Published as a conference paper at ICLR 2025

OPENRCA: CAN LARGE LANGUAGE MODELS LoO-
CATE THE ROOT CAUSE OF SOFTWARE FAILURES?

Junjielong Xu2* Qinan Zhang' Zhiqing Zhong! Shilin He?" Chaoyun Zhang?

Qingwei Lin? Dan Pei? Pinjia He' Dongmei Zhang® Qi Zhang?
1School of Data Science, The Chinese University of Hong Kong, Shenzhen
2Microsoft 3Tsinghua University

{junjielongxu, ginanzhang, zhigingzhong}@link.cuhk.edu.cn,
{shilin.he,chaoyun.zhang,qlin,dongmeiz,qizhang}@microsoft.com
peidan@tsinghua.edu.cn

hepinjia@cuhk.edu.cn

ABSTRACT

Large language models (LLMs) are driving substantial advancements in software
engineering, with successful applications like Copilot and Cursor transforming
real-world development practices. However, current research predominantly fo-
cuses on the early stages of development, such as code generation, while overlook-
ing the post-development phases that are crucial to user experience. To explore the
potential of LLMs in this direction, we propose OpenRCA, a benchmark dataset
and evaluation framework for assessing LLMSs’ ability to identify the root cause
of software failures. OpenRCA includes 335 failures from three enterprise soft-
ware systems, along with over 68 GB of telemetry data (logs, metrics, and traces).
Given a failure case and its associated telemetry, the LLM is tasked to identify
the root cause that triggered the failure, requiring comprehension of software de-
pendencies and reasoning over heterogeneous, long-context telemetry data. Our
results show substantial room for improvement, as current models can only han-
dle the simplest cases. Even with the specially designed RCA-agent, the best-
performing model, Claude 3.5, solved only 11.34% failure cases. Our work paves
the way for future research in this direction.

1 INTRODUCTION

Large language models (LLMs) have recently driven significant advancement of software engineer-
ing, with numerous research works and real-world applications impacting both the methodology
and practice in software development, such as MetaGPT (Hong et al.l |2024), SWE-agent (Yang
et al.| 2024)), OpenDevin (Wang et al.,|2024b)), Copilot, and |Cursor. However, existing efforts focus
mostly on the early stages of Software Development Life Cycle (SDLC)) while ignoring the post-
development phases. In practice, maintaining software services and debugging issues during online
operations are labor-intensive and error-prone tasks that often require 24/7 on-call support. Online
incidents can cost service providers billions of dollars (CrowdStrike; [UniSuper), highlighting the
urgent need for more effective solutions in root cause analysis (RCA) to mitigate software issues.

In recent years, Al researchers have explored various learning-based methods for RCA with tech-
niques such as causal discovery (Arnold et al.,|2007; L1 et al.l |2022a} Chakraborty et al.| 2023} B1
et al., 2024), dependency graph analysis (Wang et al.| 2023a; |[Zheng et al., 2024), and other neural
networks [Wang et al.| (2023b); [Yu et al|(2021). However, RCA remains challenging due to the
immense complexity of real-world software systems, which require multi-step reasoning capabili-
ties over vast and heterogeneous data to identify root causes across diverse failure patterns. As the
success of LLMs in software development (Jimenez et al., 20245 N1 et al.| 2024} |Chen et al., [2023;
2024a)) , an important question is: Can current LLMs be effective in solving RCA challenges? The
answer is critical to further enhance the automation of the entire software lifecycle via LLMs.

*Work was done when Junjielong Xu was interning at Microsoft DKI.
"Shilin He and Pinjia He are the corresponding authors.

Published as a conference paper at ICLR 2025

9 software System — [SJ Telemetry Data Large Language Model

B fl-Z e |2 ;

Metric Lo N
s . UECE @ Generated Root Cause
oot cause 1
—r . rootcause -
Services sk @ Query {“component”: “tomcat01”,
On March 25, 2021, between 09:00 and “reason”: “high disk I/O read
- . _ 09:30AM, there was a failure observed in usage”}
Nodes | ; | ; | I,' system X, please identify the root cause rootcause 2”: ...
component and the root cause reason. }

Figure 1: Failures often propagate between services, requiring extensive telemetry (metrics, logs,
traces) to identify the root cause. OpenRCA collects real-world failures and corresponding teleme-
try, framing root cause analysis as a goal-driven task: the model must identify the root cause ele-
ments (time, component, reason) specified in the query.

To answer this question, we propose OpenRCA, a public benchmark dataset and evaluation frame-
work for assessing LLMSs’ root cause analysis ability in a practical software operating scenario.
OpenRCA consists of 335 failure cases collected from three heterogeneous software systems de-
ployed in the real world, accompanied by over 68 GB of de-identified telemetry data. Specifically,
as shown in Figure[I] each failure case is paired with a query in natural language, requiring LLMs to
analyze massive telemetry data to generate the corresponding root cause elements, including time,
component, and reason. The process demands LLMs understand intricate system dependencies and
conduct complex reasoning across telemetry data of diverse types, such as time series, dependency
graphs, and semi-structured text.

Evaluating state-of-the-art LLMs on OpenRCA reveals significant challenges: these models are
currently only capable of solving parts of the simplest tasks. For example, Claude 3.5 only resolved
5.37% OpenRCA tasks when oracle telemetry was given. This results further drops to 3.88% when
using balanced sampling strategy to extract the possibly related telemetry.

To outline a possible direction for solving OpenRCA tasks, we further developed RCA-agent, a
multi-agent system Qiao et al.|(2023)); [Zhang et al.|(2024a)) based on program synthesis & execution.
By utilizing Python for data retrieval and analysis, the model is freed from processing large telemetry
as an overly long context. This allows the model to focus solely on reasoning and makes it scalable
for massive telemetry. With RCA-agent, the accuracy of Claude 3.5 is further improved to 11.34%.

We believe OpenRCA will serve as a foundational benchmark, driving future research at the inter-
section of Al and Software Engineering, and allowing the community to explore the true potential
of LLMs in solving real-world service reliability problems

2 OPENRCA

2.1 PRELIMINARIES OF ROOT CAUSE ANALYSIS

Root Cause Analysis (RCA): In the software development lifecycle, root cause analysis refers to
the process of identifying the underlying causes of failures, such as service unavailability, in a soft-
ware system. On-call engineers must gather relevant felemetry data and other pertinent information
to understand how the failure occurred.

Typically, a root cause should consist of the originating component (i.e., which part of the system
failed), the start time (i.e., when the failure occurred), and the failure reason (i.e., why it failed, such
as CPU overload or excessive disk throughput). Furthermore, a failure in the originating component
can propagate to other components through service dependencies (e.g., a payment service relying
on a database) or deployment configurations (e.g., containers on the same server). This propagation
can lead to broader system failures, complicating the identification of the exact root cause.

'The OpenRCA code and data are available at|GitHub,

https://github.com/microsoft/OpenRCA

Published as a conference paper at ICLR 2025

Telemetry: Telemetry refers to the data used to monitor the internal status of software systems,
encompassing metrics, traces, and logs. Metrics represent time series data points that track key
performance indicators (KPIs), such as CPU usage or response time. Traces capture the interactions
among multiple system components, illustrating their dependencies, and often structured as a graph.
Logs record runtime events and messages for each component, with verbosity levels such as info,
warn, and error. Examples of telemetry data are provided in Appendix [A.3]

2.2 FEATURES OF OPENRCA

OpenRCA is a benchmark designed to evaluate the capability of LLMs to perform RCA in practical
software operation scenarios. The benchmark comprises 335 failure cases along with associated
telemetry data, collected from three real-world software systems. Each failure case is structured as
a goal-driven RCA task, where a natural language query serves as the input, and the objective is to
identify the root causes of the failure. OpenRCA offers the following unique features:

Real-world Software Development Scenarios: RCA is a critical step in the software development
lifecycle. Current RCA datasets |Li et al.[(2022a)); Ikram et al.|(2022) are either synthetic or small-
scale. OpenRCA addresses this gap by providing hundreds of failures collected from three real-
world software systems. This paves the way for solving more practical RCA problems at scale.

Goal-driven Task Design: Traditional RCA datasets |Li et al.[(2022c); [Lee et al.| (2023); [Yu et al.
(2023) often focus on a single goal (e.g., identify the originating component only), resulting in RCA
methods tailored to each dataset with low generalizability. OpenRCA adopts a goal-driven approach
to cover various aspects of RCA by synthesizing queries in natural language, making RCA a unified
task and more accessible for language models. In addition, OpenRCA includes numerous real-world
failures, addressing the limitations of traditional synthetic or small datasets used for specific tasks.

Extensive and Heterogeneous Data: The failure cases in OpenRCA encompass diverse patterns,
such as CPU/memory/network issues across container/node/service levels (see Table[5)in Appendix).
Each case involves vast and heterogeneous telemetry data: metrics are time series of numerical val-
ues, traces use a graph structure to show dependencies, and logs are semi-structured text, requiring
LLMs to make reasoning across diverse data formats.

Comprehensive LLM Assessment: OpenRCA requires LLMs to understand the software archi-
tecture, interpret various types of real-world telemetry data, and correlate clues and observations
from different data pieces. This process assesses LLMs’ ability in understanding, reasoning, and
decision-making, extending beyond the scope of many existing software engineering tasks.

Benchmark Updatable: Our framework for constructing the benchmark allows new labels and
telemetry data to be easily integrated into OpenRCA as additional datasets. We also plan to keep
OpenRCA updated to maintain its challenge and prevent data contamination.

2.3 TASK FORMULATION

Task Input & Output: As mentioned earlier, a root cause can be depicted with three elements:
originating component, start time, and failure reason. In OpenRCA, we formulate seven tasks (or
goals) by combining subsets of these three elements as the target output, which are common in RCA
scenarios [Lin et al.|(2018)); |]Amar & Rigby| (2019); [Li et al.| (2022b). Among the seven tasks, three
focus on identifying only a single element, three on identifying two elements, and one on identifying
all three root cause elements. Detailed input-output specifications are provided in Appendix[A.6] As
shown in Figure [I] for each failure case in the benchmark, the input consists of a natural language
query and the associated telemetry data, while the output can be one of the seven goals, i.e., a subset
of the three root cause elements, in a structured JSON format.

