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ABSTRACT

Recent studies have shown that the addition of zero padding drives convolutional
neural networks (CNNs) to encode a significant amount of absolute position infor-
mation in their internal representations, while a lack of padding precludes position
encoding. Additionally, various studies have used image patches on background
canvases (e.g., to accommodate that inputs to CNNs must be rectangular) without
consideration that different backgrounds may contain varying levels of position
information according to their color. These studies give rise to deeper questions
about the role of boundary information in CNNs, that are explored in this paper:
(i) What boundary heuristics (e.g., padding type, canvas color) enable optimal
encoding of absolute position information for a particular downstream task?; (ii)
Where in the latent representations do boundary effects destroy semantic and loca-
tion information?; (iii) Does encoding position information affect the learning of
semantic representations?; (iv) Does encoding position information always improve
performance? To provide answers to these questions, we perform the largest case
study to date on the role that padding and border heuristics play in CNNs. We first
show that zero padding injects optimal position information into CNNs relative to
other common padding types. We then design a series of novel tasks which allow
us to accurately quantify boundary effects as a function of the distance to the border.
A number of semantic objectives reveal the destructive effect of dealing with the
border on semantic representations. Further, we demonstrate that the encoding of
position information improves separability of learned semantic features. Finally,
we demonstrate the implications of these findings on a number of real-world tasks
to show that position information can act as a feature or a bug.

1 INTRODUCTION

One of the main intuitions behind the success of CNNs for visual tasks such as image classifica-
tion (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015; Szegedy et al., 2015; Huang et al.,
2017), video classification (Karpathy et al., 2014; Yue-Hei Ng et al., 2015; Carreira & Zisserman,
2017), object detection (Ren et al., 2015; Redmon et al., 2016; He et al., 2017), generative image
models (Brock et al., 2018), and semantic segmentation (Long et al., 2015; Noh et al., 2015; Chen
et al., 2017; 2018), is that convolutions add a visual inductive bias to neural networks that objects can
appear anywhere in the image. To accommodate the finite domain of images, manual heuristics (e.g.,
padding) have been applied to allow the convolutional kernel’s support to extend beyond the border
of an image and reduce the impact of the boundary effects (Wohlberg & Rodriguez, 2017; Tang et al.,
2018; Liu et al., 2018a; Innamorati et al., 2019; Liu et al., 2018b). Recent studies (Pérez et al., 2019;
Islam et al., 2020; Kayhan & Gemert, 2020) have shown that zero padding allows CNNs to encode
absolute position information despite the presence of pooling layers in their architecture (e.g., global
average pooling). In our work, we argue that the relationship between boundary effects and absolute
position information extends beyond zero padding and has major implications in a CNN’s ability to
encode confident and accurate semantic representations (see Fig. 1).

An unexplored area related to boundary effects is the use of canvases (i.e., backgrounds) with image
patches (see Fig. 1, top row). When using image patches in a deep learning pipeline involving CNNs,
the user is required to paste the patch onto a background due to the constraint that the image must be
rectangular. Canvases have been used in a wide variety of domains, such as image generation (Gre-
gor et al., 2015; Huang et al., 2019), data augmentation (DeVries & Taylor, 2017), image inpaint-
ing (Demir & Unal, 2018; Yu et al., 2018), and interpretable AI (Geirhos et al., 2018; Esser et al., 2020).
To the best of our knowledge, this paper contains the first analysis done on canvas value selection.
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Figure 1: An illustration of how CNNs use posi-
tion information to resolve boundary effects. We
place CIFAR-10 images in random locations on a
canvas of 0’s (black) or 1’s (white). We evaluate if
a ResNet-18, trained w/ or w/o padding for seman-
tic segmentation, can segment the image region.
Surprisingly, performance is improved when either
zero padding or a black canvas is used, implying
position information can be exploited from border
heuristics to reduce the boundary effect. Colormap
is ‘viridis’; yellow is high confidence.

