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ABSTRACT

Large language models (LLMs) are driving substantial advancements in software
engineering, with successful applications like Copilot and Cursor transforming
real-world development practices. However, current research predominantly fo-
cuses on the early stages of development, such as code generation, while overlook-
ing the post-development phases that are crucial to user experience. To explore the
potential of LLMs in this direction, we propose OpenRCA, a benchmark dataset
and evaluation framework for assessing LLMs’ ability to identify the root cause
of software failures. OpenRCA includes 335 failures from three enterprise soft-
ware systems, along with over 68 GB of telemetry data (logs, metrics, and traces).
Given a failure case and its associated telemetry, the LLM is tasked to identify
the root cause that triggered the failure, requiring comprehension of software de-
pendencies and reasoning over heterogeneous, long-context telemetry data. Our
results show substantial room for improvement, as current models can only han-
dle the simplest cases. Even with the specially designed RCA-agent, the best-
performing model, Claude 3.5, solved only 11.34% failure cases. Our work paves
the way for future research in this direction.1

1 INTRODUCTION

Large language models (LLMs) have recently driven significant advancement of software engineer-
ing, with numerous research works and real-world applications impacting both the methodology
and practice in software development, such as MetaGPT (Hong et al., 2024), SWE-agent (Yang
et al., 2024), OpenDevin (Wang et al., 2024), Copilot, and Cursor. However, existing efforts focus
mostly on the early stages of Software Development Life Cycle (SDLC) while ignoring the post-
development phases. In practice, maintaining software services and debugging issues during online
operations are labor-intensive and error-prone tasks that often require 24/7 on-call support. Online
incidents can cost service providers billions of dollars (CrowdStrike; UniSuper), highlighting the
urgent need for more effective solutions in root cause analysis (RCA) to mitigate software issues.

In recent years, AI researchers have explored various learning based methods for RCA with tech-
niques such as causal discovery (Arnold et al., 2007; Li et al., 2022a; Chakraborty et al., 2023; Bi
et al., 2024), dependency graph analysis (Wang et al., 2023a; Zheng et al., 2024), and other neural
networks Wang et al. (2023b); Yu et al. (2021). However, RCA remains challenging due to the
immense complexity of real-world software systems, which require multi-step reasoning capabili-
ties over vast and heterogeneous data to identify root causes across diverse failure patterns. As the
success of LLMs in software development (Jimenez et al., 2024; Ni et al., 2024; Chen et al., 2023;
2024a) , an important question is: Can current LLMs be effective in solving RCA challenges? The
answer is critical to further enhance the automation of the entire software lifecycle via LLMs.

To answer this question, we propose OpenRCA, a public benchmark dataset and evaluation frame-
work for assessing LLMs’ root cause analysis ability in a practical software operating scenario.
OpenRCA consists of 335 failure cases collected from three heterogeneous software systems de-
ployed in the real world, accompanied by over 68 GB of de-identified telemetry data. Specifically,
as shown in Figure 1, each failure case is paired with a query in natural language, requiring LLMs to
analyze massive telemetry data to generate the corresponding root causes elements, including time,

1OpenRCA data is available at Drive
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Software System Telemetry Data

Metric Log Trace

Query

On March 25, 2021, between 09:00 and 
09:30AM, there was a failure observed in 
system X, please identify the root cause 
component and the root cause reason.

Generated Root Cause

{“root cause 1”:
       { “component”: “tomcat01”,        
          “reason”: “high disk I/O read 
usage”}
“root cause 2”: …
}

GB GB

Nodes

Services

Large Language Model

Figure 1: Failures often propagate between services, requiring extensive telemetry (metrics, logs,
traces) to identify the root cause. OpenRCA collects real-world failures and corresponding teleme-
try, framing root cause analysis as a goal-driven task: the model must identify the root cause ele-
ments (time, component, reason) specified in the query.

component, and reason. The process demands LLMs understand intricate system dependencies and
conduct complex reasoning across telemetry data of diverse types, such as time series, dependency
graphs, and semi-structured text.

Evaluating state-of-the-art LLMs on OpenRCA reveals significant challenges: these models are
currently only capable of solving parts of the simplest tasks. For example, Claude 3.5 only resolved
5.37% OpenRCA tasks when oracle telemetry was given. This results further drops to 3.88% when
using balanced sampling strategy to extract the possibly related telemetry.

To outline a possible direction for solving OpenRCA tasks, we further developed RCA-agent, a
multi-agent system Qiao et al. (2023); Zhang et al. (2024a) based on program synthesis and execu-
tion. By utilizing Python for data retrieval and analysis, the model is freed from processing large
telemetry as an overly long context. This allows the model to focus solely on reasoning and make it
scalable for massive telemetry. With RCA-agent, the accuracy of Claude 3.5 is further improved to
11.34%.

We believe OpenRCA will serve as a foundational benchmark, driving future research at the inter-
section of AI and Software Engineering, and allowing the community to explore the true potential
of LLMs in solving real-world service reliability problems.

2 OPENRCA

2.1 PRELIMINARIES OF ROOT CAUSE ANALYSIS

Root Cause Analysis (RCA): In the software development lifecycle, root cause analysis refers to
the process of identifying the underlying causes of failures, such as service unavailability, in a soft-
ware system. On-call engineers must gather relevant telemetry data and other pertinent information
to understand how the failure occurred.

Typically, a root cause should consist of the originating component (i.e., which part of the system
failed), the start time (i.e., when the failure occurred), and the failure reason (i.e., why it failed, such
as CPU overload or excessive disk throughput). Furthermore, a failure in the originating component
can propagate to other components through service dependencies (e.g., a payment service relying
on a database) or deployment configurations (e.g., containers on the same server). This propagation
can lead to broader system failures, complicating the identification of the exact root cause.

Telemetry: Telemetry refers to the data used to monitor the internal status of software systems,
encompassing metrics, traces, and logs. Metrics represent time series data points that track key
performance indicators (KPIs), such as CPU usage or response time. Traces capture the interactions
among multiple system components, illustrating their dependencies and often structured as a graph.
Logs record runtime events and messages for each component, with verbosity levels such as info,
warn, and error. Examples of telemetry data are provided in Appendix A.3.
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2.2 FEATURES OF OPENRCA

OpenRCA is a benchmark designed to evaluate the capability of LLMs in performing RCA in practi-
cal software operation scenarios. The benchmark comprises 335 failure cases along with associated
telemetry data, collected from three real-world software systems. Each failure case is structured as
a goal-driven RCA task, where a natural language query serves as the input, and the objective is to
identify the root causes of the failure. OpenRCA offers the following unique features:

Real-world Software Development Scenarios: RCA is a critical step in the software development
lifecycle. Current RCA datasets Ikram et al. (2022); Li et al. (2022c) are either synthetic or small-
scale. OpenRCA addresses this gap by providing hundreds of failures collected from three real-
world software systems. This paves the way for solving more practical RCA problems at scale.

Goal-driven Task Design: Traditional RCA datasets Li et al. (2022c); Lee et al. (2023); Yu et al.
(2023) often focus on a single goal (e.g., identify the originating component only), resulting in RCA
methods tailored to each dataset with low generalizability. OpenRCA adopts a goal-driven approach
to cover various aspects of RCA by synthesizing queries in natural language, making RCA a unified
task and more accessible for language models. In addition, OpenRCA includes numerous real-world
failures, addressing the limitations of traditional synthetic or small datasets used for specific tasks.

Extensive and Heterogeneous Data: The failure cases in OpenRCA encompass diverse patterns,
such as CPU/memory/network issues across container/node/service levels (see Table 5 in Appendix).
Each case involves vast and heterogeneous telemetry data: metrics are time series of numerical val-
ues, traces use a graph structure to show dependencies, and logs are semi-structured text, requiring
LLMs to make reasoning across diverse data formats.

Comprehensive LLM Assessment: OpenRCA requires LLMs to understand the software archi-
tecture, interpret various types of real-world telemetry data, and correlate clues and observations
from different data pieces. This process assesses LLMs’ ability in understanding, reasoning, and
decision-making, extending beyond the scope of many existing software engineering tasks.

