
prints, which often confound conventional detectors, and instead learn the fundamental, intrinsic signatures
of synthetic text. Second, our adversarial data augmentation strategy proactively immunizes the model
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Figure 6: The figure presents the ROC curves for various methods evaluated on two categories: Story and
Science. The AUROC is used to quantify each method’s ability to distinguish between human and LLM-
generated content.

against evasive maneuvers by training it on a curated corpus of hard-to-classify, style-manipulated exam-
ples. This synergy culminates in exceptional robustness against a broad spectrum of style-based adversarial
attacks. Crucially, SAFD’s high precision is consistently maintained across varied generative prompts (e.g.,
w/P1, w/P2, w/P3), affirming its operational reliability and positioning it as a highly effective solution for
identifying LLM-generated content. For instance, on the Story dataset, SAFD achieves a precision of 82.24,
significantly outperforming the baseline’s 79.14, while on the Science dataset, SAFD attains a precision of
83.50, compared to the baseline’s 75.37. This improvement is attributed to SAFD’s style-agnostic feature
extraction and adversarial data augmentation, which enhances its robustness against style-based adversar-
ial attacks.SAFD maintains high precision across various prompts and configurations (e.g., w/P1, w/P2,
w/P3), showcasing its adaptability and reliability in detecting LLM-generated content.

SCOPE OF CLAIMS:

The methods were primarily tested on a few specific datasets (such as Story, PolitiFact, and Science) and
only run a few times (specifically, our program was run 3 times). This implies that the generalizability of the
results may be somewhat limited. To comprehensively evaluate the method’s effectiveness, further testing
should be conducted on more diverse datasets and language environments, with an increased number of
experimental runs to obtain more stable error estimates.

A.3 USE SCIENTIFIC ARTIFACTS

During our research, we used several scientific artifacts, including datasets, methodologies, and evaluation
metrics, which are essential for assessing the robustness of detection systems against style-based adversarial
attacks.

15



705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

A.3.1 DATASETS:

We employed a meticulously curated collection of three datasets to appraise the capabilities of generated
text detection rigorously:

• Story Category: This category features narrative-rich texts, including literary works from the
Gutenberg dataset Gerlach & Font-Clos (2020) and story-focused articles from the X-Sum dataset
Narayan et al. (2018). It evaluates the model’s capability to comprehend long texts and generate
coherent narratives.

• PolitiFact Category: Utilizes a combined dataset from the LIAR Wang (2017) and FakeNewsNet
datasets Shu et al. (2018), encompassing political statements with truthfulness ratings and addi-
tional social media context. This assesses the model’s performance in information accuracy and
factual consistency.

• Science Category: Encompasses scientific and domain-specific texts, such as medical records
from the MedNLI dataset Romanov & Shivade (2018) or scientific literature from the Gutenberg
dataset, evaluating the model’s proficiency in handling specialized terminology, logical reasoning,
and domain knowledge.

A.3.2 METHODOLOGIES:

Our research leverages intermediate layer outputs and weight parameters of LLMs to differentiate between
human-authored and LLMs-generated texts Gehrmann et al. (2019); Mitchell et al. (2023); Wu et al. (2023);
Wang et al. (2023a); Wu et al. (2024b); Liu et al. (2023).

We introduced subtle text modifications to monitor changes in log probabilities, where a notable decrease
typically indicates LLM-generated text, while an increase or minor fluctuations suggest human authorship.
To detect text generated by LLMs, statistical analyses are employed to examine features such as word choice,
sentence structure, and stylistic elements Taguchi et al. (2024); Wang et al. (2023b); Bao et al. (2023); Su
et al. (2023); Bakhtin et al. (2019).

A.3.3 EVALUATION METRICS:

To evaluate the detector’s capability to distinguish between texts generated by LLMs and humans, especially
under style-based attacks, we employ three primary performance metrics:

• Accuracy (A): Measures the proportion of correctly classified instances.

• Area Under the Receiver Operating Characteristic Curve (AUROC): Evaluate the trade-off
between true and false positive rates.

• F1 Score (F1): Harmonic mean of precision and recall, providing a balanced performance measure.

A.3.4 ADVERSARIAL TEST SCENARIOS:

We systematically assessed the robustness of detection systems against style-oriented adversarial attacks
using transformed test samples. For example:

• Narrative texts were rewritten using the writing style of Andersen’s fairy tales.

• Political texts were adapted to the style of CNN.