In other works, the canvas value is simply cho-
sen based on the authors intuition. Given the
pervasiveness of CNNs in a multitude of appli-
cations, it is of paramount importance to fully
understand what the internal representations are
encoding in these networks, as well as isolating
the precise reasons that these representations are
learned. This comprehension can also allow for
the effective design of architectures that over-
come recognized shortcomings (e.g., residual
connections (He et al., 2016) for the vanishing
gradient problem). As boundary effects and po-
sition information in CNNs are still largely not
fully understood, we aim to provide answers to
the following hypotheses which reveal funda-
mental properties of these phenomenon:

Hypothesis I: Zero Padding Encodes Max-
imal Absolute Position Information: Does
zero padding encode maximal position infor-
mation compared to other padding types? We
evaluate the amount of position information in
networks trained with different padding types
and show zero padding injects more position
information than common padding types, e.g.,
reflection, replicate, and circular.

Hypothesis II: Different Canvas Colors Affect Performance: Do different background values
have an effect on performance? If the padding value at the boundary has a substantial effect on a
CNNs performance and position information contained in the network, one should expect that canvas
values may also have a similar effect.

Hypothesis III: Position information is Correlated with Semantic Information: Does a net-
work’s ability to encode absolute position information affect its ability to encode semantic informa-
tion? If zero padding and certain canvas colors can affect performance on classification tasks due
to the increased position information, we expect that the position information is correlated with a
networks ability to encode semantic information. We demonstrate that encoding position information
improves the robustness and separability of semantic features.

Hypothesis IV: Boundary Effects Occur at All Image Locations: Does a CNN trained without
padding suffer in performance solely at the border, or at all image regions? How does the performance
change across image locations? Our analysis reveals strong evidence that the border effect impacts
a CNN’s performance at all regions in the input, contrasting previous assumptions (Tsotsos et al.,
1995; Innamorati et al., 2019) that border effects exist solely at the image border.

Hypothesis V: Position Encoding Can Act as a Feature or a Bug: Does absolute position informa-
tion always correlate with improved performance? A CNN’s ability to leverage position information
from boundary information could hurt performance when a task requires translation-invariance, e.g.,
texture recognition; however, it can also be useful if the task relies on position information, e.g.,
semantic segmentation.

To give answers to these hypotheses (hereon referred to as H-X), we design a series of novel tasks as
well as use existing techniques to quantify the location information contained in different CNNs with
various settings. In particular, we introduce location dependant experiments (see Fig. 2) which use a
grid-based strategy to allow for a per-location analysis of absolute position encoding and performance
on semantic tasks. The per-location analysis plays a critical role in representing the boundary effects
as a function of the distance to the image border. We also estimate the number of dimensions which
encode position information in the latent representations of CNNs. Through these experiments we
show both quantitative and qualitative evidence that boundary effects have a substantial effect on
CNNs in surprising ways and then demonstrate the practical implications of these findings on multiple
real-world applications. Code will be made available for all experiments.
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Figure 2: We consider two location dependant tasks
designed to investigate the boundary effects in CNNs.
A random image is placed on a random grid location and
the CNN predicts either C class logits (a: classification),
or C class logits for each pixel (b: segmentation).

Table 1: Position encoding results w/
metrics SPC↑: high is better and MAE↓:
low is better, w/ different padding types.
† denotes zero-padding based methods.

Padding Horizontal Gaussian
SPC↑ MAE↓ SPC↑ MAE↓

Zero Pad† .406 .216 .591 .146
Partial† .424 .213 .604 .144
Circular .296 .236 .455 .165
Replicate .218 .241 .396 .173
Reflect .212 .242 .409 .172
w/o Pad .204 .243 .429 .168