Benchmark Updatable: Our framework for constructing the benchmark allows new labels and
telemetry data to be easily integrated into OpenRCA as additional datasets. We also plan to keep
OpenRCA updated to maintain its challenge and prevent data contamination.

2.3 TASK FORMULATION

Task Input & Output: As mentioned earlier, a root cause can be depicted with three elements:
originating component, start time, and failure reason. In OpenRCA, we formulate seven tasks (or
goals) by combining subsets of these three elements as the target output, which are common in RCA
scenarios Lin et al. (2018); Amar & Rigby (2019); Li et al. (2022b). Among the seven tasks, three
focus on identifying only a single element, three on identifying two elements, and one on identifying
all three root cause elements. Detailed input-output specifications are provided in Appendix A.6. As
shown in Figure 1, for each failure case in the benchmark, the input consists of a natural language
query and the associated telemetry data, while the output can be one of the seven goals, i.e., a subset
of the three root cause elements, in a structured JSON format.

Evaluation: For each failure case in OpenRCA, it receives 1 point if all generated root cause ele-
ments match the ground truth ones, and 0 points if any mismatch was identified. The overall accuracy
is the average score across all failure cases. To avoid evaluation errors caused by differences in tex-
tual expressions from LLM generation and ground truth, all possible failure reasons and originating
components are provided in the prompt beforehand. Further details are provided in Appendix A.7.

2.4 DATASET CONSTRUCTION

OpenRCA consists of three diverse datasets originating from the widely-recognized AIOps Chal-
lenge series, held annually since 2018 (AIOps, 2018). Each raw dataset was collected from a
real-world software system. However, the raw data is noisy, poorly maintained, and has different
input-output specifications, making it unsuitable as a benchmark. Specifically, some datasets lack
detailed records of failures like failure reasons, while others are not formulated into input-output
pairs required for the RCA task. In addition, disorganized telemetry, inconsistent naming, and fail-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Summary of OpenRCA datasets regard-
ing the data size, number of unique root causes,
i.e., component (C. for short) and reason (R. for
short), and telemetry data size.

Dataset Cases #Unique RC Telemetry Data
Count C. R. Size Lines

Telecom 51 15 5 17.6G 154M
Bank 136 14 8 26.4G 248M

Market 148 44 15 24.5G 121M

Total 335 73 28 68.5G 523M

38.4%

49.4%

12.1%

15.4%

21.1%

63.4%

0.0%

17.8%

82.2%

Trace

Metric

Log

Dataset
Telecom
Bank
Market

Figure 2: Composition of OpenRCA (by size).

ures across systems further reduce data usability. More importantly, there is a significant amount of
“dirty” data, such as missing telemetry data, mismatched failure reasons, inconsistent failure times,
and incorrect root cause labels. To address these issues, we implemented a four-step data processing
procedure with human engagement (Figure 3), as detailed below:

1753 records 1

Data Balancing

3

ID Failure Time Range Originating 
Component

Start Time Failure 
Reason

1 2022-03-20 09:00:00 
to
2022-03-20 09:30:00 

shippingservi
ce-1

2022-03-20 
09:09:06

container read 
I/O load

2 … … … …

System Selection

412 records

335 records Data Calibration

Query Synthesis335 records
(3 datasets)

2

4
LLMs

Query: The online market service system cloudbed-1 experienced one failure 
during 09:00 ~ 09:30, March 20, 2022. You are tasked to identify the root 
cause component responsible for this failure and the underlying reason. 
Label: {“root cause 1”: {
                          “component”: “shippingservice-1”,
                          “reason”: “container read I/O load”}}}

Telemetry

4

Figure 3: The workflow of OpenRCA benchmark construction.

Stage 1: System Selection. Although numerous software systems emerged from past AIOps chal-
lenges, many of them either lack labels or only indicate that a failure exists without detailing the
root cause. In addition, some systems contain solely metric data, making them not suitable for RCA
tasks. After excluding these unqualified systems, we retained data from three systems, including a
telecom database system, a banking system, and an online market system, totally comprising 1,753
failure records and their corresponding telemetry. Details of the three systems are in Appendix A.2.

Stage 2: Data Balancing. Among the three datasets, the data volumes varied significantly with
differences up to 100-fold in scale, which could lead to biases in benchmark evaluation. To alleviate
the issue, we downsampled the larger datasets to approximate the scale of smaller ones. Finally, 412
failure records remained, where each dataset contains several tens to a few hundred failure records.

Stage 3: Data Calibration. We calibrated the data from two perspectives. First, the raw data
followed varying naming conventions as they were collected independently. We standardized the
names in all telemetry data and labels, and reorganized the data into a unified format for easier access
by models. Second, we employed three experienced engineers to manually verified whether the root
cause labels could be pinpointed using the associated telemetry. Failure records were removed if (1)
no root cause could be identified from telemetry, (2) telemetry for the failure period was missing, or
(3) the root cause inferred from the telemetry misaligned with the labeled one. After filtering, 335
failure records remained with over 68GB telemetry, with each containing about 20GB (distribution
shown in Table 1 and Figure 2). More details about data calibration are presented in Appendix A.5.

Stage 4: Query Synthesis. Following the goal-driven task design, OpenRCA aims to comprise
various goals and their combinations to better generalize to practical scenarios. In this step, we syn-
thesize queries in natural language from failure records because (1) real failure queries are usually
unavailable, (2) synthesizing queries ensures diversity and closely resembles human queries, and (3)
it is easy to scale up after accommodating new datasets. Specifically, seven goals can be derived
from three root cause elements (C1

3 + C2
3 + C3

3 = 7), covering various RCA scenarios.

As illustrated in Figure 3, for each failure record, we first randomly select one of the seven goals
and combine it with the failure time range (a 30-minute window), and the underlying system as

4
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a specification. In some cases, multiple root causes may occur sequentially within the same time
range. To address this, the number of actual failures is also included in the specification. Each spec-
ification is then fed into LLMs like GPT-4 to generate a natural language query (see Appendix A.6
for prompts), which is further verified by human annotators.

3 RCA-AGENT

To resolve an OpenRCA task via LLMs, the first key challenge is how to process large volumes
of telemetry data. An intuitive solution is to chunk the data into smaller pieces and feed them into
the LLMs sequentially. However, this approach is inefficient, costly and sacrifices the global view.
Another method is to sample a subset of data, which is more cost-effective but risks losing critical
information. The second challenge is that telemetry data is predominantly non-natural language,
consisting of numbers and many rare encoded tokens (e.g., GUIDs, error codes), which LLMs are
not well-equipped to handle. An alternative way to process the vast amounts of data is by executing
code Qiao et al. (2023); Zhang et al. (2024b), which allows all data operations to be conducted
programmatically. This approach eliminates the need to embed raw telemetry data into the LLM
context, thereby significantly reducing token consumption while maintaining the global view.

Query

Reasoning

Controller

Python Kernel

Executor

…

User

Answer

Telemetry

Metric Trace Log

Read

Instruct

Action

Figure 4: The structure and workflow of RCA-agent.

Based on this idea, we developed RCA-agent, a multi-agent system that integrates decision-making,
program synthesis, and execution. RCA-agent comprises two LLM agents (prompts are in Ap-
pendix B) as described below:

Controller: The Controller serves as the main decision-maker, responsible for directing the overall
process, analyzing results, and determining next step iteratively. Based on common practices in
RCA, it provides high-level guidance for LLMs to follow: anomaly detection → fault identification
→ root cause localization. Additionally, Controller is instructed to analyze in the order of metric →
trace → log. To help LLMs understand how the telemetry data is organized, the directory structure
and telemetry data schema are dynamically injected into the prompt.

Executor: The Executor is tasked with writing Python code based on the Controller’s instructions,
executing the code, and reply back to Controller for further analysis. It comprises two parts: a
LLM-based code generator responsible for synthesizing code and a Python kernel environment for
executing it. Both the model and the Python environment are stateful, meaning that the generated
code and executed variables are cached in memory until the query is resolved.

