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LeAP: Consistent multi-domain 3D labeling using Foundation Models

Simon Gebraad!

Abstract— Availability of datasets is a strong driver for
research on 3D semantic understanding, and whilst obtaining
unlabeled 3D point cloud data is straightforward, manually
annotating this data with semantic labels is time-consuming
and costly. Recently, Vision Foundation Models (VFMs) enable
open-set semantic segmentation on camera images, potentially
aiding automatic labeling. However, VFMs for 3D data have
been limited to adaptations of 2D models, which can introduce
inconsistencies to 3D labels. This work introduces Label Any
Pointcloud (LeAP), leveraging 2D VFMs to automatically label
3D data with any set of classes in any kind of application whilst
ensuring label consistency. Using a Bayesian update, point
labels are combined into voxels to improve spatio-temporal
consistency. A novel 3D Consistency Network (3D-CN) exploits
3D information to further improve label quality. Through
various experiments, we show that our method can generate
high-quality 3D semantic labels across diverse fields without
any manual labeling. Further, models adapted to new domains
using our labels show up to a 34.2 mloU increase in semantic
segmentation tasks.

I. INTRODUCTION

In recent years, machine perception has developed rapidly,
supported by advances in deep learning that have led to
various models for 3D perception tasks. Labeled data is
crucial for the development of these deep learning mod-
els. However, manually labeling 3D data with the required
semantic labels is time-consuming and thereby expensive.
Consequently, these models have mainly been developed for
the well-funded urban automotive domain, where multiple
extensive labeled datasets with synchronized multi-modal
sensors are available, such as nuScenes [1], Waymo [2],
KITTI [3], SemanticKITTI [4] and KITTI-360 [5].

Recently, foundation models have been introduced, which
are large-scale neural network architectures trained on vast
amounts of diverse data. This allows them to capture rich
semantic representations of language or visual informa-
tion, enabling strong generalization. Hence, these models
can serve as foundational building blocks for downstream
tasks [6], such as automatic labeling [7], [8]. They have
seen extensive development in 2D Computer Vision (CV),
resulting in VFMs such as CLIP [9], SAM [10] and Depth
Anything [11]. However, despite attempts to transfer 2D
VEMs to 3D [12]-[17], VFMs trained natively on 3D data
are largely absent due to the limited scale and diversity of
labeled 3D datasets [6], [18]. Errors in 2D-3D projection
combined with the inherent lack of geometric awareness of
2D VEMs can introduce inconsistencies into 3D adaptations.
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Fig. 1. Overview of our LeAP automatic labeling method. (A) Taking only
paired image-LiDAR data as input, foundation models are used to generate
image labels for any set of classes in any application. (B) A Bayesian voxel
update and (C) a novel 3D Consistency Network (3D-CN) improve label
consistency, resulting in high quality pseudo-labels.

Exacerbating inconsistency, the output of VFMs varies sig-
nificantly depending on the prompt and visual context, which
limits their effectiveness for automatic 3D labeling.

In this work, we address the consistency challenges asso-
ciated with using 2D VFMs for 3D labeling while preserving
their open-set capabilities. Using unlabeled image-pointcloud
pairs, we can generate high-quality 3D semantic pseudo-
labels (i.e., machine-generated) for any set of classes (see
Fig. 1). We use Bayesian updating to combine class labels
over time into voxels, ensuring spatio-temporal consistency
(Fig. 1B). Voxels also enable fusion with our novel 3D-CN,
which further improves the geometric consistency (Fig. 1C)
of our labels. We make the following contributions:

« We introduce LeAP, a novel domain agnostic semantic
pseudo-labeling tool for 3D data that leverages 2D
open-vocabulary foundation models to work for any
arbitrary list of classes, in any domain.

e In contrast to previous automatic labeling methods
using VFMs, we aggregate labels in voxels using the
statistically grounded Bayesian update, which, in com-
bination with our novel 3D Consistency Network (3D-
CN) significantly improves geometric and temporal
consistency.

o We extensively evaluate the multi-domain capabilities
of our method on an existing automotive dataset, and
on our novel synthetic dataset for the less explored
Unmanned Aerial Vehicle (UAV) domain.