2 ABSOLUTE POSITION INFORMATION IN CNNS

What Type of Padding Injects Optimal Location Information? With the ultimate goal of revealing
characteristics that determine the impact that boundary effects plays in CNNs with respect to absolute
position information, we first determine which commonly used padding type encodes the maximum
amount of absolute position information. We evaluate the ability of different padding types (i.e.,
zero, circular, reflection, and replicate) to encode absolute position information by extending the
experiments from (Islam et al., 2020), which only considered zero padding. We first train a simplified
VGG network (Simonyan & Zisserman, 2015) with five layers (VGG-5, see Appendix A.2 for
implementation details) on Tiny ImageNet (Le & Yang, 2015) for each padding type. We follow
the settings in (Islam et al., 2020): a read-out module, trained using DUT-S (Wang et al., 2017)
images, takes the features from a frozen VGG-5 model’s last layer, pre-trained on Tiny ImageNet,
and predicts a gradient-like position map (see top row in Table. 1). We experiment with two position
maps, which are the same for every image: (i) ‘horizontal’ and (ii) ‘Gaussian’. These gradient-like
position maps change smoothly from 0 to 1, from the dark-blue to yellow, respectively. For a fair
comparison with (Islam et al., 2020), we report results using Spearman Correlation (SPC) and Mean
Absolute Error (MAE) with input images from PASCAL-S (Li et al., 2014). From Table 1, it is clear
that zero padding delivers the strongest position information, compared with replicate, boundary
reflection, and circular padding, supporting H-I. Note that partial convolution (Liu et al., 2018a)
still pads with zeros, but re-weights the output of the convolution based on how many zeros are
padded. Thus, position information is still encoded when partial convolutions are used. Interestingly,
circular padding is often the second most capable padding type. We conjecture this is because circular
padding takes values from the opposite side of the image where the pixel values are typically less
correlated than the directly neighbouring pixels. Thus, circular padding often has a value transition at
the border, contrasting reflection and replicate which offer little or no signal to the CNN regarding
the whereabouts of the image border.

3 LOCATION DEPENDANT TASKS FOR POSITIONAL ANALYSIS

We begin by describing our experimental settings and the implementation details for the proposed
location dependant experiments with grid-based inputs. These experiments are used to analyze the
border effects with respect to position information encoded in CNNs. These consist of location
dependant image classification (Fig. 2 (a) and Sec. 3.1), and segmentation (Fig. 2 (b) and Sec. 3.2),
under different canvas color settings. Our experiments are designed with the goal of determining, for
different canvas colors (H-II), where in the input CNNs suffer from the border effect (H-IV), and
how the encoding of position information affects the learning of semantic features (H-III).

Experimental Settings and Implementation Details. Our image classification and segmentation
experiments use ‘location dependant’ inputs (see Fig. 2 above and Fig. 9 in the appendix for more
detailed examples). The input is a colored canvas (the colors used are Black [0, 0, 0], White [1, 1, 1],
and the CIFAR-10 dataset (Krizhevsky et al., 2014) Mean [0.491, 0.482, 0.446]) with an image patch
randomly placed on a k × k grid. Unless mentioned otherwise, we use CIFAR-10 for all experiments.
Given a 32× 32 CIFAR-10 training image as the image patch, we randomly choose a grid location,
L, and place the CIFAR-10 training sample in that location. For example, in the case of a k × k grid,
the size of the grid canvas is 32k × 32k, where each grid location has a size of 32× 32 and k2 total
locations (see Fig. 9 in the appendix). All experiments are run for k ∈ {3, 5, 7, 9, 11, 13, 15}. To
ensure a fair comparison between grid locations, the evaluation protocol consists of running the entire
validation set of CIFAR-10 on each individual grid location (i.e., we run the validation set k2 times
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Table 2: Location dependant (a) image classification and (b) semantic segmentation accuracy on
CIFAR-10 under zero/no padding settings and canvas colors Black, White, and Mean.

Padding Image Classification Image Segmentation
3×3 5×5 7×7 9×9 11×11 13×13 15×15 3×3 5×5 7×7 9×9 11×11 13×13 15×15

B Zero Pad 78.4 74.9 74.3 76.2 76.9 75.2 76.9 68.2 67.8 67.8 67.7 64.0 63.4 60.3
w/o Pad 76.4 74.0 67.6 67.5 67.4 60.3 47.2 59.5 53.5 51.4 50.4 48.1 48.3 45.6