Workflow of RCA-agent: When receiving the input query, Controller follows the general guid-
ance to carry out a series of ReAct reasoning steps. Initially, Controller instructs the Executor to
load the relevant telemetry data, and the Executor generates and executes the code. If the execu-
tion fails, Executor will reflect itself using the error stack. Otherwise, Executor responds with the
results to Controller, who then observes, gains insights, and decides the next action. This iterative
process between Controller and Executor continues until all reasoning steps are completed and a
final conclusion is reached.

It is important to note that while the RCA-agent uses code generation to avoid processing large
amounts of context, allowing for scalability and handling vast amounts of telemetry, its performance
is limited by the model’s error handling ability. If the model struggles with handling errors, the
RCA-agent’s effectiveness might be constrained, as will be discussed in Section 5.

4 EXPERIMENTAL SETUP

In this section, we describe the experimental setup used to evaluate LLMs on OpenRCA problems.
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4.1 SAMPLING-BASED METHODS

Given the vast volume of telemetry data, it is impractical to feed all telemetry into the LLMs due
to their limited context window. A common strategy to reduce telemetry volume in RCA is sam-
pling Huang et al. (2024); He et al. (2023). Thus, we downsample all telemetry data (including
trace, log, and metric) to a frequency of one minute by selecting the first recorded value within
each minute, regardless of the original frequency. Meanwhile, we relax the accuracy criteria for
predicting failure start time to within one minute of the actual event. However, this sampling is
still insufficient as the metrics consist of a large number of KPI types (e.g., memory usage, network
delay), necessitating further sampling of KPI types. Thus, we consider two sampling strategies:

Oracle Sampling: To investigate the upper bound of sampling-based method’s performance, we
introduce the oracle sampling. During benchmark construction, engineers identified a fixed set of
“golden” KPIs that are helpful for identifying the root cause. In the oracle sampling, we filtered
these “golden” KPIs as our target. Although this approach is unrealistic, it significantly reduces the
number of KPIs by 95% (from 1263 to 53), thereby lowering the task complexity. It is important to
note that these “golden” KPIs are not the only possible indicators that could point out the root cause.
Different KPIs within the same metric file are often correlated; for example, “CPU-used-percent”
and “CPU-used-MB” tend to show similar trends. Therefore, even KPIs not included in the fixed set
(non-oracle KPIs) may also potentially uncover the failure causes.

Balanced Sampling: We use stratified sampling by iteratively selecting one random but unique KPI
type from each metric file, until the number of sampled KPIs matches that in the oracle setting.
It is a practical and intuitive approach to adapt LLMs to OpenRCA queries, which also ensures
balanced representation across all KPI types. Due to correlations between KPIs, balanced random
sampling usually produces stable statistical results, with a low variation of 1% in our experiments.
To ensure reproducibility, we tested each balanced sampling method three times and reported the
median result.

In addition to sampling, we also removed uninformative data columns like service alias, and com-
pressed data that could consume excessive tokens like trace IDs. After sampling, the prompt of these
two methods contains around 100K tokens (tokenized by GPT-4o).

4.2 LANGUAGE MODELS

To solve OpenRCA tasks, which require processing long contexts, we selected six models with at
least 128K token context windows, including three proprietary models: Claude 3.5, GPT-4o, and
Gemini 1.5 Pro; and three open-source models: Mistral Large 2, Command R+, and Llama3.1
Instruct. The model checkpoints are shown in Appendix C.1

5 EXPERIMENTAL RESULT

This section presents the evaluation results, followed by an analysis and key insights. Table 2 sum-
marizes the accuracy of different methods on the OpenRCA benchmark, where the bold font rep-
resents the accuracy of the best model in each column. Overall, proprietary models consistently
outperform open-source models across all methods. In addition, RCA-agent performs better than
sampling-based approaches, with oracle sampling outperforming balanced sampling. This is ex-
pected as oracle sampling leverages the groundtruth information. However, all models face signif-
icant challenges in resolving OpenRCA tasks. The best-performing model, Claude 3.5, achieved
only 11.34% accuracy even when using RCA-agent. A detailed discussion of these results is pro-
vided below. Due to space constraints, we focus our analysis on two proprietary models (Claude 3.5
and GPT-4o) and one open-source model (Llama 3.1) as representatives.

Accuracy correlated with system complexity. We observed that models consistently perform bet-
ter on less complex systems. As shown in Figure 5, all models achieve higher accuracy on Telecom
system compared to others. This is primarily due to the lower complexity of the Telecom data. As
indicated in Table 1, the Telecom system has the smallest telemetry volume and significantly fewer
unique root cause types, which simplifies the root cause analysis process. Moreover, it lacks the fault
tolerance mechanisms used in Bank and Market, and has the fewest pods among systems. Thus, in
Figure 5, Telecom’s accuracy improved most significantly when using oracle sampling and agent.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Accuracy comparision of models using sampling and agent based methods on OpenRCA
(%). Correct denotes percentage of fully solved queries, and Partial indicates the percentage
where at least one required element is correct.

Balanced Oracle RCA-agent
Model Correct Partial Correct Partial Correct Partial

C
lo

se
d Claude 3.5 Sonnet 3.88 18.81 5.37 17.61 11.34 17.31

GPT-4o 3.28 14.33 6.27 15.82 8.96 17.91
Gemini 1.5 Pro 6.27 24.18 7.16 23.58 2.69 6.87

O
pe

n Mistral Large 2* 3.58 6.40 4.48 10.45 N/A N/A
Command R+* 4.18 8.96 4.78 7.46 N/A N/A
Llama 3.1 Instruct 2.99 14.63 3.88 14.93 3.28 5.67

* Due to budget constraints, we evaluate only Llama on RCA-agent among open-source models.

Telecom Bank Market
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cu

ra
cy

Balanced Sampling
Claude 3.5 Sonnet
GPT-4o
Llama 3.1

Telecom Bank Market
0.0

2.5

5.0

7.5

10.0
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15.0

Oracle Sampling

Telecom Bank Market
0.0

2.5

5.0

7.5

10.0

12.5

15.0

RCA-agent

Figure 5: Accuracy distribution across three software systems (%).

Models struggle to identify multiple root cause elements. We found that model performance
declines significantly as the number of required root cause elements increases. As shown in Table 3,
OpenRCA tasks were categorized into three levels: Easy (1 element), Mid (2 elements), and Hard
(3 elements). Accuracy drops by at least half when the number of required elements increases from
one to two. Furthermore, none of the current methods successfully resolve queries requiring all
three elements. This finding suggests that most correctly answered queries by current models are
relatively simple. Even with simpler queries, the models correctly solve only a small fraction of
them. Additionally, it indicates that while OpenRCA is inherently challenging, it presents a clear
difficulty gradient across tasks.

Agents prefer shorter reasoning but perform better with longer reasoning. As shown in the left
panel of Figure 6, about half of the responses fall within 10 step, regardless of correctness, indicating
that the agents tend to perform shorter reasoning. However, we also found that LLMs could perform
better when they engage in longer reasoning. As shown in the right panel of Figure 6, models
generally perform better when the reasoning length exceeds 10 step. Combining both results, we
hypothesize that current LLMs might be “lazy” in reasoning. Moreover, we observed an interesting

Table 3: Accuracy w.r.t task categorization, Easy (1 element), Mid (2 elements), Hard (3 elements)

Category
Model Method Easy Mid Hard

Claude Oracle 8.72 3.50 0.00
RCA-agent 16.78 9.09 0.00

GPT Oracle 9.40 4.90 0.00
RCA-agent 13.42 6.99 0.00

Llama Oracle 7.38 1.40 0.00
RCA-agent 6.71 0.70 0.00
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Figure 6: Left figure: reasoning length among all queries. Right
figure: accuracy of queries with different length.

Table 4: Accuracy of an-
swers involving failed execu-
tion. Drop indicates the per-
centage of accuracy reduction
compared to Table 2

Model RCA-agent
Correct Drop↓

Claude 9.31 17.90
GPT 7.56 15.63

Gemini 0.85 68.40
Llama 3.18 18.04

finding with Claude. Although only a few of the model’s responses are within 5 steps, it achieves
a high accuracy of around 20%. To investigate the reason, we manually review these cases, finding
that they tend to be the simplest tasks without significant failure propagation and Claude properly
resolved these cases with the short reasoning.