• Scientific texts were modified to match the writing style of Nature and Science.
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These scientific artifacts form the backbone of our research, enabling us to conduct rigorous evaluations
and draw meaningful conclusions about the effectiveness of various detection methods against style-based
adversarial attacks.

A.4 REPRODUCIBILITY STATEMENT

A.4.1 CODE AND DATA AVAILABILITY

The dataset and code used in this study are available at an anonymized link 2. SAFD is designed to pri-
oritize content-driven features over stylistic cues to improve robustness against adversarial attacks. The
framework’s training objective combines three loss functions: a style alignment loss (Lstyle), a classification
loss (Lclass), and a content-focused veracity attribution loss (Lattr). The methodology involves augmenting
training data by transforming human-written texts into multiple stylistic variants using LLM.

A.4.2 HARDWARE DEVICES

All our experiments were meticulously conducted on a high-performance computing platform running
Ubuntu. The platform is powered by an Intel(R) Xeon(R) Platinum 8176 CPU @ 2.10GHz, delivering
robust computational capabilities. The system is equipped with a substantial 503 GB of memory, ensuring
efficient data processing and storage. Additionally, to further enhance computational power, we utilized four
NVIDIA Corporation GA102GL RTX A6000 GPUs. These GPUs provided the necessary parallel process-
ing power to handle the intensive computational tasks associated with our research. The stability and broad
support of the Ubuntu operating system allowed us to fully leverage the hardware’s performance, ensuring
the smooth execution of experiments and the reliability of our results.

A.5 DATASETS

Our experimental framework utilizes a carefully curated set of datasets to evaluate the capabilities and limi-
tations of Large Language Models (LLMs) across various domains and scenarios. These datasets are metic-
ulously selected to reflect the diverse range of content types that LLMs might encounter.

Specifically, we use three primary datasets for rigorous evaluation of text generation and detection capabili-
ties:

• Story Dataset: Contains narrative texts, used to assess model performance on story-like content.
• PolitiFact Dataset: Includes politically-oriented texts, utilized to test the model’s effectiveness on

complex political content.
• Science Dataset: Consists of scientific texts, employed to evaluate the model’s performance on

technical and specialized content.

For each LLM, we randomly draw samples from these datasets and perform detailed analyses on the gener-
ated texts. The generated output is divided into two parts:

• 15,000 samples for statistical analysis, tracking the linguistic features.
• 15,000 samples for validation purposes, ensuring robustness and accuracy of the models.

These validation sets are combined with 15,000 human-written texts sourced from specific datasets, forming
a unified corpus used for training and validating text detectors. This approach allows us to systematically
compare LLM-generated texts with human-written texts.

2https://anonymous.4open.science/status/A-Style-Agnostic-Framework-for-Detecting-LLM-Generated-Text-90B7
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To further test the model’s robustness against shifts in data distribution, we employ adversarial attacks based
on different writing styles, such as those characteristic of Andersen’s fairy tales and prestigious academic
journals like Nature and Science. For instance, modern narratives might be rewritten with whimsical lan-
guage, moral undertones, and vivid imagery typical of fairy tales. Our general prompt format for these
transformations is structured as follows:

Rewrite the following text using the style of [publisher/book]: [input text]

For narrative texts, we adopt the writing style of Andersen’s fairy tales. For political texts, we use the style
of CNN, and for scientific texts, we utilize the style of Nature and Science. These stylistically altered test
samples, transformed using LLM-based techniques, are utilized for the systematic assessment of detection
systems’ robustness against style-oriented adversarial attacks.

A.5.1 METRICS

To ensure the accuracy and reliability of the results, each experiment was conducted in triplicate, and the
standard deviations were calculated. This approach effectively assesses the stability and consistency of the
data, thereby enhancing the credibility of our conclusions. To assess the detector’s capability to differentiate
between texts generated by large language models (LLMs) and those written by humans, we utilize Accuracy
(A) and the Area Under the Receiver Operating Characteristic Curve (AUROC) as primary performance
metrics. Additionally, we consider other metrics, such as F1 scores (F1) and Recall (R), to provide a more
comprehensive evaluation.

A =
TP + TN

TP + TN + FP + FN
(11)

R =
TP

TP + FN
; F1 = 2× P ×R

P +R
(12)

True Positives (TP ) refer to human-written texts correctly identified by the model. True Negatives (TN )
represent texts generated by LLMs accurately classified as LLMs-generated. False Positives (FP ) denote
LLMs-generated texts incorrectly labeled human-written, while False Negatives (FN ) correspond to human-
written texts the model fails to identify correctly.
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