W Zero Pad 81.2 80.4 80.3 80.3 80.3 80.1 80.0 69.0 64.3 63.2 54.8 49.1 45.9 47.4
w/o Pad 79.8 76.3 41.6 34.2 36.6 24.9 19.0 57.7 32.8 31.5 26.4 23.1 17.2 19.2

M Zero Pad 81.3 80.5 78.9 78.9 78.8 80.4 80.2 66.1 63.8 57.5 55.0 51.6 49.5 42.5
w/o Pad 81.1 77.5 68.8 34.8 31.6 32.8 26.2 42.0 35.4 29.6 26.3 24.1 23.9 24.5

for a single validation epoch). We then average the performance over all grid locations to obtain
the overall accuracy. We report classification and segmentation accuracy in terms of precision and
mean intersection over union (mIoU), respectively. We use a ResNet-18 network trained from scratch,
unless stated otherwise. ResNets with no padding are achieved by setting the padding size to zero in
the convolution operation. For fair comparison between the padding and no padding baseline, we
use bilinear interpolation (see Appendix A.1 for discussion) to match spatial resolutions between the
residual output and the feature map for the no padding case, which was not accounted for in previous
work (Kayhan & Gemert, 2020).

3.1 LOCATION DEPENDANT IMAGE CLASSIFICATION

We investigate whether CNNs trained with and w/o padding are equally capable of exploiting absolute
position information to predict the class label in all image locations, with respect to the distance
from the image boundary and for variable grid sizes. The location dependant image classification
experiment is a multi-class classification problem, where each input has a single class label and the
CNN is trained using the multi-class cross entropy loss (see Fig. 2 (a)). Therefore, the network must
learn semantic features invariant to the patch location, to reach a correct categorical assignment.

Table 7 (left) shows the location dependant image classification results. For all canvases, the networks
trained with padding are more robust to changes in grid sizes. In contrast, models trained w/o padding
significantly drop in performance with the increase of grid size, as position information is lost and
boundary information cannot be exploited. Further, the canvas colors seem to have a noticeable
effect on classification performance (H-II) as the white and mean canvases have a much more
significant performance drop than the black as the grid size increases. The difficulty in separating
image semantics from the background signal is due to non-zero canvases creating noisy activations at
regions near the image patch border, which is explored further in Section 5.

3.2 LOCATION DEPENDANT IMAGE SEGMENTATION

The experiment in this section examines similar properties as the previous location dependant
image classification, but for a dense labelling scenario. This task is simply a multi-class per-pixel
classification problem, where each pixel is assigned a single class label. We follow the same grid
strategy as classification to generate a training sample. Since CIFAR-10 is a classification dataset and
does not provide segmentation ground-truth, we generate synthetic ground-truth for each sample by
assigning the class label to all the pixels in the grid location where the image belongs to (see Fig. 2
(b)). Following existing work (Chen et al., 2017), we use a per-pixel cross entropy loss to train the
network. For evaluation, we compute mIoU at per grid location and take the average to report results.

Image segmentation results are shown in Table 7 (right). A similar pattern is seen as the classification
experiment (Sec. 3.1). Networks trained with padding consistently outperform networks trained w/o
padding, and the difference grows larger as the grid size increases. Contrasting the classification
experiment, the performance of networks with padding decreases slightly as the grid size increases.
The reason for this is that the mIoU metric is averaged across all categories including the background,
so object pixels are equally weighted in the mIoU calculation even though the ratio of background
pixels to object pixels increases dramatically for larger grid sizes. For the no padding case, we
observe similar patterns to the classification experiment as the white and mean canvas scenarios
suffer more from a large grid size than the black canvas case. This finding further suggests that,
independent of the task, a black canvas injects more location information to a CNN (H-II), regardless
of the semantic difficulty, than a white or mean colored canvas, which is further explored in Sec. 5.
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Figure 3: Sample pair generation reflect-
ing two semantic concepts.

Table 3: Dimensionality estimation (%) of two semantic
concepts (location and semantic category) under different
tasks and settings.