Evaluation: For each failure case in OpenRCA, it receives 1 point if all generated root cause ele-
ments match the ground truth ones, and O points if any mismatch was identified. The overall accuracy
is the average score across all failure cases. To avoid evaluation errors caused by differences in tex-
tual expressions from LLM generation and ground truth, all possible failure reasons and originating
components are provided in the prompt beforehand. Further details are provided in Appendix

Published as a conference paper at ICLR 2025

Table 1: Summary of OpenRCA datasets regard-

ing the data size, number of unique root causes, Tace
i.e., component (C. for short) and reason (R. for Mege
short), and telemetry data size. N
Dataset 17.8%
o
Cases | #Unique RC | Telemetry Data Market || 822%
Dataset ‘ Count | C. R. ‘ Size Lines \... /4
Telecom | 51 |15 5 | 176G 154M
Bank 136 | 14 8 264G 248M
Market 148 | 44 15 245G 121M

Total | 335 |73 28 | 685G 523M Figure 2: Composition of OpenRCA (by size).

2.4 DATASET CONSTRUCTION

OpenRCA consists of three diverse datasets originating from the widely-recognized AIOps Chal-
lenge series, held annually since 2018 (AIOps, 2018). Each raw dataset was collected from a
real-world software system. However, the raw data is noisy, poorly maintained, and has different
input-output specifications, making it unsuitable as a benchmark. Specifically, some datasets lack
detailed records of failures like failure reasons, while others are not formulated into input-output
pairs required for the RCA task. In addition, disorganized telemetry, inconsistent naming, and fail-
ures across systems further reduce data usability. More importantly, there is a significant amount of
“dirty” data, such as missing telemetry data, mismatched failure reasons, inconsistent failure times,
and incorrect root cause labels. To address these issues, we implemented a four-step data processing
procedure with human engagement (Figure 3, as detailed below:

D Failure Time Range Originating Start Time Failure
Telemetry
Component Reason
1753 records @ system Selection 1 | 2022-03-20 09:00:00 | shippingservi | 2022-03-20 | container read ﬁ
to ce-1 09:09:06 1/0 load
X oy r30+ 3
412 records @ Data Balancing 2022-03-20 09:30:00 ~
2
335 records g) Data Calibration
e - Query: The online market service system cloudbed-1 experienced one failure
i during 09:00 ~ 09:30, March 20, 2022. You are tasked to identify the root
335 records o Query Synthesis LLMs Gause component responsible for this failure and the underlying reason.
(3 datasets) Label: {“root cause 1”: {

“component”: “shippingservice-1”,
“reason”: “container read 1/0 load”}}}

Figure 3: The workflow of OpenRCA benchmark construction.

Stage 1: System Selection. Although numerous software systems emerged from past AIOps chal-
lenges, many of them either lack labels or only indicate that a failure exists without detailing the
root cause. In addition, some systems contain solely metric data, making them not suitable for RCA
tasks. After excluding these unqualified systems, we retained data from three systems, including a
telecom database system, a banking system, and an online market system, totally comprising 1,753
failure records and their corresponding telemetry. Details of the three systems are in Appendix [A.2]

Stage 2: Data Balancing. Among the three datasets, the data volumes varied significantly with
differences up to 100-fold in scale, which could lead to biases in benchmark evaluation. To alleviate
the issue, we downsampled the larger datasets to approximate the scale of smaller ones. Finally, 412
failure records remained, where each dataset contains several tens to a few hundred failure records.

Stage 3: Data Calibration. We calibrated the data from two perspectives. First, the raw data
followed varying naming conventions as they were collected independently. We standardized the
names in all telemetry data and labels, and reorganized the data into a unified format for easier access
by models. Second, we employed three experienced engineers to manually verified whether the root
cause labels could be pinpointed using the associated telemetry. Failure records were removed if (1)
no root cause could be identified from telemetry, (2) telemetry for the failure period was missing, or
(3) the root cause inferred from the telemetry misaligned with the labeled one. After filtering, 335
failure records remained with over 68GB telemetry, with each containing about 20GB (distribution
shown in Table [T]and Figure 2). More details about data calibration are presented in Appendix

Published as a conference paper at ICLR 2025

Stage 4: Query Synthesis. Following the goal-driven task design, OpenRCA aims to comprise
various goals and their combinations to better generalize to practical scenarios. In this step, we syn-
thesize queries in natural language from failure records because (1) real failure queries are usually
unavailable, (2) synthesizing queries ensures diversity and closely resembles human queries, and (3)
it is easy to scale up after accommodating new datasets. Specifically, seven goals can be derived
from three root cause elements (Cs + C% + C3 = 7), covering various RCA scenarios.

As illustrated in Figure [3] for each failure record, we first randomly select one of the seven goals
and combine it with the failure time range (a 30-minute window), and the underlying system as
a specification. In some cases, multiple root causes may occur sequentially within the same time
range. To address this, the number of actual failures is also included in the specification. Each spec-
ification is then fed into LLMs like GPT-4 to generate a natural language query (see Appendix
for prompts), which is further verified by human annotators.

3 RCA-AGENT

To resolve an OpenRCA task via LLMs, the first key challenge is how to process large volumes
of telemetry data. An intuitive solution is to chunk the data into smaller pieces and feed them into
the LLMs sequentially. However, this approach is inefficient, costly and sacrifices the global view.
Another method is to sample a subset of data, which is more cost-effective but risks losing critical
information. The second challenge is that telemetry data is predominantly non-natural language,
consisting of numbers and many rare encoded tokens (e.g., GUIDs, error codes), which LLMs are
not well-equipped to handle. An alternative way to process the vast amounts of data is by executing
code |Q1ao et al.| (2023)); [Zhang et al.| (2024b), which allows all data operations to be conducted
programmatically. This approach eliminates the need to embed raw telemetry data into the LLM
context, thereby significantly reducing token consumption while maintaining the global view.

User
Controller Executor ﬁ Telemetry
Instruct
N
Reasoning — Read ﬁ;ﬁ e
- @ Python Kernel M =
Action Metric Trace Log

Figure 4: The structure and workflow of RCA-agent.

Based on this idea, we developed RCA-agent, a multi-agent system that integrates decision-making,
program synthesis, and execution. RCA-agent comprises two LLM agents (prompts are in Ap-
pendix [B) as described below:

Controller: The Controller serves as the main decision-maker, responsible for directing the overall
process, analyzing results, and determining next step iteratively. Based on common practices in
RCA, it provides high-level guidance for LLMs to follow: anomaly detection — fault identification
— root cause localization. Additionally, Controller is instructed to analyze in the order of metric —
trace — log. To help LLMs understand how the telemetry data is organized, the directory structure
and telemetry data schema are dynamically injected into the prompt.

Executor: The Executor is tasked with writing Python code based on the Controller’s instructions,
executing the code, and reply back to Controller for further analysis. It comprises two parts: a
LLM-based code generator responsible for synthesizing code and a Python kernel environment for
executing it. Both the model and the Python environment are stateful, meaning that the generated
code and executed variables are cached in memory until the query is resolved.

Workflow of RCA-agent: When receiving the input query, Controller follows the general guid-
ance to carry out a series of ReAct reasoning steps. Initially, Controller instructs the Executor to
load the relevant telemetry data, and the Executor generates and executes the code. If the execu-
tion fails, Executor will reflect itself using the error stack. Otherwise, Executor responds with the
results to Controller, who then observes, gains insights, and decides the next action. This iterative
process between Controller and Executor continues until all reasoning steps are completed and a
final conclusion is reached.

Published as a conference paper at ICLR 2025

It is important to note that while the RCA-agent uses code generation to avoid processing large
amounts of context, allowing for scalability and handling vast amounts of telemetry, its performance
is limited by the model’s error handling ability. If the model struggles with handling errors, the
RCA-agent’s effectiveness might be constrained, as will be discussed in Section [3}

4 EXPERIMENTAL SETUP

In this section, we describe the experimental setup used to evaluate LLMs on OpenRCA problems.

4.1 SAMPLING-BASED METHODS

Given the vast volume of telemetry data, it is impractical to feed all telemetry into the LLMs due
to their limited context window. A common strategy to reduce telemetry volume in RCA is sam-
pling Huang et al.| (2024); He et al.| (2023). Thus, we downsample all telemetry data (including
trace, log, and metric) to a frequency of one minute by selecting the first recorded value within
each minute, regardless of the original frequency. Meanwhile, we relax the accuracy criteria for
predicting failure start time to within one minute of the actual event. However, this sampling is
still insufficient as the metrics consist of a large number of KPI types (e.g., memory usage, network
delay), necessitating further sampling of KPI types. Thus, we consider two sampling strategies:

Oracle Sampling: To investigate the upper bound of the sampling-based method’s performance,
we introduce the oracle sampling. During benchmark construction, engineers identified a fixed set
of “golden” KPIs that are helpful for identifying the root cause. In the oracle sampling, we filtered
these “golden” KPIs as our target. Although this approach is unrealistic, it significantly reduces the
number of KPIs by 95% (from 1263 to 53), thereby lowering the task complexity. It is important to
note that these “golden” KPIs are not the only possible indicators that could point out the root cause.
Different KPIs within the same metric file are often correlated; for example, “CPU-used-percent”
and “CPU-used-MB” tend to show similar trends. Therefore, even KPIs not included in the fixed set
(non-oracle KPIs) may also potentially uncover the failure causes.

Balanced Sampling: We use stratified sampling by iteratively selecting one random but unique KPI
type from each metric file until the number of sampled KPIs matches that in the Oracle setting.
It is a practical and intuitive approach to adapt LLMs to OpenRCA queries, which also ensures
balanced representation across all KPI types. Due to correlations between KPIs, balanced random
sampling usually produces stable statistical results, with a low variation of 1% in our experiments.
To ensure reproducibility, we tested each balanced sampling method three times and reported the
median result.

In addition to sampling, we also removed uninformative data columns like service alias, and com-
pressed data that could consume excessive tokens like trace IDs. After sampling, the prompt of these
two methods contains around 100K tokens (tokenized by GPT-40).

4.2 LANGUAGE MODELS

To solve OpenRCA tasks, which require processing long contexts, we selected six models with at
least 128K token context windows, including three proprietary models: Claude 3.5, GPT-40, and
Gemini 1.5 Pro; and three open-source models: Mistral Large 2, Command R+, and Llama3.1
Instruct. The model checkpoints are shown in Appendix [C.1]

5 EXPERIMENTAL RESULT

This section presents the evaluation results, followed by an analysis and key insights. Table |2 sum-
marizes the accuracy of different methods on the OpenRCA benchmark, where the bold font rep-
resents the accuracy of the best model in each column. Overall, proprietary models consistently
outperform open-source models across all methods. In addition, RCA-agent performs better than
sampling-based approaches, with oracle sampling outperforming balanced sampling. This is ex-
pected as oracle sampling leverages the ground-truth information. However, all models face signif-
icant challenges in resolving OpenRCA tasks. The best-performing model, Claude 3.5, achieved

Published as a conference paper at ICLR 2025

Table 2: Accuracy comparison of models using sampling and agent-based methods on OpenRCA
(%). Correct denotes the percentage of fully solved queries, and Partial indicates the percent-
age where at least one required element is correct.