Agent’s performance is constrained by model’s error tolerance capability. We found that a
model’s inability to effectively handle errors can significantly limit its performance as an RCA-
agent. As shown in Table 2, while Gemini achieves the best performance among all sampling-
based methods, its performance as an RCA-agent is the worst. Through a manual review of the
agent’s intermediate steps, we found that although all models may make mistakes when generating
code, GPT and Claude can effectively utilize execution feedback, such as empty output or exception
traceback, to revise their code or adjust their reasoning to bypass errors. In contrast, Gemini rarely
does so. To quantify it, we further analyzed the accuracy of each model in cases involving failed
executions. As shown in Table 4, under this setting, Gemini’s accuracy sharply drops from its
original accuracy of 2.69% to 0.85%, marking a significant reduction of 68.4%. In contrast, Claude
and GPT exhibit only minimal declines of 15.6% and 17.9%, respectively. This suggests that the
use of an RCA-agent adds an extra requirement to a model’s capabilities, representing a trade-off:
enhancing the scalability of language models for handling massive telemetry necessitates stronger
error tolerance during reasoning.

6 CASE STUDY

We present a case generated by RCA-agent (Claude) to illustrate a potential direction to solve Open-
RCA queries. As shown in Figure 7, this case is a query from the bank dataset, where the failure
query requested the root cause component between 23:00 and 23:30 on March 6. To address this,
the RCA-agent first analyzed metrics by extracting KPI sequences for the given time frame and cal-
culating the P95 threshold to filter out anomalous data points. After identifying a large number of
components with anomalies, the RCA-agent filtered out isolated noise points to reduce false posi-
tives. Components with persistent anomalies were considered genuinely affected by the failure. The
RCA-agent then extracted traces involving the affected components, ranked the traces based on com-
mon call dependencies, and identified Tomcat01 as the root cause due to its frequent self-calls in
the downstream chain. Further log analysis pointed to network instability and memory leaks, lead-
ing the RCA-agent to conclude that packet loss was the failure cause. The agent correctly identified
the root cause component required by the query, and the answer was deemed correct.

7 RELATED WORK

LLM for Real-world Software Engineering: The AI researchers have explored various stages of
the software development lifecycle (SDLC), including coding (Hong et al., 2024; Shi et al., 2024;
Dinh et al., 2024), testing (Chen et al., 2023; Pei et al., 2023; Wu et al., 2022; Xia et al., 2024b),
and debugging (Chen et al., 2024a; Ni et al., 2024; Jimenez et al., 2024; Xia et al., 2024a). How-
ever, the post-deployment stage has been largely overlooked. While the software researchers have
recently acknowledged the potential of LLMs in this phase (Ahmed et al., 2023; Chen et al., 2024b),
they mainly use LLMs as summarization tools for service failures, underutilizing their reasoning
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Structured Prediction

{ “root cause 1”:
       { “component”: “tomcat01”,        
          “reason”: “network packet 
loss”
        }
}

“Within the time range of March 6, 2021, from 23:00 to 23:30, 
there was one reported failure in the system. Your task is to 
determine the root cause component.”

Query

Telemetry (of the whole bank system)

Metric

Tomcat03:

[Info] CMS-concurrent-sweep-start

[Info] CMS-concurrent-sweep:1.017/1.023 secs

...

Tomcat04:

[Info] CMS-concurrent-reset-start

[Info] Time:user=1.02,sys=0.00,real=1.02 secs

...

Trace

MG01-CPU_Load:          [1.12,1.04,1.15, ...]

IG01-MEM_Free:          [79.0,80.0,79.0, ...]

Mysql02,FS_Capacity:    [17.6891,17.6912,...]

Tomcat04,PROC_Count:    [1.0,3.0,3.0,2.0,...]

Redis01,Bandwidth_Util: [0.0,0.4,0.2,0.0,...]

... 

IG01->MG01->MG01

   |->IG01->Tomcat02

        |->Tomcat03->Mysql01

         |->Tomcat04->Mysql02

         |->Tomcat01->Tomcat01->Tomcat01

... 

Log

Reasoning Chain (Thought [T] and Action [A]) summarized version

[T]: None
        [A]: Read files in ‘2021_03_06/metric/’ and obtain all valid KPI names in `kpi_name` fields.
        [T]: Valid KPIs identified: CPU_Load,  MEM_free, … We should perform anomaly detection first.
        [A]: Extract data between 23:00 to 23:30 and calculate P95 thresholds for these KPIs.
        [T]: Data extraction success. The thresholds are … We should continue anomaly detection.
        [A]: Filter the anomalous data points that exceed the thresholds in all KPIs.
        [T]: Anomalies identified: Redis01,Mysql02, etc. We should confirm the true faults then.
        [A]: Filter isolated data points and sudden spikes, which is likely to be the false positive.
        [T]: Faults confirmed: Mysql01,Mysql02, Tomcat01. We should identify the root cause now.
        [A]: Read files in ‘2021_03_06/traces/’ to extract traces involving these fault components.
        [T]: Several corresponding traces are extracted. We should analyze their dependency next.
        [A]: Sort the traces by occurrences and print the most common call chain in the tree structure.
        [T]: The most common chain is …->Tomcat01->Tomcat01. Need log analysis on Tomcat01.
        [A]: Read files in ‘2021_03_06/logs/’ and extract logs generated by Tomcat01.
        [T]: Multiple logs of Tomcat01 show TCP connection fluctuation and memory allocation failure.
        [A]: We can stop reasoning and make a conclusion now.
   Conclusion: Tomcat01 faces network packet loss and potential memory leaks.

Evaluation Result

“correct element”: component
“wrong element”:    None
“ignored element”: reason

“evaluation result”: 

Ground-Truth Label

{ “root cause 1”:
       {“time”: “23:18:00”,
         “component”: “tomcat01”,        
         “reason”: “network latency ”
        }
}

1

3

2

4

5

6

7

8

Figure 7: A case of RCA-agent (Claude) in Bank dataset. The reasoning chain is summarized.

capabilities. Moreover, they rely on proprietary datasets and manual evaluation within correspond-
ing organizations, limiting scalability. OpenRCA addresses this gap by introducing an open-access
benchmark and evaluation framework for root cause analysis, leveraging LLMs’ advanced reason-
ing abilities in post-deployment scenarios. This paves the way for further research and supports the
automation of the entire SDLC.

Root Cause Analysis (RCA): The goal of the RCA task varies depending on the available teleme-
try and application scenario. If only metrics and service topology are available, the task is to locate
the failure originating component (Yu et al., 2021) or its failure reason (Bi et al., 2024). If only logs
are available, the goal is to identify the relevant logs generated when failure occurs (Amar & Rigby,
2019; Rosenberg & Moonen, 2020). If only traces are available, the goal is to identify the failure
service operation (Yu et al., 2021). In scenarios where multiple telemetry types are available (Li
et al., 2022b; Lee et al., 2023; Yu et al., 2023), the goal is various based on the needs (e.g., identi-
fying the faulty component and the relevant KPIs). However, existing evaluation datasets (Li et al.,
2022c; Lee et al., 2023; Yu et al., 2023) focus on single goals, providing labels for ad-hoc scenario.
OpenRCA addresses this by framing RCA as a goal-driven task, covering diverse scenarios of RCA.

8 DISCUSSION

Limitation: First, the failures collected by OpenRCA are all from distributed software systems. In
the future, we aim to expand the dataset to include failures from systems with other architectures,
such as monolithic systems, and use them to continuously update OpenRCA. Second, due to privacy
and security concerns, OpenRCA is currently unable to gather first-hand failure reports from users or
engineers. To approximate real-world scenarios, OpenRCA has synthesized queries based on com-
mon failure reports in a goal-driven manner. In the future, we hope to collaborate with companies
to obtain real, anonymized failure reports for use as queries. Third, while our proposed RCA-agent
makes models scalable for handling large volumes of telemetry without consuming extensive con-
text, it increases the demands on the model’s error tolerance capability. In the future, we aim to
explore more robust methods to reduce these additional requirements for handling OpenRCA tasks.