Canvas Grid Padding Segmentation Classification
|zLocation| |zClass| |zLocation| |zClass|

Black 7×7 Zero Pad 15.2% 14.9% 12.7% 12.6%
No Pad 12.7% 12.8% 12.1% 11.9%

White 7×7 Zero Pad 12.5% 12.3% 12.2% 12.1%
No Pad 10.9% 10.9% 11.5% 11.6%

4 INTERPRETING REPRESENTATIONS FOR DIMENSIONALITY ESTIMATION

Previous works (Bau et al., 2017; Esser et al., 2020) proposed various mechanisms to interpret
different semantic concepts from latent representations by means of quantifying the number of
neurons which encode a particular semantic factor, k. Given a pretrained CNN encoder E(I) = z
where z is a latent representation and given an image pair (Ia, Ib) ∼ p(Ia, Ib|k) which are similar
in the k-th semantic concept, we aim to estimate the dimensionality of the semantic factor, zk, that
represents this concept in the latent representation. A positive mutual information between Ia and Ib

implies a similarity of Ia and Ib in the k-th semantic concept, which will be preserved in the latent
representations E(Ia) and E(Ib), only if E encodes the k-th semantic concept. Following (Esser
et al., 2020), we approximate the mutual information between E(Ia) and E(Ib) with the correlation
of each dimension in the latent representation (see Sec. A.5 in Appendix for details).

We generate image pairs which share one of two semantic concepts: (i) location or (ii) semantic
class. For example, the image pair sharing the location factor (see Fig.3 top row) differs in the class
and canvas color, while the pair on the bottom row shares the semantic class but differs in canvas
color and location. With this simple generation strategy, we can accurately estimate the number
of dimensions in the latent representation which encodes the k-th semantic factor. Note that the
remaining dimensions not captured in either the location or semantic class is allocated to the residual
semantic factor, which by definition will capture all other variability in the latent representation, z.

Table 3 shows the estimated dimensionality for the semantic factors location and class. The latent
representation used is the last stage output of a ResNet-18 before the global average pooling layer.
We used the networks from Sec. 3 which are trained for segmentation (left) and classification (right)
with the appropriate background (i.e., black on the top and white on the bottom row) and grid settings.
The results clearly show that networks trained with zero-padding contain more dimensions which
encode the semantic factor ‘location’ (H-I). Further, Table 3 shows that there is a positive correlation
between the encoding of location and the encoding of semantics, i.e., a larger number of dimensions
encoding location implies a larger number of neurons encoding semantics, supporting H-III. More
dimensionality estimation results can be found in Sec. A.5.1 in the appendix.

5 PER-LOCATION ANALYSIS

In this section, we take advantage of the grid-based learning paradigm and conduct further evaluations
on a per-location basis to test H-I, H-II, H-III, and H-IV. In particular, we analyze the relationship
between zero padding and the border effect. We then show quantitative and qualitative results which
reveal strong evidence that zeros, whether as a canvas or padding, inject maximal location bias.

Distance-to-Border Analysis: What Input Regions Suffer Most from Border Effects? First, we
analyze the image classification and segmentation results reported in Secs. 3.1 and 3.2, with respect
to the distance from the closest border which will allow us to answer this question. To obtain the
accuracy at each distance, we average the accuracies over all grid locations with the same distance to
the nearest border (e.g., a distance to a border of zero refers to the average accuracy of the outer-most
ring of grid locations). Figure 4 (left) shows the accuracy difference between the padding baseline
(the blue horizontal line) and the no padding cases. Interestingly, the accuracy difference is higher
at grid locations close to the border and decreases towards the image center. This analysis strongly
suggests that zero padding significantly impacts the border effect, and injects position information
to the network as a function of the object location relative to the distance of the nearest border. In
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Figure 4: Left: Location dependant image classification (left two) and segmentation (right two).
Results show the accuracy difference between padding and no padding, at various distances to
the border and canvases. Right: Heatmap visualization of 13× 13 grid per-location segmentation
mIoU on CIFAR-10 (Krizhevsky et al., 2014) under black (left), white (middle), and mean (right)
background settings. As can be seen, CNNs without padding have difficulties near the border.

contrast, the no padding case fails to deliver any position information at the border locations which
leads to a significant performance drop. Also note that there is a substantial difference in performance
at the center of the image, at the farthest distance from the border, supporting H-IV. We also visualize
the accuracy at all grid locations as a heatmap in Fig. 4 (right) which shows consistency with the
results in Fig. 4 (left). As shown in Fig. 4 (right), the networks trained w/ zero padding perform
consistently across all grid locations while the networks trained w/o padding perform poorly near the
border. Note that of the three canvases for the no padding case, the black canvas yields the lowest
drop in relative performance when comparing the center region to locations near the border (H-II).