Balanced Oracle \ RCA-agent

Model Correct Partial Correct Partial \ Correct Partial
T Claude 3.5 Sonnet 3.88 18.81 5.37 17.61 11.34 17.31
§ GPT-40 3.28 14.33 6.27 15.82 8.96 17.91
O Gemini 1.5 Pro 6.27 24.18 7.16 23.58 2.69 6.87
£ Mistral Large 2* 3.58 6.40 4.48 10.45 N/A N/A
2 Command R+* 4.18 8.96 4.78 7.46 N/A N/A
© Llama 3.1 Instruct 2.99 14.63 3.88 14.93 3.28 5.67

* Due to budget constraints, we evaluate only Llama on RCA-agent among open-source models.

Balanced Sampling Oracle Sampling RCA-agent

Claude 3.5 Sonnet
mmm GPT-40
B Llama 3.1

15.0 15.0 1 15.04

12.54 12,54 12.54

10.04 10.0 1 10.0 4

7.54 7.54 7.54

Accuracy

5.0 5.0 1 5.0

2.54 2,54 2.54

0.0+ 0.0+ 0.0+

Telecom Bank Market Telecom Bank Market Telecom Bank Market

Figure 5: Accuracy distribution across three software systems (%).

only 11.34% accuracy even when using RCA-agent. A detailed discussion of these results is pro-
vided below. Due to space constraints, we focus our analysis on two proprietary models (Claude 3.5
and GPT-40) and one open-source model (Llama 3.1) as representatives.

Accuracy correlated with system complexity. We observed that models consistently perform bet-
ter on less complex systems. As shown in Figure[3] all models achieve higher accuracy on Telecom
system compared to others. This is primarily due to the lower complexity of the Telecom data. As
indicated in Table[T} the Telecom system has the smallest telemetry volume and significantly fewer
unique root cause types, which simplifies the root cause analysis process. Moreover, it lacks the fault
tolerance mechanisms used in Bank and Market, and has the fewest pods among systems. Thus, in
Figure[5] Telecom’s accuracy improved most significantly when using Oracle sampling and agent.

Models struggle to identify multiple root cause elements. We found that model performance
declines significantly as the number of required root cause elements increases. As shown in Table[3]
OpenRCA tasks were categorized into three levels: Easy (1 element), Mid (2 elements), and Hard (3
elements). Accuracy drops by at least half when the number of required elements increases from one
to two. Furthermore, none of the current methods successfully resolve queries requiring all three

Table 3: Accuracy w.r.t task categorization, Easy (1 element), Mid (2 elements), Hard (3 elements)

Category
Model Method Easy Mid Hard
Claude Oracle 8.72 3.50 0.00
RCA-agent 16.78 9.09 0.00
GPT Oracle 9.40 4.90 0.00
RCA-agent 13.42 6.99 0.00
Llama Oracle 7.38 1.40 0.00
RCA-agent 6.71 0.70 0.00

Published as a conference paper at ICLR 2025

elements, where we provide a further analysis of these Hard queries in Appendix [D| This finding
suggests that most correctly answered queries by current models are relatively simple. Even with
simpler queries, the models correctly solve only a small fraction of them. Additionally, it indicates
that while OpenRCA is inherently challenging, it presents a clear difficulty gradient across tasks.

Table 4: Accuracy of an-

501 T s sommet 121 swers involving failed execu-
Llama 3.1 10+ tion. Drop indicates the per-
g g 8y centage of accuracy reduction
2 € compared to Table[Z]
-4 E N
i RCA-agent
2 Model &

Correct Drop]
Claude 9.31 17.90

T T
1-5 6-10 11-15 16-20 21-25 1-10 11-25

. . o GPT 756 15.63
Figure 6: Left figure: the reasoning length among all queries. Right Gemini 0.85 68.40
figure: the accuracy of queries with different lengths. Llama 3.18 18.04

Agents prefer shorter reasoning but perform better with longer reasoning. As shown in the left
panel of Figure [6] about half of the responses fall within 10 steps, regardless of correctness, indi-
cating that the agents tend to perform shorter reasoning. However, we also found that LLMs could
perform better when they engage in longer reasoning. As shown in the right panel of Figure[6} mod-
els generally perform better when the reasoning length exceeds 10 steps. Combining both results, we
hypothesize that current LLMs might be “lazy” in reasoning. Moreover, we observed an interesting
finding with Claude. Although only a few of the model’s responses are within 5 steps, it achieves a
high accuracy of around 20%. To investigate the reason, we manually reviewed these cases, finding
that they tend to be the simplest tasks without significant failure propagation and Claude properly
resolved these cases with the short reasoning.

Agent’s performance is constrained by the model’s error tolerance capability. We found that
a model’s inability to effectively handle errors can significantly limit its performance as an RCA-
agent. As shown in Table 2] while Gemini achieves the best performance among all sampling-
based methods, its performance as an RCA-agent is the worst. Through a manual review of the
agent’s intermediate steps, we found that although all models may make mistakes when generating
code, GPT and Claude can effectively utilize execution feedback, such as empty output or exception
traceback, to revise their code or adjust their reasoning to bypass errors. In contrast, Gemini rarely
does so. To quantify it, we further analyzed the accuracy of each model in cases involving failed
executions. As shown in Table [] under this setting, Gemini’s accuracy sharply drops from its
original accuracy of 2.69% to 0.85%, marking a significant reduction of 68.4%. In contrast, Claude
and GPT exhibit only minimal declines of 15.6% and 17.9%, respectively. This suggests that the
use of an RCA-agent adds an extra requirement to a model’s capabilities, representing a trade-off:
enhancing the scalability of language models for handling massive telemetry necessitates stronger
error tolerance during reasoning.

6 CASE STUDY

We present a case generated by RCA-agent (Claude) to illustrate a potential direction to solve Open-
RCA queries. As shown in Figure[7} this case is a query from the bank dataset, where the failure
query requested the root cause component between 23:00 and 23:30 on March 6. To address this,
the RCA-agent first analyzed metrics by extracting KPI sequences for the given time frame and cal-
culating the P95 threshold to filter out anomalous data points. After identifying a large number of
components with anomalies, the RCA-agent filtered out isolated noise points to reduce false posi-
tives. Components with persistent anomalies were considered genuinely affected by the failure. The
RCA-agent then extracted traces involving the affected components, ranked the traces based on com-
mon call dependencies, and identified Tomcat 01 as the root cause due to its frequent self-calls in
the downstream chain. Further log analysis pointed to network instability and memory leaks, lead-
ing the RCA-agent to conclude that packet loss was the failure cause. The agent correctly identified
the root cause component required by the query, and the answer was deemed correct.

Published as a conference paper at ICLR 2025

(7] query Reasoning Chain (and Action [A]) summarized version
“Within the time range of March 6, 2021, from 23:00 to 23:30, JNons
there was one reported failure in the system. Your taskis to I: Readfiles in “2021_03_06/metric/’ and obtain all valid KPl names in " kpi_name" fields.

determine the root cause component.”

Valid KPIs identified: CPU_Load, MEM_free, ... We should perform anomaly detection first

A
A]: Extract data b :00 to 23:30 a alculate P95 thresholds for these KPls.
t e..Wes o

Data extraction succ:

[ﬁ Telemetry (of the whole bank system)

[

[

[

[

[

[A]: Filter the anomalous data

[T]: Anomalies identified: Redis01,My We should confirm th then
[A]: Filter isolated data points and sudden spikes, wh\ch\shke y to bethefalse positive.
[ould identify the
[
[
[A
[T;
[

]: Faults confirmed: Mysql01,Mysql02, Tomcat01
Al: Read files in 2021 3705/”3065/ to extract traces
]: Several corresponding traces are extracted. We should a c
]: Sort the traces by occurrences and print the most common call chain in the tree structure.

m MGO1-CPU_Load:

Metric

]: The most common che >Tomcat01->Tomcat01. Need log analysis on Tomcat01
A): Read files 6/logs/ and extract logs generated byTomcalO1
ﬁ{\ ->I1G01->Tomcat [T]: Multiple logs of Tomcat01 show TCP connection fluctuation and memory allocation failure
g5} N ToMyse ' [A:Weca Dpreasonmgar\d OO e
Trace : il ey Conclusion: Tomcat01 faces network packet loss and potential memory leaks.
Toncat03: Q¥ Structured prediction S Ground-Truth Label (1) Evaluation Result
{ T L] o R ("’“f" Ca‘fysfjm " “correct element”: component
= {“component”: “tomcat01”, {“time”: “23:18:00”, , “wrong element”: None
Log Tomcat04: “reason”: “network packet “component”: “tomcat01”, “ignored element”: reason
loss” “reason”: “network latency
} } “evaluation result”: [

} }

Figure 7: A case of RCA-agent (Claude) in Bank dataset. The reasoning chain is summarized.

7 RELATED WORK

LLM for Real-world Software Engineering: LLMs have demonstrated strength in various real-
life application scenarios (Wang et al., 2025} 2024a)), particularly within the SDLC: coding (Hong
et al., [2024; |Shi et al., |2024; Dinh et al., 2024} [Li et al.| [2025; |Cao et al.l 2025 [Wan et al., [2024),
testing (Chen et al., 2023 Pei et al., 2023; |Wu et al., 2022; |Xia et al.| [2024b), logging (Xu et al.,
2024alc Xie et al.l [2024), and debugging (Chen et al. 2024a; Jimenez et al. [2024; [Xia et al.,
20244} [Xu et al. [2024b} [Lee et al., [2024). However, the post-deployment stage has been largely
overlooked. While the software researchers have recently acknowledged the potential of LLMs in
this phase (Ahmed et al.| 2023} [Chen et al.l 2024b), they mainly use LLMs as summarization tools
for service failures, underutilizing their reasoning capabilities. Moreover, they rely on proprietary
datasets and manual evaluation within corresponding organizations, limiting scalability. OpenRCA
addresses this gap by introducing an open-access benchmark and evaluation framework for root
cause analysis, leveraging LLMs’ advanced reasoning abilities in post-deployment scenarios. This
paves the way for further research and supports the automation of the entire SDLC.