Conclusion: We present OpenRCA, a benchmark and evaluation framework designed to assess lan-
guage models’ performance in real-world software engineering, which particularly fills the gap of
post-deployment phase of software development lifecycle. By targeting the root cause analysis tasks,
OpenRCA requires LLMs to perform advanced reasoning across diverse data types and structures.
We also designed RCA-agent, a execution-based multi-agent system trying to solve the challenges in
OpenRCA. The results expose current limitations in LLMs’ ability to address this practical software
tasks while opening new research opportunities in AI-driven software maintenance and reliability.
As LLMs improve, success on OpenRCA could lead to significant advancements in automated trou-
bleshooting and system reliability, potentially transforming the management of complex software
systems.
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A BENCHMARK DETAILS

Table 5: Basic composition of datasets (with coarse-grained taxonomy)

Dataset Component level Failure resource Data type
Telecom os,pod,db cpu,net,db trace,metric

Bank pod cpu,mem,io,net,jvm log,trace,metric
Market node,pod,service cpu,mem,io,net,process log,trace,metric

A.1 LICENSE

All telemetry data is originating from AIOps Challenge series AIOps (2018); Data, which is open-
sourced and licensed under Creative Commons Attribution-Non Commercial 4.0 International:
https://creativecommons.org/licenses/by-nc/4.0/.

A.2 INTRODUCTION OF SERVICE SYSTEMS

Telecom: The telecom system consists of 22 virtual machine operating systems, 8 pods, 13 database
services, 12 Redis middleware services, and multiple business services. The database services and
Redis are directly deployed on the operating systems, while other business services run on pods
hosted by the operating systems. The potential root cause components in this system include all
operating systems, pods, and database services. There are five potential failure causes, categorized
into CPU, network, and database failures. The telemetry data for the telecom system includes traces
and metrics but excludes logs.

Bank: The bank system consists of 14 pods, 6 services, and multiple nodes. Five of these services
are deployed across two pods each, while one service is deployed across four pods. This setup
provides fault tolerance; when a pod hosting a service fails, another pod with the same service can
handle the requests. The potential root cause components in this system include all 14 pods, with
eight possible causes across five categories: CPU, memory, disk, network, and JVM failures. The
telemetry data for the bank system includes metrics, traces, and logs.

Market: The market system comprises 6 server nodes, 40 pods, and 10 services. Each service is
deployed across 4 different pods, similar to the bank system, providing fault tolerance. The potential
root cause components in this system include all 6 nodes, 40 pods, and 10 services. Notably, if all
pods hosting a particular service fail, this is considered a service-level failure rather than an individ-
ual pod failure. There are 15 possible causes of failure, spanning CPU, memory, disk, network, and
process termination. The telemetry data for the market system includes metrics, traces, and logs.

Please note that all telemetry data is collected in the UTC+8 time zone. Therefore, when converting
between timestamps and datetimes, ensure you specifically use the UTC+8 time zone.

A.3 INTRODUCTION OF TELEMETRY

The telemetry data in OpenRCA encompasses metrics, logs, and traces, all structured in CSV files.
Below is a brief introduction to each type of telemetry:

Metrics: Metric files contain time series data representing key performance indicators (KPIs) for
different components. Each data point in a series is associated with a component (identified by
cmdb id) and a KPI type (kpi name). By analyzing these metrics, one can detect anomalies in
component performance. Below is an example of 10 rows from a metric file, which contains data
points from different KPI:

timestamp,cmdb_id,kpi_name,value
1614787200,Tomcat04,OSLinux-CPU_CPU_CPUCpuUtil,26.2957
1614787200,Mysql02,Mysql-MySQL_3306_Innodb data pending writes,0.0
1614787200,Mysql02,Mysql-MySQL_3306_Innodb data pending reads,0.0
1614787200,MG01,OSLinux-CPU_CPU_CPUSysTime,0.3158
1614787200,MG01,OSLinux-CPU_CPU_CPUUserTime,25.5454
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1614787200,Tomcat03,OSLinux-OSLinux_NETWORK_ens160_NETPacketsOut,115.0
1614787200,Tomcat03,OSLinux-OSLinux_NETWORK_ens160_NETPacketsIn,100.0
1614787200,Tomcat03,OSLinux-OSLinux_NETWORK_ens160_NETOutErr,0.0
1614787200,Redis02,redis-Redis_6379_Redis (latest_fork_usec),0.0
1614787200,Redis02,redis-Redis_6379_Redis (loading),0.0

All data points for a specific KPI of a component form a complete time series. For example, the
OSLinux-CPU CPU CPUCpuUtil for Tomcat03 can be represented as:

timestamp value
1614787200 25.9228
1614787260 29.4098
1614787380 25.6756
1614787440 25.5445
1614787560 25.9666
1614787680 26.0624
1614787740 26.0624
1614787860 26.0859
1614787920 25.9044
1614788040 26.4985
...

796000 798000 800000 802000 804000 806000 808000 810000
timestamp +1.614e9

25.4

25.5

25.6

25.7

25.8

va
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Tomcat03 OSLinux-CPU_CPU_CPUCpuUtil

Figure 8: Time series of OSLinux-CPU CPU CPUCpuUtil for Tomcat03.

Trace: Trace files record the call chains between services, where each trace consists of multiple
spans. A span represents a single communication event, capturing the interaction when one service
makes a request to another. These spans are organized hierarchically, with each span having a parent
span, which links it to the preceding span, forming a complete trace. By examining the relationships
between spans within a trace, one can understand the dependencies between services and trace
the path of potential failures across them. Below are 24 rows from a trace file, where each row
represents a span, and together, they form a complete trace. (trace id, span id, parent id
are simplified to four digits)

timestamp,cmdb_id,parent_id,span_id,trace_id,duration
1614787515636,IG01,8603,8603,gw9703,80
1614787515636,IG01,8603,3432,gw9703,80
1614787517980,Tomcat02,3432,9209,gw9703,78
1614787517980,Tomcat02,9209,9210,gw9703,0
1614787517981,Tomcat02,9209,9211,gw9703,0
1614787517982,Tomcat02,9209,9212,gw9703,0
1614787517983,Tomcat02,9209,6004,gw9703,73
1614787518300,MG01,6004,6649,gw9703,71
1614787518300,MG01,6649,7505,gw9703,71
1614787200087,dockerB1,7505,6635,gw9703,66
1614787200089,dockerB1,6635,6636,gw9703,1
1614787200091,dockerB1,6635,6637,gw9703,1
1614787200094,dockerB1,6635,6638,gw9703,1
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1614787200095,dockerB1,6635,6639,gw9703,0
1614787200112,dockerB1,6635,6640,gw9703,1
1614787200119,dockerB1,6635,6641,gw9703,1
1614787200120,dockerB1,6635,6921,gw9703,11
1614787518339,MG01,6921,6605,gw9703,8
1614787518339,MG01,6605,7506,gw9703,7
1614787200133,dockerB1,6635,6642,gw9703,1
1614787200136,dockerB1,6635,6643,gw9703,1
1614787200151,dockerB1,6635,6644,gw9703,1
1614787517983,Tomcat02,9209,9213,gw9703,0
1614787518058,Tomcat02,9209,9214,gw9703,0

Specifically, the call chain can be represented as a tree structure:
IG01, Timestamp:1614787515636

IG01, Timestamp:1614787515636
Tomcat02, Timestamp:1614787517980

Tomcat02, Timestamp:1614787517980
Tomcat02, Timestamp:1614787517981
Tomcat02, Timestamp:1614787517982
Tomcat02, Timestamp:1614787517983

MG01, Timestamp:1614787518300
MG01, Timestamp:1614787518300

dockerB1, Timestamp:1614787200087
dockerB1, Timestamp:1614787200089
dockerB1, Timestamp:1614787200091
dockerB1, Timestamp:1614787200094
dockerB1, Timestamp:1614787200095
dockerB1, Timestamp:1614787200112
dockerB1, Timestamp:1614787200119
dockerB1, Timestamp:1614787200120

MG01, Timestamp:1614787518339
MG01, Timestamp:1614787518339

dockerB1, Timestamp:1614787200133
dockerB1, Timestamp:1614787200136
dockerB1, Timestamp:1614787200151

Tomcat02, Timestamp:1614787517983
Tomcat02, Timestamp:1614787518058

It can also be represent as a dependency graph:

IG01

Tomcat02

#3 (x4)

MG01

dockerB1

#1

#2

#4

#5
#6

#7 (x7)

#8

#9

#10 (x3)

#11 (x2)

Figure 9: Dependency graph of the trace example, with (xN) indicating N self-requests.