Are Border Effects Only at the Border? While intuition might suggest the border effect occurs
solely at the border, it is natural to analyze if other regions in the input space also suffer from the
border effect. Figure 5 (left) compares filter activations with and without zero padding. Note that
filter activations are randomly sampled from the feature map for the specific layer. Activations
found near the border propagate less information through the network during the forward pass due to
the limited amount of connectivity to downstream layers compared to activations at the center, as
discussed in (Tsotsos et al., 1995). Further, the convolution cannot fully overlap the border regions
without padding and thus will not recognize objects as well. This phenomenon can be seen in Fig. 5
(bottom-left), where the activations for grid location 5 are significantly reduced in the no padding
case. Interestingly, for grid location 13 (i.e., center), there is also a visible difference in the activation
space. Here, activations found for the no padding case are blurred and noisy which contrasts the tight
square shaped activations when zero padding is used. While border effects mainly impact regions
near the border, these results show clear evidence that input locations at the center of the image are
also impacted with a lack of padding which is evidence supporting H-IV. This also explains the large
performance drop at the center of the grid in Fig. 4 (left and right).

Does Encoding Location Enable the Learning of Semantics? In Sec. 4, we provided quantitative
evidence that reveals the correlation between the number of neurons encoding position and semantic
information (H-III). We further investigate this phenomenon to see how position information by
means of zero padding allows for richer semantics to be learned for the tasks of image classification
and semantic segmentation. Figure 5 (right) heatmaps show segmentation predictions for different
grid locations, L, of a 7× 7 grid. When no padding is used CNNs have difficulty segmenting images

Figure 5: Left: Filter activation visualization for the classification task on CIFAR-10 with a white
background and 5× 5 grid size. It is clear that zero padding provides richer information and larger
activations downstream, particularly at locations near the boundary (e.g., L = 5). Right: Sample
predictions of semantic segmentation on different locations of a 7× 7 grid under three background
settings. Confidence maps are plotted with the ‘cividis’ colormap, where yellow and dark blue
indicates higher and lower confidence, respectively.
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Figure 6: Comparison of filter activations for the location dependant segmentation task trained
without padding, 5× 5 grid size, L = 13, and three canvas colors, black, white, and mean. Notice
the large activations in the background region for black, contrasting that of white and mean.

near the border (highlighted with circles in Fig. 5) except when a black canvas is used. However, for
locations near the center of the image, reduced position information due to no padding greatly reduces
the network’s confidence in semantic encodings. In contrast, zero padding is consistent and confident
in segmenting objects across all the grid locations and canvas colors. Further, we use t-SNE (Maaten
& Hinton, 2008) to visualize the classification logits in Fig. 12 of appendix. The separability of
the semantic classes is significantly improved when padding is used, and the effect is particularly
pronounced at locations near the border (L = 7). This further supports H-III that absolute position
information, by means of zero padding, enables CNNs to learn more robust semantic features, which
in turn allows for greater separability in the prediction logits.