II. RELATED WORK

Supervised methods (e.g. [20]-[45]) for the online pre-
diction of 3D semantics require large amounts of labeled 3D
data which is often not available for novel application do-
mains. Some approaches [46], [47] attempt unsupervised 3D
Semantic Segmentation (SS). However, the lack of semantic
information in 3D features limits performance. Others [6],
[48]-[50] instead focus on unsupervised representation learn-
ing by pre-training on unlabeled LiDAR data, but these
methods still require labels for effective fine-tuning. Previous
research has used the extensive body of work in 2D CV to
overcome these issues.

A. 2D supervised 3D semantic understanding

Various approaches [51]-[58] use the well-researched 2D
domain to enhance performance on 3D semantic tasks with-
out relying on 3D labels. Some works [51], [53], [54],
[59] use off-the-shelf pre-trained 2D semantic segmentation
networks to supervise the training of 3D networks (so-
called ’shelf-supervised’). PointPainting [58] uses 2D-3D
projection to apply labels obtained from images to 3D points,
however, projected labels are limited to the camera frame
and can be noisy due to small errors in projection and
masking. [53], [59] nevertheless show that it is possible
to effectively train 3D models using noisy projected labels
as pseudo-labels by label filtering. Alternatively, [51], [52]
use Neural Radiance Fields (NeRFs) instead of projection to
bridge the gap from 2D to 3D. They utilize pre-trained 2D
semantic segmentation networks and temporal consistency
for semantic and depth supervision to train unsupervised
Semantic Scene Completion (SSC) models. However, these
methods are constrained by their dependence on pre-trained,
closed-set 2D models, which are often not available for novel
domains. Other studies [55], [56] focus on representation
learning with unlabeled camera-LiDAR data. The camera is
used to group visually similar regions into superpixels. This
knowledge is transferred to 3D, improving representations
for 3D semantic tasks, though labels are still required for
fine-tuning.

B. Foundation models for 3D semantics

In recent years, various VFMs have been introduced.
Models like CLIP [9] and Grounding Dino [19] combine
language and vision for open-vocabulary image labeling
and object detection respectively. However, these do not
provide detailed pixel-wise labels and generally output only
a single class per image or region. Other models like
SAM [10] (image segmentation) and Depth Anything [11]
(depth estimation) give per-pixel labels but lack semantics.
Additionally, foundation models for 3D data are largely
absent. Still, various methods exploit the open-set capabilities
of 2D VFMs for 3D semantic tasks. Recent work [57]
based on [55], [56] has employed segmentation VFMs like
SAM [10] to improve representation learning by generating
more consistent superpixels. However, the lack of semantic
labels in the superpixels means labeled data is required for
fine-tuning. Some works [12]-[17] use CLIP [9] to distill

language features into 3D segmentation networks, enabling
open-vocabulary capabilities in 3D applications. Although
this allows these models to be highly flexible and predict
any semantic class at test time, their universality also limits
performance. Trained for image captioning, CLIP’s general
language features are less suited for precise segmentation.
Aggregating these features in 3D is also non-trivial which
reduces temporal and geometric consistency. This limits the
usefulness of these models for providing high quality labels.
In contrast, we use VFMs specialized for segmentation,
using the statistically grounded Bayesian update in combi-
nation with our 3D-CN to improve label consistency. Other
works [60]-[62] use foundation models for pseudo-labeling
to improve 3D object detection. However, as opposed to
SS, object detection does not require per-point labels, as
it only uses course bounding boxes. Most comparable to
our work, [63], [64] also use open-vocabulary models for
3D semantic pseudo-labeling. However, the focus of their
work is to simplify the workflow of human annotators by
using Large Language Models (LLMs) to enable frame-by-
frame annotation based on voice or text-prompts, requiring
a human in-the-loop for supervision and label corrections.
Hence, automatic temporal consistency is not considered,
and evaluations on label quality across various domains are
limited. We instead use a Bayesian voxel update to com-
bine semantic labels and ensure temporal consistency, and
evaluate label quality quantitatively across diverse domains.

III. METHOD

In this section we describe our approach to generate high
quality 3D point-wise labels for any desired set of classes in
any domain using only unlabeled camera-LiDAR data. We
first cover how we use foundation models to generate soft
2D labels (Fig. 1A), and then how we use voxels for spatial-
temporal accumulation to produce high quality 3D pseudo-
labels (Fig. 1B). Finally, we highlight how our voxel-based
approach enables modular integration of multiple sources of
semantic labels by fusing the output of a self-trained 3D
backbone with our camera-based pseudo-labels, which can
further enhance pseudo-label quality (Fig. 1C).