Root Cause Analysis (RCA): The goal of the RCA task varies depending on the available teleme-
try and application scenario. If only metrics and service topology are available, the task is to locate
the failure originating component (Yu et al., |2021) or its failure reason (Bi et al., [2024). If only logs
are available, the goal is to identify the relevant logs generated when failure occurs (Amar & Rigby,
2019; Rosenberg & Moonen, [2020). If only traces are available, the goal is to identify the failure
service operation (Yu et al., [2021). In scenarios where multiple telemetry types are available (L1
et al.| [2022b} [Lee et al.l 2023} [Yu et al.l |2023), the goal is various based on the needs (e.g., identi-
fying the faulty component and the relevant KPIs). However, existing evaluation datasets (Li et al.,
2022c¢; Lee et al., 2023 |Yu et al., 2023) focus on single goals, providing labels for ad-hoc scenarios.
OpenRCA addresses this by framing RCA as a goal-driven task, covering diverse scenarios of RCA.

8 DISCUSSION

Limitation: First, the failures collected by OpenRCA are all from distributed software systems. In
the future, we aim to expand the dataset to include failures from systems with other architectures,
such as monolithic systems, and use them to continuously update OpenRCA. Second, due to privacy
and security concerns, OpenRCA is currently unable to gather first-hand failure reports from users or
engineers. To approximate real-world scenarios, OpenRCA has synthesized queries based on com-
mon failure reports in a goal-driven manner. In the future, we hope to collaborate with companies
to obtain real, anonymized failure reports for use as queries. Third, while our proposed RCA-agent
makes models scalable for handling large volumes of telemetry without consuming extensive con-
text, it increases the demands on the model’s error tolerance capability. In the future, we aim to
explore more robust methods to reduce these additional requirements for handling OpenRCA tasks.

Published as a conference paper at ICLR 2025

Conclusion: We present OpenRCA, a benchmark and evaluation framework designed to assess lan-
guage models’ performance in real-world software engineering, which particularly fills the gap in
post-deployment phase of software development lifecycle. By targeting the root cause analysis tasks,
OpenRCA requires LLMs to perform advanced reasoning across diverse data types and structures.
We also designed RCA-agent, an execution-based multi-agent system trying to solve the challenges
in OpenRCA. The results expose current limitations in LLMs’ ability to address these practical
software tasks while opening new research opportunities in Al-driven software maintenance and
reliability. As LLMs improve, success on OpenRCA could lead to significant advancements in auto-
mated troubleshooting and system reliability, potentially transforming the management of complex
software systems.

ETHICS STATEMENT

The OpenRCA is an open-sourced benchmark. Its telemetry data is sourced from the AIOps Chal-
lenge series |AIOps| (2018)); |Datal under CC BY-NC 4.0, which permits the non-commercial use,
redistribution, and adaptation of the material, provided appropriate credit is given and any deriva-
tives are shared under identical license terms. The adaptations of OpenRCA to the original data are
detailed in Sec.[2.4 No privacy or enterprise-sensitive information remains due to prior rigorous
anonymization in the original challenges. The RCA-agent is strictly intended for academic bench-
marking purposes. The RCA-agent, or any other LLM agent designed for solving OpenRCA tasks,
should not be deployed in real-world production environments without a comprehensive safety as-
sessment. Note that the authors hold sole legal responsibility for OpenRCA’s data use, while users
bear responsibility for any consequences of deploying RCA-agent in real-world scenarios.

ACKNOWLEDGEMENTS

This paper was supported by the Guangdong Basic and Applied Basic Research Foundation (No. 2
024A1515010145) and the Shenzhen Science and Technology Program (No. ZDSYS20230626091
302006).

REFERENCES

Toufique Ahmed, Supriyo Ghosh, Chetan Bansal, Thomas Zimmermann, Xuchao Zhang, and Sar-
avan Rajmohan. Recommending root-cause and mitigation steps for cloud incidents using large
language models. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE), pp. 1737-1749. 1IEEE, 2023.

AlOps. AlOps Challenges. https://competition.aiops—challenge.com/home/
competition, 2018.

Anunay Amar and Peter C Rigby. Mining historical test logs to predict bugs and localize faults in
the test logs. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE),
pp. 140-151. IEEE, 2019.

Andrew Arnold, Yan Liu, and Naoki Abe. Temporal causal modeling with graphical granger meth-
ods. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 6675, 2007.

Tingzhu Bi, Zhang Yang, Yicheng Pan, Yu Zhang, Meng Ma, Xinrui Jiang, Linlin Han, Feng Wang,
Xian Liu, and Ping Wang. Faultinsight: Interpreting hyperscale data center host faults. In Pro-
ceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
141-152, 2024.

Jialun Cao, Yuk-Kit Chan, Zixuan Ling, Wenxuan Wang, Shuqing Li, Mingwei Liu, Ruixi Qiao,
Yuting Han, Chaozheng Wang, Boxi Yu, et al. How should i build a benchmark? revisiting
code-related benchmarks for llms. arXiv e-prints, pp. arXiv—-2501, 2025.

Sarthak Chakraborty, Shaddy Garg, Shubham Agarwal, Ayush Chauhan, and Shiv Kumar Saini.
Causil: Causal graph for instance level microservice data. In Proceedings of the ACM Web Con-
ference 2023, pp. 2905-2915, 2023.

10

https://competition.aiops-challenge.com/home/competition
https://competition.aiops-challenge.com/home/competition

Published as a conference paper at ICLR 2025

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. In The Eleventh International Conference on
Learning Representations, 2023.

Xinyun Chen, Maxwell Lin, Nathanael Schérli, and Denny Zhou. Teaching large language models
to self-debug. In The Twelfth International Conference on Learning Representations, 2024a.

Yinfang Chen, Huaibing Xie, Minghua Ma, Yu Kang, Xin Gao, Liu Shi, Yunjie Cao, Xuedong
Gao, Hao Fan, Ming Wen, et al. Automatic root cause analysis via large language models for
cloud incidents. In Proceedings of the Nineteenth European Conference on Computer Systems,
pp- 674-688, 2024b.

GitHub Copilot. GitHub. https://github.com/features/copilot.

CrowdStrike. Microsoft. https://blogs.microsoft.com/blog/2024/07/20/
helping-our—customers—through-the-crowdstrike—-outage/.

Anysphere Cursor. Cursor. https://www.cursor.com/.

AlOps Data. AlOps Challenges Data Source. |https://www.aiops.cn/gitlab/
aiops—nankai/data/trace.

Tuan Dinh, Jinman Zhao, Samson Tan, Renato Negrinho, Leonard Lausen, Sheng Zha, and George
Karypis. Large language models of code fail at completing code with potential bugs. Advances
in Neural Information Processing Systems, 36, 2024.

Shilin He, Botao Feng, Liqun Li, Xu Zhang, Yu Kang, Qingwei Lin, Saravan Rajmohan, and Dong-
mei Zhang. Steam: observability-preserving trace sampling. In Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering, pp. 1750-1761, 2023.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
a multi-agent collaborative framework. In The Twelfth International Conference on Learning
Representations, 2024.

Haiyu Huang, Xiaoyu Zhang, Pengfei Chen, Zilong He, Zhiming Chen, Guangba Yu, Hongyang
Chen, and Chen Sun. Trastrainer: Adaptive sampling for distributed traces with system runtime
state. Proceedings of the ACM on Software Engineering, 1(FSE):473-493, 2024.

Azam Ikram, Sarthak Chakraborty, Subrata Mitra, Shiv Saini, Saurabh Bagchi, and Murat Kocaoglu.
Root cause analysis of failures in microservices through causal discovery. Advances in Neural
Information Processing Systems, 35:31158-31170, 2022.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024.

Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, and Michael R Lyu. Eadro: An end-to-end
troubleshooting framework for microservices on multi-source data. In 2023 IEEE/ACM 45th
International Conference on Software Engineering, pp. 1750-1762. IEEE, 2023.

Cheryl Lee, Chungiu Steven Xia, Longji Yang, Jen-tse Huang, Zhouruixin Zhu, Lingming Zhang,
and Michael R Lyu. A unified debugging approach via llm-based multi-agent synergy. arXiv
preprint arXiv:2404.17153, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktéschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459-9474, 2020.

Cheryl Li, Tianyuan Xu, and Yiwen Guo. Reasoning-as-logic-units: Scaling test-time reasoning in
large language models through logic unit alignment. arXiv preprint arXiv:2502.07803, 2025.

11

https://github.com/features/copilot
https://blogs.microsoft.com/blog/2024/07/20/helping-our-customers-through-the-crowdstrike-outage/
https://blogs.microsoft.com/blog/2024/07/20/helping-our-customers-through-the-crowdstrike-outage/
https://www.cursor.com/
https://www.aiops.cn/gitlab/aiops-nankai/data/trace
https://www.aiops.cn/gitlab/aiops-nankai/data/trace

Published as a conference paper at ICLR 2025

Mingjie Li, Zeyan Li, Kanglin Yin, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and Dan Pei. Causal
inference-based root cause analysis for online service systems with intervention recognition. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp- 3230-3240, 2022a.

Zeyan Li, Nengwen Zhao, Mingjie Li, Xianglin Lu, Lixin Wang, Dongdong Chang, Xiaohui Nie,
Li Cao, Wenchi Zhang, Kaixin Sui, et al. Actionable and interpretable fault localization for
recurring failures in online service systems. In Proceedings of the 30th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software Engineering,
pp- 996-1008, 2022b.

Zeyan Li, Nengwen Zhao, Shenglin Zhang, Yongqian Sun, Pengfei Chen, Xidao Wen, Minghua Ma,
and Dan Pei. Constructing large-scale real-world benchmark datasets for aiops. arXiv preprint
arXiv:2208.03938, 2022c.

JinJin Lin, Pengfei Chen, and Zibin Zheng. Microscope: Pinpoint performance issues with causal
graphs in micro-service environments. In Service-Oriented Computing: 16th International Con-
ference, ICSOC 2018, Hangzhou, China, November 12-15, 2018, Proceedings 16, pp. 3-20.
Springer, 2018.

Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin Deng, Kensen Shi, Charles Sutton, and
Pengcheng Yin. Next: Teaching large language models to reason about code execution. arXiv
preprint arXiv:2404.14662, 2024.

Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. Can large language
models reason about program invariants? In International Conference on Machine Learning, pp.
27496-27520. PMLR, 2023.

Bo Qiao, Liqun Li, Xu Zhang, Shilin He, Yu Kang, Chaoyun Zhang, Fangkai Yang, Hang Dong,
Jue Zhang, Lu Wang, et al. Taskweaver: A code-first agent framework. arXiv preprint
arXiv:2311.17541, 2023.

Carl Martin Rosenberg and Leon Moonen. Spectrum-based log diagnosis. In Proceedings of the
14th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM), pp. 1-12, 2020.

SDLC. Software development life cycle (SDLC). https://en.wikipedia.org/wiki/
Systems_development_life_cycle.

Kensen Shi, Joey Hong, Yinlin Deng, Pengcheng Yin, Manzil Zaheer, and Charles Sutton. Exedec:
Execution decomposition for compositional generalization in neural program synthesis. In The
Twelfth International Conference on Learning Representations, 2024.