Canvas Analysis: Why Do Explicit Zeros Inject Location Information? We now explore what
enables CNNs to encode positional information when zeros exist at the boundary (i.e., as padding
or canvas (H-II)) by analyzing the activations of a network trained for the location dependant
segmentation task. For a k×k grid, the ratio of canvas pixels to total pixels is k2−1

k2 . This implies that
the vast majority of labels will be the background class, and therefore the majority of filters should
focus on correctly labelling the canvas. To determine if this is true for all canvases, we visualize
randomly sampled filter activations (see Fig. 6) for networks trained without padding for the location
dependant segmentation task. The activations are visualized using the ‘gray’ colormap, where light
and dark intensities denote high and low activations, respectively. Note that the activations are taken
from the output of the convolutional layer and are normalized to between [0, 1] before plotting. Even
at the earlier layers (e.g., layer 7), there is a clear difference in the patterns of activations. The
majority of filters have low activations for the image region, but high activations for the background
region. In contrast, the white and mean canvases have mostly low activations for the canvas but
high activations for the image. Interestingly, particularly at layer 17 (the last convolution layer), the
activations for the black background are reminiscent of oriented filters (e.g., Gaussian derivative
filters) in a number of different orientations and locations, indicating they can capture more diverse
input signals compared to the white and mean canvases, which consistently activate over the center
of the input region. Figure 6 clearly demonstrates that zeros at the boundary, in the form of a black
canvas, allows easier learning of semantics and absolute position for CNNs compared to other values
supporting H-II.

6 APPLICABILITY TO SEMANTIC SEGMENTATION, TEXTURE RECOGNITION,
DATA AUGMENTATION, AND ADVERSARIAL ROBUSTNESS

Given the intriguing findings above, it is natural to ask how much the demonstrated phenomenon
affects real world tasks with SOTA architectures. More specifically, does encoding position always
improve performance or does it cause unwanted effects on certain tasks (H-V)?

Semantic Segmentation. We now measure the impact of zero padding to segment objects near the
image boundary with a strong semantic segmentation network on an automotive-centric dataset. We
use the DeepLabv3 (Chen et al., 2017) network and the Cityscapes (Cordts et al., 2016) dataset,
trained with different padding types. From Table 4, it is clear that DeepLabv3 with zero padding
achieves superior results compared to the model trained without padding or with reflect padding.
Additionally, we perform an analysis by computing the mIoU for rectangular ring-like regions (see
Fig. 7 (top-left)), between X% and Y%, where X and Y are relative distances from the border (e.g.,
0%−5% is the outer most region of the image, while 5%−10% is the neighbouring inner 5% region)
to quantify the performance decrease from the boundary effect and lack of positional information.
From Table 4, the performance drop between the total mIoU (100%) and the border region (0-5%) is
more significant for the no padding case and reflect padding case compared to the zero padding case,
which agrees with the results found in Sec. 5. This further demonstrates that the absolute position

7



Under review as a conference paper at ICLR 2021

Table 4: Performance comparison
of DeepLabv3 w/ and w/o padding
for different image regions. Top-
left image in Fig. 7 shows outer re-
gions used for this analysis.

Method
Evaluation Region mIoU(%)

0-5% 5-10% 10-15% 100%

Zero Pad 72.6 72.7 73.8 74.0
Reflect 71.9 72.0 73.7 73.9
No Pad 63.7 66.4 67.3 69.1

Figure 7: Example predictions on the Cityscapes validation set
when training w/ and w/o padding. Best viewed zoomed in.

Table 5: (a) Texture recognition results on two datasets with different padding types. (b) Perfor-
mance and robustness of DeepLabv3 variants trained with Cutout (DeVries & Taylor, 2017) using
two canvas (Black and White).

Padding GTOS-M DTD
Res34 Res50 VGG5 Res34 Res50 VGG5

No Pad 71.7 76.3 33.6 57.5 67.0 27.3
Zero Pad 78.7 81.7 39.7 68.6 70.6 32.8
Reflect 80.6 85.0 43.1 68.8 71.2 34.0

(a)

Method Segmentation Robustness
B W B W

DLv3-Res50 73.9 74.1 53.7 55.8
DLv3-Res101 75.5 75.2 49.8 51.9

(b)

information due to zero padding improves the performance at all image regions, while reflect padding
is not as beneficial at the image boundaries. Figure 7 shows examples of how DeepLabv3 trained with
zero padding generates more accurate predictions, particularly near the border of the image. Note
that thin or complex objects near the border regions are particularly affected (e.g., light posts). The
reason that performance suffers even with padding, is the lack of semantic and contextual information
near the border, which is not the case for grid-based tasks (Sec. 3) since the image patch contains the
entire CIFAR-10 image. Additional results can be found in Sec. A.8 in the Appendix.