A. 2D pseudo-label generation

To improve label consistency and enable Bayesian updat-
ing in our 3D labeling, we require per-pixel soft labels (i.e.
probabilities). Hence, we assemble and modify the outputs
of multiple foundation models to obtain detailed pixel-wise
soft labels, illustrated in Fig. 2.

We first input an unlabeled image and a prompt into the
pre-trained Grounding Dino [19] VFM to obtain labels for
bounding box regions. Specifically, given ¢ desired classes,
we manually expand the prompt using three complementary
strategies, namely (1) synonymous substitution, e.g., extend-
ing car with automobile, (2) adding additional categories
according to the class descriptions to aid differentiation, e.g.,
adding van to car, and (3) replacing ambiguous classes with
more detailed descriptions, e.g., replacing the other-vehicle
class with bus, train, etc. This results in n. prompts for each



A 2D pseudo-labels

Input T logits Text similarities S Class pmbahl]mes P q masks Output
= -E.e m : (W B a
42|05 036 nzauwuls —>
Vegetation |—» AT —» = 0.1 | 0.62 J
Sedan o & ~ I'd
Tree o o 21 | 11 — 3 089 | 075 ‘ ﬁ» \g —k: Merge
- J = g r g 2 i
c classes N prompts E £ 30 a1 ] g |
=) = fd
5 @y B z
=] L Max per class ¢ E
5 E &
= g f— i) Segmented image with class
= 0.78 | 054 | 0.05 =i probabilities
- B 8
50 N B e !
B
Image Input

Fig. 2. The process of generating 2D pseudo-labels. Using unlabeled images and a list of classes, we use Grounding Dino [19] features to obtain regions
with soft labels. Segment Anything [10] converts these to detailed masks and allows us to obtain per-pixel soft labels.

class, with a total of N = }"¢_, n’. prompts. The pre-trained
VEM embeds these prompts into 7' text tokens and outputs
a logit vector L of size Q x T, where () is a hyperparameter
representing the number of query regions (i.e. bounding box
proposals) of the image. The sigmoid of each logit represents
the similarity of a region with a text embedding, which we
use as a proxy for confidence. We filter regions where the
maximum similarity is below a threshold hyperparameter,
yielding a filtered similarity vector S of size g x 7. For
remaining regions, we extract the maximum similarity for
each class from all prompts as s(g, ¢) = maxrei,2.. n, S(q).
The softmax is applied to the original logits L of these c
values to obtain class probabilities for each region p(q, ¢).
To obtain detailed masks, we use the ¢ bounding boxes
with class probabilities p(g,c) as input for SAM [10]. For
regions with overlapping masks, we compute a weighted
average of class probabilities, giving more weight to masks
with higher similarity scores (confidence). This process re-
sults in a class probability distribution for each pixel p(u,v)
in the input camera image, where u, v are image coordinates.

B. 3D pseudo-label generation

We subsequently use the soft 2D labels to obtain point-
wise 3D semantic labels, see Fig. 3B. Using the known
intrinsic camera properties and extrinsic transformation from
LiDAR to camera, 3D points P are projected onto the image
plane, obtaining their image coordinates (u,v). Adapting
the approach from PointPainting [58], each point is then
augmented with the class probability distribution to obtain
P= [X y z p(u,v)]T

Errors in calibration and masking can cause points to be
assigned incorrect labels. For example, labels of foreground
objects are often assigned to points behind the object. Using
the intuition that points within a 2D mask should also be
close in 3D space, for each mask we cluster the points based
on their distance from the camera. We then filter points that
are not a part of the largest cluster. Although this reduces the
number of labeled points, we find it improves label quality.

To consistently combine the potentially ambiguous and
noisy projected labels over time, we are inspired by work on
Simultaneous Localization and Mapping (SLAM) [65] and
make use of the Bayesian update. Rather than refining on
the point-level, we make use of voxels. These serve as a
dense, universal representation of 3D space, which enables
the fusion of multiple point labels into a single voxel. Voxels

also allow us to efficiently keep a memory of all past labels
which enables retro-active labeling of points outside the
camera fustrum. To handle the potentially very large extent
of the mapped 3D space, and thus the required memory,
we use sparse voxel hashing [66], allowing for efficient
scaling. Following [54], each voxel probabilistically fuses all
point-wise soft labels within it using Bayes’ Rule to obtain
a statistically grounded probability distribution V for each
voxel. Given an observed point X} with probability p; for
class i, and a voxel n with probabilities based on previous
observations V,,(p;|X1.x—1), each voxel is updated using
Eq. 1. This update scheme enables us to efficiently combine
labels over time without explicitly keeping a memory of all
points, whilst dealing with the ambiguity and noise from the
projected labels.