Log: Log files capture runtime messages from components, often providing insight into the inter-
nal state or behavior of a system. Each log entry consists of a timestamp, a verbosity level, and a
message. Logs are particularly useful for understanding the details of service operations and diag-
nosing issues. Below are 10 rows of log entries representing messages from different components:
(log id are simplified to four digits)
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log_id,timestamp,cmdb_id,log_name,value
c763,1614787201,Tomcat01,gc,[CMS-concurrent-mark-start]
cfd3,1614787202,Tomcat01,gc,[CMS-concurrent-mark: 1.623/1.628 secs]
c87b,1614787202,Tomcat01,gc,[CMS-concurrent-preclean-start]
edbf,1614787202,Tomcat01,gc,[Times: user=0.02 sys=0.00, real=0.01 secs]
e319,1614787202,Tomcat01,gc,[CMS-concurrent-abortable-preclean-start]
6461,1614792889,Tomcat02,gc,[CMS-concurrent-preclean-start]
be53,1614792889,Tomcat02,gc,[CMS-concurrent-preclean: 0.015/0.015 secs]
ff38,1614792889,Tomcat02,gc,[CMS-concurrent-abortable-preclean-start]
9959,1614792894,Tomcat02,gc,[Times: user=1.21 sys=0.05, real=5.08 secs]
01a4,1614792894,Tomcat02,gc,[CMS-concurrent-sweep-start]

A.4 INTRODUCTION OF ROOT CAUSE ANALYSIS

Failures in service systems are typically triggered by anomalies in specific components (e.g., nodes,
containers) due to issues like disk saturation. These anomalies can propagate through service in-
teractions—for instance, a full disk on a node may cause all services on containers deployed on
that node to become unresponsive. This unresponsiveness then affects other services relying on
them, leading to broader system failures at the application level. Timely and effective root cause
localization is therefore a critical issue in software engineering to maintain software service system
stability.

However, current research of RCA does not follow a unified task definition of the task output, typ-
ically due to the different requirements of specific scenarios. For example, if engineers only won-
dering which container is failure and want to redirect the traffic to other container, it does not need
to know the in-depth reason of failure, i.e., only the failure components is needed. Thus, Open-
RCA considered to construct the practice of RCA into a goal-driven manner, where each goal refers
to a combanation of three key element of the root cause, i.e., the failure originating component,
occurrence time, and reason.

A.5 DETAILS OF DATA CALIBRATION

We hired three SREs with over three years of RCA experience to calibrate the data. We provided the
hired engineers with a standardized procedure to perform individual data calibration and verification.
Specifically, they first extracted all telemetry data generated by the root cause component within 30
minutes before and after the labeled failure event. Next, they visualized key performance indicators
(KPIs) for the relevant resource types based on the description of the root cause. For example, if the
failure was due to high CPU usage in a container, they examined all CPU-related KPIs within the
time window. The engineers then identified anomalies in these KPIs, such as values exceeding the
mean ± 3 standard deviations. These KPIs are the primary evidence for determining the root cause. If
no anomalies are found in this data, the failure cannot be attributed to the labeled component with the
correct reason, regardless of anomalies present in other telemetry. Therefore, failure records without
clear anomalies in this data were removed. Additionally, we checked for consistency between the
labeled failure time and the actual onset of the root cause. As shown in Figure 10, Figure 11, and
Figure 12, the failure record will be removed if the nearest data point of the telemetry around the
failure occurrence time is not the first data point of an anomalous data duration. Finally, any failure
records lacking telemetry data for the relevant time period or components were also filtered out.
After completing individual calibration, the engineers cross-validated each other’s results. Out of
412 cases, they disagreed on only 8 (less than 2%). Following thorough discussion, they reached a
consensus on all cases.
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Figure 10: A case where the failure record matches the telemetry. Based on the record’s guidance,
engineers visualized the KPI container fs reads for the root cause component frontend-2
within a 30-minute window, since the record suggests that the failure reason is container read
I/O load. The red dashed line at the x-axis center indicates the failure occurrence time provided
by the record, which is also the exact start time of the KPI spike. Given that the records align with
direct evidence of the root cause, i.e., the corresponding KPI, we consider it possible to identify the
root cause. Thus, this record is retained.
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Figure 11: A case where the failure record does not match the telemetry. The engineers visualized all
KPIs related to the disc since the record illustrates the failure reason is high disc I/O read
usage. However, the exact failure occurrence time significantly deviates from the time provided
in the failure records, as the nearest data point around the failure occurrence time is a normal point.
Thus, this record is removed from our dataset.
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Figure 12: A case where the failure record matches the telemetry. The engineers visualized all
KPIs related to the disc since the record illustrates the failure reason is high disc I/O read
usage. The exact failure occurrence time is aligned with the label, as the nearest data point around
the failure occurrence time is the first anomalous data point among an anomalous duration. Thus,
the record is deemed accurate and is retained.
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A.6 DETAILS OF PROBLEM SYNTHESIS

To adapt to the different output of RCA, we use GPT-4o to synthesize the RCA problems for each
failure record. We randomly select one task for each failure record, and then send the failure records
with the corresponding task specifications to the model for query synthesis. A task specification
is a JSON object that determines the input and output information of the query to be synthesized.
The detailed system prompt and corresponding task specifications used for program synthesis are
provided below.

System Prompt

Your task is to generate an issue related to DevOps failure diagnosis
based on a given set of specifications. The goal is to make the issue
realistic enough that an engineer could encounter at work.

The specifications provided to you include the following components:

‘‘‘known
(The known information explicitly provided in the issue.)
‘‘‘

‘‘‘query
(The target query that required the user to answer.)
‘‘‘

Your response should follow the JSON format below:

‘‘‘issue
(The generated issue based on the specifications.)
‘‘‘

For example:

{IN-CONTEXT EXAMPLES}

Some rules to follow:

1. Do not tell the user "how to solve the issue" (e.g., retrieve the
telemetry data like metrics/logs/traces).

...

Now, let’s get started!

User Prompt:

Please generate an issue related to DevOps failure diagnosis based on the
following specifications:

‘‘‘known
{input_specification}
‘‘‘

‘‘‘query
{output_specification}
‘‘‘

Task Specification:

{
"task_1": {

"input": [
"time range: {time_period}",
"number of failures: {num}"

],
"output": [
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"root cause occurrence time: {datetime}"
]

},
"task_2": {

"input": [
"time range: {time_period}",
"number of failures: {num}"

],
"output": [

"root cause reason: {reason}"
]

},
"task_3": {

"input": [
"time range: {time_period}",
"number of failures: {num}"

],
"output": [

"root cause component: {component}"
]

},
"task_4": {

"input": [
"time range: {time_period}",
"number of failures: {num}"

],
"output": [

"root cause occurrence time: {datetime}",
"root cause reason: {reason}"

]
},
"task_5": {

"input": [
"time range: {time_period}",
"number of failures: {num}"

],
"output": [

"root cause occurrence time: {datetime}",
"root cause component: {component}"

]
},
"task_6": {

"input": [
"time range: {time_period}",
"number of failures: {num}"

],
"output": [

"root cause component: {component}",
"root cause reason: {reason}"

]
},
"task_7": {

"input": [
"time range: {time_period}",
"number of failures: {num}"

],
"output": [

"root cause component: {component}",
"root cause occurrence time: {datetime}",
"root cause reason: {reason}"

]
}

}
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A.7 DETAILS OF EVALUATION

OpenRCA requires all the methods to structure their final answer in the following JSON format:

{
"1": {

"root cause occurrence datetime": (A time in ’%Y-%m-%d %H:%M:%S’
format),

"root cause component": (A component selected from the given ’
possible root cause component’),

"root cause reason": (A reason selected from the given ’possible
root cause reason’),

},
...