UniSuper. Google. https://www.unisuper.com.au/about-us/media-centre/
2024 /a-joint-statement-from-unisuper—-and-google—-cloud.

Yuxuan Wan, Yi Dong, Jingyu Xiao, Yintong Huo, Wenxuan Wang, and Michael R Lyu. Mrweb:
An exploration of generating multi-page resource-aware web code from ui designs. arXiv preprint
arXiv:2412.15310, 2024.

Dongjie Wang, Zhengzhang Chen, Yanjie Fu, Yanchi Liu, and Haifeng Chen. Incremental causal
graph learning for online root cause analysis. In Proceedings of the 29th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining, pp. 2269-2278, 2023a.

Lu Wang, Chaoyun Zhang, Ruomeng Ding, Yong Xu, Qihang Chen, Wentao Zou, Qingjun Chen,
Meng Zhang, Xuedong Gao, Hao Fan, et al. Root cause analysis for microservice systems via hier-
archical reinforcement learning from human feedback. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 5116-5125, 2023b.

Wenxuan Wang, Yihang Su, Jingyuan Huan, Jie Liu, Wenting Chen, Yudi Zhang, Cheng-Yi Li, Kao-

Jung Chang, Xiaohan Xin, Linlin Shen, et al. Asclepius: A spectrum evaluation benchmark for
medical multi-modal large language models. arXiv preprint arXiv:2402.11217, 2024a.

12

https://en.wikipedia.org/wiki/Systems_development_life_cycle
https://en.wikipedia.org/wiki/Systems_development_life_cycle
https://www.unisuper.com.au/about-us/media-centre/2024/a-joint-statement-from-unisuper-and-google-cloud
https://www.unisuper.com.au/about-us/media-centre/2024/a-joint-statement-from-unisuper-and-google-cloud

Published as a conference paper at ICLR 2025

Wenxuan Wang, Zizhan Ma, Zheng Wang, Chenghan Wu, Wenting Chen, Xiang Li, and Yixuan
Yuan. A survey of llm-based agents in medicine: How far are we from baymax? arXiv preprint
arXiv:2502.11211,2025.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Opendevin: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models. Advances in Neural Informa-
tion Processing Systems, 35:32353-32368, 2022.

Chungiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
Ilm-based software engineering agents. arXiv preprint arXiv:2407.01489, 2024a.

Chungqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang. Fuzz4all:
Universal fuzzing with large language models. In Proceedings of the IEEE/ACM 46th Interna-
tional Conference on Software Engineering, pp. 1-13, 2024b.

Xiaoyuan Xie, Zhipeng Cai, Songqgiang Chen, and Jifeng Xuan. Fastlog: An end-to-end method
to efficiently generate and insert logging statements. In Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 26-37, 2024.

Junjielong Xu, Ziang Cui, Yuan Zhao, Xu Zhang, Shilin He, Pinjia He, Liqun Li, Yu Kang, Qingwei
Lin, Yingnong Dang, et al. Unilog: Automatic logging via llm and in-context learning. In
Proceedings of the 46th IEEE/ACM International Conference on Software Engineering, pp. 1-12,
2024a.

Junjielong Xu, Ying Fu, Shin Hwei Tan, and Pinjia He. Aligning the objective of llm-based program
repair. arXiv preprint arXiv:2404.08877, 2024b.

Junjielong Xu, Ruichun Yang, Yintong Huo, Chengyu Zhang, and Pinjia He. Divlog: Log parsing
with prompt enhanced in-context learning. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, pp. 1-12, 2024c.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
arXiv preprint arXiv:2405.15793, 2024.

Guangba Yu, Pengfei Chen, Hongyang Chen, Zijie Guan, Zicheng Huang, Linxiao Jing, Tianjun
Weng, Xinmeng Sun, and Xiaoyun Li. Microrank: End-to-end latency issue localization with
extended spectrum analysis in microservice environments. In Proceedings of the Web Conference
2021, pp. 3087-3098, 2021.

Guangba Yu, Pengfei Chen, Yufeng Li, Hongyang Chen, Xiaoyun Li, and Zibin Zheng. Nezha:
Interpretable fine-grained root causes analysis for microservices on multi-modal observability
data. In Proceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 553-565, 2023.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
Lin, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. UFO: A UI-Focused Agent for Windows
OS Interaction. arXiv preprint arXiv:2402.07939, 2024a.

Chaoyun Zhang, Zicheng Ma, Yuhao Wu, Shilin He, Si Qin, Minghua Ma, Xiaoting Qin, Yu Kang,
Yuyi Liang, Xiaoyu Gou, et al. AllHands: Ask me anything on large-scale verbatim feedback via
large language models. arXiv preprint arXiv:2403.15157, 2024b.

Lecheng Zheng, Zhengzhang Chen, Jingrui He, and Haifeng Chen. Mulan: Multi-modal causal
structure learning and root cause analysis for microservice systems. In Proceedings of the ACM
on Web Conference 2024, pp. 4107-4116, 2024.

13

Published as a conference paper at ICLR 2025

A BENCHMARK DETAILS

Table 5: Basic composition of datasets (with coarse-grained taxonomy)

Dataset | Component level | Failure resource | Data type
Telecom os,pod,db cpu,net,db trace,metric
Bank pod cpu,mem,io,net,jvm log,trace, metric

Market node,pod,service | cpu,mem,io,net,process | log,trace,metric

A.1 LICENSE

All telemetry data is originating from AIOps Challenge series |/AIOps| (2018)); Datal, which is open-
sourced and licensed under Creative Commons Attribution-Non Commercial 4.0 International:
https://creativecommons.org/licenses/by-nc/4.0/.

A.2 INTRODUCTION OF SERVICE SYSTEMS

Telecom: The telecom system consists of 22 virtual machine operating systems, 8 pods, 13 database
services, 12 Redis middleware services, and multiple business services. The database services and
Redis are directly deployed on the operating systems, while other business services run on pods
hosted by the operating systems. The potential root cause components in this system include all
operating systems, pods, and database services. There are five potential failure causes, categorized
into CPU, network, and database failures. The telemetry data for the telecom system includes traces
and metrics but excludes logs.

Bank: The bank system consists of 14 pods, 6 services, and multiple nodes. Five of these services
are deployed across two pods each, while one service is deployed across four pods. This setup
provides fault tolerance; when a pod hosting a service fails, another pod with the same service can
handle the requests. The potential root cause components in this system include all 14 pods, with
eight possible causes across five categories: CPU, memory, disk, network, and JVM failures. The
telemetry data for the bank system includes metrics, traces, and logs.

Market: The market system comprises 6 server nodes, 40 pods, and 10 services. Each service is
deployed across 4 different pods, similar to the bank system, providing fault tolerance. The potential
root cause components in this system include all 6 nodes, 40 pods, and 10 services. Notably, if all
pods hosting a particular service fail, this is considered a service-level failure rather than an individ-
ual pod failure. There are 15 possible causes of failure, spanning CPU, memory, disk, network, and
process termination. The telemetry data for the market system includes metrics, traces, and logs.

Please note that all telemetry data is collected in the UTC+8 time zone. Therefore, when converting
between timestamps and datetimes, ensure you specifically use the UTC+8 time zone.

A.3 INTRODUCTION OF TELEMETRY

The telemetry data in OpenRCA encompasses metrics, logs, and traces, all structured in CSV files.
Below is a brief introduction to each type of telemetry:

Metrics: Metric files contain time series data representing key performance indicators (KPIs) for
different components. Each data point in a series is associated with a component (identified by
cmdb_id) and a KPI type (kpi_name). By analyzing these metrics, one can detect anomalies in
component performance. Below is an example of 10 rows from a metric file, which contains data
points from different KPI:

timestamp, cmdb_id, kpi_name, value

1614787200, Tomcat04,0SLinux-CPU_CPU_CPUCpuUtil,26.2957

1614787200, Mysgl02,Mysgl-MySQL_3306_Innodb data pending writes, 0.0
1614787200, Mysqgl02,Mysqgl-MySQL_3306_Innodb data pending reads, 0.0
1614787200,MG01,0SLinux-CPU_CPU_CPUSysTime, 0.3158

1614787200, MG01, OSLinux—-CPU_CPU_CPUUserTime, 25.5454

14

https://creativecommons.org/licenses/by-nc/4.0/

Published as a conference paper at ICLR 2025

1614787200, Tomcat03,0SLinux-0SLinux_NETWORK_ensl60_NETPacketsOut,115.0
1614787200, Tomcat03, 0SLinux-0SLinux_NETWORK_ensl60_NETPacketsIn,100.0
1614787200, Tomcat03, 0SLinux-0SLinux_NETWORK_ensl60_NETOutErr,0.0
1614787200, Redis02, redis—Redis_6379_Redis (latest_fork_usec),0.0
1614787200,Redis02, redis—-Redis_6379_Redis (loading),0.0

All data points for a specific KPI of a component form a complete time series. For example, the
0SLinux—-CPU_CPU_CPUCpuUtil for Tomcat03 can be represented as:

timestamp value

1614787200 25.9228
1614787260 29.4098
1614787380 25.6756
1614787440 25.5445
1614787560 25.9666
1614787680 26.0624
1614787740 26.0624
1614787860 26.0859
1614787920 25.9044
1614788040 26.4985

Tomcat03 OSLinux-CPU_CPU_CPUCpuUtil

25.8 -
25.7 -

25.6 -

value

25.5-

25.4 -

] !] J]] !]
796000 798000 800000 802000 804000 806000 808000 810000
timestamp +1.614€9

Figure 8: Time series of 0OSLinux—CPU_CPU_.CPUCpuUtil for Tomcat03.