Vo (il X1:6—1) P(pi| Xi)
Y Vil Xiak—1) P (pi| Xi)
Using Eq. I, we combine all observations over time into
a single voxel grid. To enhance spatial consistency, we

further refine the final grid using distance-weighted k-nearest
averaging [59], smoothing the class probabilities of each

voxel as:
E Wnm Pim
meN(n)

Vo (pil X1:k) = )
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Here, NV (n) is the set of k-nearest neighbors of voxel n
and w,, = softmax(—d,,) with d,, the distance vector of the
k-nearest neighbors. Finally, to output per-point labels, we
determine for each point in a point cloud the corresponding
voxel label.

C. Improving labels through a 3D consistency network

Although point clouds are used for 2D-3D mapping, the
semantic labels in our method originate from images. We
hypothesize that 3D networks could provide complimentary
information to our labels and thereby enhance label quality.
However, as pre-trained models are often unavailable for
novel domains, we train a 3D segmentation module on the
original camera-only pseudo-labels which we call a 3D
Consistency Network (3D-CN), illustrated in Fig. 3C.

We observe that voxels with a higher probability are
generally more accurate, and hence hypothesize that we can
use this to select a reliable set of pseudo-ground-truth labels
for training. We select reliable labels by projecting scans onto
the voxel grid and choosing a fixed percentage of the most
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Fig. 3. The process of generating 3D pseudo-labels. Point clouds are

painted with image-based labels and probabilistically accumulated in a voxel
grid, ensuring spatial-temporal consistency. The universal voxel representa-
tion enables fusion with our 3D-CN.
confident (highest probability) labels per class. Although this
reduces the number of supervision labels, [53], [59] show
that 3D networks can be effectively trained with limited
labels. This approach ensures the model learns from the most
reliable labels while maintaining class diversity. These reli-
able labels are used to fine-tune an arbitrary 3D point-cloud
semantic segmentation network to provide domain-specific,
3D aware semantic input to our pseudo-labeling framework.
These new predictions are then combined into the existing
voxel grid using a Bayesian update. A temperature hyper-
parameter is used to weigh the reliability of each input [67].
Our 3D-CN scheme differs from traditional self-training
in the 3D setting [68], [69] as it does not iteratively train
a model using its own predictions as pseudo-labels. Rather,
it trains a 3D perception model on the original camera-only
labels, which is then used to improve those labels.

IV. EXPERIMENTS

Our method’s primary advantage lies in its capacity to
generate labels for any set of classes in arbitrary domains,
thus supporting novel applications where labeled 3D datasets
are absent, such as UAVs and construction. However, to
evaluate the quality of the labels quantitatively, we make
use of two datasets with ground-truth labels. First we assess
the quality of the pseudo-labels in both domains. Next,
we evaluate their effectiveness in aiding domain adaptation.
Finally, we illustrate how multi-model fusion through 3D-CN
can further improve the quality of the pseudo-labels.

A. Datasets

Automotive: For the automotive domain, we utilize the
widely used SemanticKITTI dataset [4] containing both RGB
and LiDAR data with per-point semantic ground-truth labels.
UAV: To further demonstrate the versatility of our method
across different domains, we create our own synthetic dataset
with ground-truth labels in AirSim [71] which we call Agri-
UAV. It includes seven classes relevant to agricultural appli-
cations and exhibits viewpoint variations common to UAVs.
It contains RGB and LiDAR data, using a less common fixed-
FOV solid-state LiDAR based on the Blickfeld Cube. It can

thereby help to evaluate how our method generalizes across
application and sensor domains.

B. Implementation details

2D labels: To generate 2D labels, we utilize the pre-
trained foundation models Grounding Dino [19] and Segment
Anything (SAM) [10]. Specifically, we employ the Swin-
T model for Grounding Dino [19] and the ViT-L model
for SAM [10]. We use Q = 900 and T = 256 for the
number of query regions and text tokens respectively, and
set the region similarity threshold of Grounding Dino [19]
to 0.25 for SemanticKITTI [4]. For our synthetic dataset, we
adjust the region similarity threshold to 0.2, as higher values
resulted in very few masks on the synthetic camera images.
For prompts, we expand the classes from the respective
datasets as described in Section 2.