}

During evaluation, the LLMs are tasked with correctly answering all the required elements of all the
failures that occurred within the given time duration. If the LLM provides an answer to an element
that was not required, that element will not affect the correctness of the answer. OpenRCA only
focuses on whether the required elements are answered correctly, and ignores the unnecessary fields
generated by the model. All possible root cause components and reasons for each system is provided
in each method’s prompts. The prompt of these method are generally discussed in Appendix B.2
and C.2.
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B RCA-AGENT DETAILS

B.1 FEATURES OF RCA-AGENT

Scalability: RCA-agent is not constrained by telemetry volume. By loading telemetry into memory
via code execution rather than the LLM’s context, it can process large datasets as long as memory
allows. Expanding memory is far easier than increasing LLM context, ensuring scalability.

Clarity: RCA-agent avoids overwhelming the LLM with processing data analysis on large amount
of numbers, codes, symbols in telemetry. By handling data analysis through code execution, the
LLM can focus solely on the reasoning and decision-making process for the execution results.

Efficiency: Since telemetry is not directly fed into the LLM, it minimizes unnecessary token usage,
keeping the context length concise and reducing overhead from irrelevant data.

Generalizability: RCA-agent does not require domain-specific knowledge beyond its telemetry
schema. Instead, it only follows two general guidance of root cause diagnosis. This allows RCA-
agent to generalize effectively across various service systems.

B.2 AGENT PROMPTS

We provide the system prompts of the Controller and Executor here for reference.

Controller system prompt:
You are the Administrator of a DevOps Assistant system for failure

diagnosis. To solve each given issue, you should iteratively instruct
an Executor to write and execute Python code for data analysis on

telemetry files of target system. By analyzing the execution results,
you should approximate the answer step-by-step.

There is some domain knowledge for you:

{BACKGROUND KNOWLEDGE OF SYSTEM}

## RULES OF FAILURE DIAGNOSIS:

What you SHOULD do:

1. **Follow the workflow of ‘preprocess -> anomaly detection -> fault
identification -> root cause localization‘ for failure diagnosis.**

...

What you SHOULD NOT do:

1. DO NOT include any programming language in your response.
...

The issue you are going to solve is:

{PROBLEM TO SOLVE}

Solve the issue step-by-step. In each step, your response should follow
the JSON format below:

{
"analysis": (Your analysis of the code execution result from Executor

in the last step, with detailed reasoning of ’what have been done’
and ’what can be derived’. Respond ’None’ if it is the first step
.),

"completed": ("True" if you believe the issue is resolved, and an
answer can be derived in the ’instruction’ field. Otherwise "False
"),

"instruction": (Your instruction for the Executor to perform via code
execution in the next step. Do not involve complex multi-step
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instruction. Keep your instruction atomic, with clear request of ’
what to do’ and ’how to do’. Respond a summary by yourself if you
believe the issue is resolved.)

}

Let’s begin.

Executor System Prompt

You are a DevOps assistant for writing Python code to answer DevOps
questions. For each question, you need to write Python code to solve
it by retrieving and processing telemetry data of the target system.
Your generated Python code will be automatically submitted to a
IPython Kernel. The execution result output in IPython Kernel will be
used as the answer to the question.

## RULES OF PYTHON CODE WRITING:

1. Reuse variables as much as possible for execution efficiency since the
IPython Kernel is stateful, i.e., variables define in previous steps
can be used in subsequent steps.

...

There is some domain knowledge for you:

{BACKGROUND KNOWLEDGE OF SYSTEM}

Your response should follow the Python block format below:

‘‘‘python
(YOUR CODE HERE)
‘‘‘

Summary Prompt

Note that once the Controller believe the task is completed, a summary prompts will be provided to
controller for summarizing and structuring its answer to the JSON format required by OpenRCA:

Now, you have decided to finish your reasoning process. You should now
provide the final answer to the issue. The candidates of possible
root cause components and reasons are provided to you. The root cause
components and reasons must be selected from the provided candidates

.

{BACKGROUND KNOWLEDGE OF SYSTEM}

Recall the issue is: {PROBLEM TO SOLVE}

Please first review your previous reasoning process to infer an exact
answer of the issue. Then, summarize your final answer of the root
causes using the following JSON format at the end of your response:

{OPENRCA ANSWER FORMAT}

B.3 BACKGROUND PROMPTS

We also designed three background prompts to introduce the schema of telemetry, i.e., Telecom,
Bank, Market, and the possible failure components and reasons in the system. Note that these
prompts are provided not only to the RCA-agent but also included in the prompts for sampling-
based methods to provide basic system knowledge. All background prompts for all systems follow
the format below:

## DATA SCHEMA
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1. **Metric Files**:
{METRIC FILE SCHEMA}

2. **Trace Files**:
{TRACE FILE SCHEMA}

2. **Log Files**:
{LOG FILE SCHEMA}

## POSSIBLE ROOT CAUSE REASONS:
{FAILURE REASONS}

## POSSIBLE ROOT CAUSE COMPONENTS:
{FAILURE COMPONENTS}
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C EXPERIMENTAL SETUP

C.1 CLARIFICATION

Why not retrieval-based methods: Unlike tasks such as code generation or summarization,
which can leverage natural features (e.g., class names, function names, or keywords) for retrieval-
augmented generation (RAG) Lewis et al. (2020), RCA faces challenges in identifying effective
retrieval strategies due to the absence of such features in telemetry data. Actually, identifying faulty
telemetry is a key challenge in RCA, as failures typically occur without clear indicators pointing
to specific KPIs, failure logs, or anomalous call chains. To address this, we employed common
sampling strategies from traditional RCA methods to construct our baseline.

Why not chain-of-thought: We did not explicitly instruct LLMs to perform chain-of-thought (CoT)
reasoning Wei et al. (2022), as it generally resulted in poorer performance in our repetitive exper-
iments. Table 6 compares the effect of explicitly requiring CoT versus not doing so. The results
consistently show that CoT underperformed compared to prompts that did not require it. After
manually reviewing both settings, we found that CoT often led models to focus on a few obvious
anomalies list in its thought, overlooking the given diagnostic guidance to explore the deeper failure
propagation chain among these anomalies. We also report a brief case study in Appendix C.3.

Table 6: Repetitive comparison between our original prompt (Original) and CoT prompt (CoT) (%)

Balanced Oracle
GPT-4o Original CoT Original CoT

Try-1 3.28 2.39 6.27 4.48
Try-2 3.28 2.99 6.27 5.37
Try-3 3.58 2.69 5.37 5.37

Median 3.58 2.99 6.27 5.37

Selected Language Models: The models in our experiments were accessed via APIs, with the open-
source models using services from Mistral, Cohere, and Together.AI, as shown in Table 7. Due to
differences in tokenizers, the open-source models often generated more tokens than GPT-4o, even
with the same 128K token limit, causing some prompts to exceed the context window. To ensure
accurate evaluation, we reduced the number of KPIs in the prompt by eliminating interdependent
KPIs in the oracle setting while keeping the total KPI count consistent between the oracle and
sampling settings. Additionally, we select the 70B version of Llama3.1 rather than 405B version
since Together.AI does not support 128K context in 405B version.

Table 7: Checkpoint of each model

Name Checkpoint

Claude 3.5 claude-3-5-sonnet-20240620
GPT-4o gpt-4o-20240513

Gemini 1.5 Pro gemini-1.5-pro-exp-0801
Mistral Large 2 mistral-large-instruct-2407
Command R+ command-r-plus-08-2024

Llama 3.1 Instruct meta-llama-70B-instruct

Prompt of sampling-based methods: Despite KPI sampling, original telemetry files contain re-
dundant columns. We carefully filtered out irrelevant columns (e.g., component hash IDs) and com-
pressed meaningful, long-encoded fields.