Trace: Trace files record the call chains between services, where each trace consists of multiple
spans. A span represents a single communication event, capturing the interaction when one service
makes a request to another. These spans are organized hierarchically, with each span having a parent
span, which links it to the preceding span, forming a complete trace. By examining the relationships
between spans within a trace, one can understand the dependencies between services and trace
the path of potential failures across them. Below are 24 rows from a trace file, where each row
represents a span, and together, they form a complete trace. (trace_id, span_id, parent_id
are simplified to four digits)

timestamp, cmdb_id, parent_id, span_id, trace_id, duration
1614787515636,1G01,8603,8603,gw9703,80
1614787515636,1G01,8603,3432,gw9703,80
1614787517980, Tomcat02,3432,9209,gw9703, 78
1614787517980, Tomcat02, 9209,9210,gw9703,0
1614787517981, Tomcat02,9209,9211,gw9703,0
1614787517982, Tomcat02,9209,9212,gw9703,0
1614787517983, Tomcat02, 9209, 6004,gw9703, 73
1614787518300,MG01, 6004,6649,gw9703,71
1614787518300,MG01, 6649,7505,gw9703, 71
1614787200087, dockerBl, 7505, 6635,gw9703, 66
1614787200089, dockerBl, 6635,6636,gw9703,1
1614787200091, dockerBl, 6635,6637,gw9703,1
1614787200094, dockerBl, 6635,6638,gw9703,1

15

Published as a conference paper at ICLR 2025

1614787200095, dockerBl, 6635,6639,gw9703,0
1614787200112, dockerBl, 6635,6640,gw9703,1
1614787200119, dockerBl, 6635,6641,gw9703,1
1614787200120, dockerBl, 6635,6921,gw9703, 11
1614787518339,MG01,6921,6605,gw9703, 8

1614787518339,MG01, 6605,7506,gw9703, 7

1614787200133,dockerBl,6635,6642,gw9703,1
1614787200136, dockerBl, 6635,6643,gw9703,1
1614787200151, dockerBl,6635,6644,gw9703,1
1614787517983, Tomcat02,9209,9213,gw9703,0
1614787518058, Tomcat02, 9209, 9214,gw9703,0

Specifically, the call chain can be represented as a tree structure:

IG01, Timestamp:1614787515636
IG01l, Timestamp:1614787515636
Tomcat02, Timestamp:1614787517980
Tomcat02, Timestamp:1614787517980
Tomcat02, Timestamp:1614787517981
Tomcat02, Timestamp:1614787517982
Tomcat02, Timestamp:1614787517983
MGO1l, Timestamp:1614787518300
MG01l, Timestamp:1614787518300
dockerBl, Timestamp:1614787200087

dockerBl, Timestamp:1614787200089

dockerBl, Timestamp:1614787200091

dockerBl, Timestamp:1614787200094

dockerBl, Timestamp:1614787200095

dockerBl, Timestamp:1614787200112

dockerBl, Timestamp:1614787200119

dockerBl, Timestamp:1614787200120

MG01l, Timestamp:1614787518339

MGO01l, Timestamp:1614787518339

dockerBl, Timestamp:1614787200133

dockerBl, Timestamp:1614787200136

dockerBl, Timestamp:1614787200151
Tomcat02, Timestamp:1614787517983
Tomcat02, Timestamp:1614787518058

It can also be represented as a dependency graph:

#7 (x7)

dockerB1

IGO1

Figure 9: Dependency graph of the trace example, with (xN) indicating N self-requests.

Log: Log files capture runtime messages from components, often providing insight into the inter-
nal state or behavior of a system. Each log entry consists of a timestamp, a verbosity level, and a
message. Logs are particularly useful for understanding the details of service operations and diag-
nosing issues. Below are 10 rows of log entries representing messages from different components:
(log_id are simplified to four digits)

16

Published as a conference paper at ICLR 2025

log_id,timestamp, cmdb_id, log_name,value
c763,1614787201, Tomcat01l, gc, [CMS-concurrent-mark-start]
cfd3,1614787202, Tomcat0l,gc, [CMS-concurrent-mark: 1.623/1.628 secs]
c87b,1614787202, Tomcat01l,gc, [CMS-concurrent-preclean-start]

edbf, 1614787202, Tomcat0l,gc, [Times: user=0.02 sys=0.00, real=0.01 secs]
e319,1614787202, Tomcat0l,gc, [CMS-concurrent-abortable-preclean-start]
6461,1614792889, Tomcat02,gc, [CMS—-concurrent—-preclean—-start]
be53,1614792889, Tomcat02, gc, [CMS—-concurrent—-preclean: 0.015/0.015 secs]
££38,1614792889, Tomcat02,gc, [CMS—-concurrent—abortable-preclean-start]
9959,1614792894, Tomcat02,gc, [Times: user=1.21 sys=0.05, real=5.08 secs]
01a4,1614792894, Tomcat02,gc, [CMS—-concurrent—-sweep—-start]

A.4 INTRODUCTION OF ROOT CAUSE ANALYSIS

Failures in service systems are typically triggered by anomalies in specific components (e.g., nodes,
containers) due to issues like disk saturation. These anomalies can propagate through service in-
teractions—for instance, a full disk on a node may cause all services on containers deployed on
that node to become unresponsive. This unresponsiveness then affects other services relying on
them, leading to broader system failures at the application level. Timely and effective root cause
localization is therefore a critical issue in software engineering to maintain software service system
stability.

However, current research of RCA does not follow a unified task definition of the task output, typi-
cally due to the different requirements of specific scenarios. For example, if engineers only wonder
which container is failure and want to redirect the traffic to other container, it does not need to
know the in-depth reason of failure, i.e., only the failure components are needed. Thus, OpenRCA
is considered to construct the practice of RCA into a goal-driven manner, where each goal refers
to a combination of three key elements of the root cause, i.e., the failure originating component,
occurrence time, and reason.

A.5 DETAILS OF DATA CALIBRATION

We hired three SREs with over three years of RCA experience to calibrate the data. We provided the
hired engineers with a standardized procedure to perform individual data calibration and verification.
Specifically, they first extracted all telemetry data generated by the root cause component within 30
minutes before and after the labeled failure event. Next, they visualized KPIs for the relevant re-
source types based on the description of the root cause since we found such type-related KPIs (e.g.,
CPU, memory, network, disk I/O) are the most primary evidence for verification. In most cases, we
can solely rely on type-related KPIs to verify the root cause time/component/reason. For example,
if the failure was due to high CPU usage in a container, they examined all CPU-related KPIs within
the time window. The engineers then identified anomalous data points in these KPIs, such as values
exceeding the mean + 3 standard deviations. However, in some instances where type-related KPIs
do not show explicit anomalies, we use general business KPIs ("golden signals” like rr, sr, mrt)
along with logs and traces to support the verifications. For example, in the Market dataset, we used
business KPIs (mrt) along with trace latency and proxy logs to verify network packet corruption fail-
ures when packet transmit KPIs do not show explicit anomalies. In the Bank dataset, we combined
business KPIs (mrt) along with service logs to validate high memory usage failures when memory
usage KPIs do not show explicit anomalies. We do not verify telemetry for non-root cause compo-
nents. Even though root cause components may not exhibit clear anomalies while their downstream
components (affected by propagated faults) show significant anomalies, people still cannot precisely
determine the exact root cause elements (e.g., the exact time of occurrence) and can only infer or
guess a range of potential answers. Therefore, records without clear anomalies on root cause com-
ponent were removed. Additionally, we checked for consistency between the labeled failure time
and the actual onset of the root cause. As shown in Figure [I0} Figure and Figure|12] the failure
record will be removed if the nearest data point of the telemetry around the failure occurrence time is
not the first data point of an anomalous data duration. Finally, any failure records lacking telemetry
data for the relevant time period or components were also filtered out. After completing individual
calibration, the engineers cross-validated each other’s results. Out of the original 412 cases, they
disagreed on only 8 (less than 2%). Following thorough discussion, they reached a consensus on all
cases.

17

Published as a conference paper at ICLR 2025

Container read 1/0 load frontend2 kpi contains:container fs_reads /dev/vda

om0 N

100000

a0

£ a0

Figure 10: A case where the failure record matches the telemetry. Based on the record’s guidance,
engineers visualized the KPI container_fs_reads for the root cause component frontend-2
within a 30-minute window, since the record suggests that the failure reason is container read
I/0 load. The red dashed line at the x-axis center indicates the failure occurrence time provided
by the record, which is also the exact start time of the KPI spike. Given that the records align with
direct evidence of the root cause, i.e., the corresponding KPI, we consider it possible to identify the
root cause. Thus, this record is retained.

DISK._high disk 1/0 read usage, Toncat03, kpi contains:0SLinux-0SLinux LOGALDISK LOCALDISK-sdb_DSKRTps

DISK, hi

aoo00
70000
eoo00

so000

ead usage, Toncat03, kpi_contains:0SLinux-OSLinux LOCALDISK LOCALDI Sk-sdb_DSKRead
=

006)
0000

20000

10000]J
0,00 f—8——s- < P of & s P

170 1400 1600 500
Tisa From oloudbad-1 3-20 row:1487

200 ET) 1000 [
. eraaten Tine

250 1500
From cloudbed-1 5-20 ro: 1469 16148109

Figure 11: A case where the failure record does not match the telemetry. The engineers visualized all
KPIs related to the disc since the record illustrates the failure reason is high disc I/0 read
usage. However, the exact failure occurrence time significantly deviates from the time provided
in the failure records, as the nearest data point around the failure occurrence time is a normal point.
Thus, this record is removed from our dataset.

DISK, high disk 1/0 read usage, WGO!, kpi contains:0SLinux-0SLinux LOCALDISK LOGALDISK-sdb DSKRead DISK,_high disk 1/0 read usage, HG01. kpi contains:0SLinux-OSLinux LOGALDISK LOCALDISK-sdb_DSKReadll ite

250000 250000

200000 200000

o 150000 o 150000
100000

100000

su000 so000

%00 7250 7500 a000 0 a0 w750 700 ED) 7500 a0 £

7750 750 a0 750
Time. Fro cloudbed-1 320 rou: 1577 . 6149769 ine. From cloubed-1 3-20 rox:1577 1619769

Figure 12: A case where the failure record matches the telemetry. The engineers visualized all
KPIs related to the disc since the record illustrates the failure reason is high disc I/0 read
usage. The exact failure occurrence time is aligned with the label, as the nearest data point around
the failure occurrence time is the first anomalous data point among an anomalous duration. Thus,
the record is deemed accurate and is retained.

18

Published as a conference paper at ICLR 2025

A.6 DETAILS OF PROBLEM SYNTHESIS

To adapt to the different outputs of RCA, we use GPT-4o0 to synthesize the RCA problems for each
failure record. We randomly select one task for each failure record, and then send the failure records
with the corresponding task specifications to the model for query synthesis. A task specification
is a JSON object that determines the input and output information of the query to be synthesized.
The detailed system prompt and corresponding task specifications used for program synthesis are
provided below.

System Prompt

Your task is to generate an issue related to DevOps failure diagnosis
based on a given set of specifications. The goal is to make the issue
realistic enough that an engineer could encounter at work.

The specifications provided to you include the following components:

‘Y Yknown
(The known information explicitly provided in the issue.)

AN

AN

query
(The target query that required the user to answer.)

AURNRY

Your response should follow the JSON format below:

Nvng

issue
(The generated issue based on the specifications.)

AN

For example:
{IN-CONTEXT EXAMPLES}
Some rules to follow:

1. Do not tell the user "how to solve the issue" (e.g., retrieve the
telemetry data like metrics/logs/traces).

Now, let’s get started!