3D labels: We set the voxel size to 0.2 m and accumulate all
scans in a sequence in a single sparse voxel-grid. The final
voxel-grid is further smoothed using £ = 9 nearest neighbors
of each voxel. To obtain pseudo-labels for evaluation, each
LiDAR scan is projected onto the voxel grid. The class label
of each point is determined by the class with the maximum
probability within the corresponding voxel.

3D Consistency Network: For the 3D-CN, we employ
WaffleIron [70] as our 3D backbone for its ease of implemen-
tation and adjustability. We train the backbone using XY 7
coordinates as input features, supervised by the 20% most
confident original camera-based labels. We train for a single
epoch on the reliable pseudo-labels and fuse the output with
the original sparse voxel-grid.

C. Baselines

Label quality: To assess label quality, we compare the
pseudo-labels to the ground-truth labels of the dataset in
question. Related labeling tools by [64] and [63] are only
available in limited capacity, labeling a maximum of 10 point
clouds. Hence, as an automatic labeling baseline, we use a
pre-trained segmentation model from a different domain to
mimic a scenario where new data needs to be labeled (indi-
cated by ’Pre-trained’). For SemanticKITTI [4], we use Waf-
fleIron [70] pre-trained on nuScenes [1] and for AgriUAV, we
use WaffleIron [70] pre-trained on SemanticKITTI [4]. We
also compare our method with (Ours (voxel)) and without
(Ours (point)) voxelization, projecting our 2D labels to 3D
points. For a fair comparison, we limit evaluation to points
within the camera frame and ignore unlabeled points.
Domain adaptation: We evaluate the output of Waffle-
Iron [70] trained with different sets of labels. The oracle
model is trained on the manually labeled ground-truth labels,
whereas the source only model is trained on labels from
another domain. The latter is then adapted to target domain
using our automatically generated pseudo-labels, denoted
with Qurs for the camera-only version and Ours + 3D-CN
for the version with 3D-CN.

D. Metrics

For quantitative evaluation on both datasets, we use the
class-wise intersection over union (IoU) and the correspond-
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ing mean (mloU) as our main metric for evaluation. To
fairly compare the output of models across domains, we
rename and merge several classes to pair models trained
on nuScenes [1] (16 classes) with SemanticKITTI [4] (19
classes) and AgriUAV (7 classes). Additionally, following
KITTI-360 [5], we also report category mloU, where the 19
classes from SemanticKITTI [4] are grouped into 6 more
coarse categories. This follows the observation that class
descriptions from SemanticKITTI can be ambiguous even
to a human annotator (e.g. the difference between ’terrain’
and ’vegetation’) and that the courser categories are usually
sufficient for most semantic tasks.

E. Pseudo-label quality

We assess pseudo-label quality in various domains by
comparing our automatically generated labels to the ground-
truth labels on SemanticKITTI [4] and our AgriUAV drone
dataset in Table 1. Ours (point) and Ours (voxel) outperform
the pre-trained baseline considerably in both domains. It
should be noted that the open-set ability of our method allows
it to generate labels for all 19 classes of SemanticKITTI [4],
whereas the closed-set pre-trained model is limited to the
classes from its source domain. Whilst being vastly more
memory efficient, our voxel-based (Ours (voxel)) method
also outperforms the point-based (Ours (point)) version,
despite a loss in resolution due to voxelization. By being able
to efficiently accumulate and update the semantic voxels,
we can label points that are unobserved by the camera.
Hence, our voxel based approach labels over six times the
number of points compared to the point-based version. Fig. 4
shows this more clearly. Although our method improves label
consistency, we observe that the open-vocabulary VFMs
can struggle with ambiguous classes. For instance, it may
split a moving bike into separate person and bicycle labels.
Similar issues arise with highly ambiguous classes (e.g., road
versus other-ground, terrain versus vegetation), which can be
challenging even for expert human annotators. As a result,
the coarser category mloU shows a significant improvement.

F. Domain adaptation to similar and new domains

A common issue with 3D LiDAR models is significantly
reduced performance when a model trained on one dataset is

evaluated on another, even when the classes are similar [72].
When applications are different, such as using a model
trained on automotive data on an UAV, this problem is further
exacerbated as the target classes, viewpoints and sensors
might differ significantly. To show the universal applicability
and quality of our labels, we show how they can help in
domain adaptation, even across different domains.