Evaluation for sampling-based methods: Since the sampling interval is limited to one minute,
OpenRCA considers a failure time prediction correct if it falls within a one-minute window. We
also manually verified that telemetry from oracle sampling still reveals the root cause components
and failure reasons after sampling. Despite KPI sampling, original telemetry files contain redundant
columns.
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C.2 PROMPTS OF SAMPLING-BASED METHODS

Original Prompts:

We first provide the prompt template used for both oracle sampling and balanced sampling in our
experiment:

You will be provided with some telemetry data and an issue statement
explaining a root cause analysis problem to resolve.

{BACKGROUND KNOWLEDGE OF THE SYSTEM}

{SAMPLED TELEMETRY DATA}

Now, I need you to provide an root cause analysis to the following
question:

{PROBLEM TO SOLVE}

Note: A root cause is the fundamental factor that triggers a service
system failure, causing other system components to exhibit various
anomalous behaviors. It consists of three elements: the root cause
component, the start time of the root cause occurrence, and the
reason for its occurrence. The objective of root cause analysis may
vary, aiming to identify one or more of these elements based on the
issue. Each failure has only one root cause. However, sometimes a
system’s abnormal state may be due to multiple simultaneous failures,
each with its own root cause. If you find that there is a call

relationship between multiple components exhibiting abnormal behavior
, these anomalies originate from the same failure, with the component
at the downstream end of the call chain being the root cause

component. The anomalies in the other components are caused by the
failure. If there is no call relationship between the abnormal
components, each component may be the root cause of a different
failure. Typically, the number of failures occurring within half an
hour does not exceed three.

Your response should be structured into a JSON format, itemising the
relevant root cause information you find. You only need to provide
the elements asked by the issue, and ommited the other fields in the
JSON. The overall format is as follows:

{OPENRCA ANSWER FORMAT}

Please follow the format above to provide your response of current issue.

Response below:

In this prompt, we provide the background knowledge of each system same as what we did for
RCA-agent. In addition, we also summarized the methodology to perform root cause analysis from
the system prompt of RCA-agent (i.e., ”Note that ...”).

CoT Prompts:

We also provide the CoT prompts used in our repetitive experiment discussed in Appendix C.1.

You will be provided with some telemetry data and an issue statement
explaining a root cause analysis problem to resolve.

{BACKGROUND KNOWLEDGE OF THE SYSTEM}

{SAMPLED TELEMETRY DATA}

Now, I need you to provide an root cause analysis to the following
question:
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{PROBLEM TO SOLVE}

Note: A root cause is the fundamental factor that triggers a service
system failure, causing other system components to exhibit various
anomalous behaviors. It consists of three elements: the root cause
component, the start time of the root cause occurrence, and the
reason for its occurrence. The objective of root cause analysis may
vary, aiming to identify one or more of these elements based on the
issue. Each failure has only one root cause. However, sometimes a
system’s abnormal state may be due to multiple simultaneous failures,
each with its own root cause. If you find that there is a call

relationship between multiple components exhibiting abnormal behavior
, these anomalies originate from the same failure, with the component
at the downstream end of the call chain being the root cause

component. The anomalies in the other components are caused by the
failure. If there is no call relationship between the abnormal
components, each component may be the root cause of a different
failure. Typically, the number of failures occurring within half an
hour does not exceed three.

Please first conduct a comprehensive analysis on the given telemetry data
step-by-step in your response. Then, summarize your findings using

the following JSON format to provide a concise answer to the given
issue at the end of your response. In the summarized ansewr, you only
need to provide the elements asked by the issue, and ommited the

other fields in the JSON. The overall format is as follows:

{OPENRCA ANSWER FORMAT}

Please follow the format above to provide your response of current issue.

Response below:

The only difference between the original prompt and the CoT prompt is that CoT prompt explicitly
asked LLMs to perform a step-by-step analysis on the telemetry data.

C.3 CASE STUDY OF COT PROMPTING

We provide a case study to dissus the possible reason that the vanilla CoT does not work in RCA. In
this case, we use oracle sampling settings, and the model is GPT-4o. The RCA problem is:

On March 21, 2022, between 12:00 and 12:30, the cloud service system, cloudbed-1, experienced
a fault. The exact component responsible for this fault is currently unknown. Please identify the
root cause component.

When using original prompt, GPT-4o provides the correct answer, which is:
{

"1": {
"root cause component": "productcatalogservice",
"root cause reason": "container read I/O load"

}
}

However, when using CoT prompt, the full response is:
### Step-by-Step Analysis

#### 1. Identify the Time Window and Cluster
- The issue occurred on March 21, 2022, between 12:00 and 12:30.
- The affected cluster is ‘cloudbed-1‘.

#### 2. Analyze Service Metrics
- **Service Metrics**: Check for anomalies in ‘metric_service.csv‘ for

the specified time window.
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- **Frontend Service**:
- ‘mrt‘ (Mean Response Time) spikes significantly during the time window

.
- ‘mrt‘ values: 918.47, 13879.44, 13133.99, 10519.49, 13002.95, 12387.8,

13131.03, 5234.86.
- **Checkout Service**:
- ‘mrt‘ values: 398.92, 2375.0, 6340.0, 4821.43, 5500.0, 4950.0, 5075.0,

3331.5.
- **Recommendation Service**:
- ‘mrt‘ values: 64.81, 376.63, 416.07, 395.0, 395.0, 390.0, 395.0,

161.54.
- **Product Catalog Service**:
- ‘mrt‘ values: 360.68, 1851.71, 1886.56, 1824.71, 1837.86, 1837.15,

1839.85, 573.48.

#### 3. Analyze Container Metrics
- **Frontend Containers**:
- ‘frontend-0‘, ‘frontend-1‘, ‘frontend-2‘, ‘frontend2-0‘ show high CPU

usage and network receive metrics.
- **Checkout Containers**:
- ‘checkoutservice-0‘, ‘checkoutservice-1‘, ‘checkoutservice-2‘, ‘

checkoutservice2-0‘ show high CPU usage and network receive metrics.
- **Recommendation Containers**:
- ‘recommendationservice-0‘, ‘recommendationservice-1‘, ‘

recommendationservice-2‘, ‘recommendationservice2-0‘ show high CPU
usage and network receive metrics.

- **Product Catalog Containers**:
- ‘productcatalogservice-0‘, ‘productcatalogservice-1‘, ‘

productcatalogservice-2‘, ‘productcatalogservice2-0‘ show high CPU
usage and network receive metrics.

#### 4. Analyze Node Metrics
- **Node Metrics**:
- ‘node-1‘, ‘node-2‘, ‘node-3‘, ‘node-4‘, ‘node-5‘, ‘node-6‘ show high

CPU usage and disk usage metrics.

#### 5. Analyze Trace Data
- **Trace Data**:
- Multiple traces show high latency in ‘frontend‘, ‘checkoutservice‘, ‘

recommendationservice‘, and ‘productcatalogservice‘.

#### 6. Analyze Log Data
- **Log Data**:
- Logs from ‘frontend‘, ‘checkoutservice‘, ‘recommendationservice‘, and

‘productcatalogservice‘ show errors and high latency.

### Summary of Findings
- The root cause component is likely to be ‘frontend‘ service due to its

significant impact on ‘mrt‘ and high CPU and network usage.
- The anomalies in ‘checkoutservice‘, ‘recommendationservice‘, and ‘

productcatalogservice‘ are likely propagated from the ‘frontend‘
service.

### JSON Output
‘‘‘json
{

"1": {
"root cause component": "frontend"

}
}
‘‘‘

While LLMs with CoT prompting also identifies multiple anomalous data points across the frontend,
checkoutservice, recommendationservice, productcatalogservice in step 5, it directly determine the
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service with the most significant latency, frontend, as the root cause component, instead of follow-
ing the guidance to analyze traces and identify the failure’s originating component. We consider
this may be because the model became lost in the massive context and complex reasoning process
among heterogeneous telemetry data, leading to focusing only on superficial findings from its earlier
analysis in stage 2. Therefore, to better reflect the model’s upper bound in solving OpenRCA, we
did not use CoT prompting as a baseline.
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