User Prompt:

Please generate an issue related to DevOps failure diagnosis based on the
following specifications:

‘YYknown
{input_specification}

AURWRY

AURNRY

query
{output_specification}

AURNRY

Task Specification:

{
"task_1": {
"input": [
"time range: {time_period}",
"number of failures: {num}"
1,
"output": [

19

Published as a conference paper at ICLR 2025

"root cause occurrence time: {datetime}"

br
"task_2": {
"input": [
"time range: {time_period}",
"number of failures: {num}"
]l
"output": [
"root cause reason: {reason}"
]
br
"task_3": {
"input": [
"time range: {time_period}",
"number of failures: {num}"
1,
"output": [
"root cause component: {component}"
]
br
"task_4": {
"input": [
"time range: {time_period}",
"number of failures: {num}"
1,
"output": [
"root cause occurrence time: {datetime}",
"root cause reason: {reason}"

b
"task_5": {
"input": [
"time range: {time_period}",
"number of failures: {num}"
1,
"output": [
"root cause occurrence time: {datetime}",
"root cause component: {component}"

}I
"task_6": {
"input": [
"time range: {time_period}",
"number of failures: {num}"
1,
"output": [
"root cause component: {component}",
"root cause reason: {reason}"

br
"task_7": {
"input": [
"time range: {time_period}",
"number of failures: {num}"
1,
"output": [
"root cause component: {component}",
"root cause occurrence time: {datetime}",
"root cause reason: {reason}"

20

Published as a conference paper at ICLR 2025

A.7 DETAILS OF EVALUATION

OpenRCA requires all the methods to structure their final answer in the following JSON format:

{
niw. {

"root cause occurrence datetime": (A time in ’%$Y-%m-%d %$H:
format),

"root cause component": (A component selected from the given '/
possible root cause component’),

"root cause reason": (A reason selected from the given ’possible
root cause reason’),

o

M:

o°

S’

During evaluation, the LL.Ms are tasked with correctly answering all the required elements of all the
failures that occurred within the given time duration. If the LLM provides an answer to an element
that was not required, that element will not affect the correctness of the answer. OpenRCA only
focuses on whether the required elements are answered correctly and ignores the unnecessary fields
generated by the model. All possible root cause components and reasons for each system is provided
in each method’s prompts. The prompt of these methods are generally discussed in Appendix [B.2]

and[C2]

21

Published as a conference paper at ICLR 2025

B RCA-AGENT DETAILS

B.1 FEATURES OF RCA-AGENT

Scalability: RCA-agent is not constrained by telemetry volume. By loading telemetry into memory
via code execution rather than the LLM’s context, it can process large datasets as long as memory
allows. Expanding memory is far easier than increasing LLM context, ensuring scalability.

Clarity: RCA-agent avoids overwhelming the LLM with processing data analysis on large amounts
of numbers, codes, and symbols in telemetry. By handling data analysis through code execution, the
LLM can focus solely on the reasoning and decision-making process for the execution results.

Efficiency: Since telemetry is not directly fed into the LLM, it minimizes unnecessary token usage,
keeping the context length concise and reducing overhead from irrelevant data.

Generalizability: RCA-agent does not require domain-specific knowledge beyond its telemetry
schema. Instead, it only follows two general guidelines of root cause diagnosis. This allows RCA-
agent to generalize effectively across various service systems.

B.2 AGENT PROMPTS

We provide the system prompts of the Controller and Executor here for reference.
Controller system prompt:

You are the Administrator of a DevOps Assistant system for failure
diagnosis. To solve each given issue, you should iteratively instruct
an Executor to write and execute Python code for data analysis on
telemetry files of target system. By analyzing the execution results,
you should approximate the answer step-by-step.

There is some domain knowledge for you:

{BACKGROUND KNOWLEDGE OF SYSTEM}

RULES OF FAILURE DIAGNOSIS:

What you SHOULD do:

1. »xFollow the workflow of ‘preprocess —-> anomaly detection -> fault
identification —-> root cause localization' for failure diagnosis.xx*

What you SHOULD NOT do:

1. DO NOT include any programming language in your response.

The issue you are going to solve is:
{PROBLEM TO SOLVE}

Solve the issue step-by-step. In each step, your response should follow
the JSON format below:

"analysis": (Your analysis of the code execution result from Executor
in the last step, with detailed reasoning of ’"what have been done’
and ’what can be derived’. Respond ’'None’ if it is the first step
)

"completed": ("True" if you believe the issue is resolved, and an
answer can be derived in the ’'instruction’ field. Otherwise "False
n
)I

"instruction": (Your instruction for the Executor to perform via code
execution in the next step. Do not involve complex multi-step

22

Published as a conference paper at ICLR 2025

instruction. Keep your instruction atomic, with clear request of '
what to do’ and 'how to do’. Respond a summary by yourself if you
believe the issue 1s resolved.)

}

Let’s begin.

Executor System Prompt

You are a DevOps assistant for writing Python code to answer DevOps
questions. For each question, you need to write Python code to solve
it by retrieving and processing telemetry data of the target system.
Your generated Python code will be automatically submitted to a
IPython Kernel. The execution result output in IPython Kernel will be

used as the answer to the question.

RULES OF PYTHON CODE WRITING:

1. Reuse variables as much as possible for execution efficiency since the
IPython Kernel is stateful, i.e., variables define in previous steps
can be used in subsequent steps.

There is some domain knowledge for you:
{BACKGROUND KNOWLEDGE OF SYSTEM}

Your response should follow the Python block format below:

AURNRY

python
(YOUR CODE HERE)

Summary Prompt

Note that once the Controller believe the task is completed, a summary prompts will be provided to
controller for summarizing and structuring its answer to the JSON format required by OpenRCA:

Now, you have decided to finish your reasoning process. You should now
provide the final answer to the issue. The candidates of possible
root cause components and reasons are provided to you. The root cause

components and reasons must be selected from the provided candidates

{BACKGROUND KNOWLEDGE OF SYSTEM}
Recall the issue is: {PROBLEM TO SOLVE}

Please first review your previous reasoning process to infer an exact
answer of the issue. Then, summarize your final answer of the root
causes using the following JSON format at the end of your response:

{OPENRCA ANSWER FORMAT}

B.3 BACKGROUND PROMPTS

We also designed three background prompts to introduce the schema of telemetry, i.e., Telecom,
Bank, Market, and the possible failure components and reasons in the system. Note that these
prompts are provided not only to the RCA-agent but also included in the prompts for sampling-
based methods to provide basic system knowledge. All background prompts for all systems follow
the format below:

DATA SCHEMA

23

Published as a conference paper at ICLR 2025

1. *»xMetric Filesxx:
{METRIC FILE SCHEMA}

2. *xTrace Files*x*:
{TRACE FILE SCHEMA}

2. *«xLog Filesxx:
{LOG FILE SCHEMA}

POSSIBLE ROOT CAUSE REASONS:
{FAILURE REASONS}

POSSIBLE ROOT CAUSE COMPONENTS:
{FAILURE COMPONENTS}

24

Published as a conference paper at ICLR 2025

C EXPERIMENTAL SETUP

C.1 CLARIFICATION

Why not retrieval-based methods: Unlike tasks such as code generation or summarization,
which can leverage natural features (e.g., class names, function names, or keywords) for retrieval-
augmented generation (RAG) [Lewis et al.| (2020), RCA faces challenges in identifying effective
retrieval strategies due to the absence of such features in telemetry data. Actually, identifying faulty
telemetry is a key challenge in RCA, as failures typically occur without clear indicators pointing
to specific KPIs, failure logs, or anomalous call chains. To address this, we employed common
sampling strategies from traditional RCA methods to construct our baseline.

Why not chain-of-thought: We did not explicitly instruct LLMs to perform chain-of-thought (CoT)
reasoning |Wei et al.| (2022), as it generally resulted in poorer performance in our repetitive exper-
iments. Table [6 compares the effect of explicitly requiring CoT versus not doing so. The results
consistently show that CoT underperformed compared to prompts that did not require it. After
manually reviewing both settings, we found that CoT often led models to focus on a few obvious
anomalies listed in its thought, overlooking the given diagnostic guidance to explore the deeper fail-
ure propagation chain among these anomalies. We also report a brief case study in Appendix [C.3]

Table 6: Repetitive comparison between our original prompt (Original) and CoT prompt (CoT) (%)

Balanced Oracle
GPT-40 Original CoT Original CoT
Try-1 3.28 2.39 6.27 4.48
Try-2 3.28 2.99 6.27 5.37
Try-3 3.58 2.69 5.37 5.37

Median 3.58 2.99 6.27 5.37

Selected Language Models: The models in our experiments were accessed via APIs, with the open-
source models using services from Mistral, Cohere, and Together.Al, as shown in Table Due to
differences in tokenizers, the open-source models often generated more tokens than GPT-40, even
with the same 128K token limit, causing some prompts to exceed the context window. To ensure
an accurate evaluation, we reduced the number of KPIs in the prompt by eliminating interdependent
KPIs in the oracle setting while keeping the total KPI count consistent between the oracle and
sampling settings. Additionally, we selected the 70B version of Llama3.1 rather than 405B version
since Together.Al does not support 128K context in 405B version.

Table 7: Checkpoint of each model

Name Checkpoint
Claude 3.5 claude-3-5-sonnet-20240620
GPT-40 gpt-40-20240513
Gemini 1.5 Pro gemini-1.5-pro-exp-0801
Mistral Large 2 mistral-large-instruct-2407
Command R+ command-r-plus-08-2024
Llama 3.1 Instruct meta-llama-70B-instruct

Prompt of sampling-based methods: Despite KPI sampling, original telemetry files contain re-
dundant columns. We carefully filtered out irrelevant columns (e.g., component hash IDs) and com-
pressed meaningful, long-encoded fields.

Evaluation for sampling-based methods: Since the sampling interval is limited to one minute,
OpenRCA considers a failure time prediction correct if it falls within a one-minute window. We
also manually verified that telemetry from oracle sampling still reveals the root cause components
and failure reasons after sampling. Despite KPI sampling, original telemetry files contain redundant
columns.

25

Published as a conference paper at ICLR 2025

C.2 PROMPTS OF SAMPLING-BASED METHODS

Original Prompts:

We first provide the prompt template used for both oracle sampling and balanced sampling in our
experiment:

You will be provided with some telemetry data and an issue statement
explaining a root cause analysis problem to resolve.