For the automotive domain, we evaluate the Waffle-
Iron [70] model trained on nuScenes [1] on the Se-
manticKITTI [4] val set. Then, we use our method to
generate pseudo-labels for sequence 00 of the frain set of
SemanticKITTI [4] and fine-tune the model for a single
epoch on those labels. For the UAV domain, we evaluate
the WaffleIron [70] model trained on SemanticKITTI [4] on
the val set of our AgriUAV drone dataset. Then, we use
our method to generate pseudo-labels for that dataset. To
overcome the larger domain gap, we train the model for a
longer 20 epochs on the pseudo-labeled frain set.

Table II show the results. Naively using the Source Only
model (i.e. trained on another dataset) degrades performance
significantly, especially for minority classes, due to changes
in vehicle, sensor and environment domains. This is also
clearly shown in Fig. 4. By fine-tuning on only a small
number of pseudo-labels for just a single epoch we improve
the mloU of the original model by 11.5 for the automotive
domain. For the UAV domain, the domain gap is much
larger, hence retraining the model for more epochs on
our generated pseudo-labels results in a larger 20.5 mloU
improvement. This demonstrates the ability of our method
to provide a bridge to very different domains, applications
and sensor setups.

G. 3D Consistency Network

Finally, we investigate how the addition of the 3D-CN can
enhance pseudo-label quality. As detailed in Section III-C,
we train a 3D segmentation backbone on our most confident
image-based pseudo-labels and fuse the output with the
original camera-based labels.

The last rows of Table I show the results of 3D-CN.
The quality of the pseudo-labels is improved significantly
for almost all classes. Additionally, the point-wise output
of the 3D-CN expands labeling capabilities beyond points
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observed by the camera, labeling all points. Surprisingly,
we observe that mloU is higher for the fused pseudo-
labels compared to either our original camera-only pseudo-
labels or the self-trained 3D model. We hypothesize that
both modalities provide complementary information which
enhances the combined pseudo-labels. Multiple rounds of
multi-modal self-training only show slight improvements.
Additionally, we observe that the IoU goes down for classes
where the original IoU was already low, highlighting that
self-training can potentially exacerbate mistakes. This is
most apparent for underrepresented classes that are hard to
observe by camera, like person. Training a model with these
higher quality labels generally improves the performance of
the model as well. When adapting a pre-trained automotive
model to the UAV domain using our labels with 3D-CN,
mloU increases by 34.2 compared to the unadapted model,
approaching the oracle model trained on the ground-truth
labels (shown in the bottom row of Table II).

V. CONCLUSION

This work presents LeAP, a pseudo-labeling approach for
3D semantic tasks. By leveraging open-vocabulary founda-
tion models, LeAP automatically generates consistent seman-
tic 3D labels for any set of classes in any domain using
only unlabeled image-pointcloud pairs as input. We propose
a voxel based method that enable us to combine labels
consistently over time through Bayesian updating, providing

advantages in both label quality and quantity compared to
other automatic labeling methods. We also introduce a 3D
Consistency Network and show that it significantly enhances
pseudo-label quality. Our method demonstrates versatility
across various domains, tasks, and sensor configurations.
The generated labels can be used to overcome domain gaps
within and across diverse domains, with models trained
for novel domains on our labels showing up to a 3.7x
improvement in mloU compared to un-adapted baselines.
Consequently, LeAP can help accelerate and expand the
scope of 3D perception research into areas lacking labeled
datasets, providing high-quality labels across various do-
mains, diversifying the research field.

Limitations and future work: Although the use of 2D
foundation models enables multi-domain labeling, we find
that their output can be unpredictable, especially for am-
biguous and highly specific classes. Hence, future work will
focus on more advanced prompt engineering. Furthermore,
as the 3D-CN is dependent on the quality of the original
labels, it is prone to reinforce mistakes present in the original
pseudo-labels. Self-training also cannot add new semantic
information, so it is unable to correct systematic errors. To
resolve this, future work will explore more advanced label se-
lection mechanisms. Finally, we currently do not differentiate
between static and moving objects which can leave ‘tracks’
in the voxel-grid. Although this rarely results in wrong labels,
incorporating dynamics can further enhance label quality.
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