{BACKGROUND KNOWLEDGE OF THE SYSTEM}
{SAMPLED TELEMETRY DATA}

Now, I need you to provide an root cause analysis to the following
question:

{PROBLEM TO SOLVE}

Note: A root cause is the fundamental factor that triggers a service
system failure, causing other system components to exhibit wvarious
anomalous behaviors. It consists of three elements: the root cause
component, the start time of the root cause occurrence, and the
reason for its occurrence. The objective of root cause analysis may
vary, aiming to identify one or more of these elements based on the
issue. Each failure has only one root cause. However, sometimes a
system’s abnormal state may be due to multiple simultaneous failures,

each with its own root cause. If you find that there is a call
relationship between multiple components exhibiting abnormal behavior
, these anomalies originate from the same failure, with the component
at the downstream end of the call chain being the root cause
component. The anomalies in the other components are caused by the
failure. If there is no call relationship between the abnormal
components, each component may be the root cause of a different
failure. Typically, the number of failures occurring within half an
hour does not exceed three.

Your response should be structured into a JSON format, itemising the
relevant root cause information you find. You only need to provide
the elements asked by the issue, and ommited the other fields in the
JSON. The overall format is as follows:

{OPENRCA ANSWER FORMAT}
Please follow the format above to provide your response of current issue.

Response below:

In this prompt, we provide the background knowledge of each system same as what we did for
RCA-agent. In addition, we also summarized the methodology to perform root cause analysis from
the system prompt of RCA-agent (i.e., "Note that ...”).

CoT Prompts:
We also provide the CoT prompts used in our repetitive experiment discussed in Appendix [C-1}

You will be provided with some telemetry data and an issue statement
explaining a root cause analysis problem to resolve.

{BACKGROUND KNOWLEDGE OF THE SYSTEM}
{SAMPLED TELEMETRY DATA}

Now, I need you to provide an root cause analysis to the following
question:

26

Published as a conference paper at ICLR 2025

{PROBLEM TO SOLVE}

Note: A root cause is the fundamental factor that triggers a service
system failure, causing other system components to exhibit wvarious
anomalous behaviors. It consists of three elements: the root cause
component, the start time of the root cause occurrence, and the
reason for its occurrence. The objective of root cause analysis may
vary, aiming to identify one or more of these elements based on the
issue. Each failure has only one root cause. However, sometimes a
system’s abnormal state may be due to multiple simultaneous failures,

each with its own root cause. If you find that there is a call
relationship between multiple components exhibiting abnormal behavior
, these anomalies originate from the same failure, with the component
at the downstream end of the call chain being the root cause
component. The anomalies in the other components are caused by the
failure. If there is no call relationship between the abnormal
components, each component may be the root cause of a different
failure. Typically, the number of failures occurring within half an
hour does not exceed three.

Please first conduct a comprehensive analysis on the given telemetry data
step-by-step in your response. Then, summarize your findings using
the following JSON format to provide a concise answer to the given
issue at the end of your response. In the summarized ansewr, you only
need to provide the elements asked by the issue, and ommited the
other fields in the JSON. The overall format is as follows:
{OPENRCA ANSWER FORMAT}
Please follow the format above to provide your response of current issue.

Response below:

The only difference between the original prompt and the CoT prompt is that the CoT prompt explic-
itly asked LLMs to perform a step-by-step analysis of the telemetry data.

C.3 CASE STUDY OF COT PROMPTING

We provide a case study to discuss the possible reason that the vanilla CoT does not work in RCA.
In this case, we use Oracle sampling settings, and the model is GPT-40. The RCA problem is:

On March 21, 2022, between 12:00 and 12:30, the cloud service system, cloudbed-1, experienced
a fault. The exact component responsible for this fault is currently unknown. Please identify the
root cause component.

When using the original prompt, GPT-40 provides the correct answer, which is:
{

lVl": {
"root cause component": "productcatalogservice",
"root cause reason": "container read I/0 load"

However, when using CoT prompt, the full response is:
Step-by-Step Analysis
1. Identify the Time Window and Cluster

— The issue occurred on March 21, 2022, between 12:00 and 12:30.
— The affected cluster is ‘cloudbed-1"‘.

2. Analyze Service Metrics

— x*xService Metricsx*: Check for anomalies in ‘metric_service.csv' for
the specified time window.

27

Published as a conference paper at ICLR 2025

- **xFrontend Servicexx:
- '‘mrt' (Mean Response Time) spikes significantly during the time window

- ‘mrt‘ values: 918.47, 13879.44, 13133.99, 10519.49, 13002.95, 12387.8,
13131.03, 5234.86.
— xxCheckout Servicex=x:
- ‘mrt' values: 398.92, 2375.0, 6340.0, 4821.43, 5500.0, 4950.0, 5075.0,
3331.5.
- xxRecommendation Servicexx:
- ‘mrt‘ values: 64.81, 376.63, 416.07, 395.0, 395.0, 390.0, 395.0,
161.54.
- xxProduct Catalog Servicexx:
- ‘mrt' values: 360.68, 1851.71, 1886.56, 1824.71, 1837.86, 1837.15,
1839.85, 573.48.

3. Analyze Container Metrics
- xxFrontend Containers*x*:

- “frontend-0', ‘frontend-1‘, ‘frontend-2‘, ‘frontend2-0' show high CPU

usage and network receive metrics.
— xxCheckout Containersx*x*:

— ‘checkoutservice-0', ‘checkoutservice-1', ‘checkoutservice-2?',

checkoutservice2-0' show high CPU usage and network receive metrics.
- xxRecommendation Containersxx:

- ‘recommendationservice-0', ‘recommendationservice-1%, ‘
recommendationservice-2", ‘recommendationservice2-0' show high CPU
usage and network receive metrics.

- xxProduct Catalog Containersxx:

- ‘productcatalogservice-0', ‘productcatalogservice-1Y, ‘
productcatalogservice-2"', ‘productcatalogservice2-0' show high CPU
usage and network receive metrics.

\

4. Analyze Node Metrics
- xxNode Metricsxx:
- ‘node-1', ‘node-2%', ‘node-3%', ‘node-4‘, ‘node-5', ‘node-6' show high
CPU usage and disk usage metrics.

5. Analyze Trace Data
- xxTrace Dataxx*:
— Multiple traces show high latency in ‘frontend‘, ‘checkoutservice?,
recommendationservice', and ‘productcatalogservice’.

\

6. Analyze Log Data
— x*xLog Datax*x:
- Logs from ‘frontend', ‘checkoutservice', ‘recommendationservice‘, and
‘productcatalogservice' show errors and high latency.

Summary of Findings

— The root cause component is likely to be ‘frontend' service due to its
significant impact on ‘mrt‘' and high CPU and network usage.

— The anomalies in ‘checkoutservice', ‘recommendationservice‘, and
productcatalogservice' are likely propagated from the ‘frontend®
service.

\

JSON Output
\\\json

{
l'lll: {
"root cause component": "frontend"

While LLMs with CoT prompting also identify multiple anomalous data points across the frontend,
checkoutservice, recommendationservice, productcatalogservice in step 5, it directly determines the

28

Published as a conference paper at ICLR 2025

service with the most significant latency, frontend, as the root cause component, instead of follow-
ing the guidance to analyze traces and identify the failure’s originating component. We consider
this may be because the model became lost in the massive context and complex reasoning process
among heterogeneous telemetry data, leading to focusing only on superficial findings from its earlier
analysis in stage 2. Therefore, to better reflect the model’s upper bound in solving OpenRCA, we
did not use CoT prompting as a baseline.

D SUPPLEMENTARY ANALYSIS

As shown in Table [3] all large language models (LLMs), even in the agent setting, achieve 0%
accuracy on Hard queries. To further investigate which element contributes to the difficulty of
solving Hard queries, we conducted an in-depth analysis of the relative difficulty among different
elements.

Our approach is to evaluate the partially correct accuracy (i.e., Partial in Table 2)) for each el-
ement across all failure cases to infer their relative difficulty. Note that directly using the absolute
value of each element’s accuracy is insufficient, as LLMs may occasionally guess an element cor-
rectly by chance (this is also the reason we place less emphasis on partially correct results when
calculating accuracy in Sec. [5). To better reflect difficulty, we should first exclude the impact of
random guessing by calculating the improvement over random accuracy. Specifically, we compute
the difference (delta) between each method’s absolute accuracy and the random guessing accuracy.
The element with the smallest delta is the hardest to predict, as the method cannot improve upon its
random guessing accuracy. Below, we compute the random guessing accuracy for each element:

* Reason: As shown in Table[I] the number of reasons varies across systems. The random guessing
accuracy is calculated as (51/5 4 136/8 + 148/15) /335 = 11.06%.

* Component: Similarly, the number of components differs by system. The random guessing
accuracy is (51/15 + 136/14 + 148/44) /335 = 4.92%.

* Time: As detailed in Appendix and Sec.[4.1] each query involves identifying the root cause
within a 30-minute window, with predictions considered correct if they fall within one minute of
the actual failure time. The random guessing accuracy is 1/30 = 3.33%.

The absolute accuracy and delta values of each element’s accuracy are provided below.

Table 8: Comparison of partially correct accuracy across elements. R, C, and T refer to Reason,
Component, and Time, respectively.

Type | Category | Absolute \ Delta
| | R C T | R C. T.
Claude 12.56 13.54 1130 | +1.50 +8.62 +7.97
Oracle GPT-40 13.39 1256 12.14 | +2.33 +7.64 +8.81
Llama 11.30 11.72 6.70 | +0.24 +6.80 +3.37
Claude 19.67 18.00 14.23 | +8.61 +13.08 +10.90
Agent GPT-40 18.00 14.65 13.39 | +6.94 +9.73 +10.06
Llama 7.53 335 251 | -3.53 -1.57 -0.82
Random | - ‘ 11.06 4.92 3.33 ‘ N/A N/A N/A

The table shows that regardless of the method used, identifying the reason is consistently the most
challenging task, while component and time are comparatively easier to determine. Specifically,
Claude performs better at identifying components than time, whereas GPT exhibits the opposite
trend. Llama, limited by its weaker coding and mathematical capabilities, frequently encounters
execution failures during reasoning, often preventing it from completing the task successfully. This
observation aligns with the findings in Table 3]

29

	Introduction
	OpenRCA
	Preliminaries of Root Cause Analysis
	Features of OpenRCA
	Task Formulation
	Dataset Construction

	RCA-agent
	Experimental Setup
	Sampling-based Methods
	Language Models

	Experimental Result
	Case Study
	Related Work
	Discussion
	Benchmark Details
	License
	Introduction of Service Systems
	Introduction of Telemetry
	Introduction of Root Cause Analysis
	Details of Data Calibration
	Details of Problem Synthesis
	Details of Evaluation

	RCA-agent Details
	Features of RCA-agent
	Agent Prompts
	Background Prompts

	Experimental Setup
	Clarification
	Prompts of sampling-based methods
	Case Study of CoT Prompting

	Supplementary Analysis