Texture Recognition. We evaluate three models with three padding types on the task of texture
recognition. We use a ResNet-34, ResNet-50, amd VGG-5 trained with zero, reflect, and no padding
settings, with the GTOS-Mobile dataset (Xue et al., 2018) and DTD (Cimpoi et al., 2014). We
hypothesize that, due to the nature of textures existing in the entire image, position information will
not benefit the performance of the CNN. As shown in Table 5 (a), models trained with reflect padding
outperform the models trained with zero padding. This result implies that position information is
not important for the task of texture recognition. Although no padding has less position information
than reflect padding, the CNN suffers from the border effects without padding (see Fig. 5 (left)),
which hurts performance significantly (i.e., since the kernel’s support does not cover the entire image
domain).

Canvas Analysis: Cutout & Adversarial Robustness. We investigate the impact of different canvas
colors in terms of performance and robustness using a data augmentation strategy, Cutout (DeVries
& Taylor, 2017), which simply places a rectangular black mask over random image regions during
training. We evaluate DeepLabv3 with two backbones using the Cutout strategy for semantic
segmentation on the PASCAL VOC 2012 (Everingham et al., 2010) dataset with black and white
masks (see Fig. 17 in the appendix for example inputs). We also evaluate the robustness of each model
to show which canvas is more resilient to the GD-UAP adversarial attack (Mopuri et al., 2018). Note
that the GD-UAP attack is generated based on the image-agnostic DeepLab-ResNet101 backbone.
As shown in Table 5 (b), DeepLabv3 trained with white-mask Cutout is significantly more robust to
adversarial examples than the black canvas, without sacrificing segmentation performance.

7 CONCLUSION

With the goal of answering whether boundary effects are a feature or a bug, we have presented
evidence that the heuristics used at the image boundary play a much deeper role in a CNN’s ability
to perform different tasks than one might assume. By designing a series of location dependant
experiments, we have performed a unique exploration into how this connection reveals itself. We
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showed that zero padding encodes more position information relative to common padding types (H-I)
and that zero padding causes more dimensions to encode position information and that this correlates
with the number of dimensions that encode semantics (H-III). We examined the ability of CNNs to
perform semantic tasks as a function of the distance to a border. This revealed the capability of a black
canvas to provide rich position information compared to other colors (i.e., White and Mean) (H-II).
We visualized a number of features in CNNs which showed that boundary effects have an impact on
all regions of the input (H-IV), and highlighted characteristics of border handling techniques which
allow for absolute position information to be encoded. This position encoding enables CNNs to learn
more separable semantic features which provide more accurate and confident predictions (H-III). We
conducted these experiments with the following question in mind: Are boundary effects a feature or a
bug (H-V)? After teasing out the above underlying properties, we were able to validate the hypothesis
that different types of padding, levels of position information, and canvas colors, could be beneficial
depending on the task at hand! To be more clear: the boundary effects can be used to improve
performance if you know what to look for, but can also be detrimental to a CNNs performance if not
taken into consideration. We strongly believe these findings will allow future researchers to more
efficiently propose and implement improved algorithms which deal with boundary effects.
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A APPENDIX

A.1 NO PADDING RESNET IMPLEMENTATION USING BILINEAR INTERPOLATION

In this work, we attempt to explore the effect of different padding strategies in addition to networks
with no padding. Our goal is to analyze the most standard settings in computer vision and as ResNets
are one of the most common CNN architectures used, we thus aim to remove padding from a ResNet.
The main issue with this objective is that the residual block of a ResNet requires padding for the
residual connection to match the same feature resolution as the next layer. This question can therefore
be reduced to ‘how can the input be aligned with the output feature map?’.

To the best of our knowledge, how to match the feature map and the input is an open question.
Two simple solutions could be applied: (i) crop the centre region from the input to align with the
output, or (ii) interpolate the output feature map to the same size as the input. Before choosing an
appropriate operation, we must first consider what the feature map encodes. For dense labelling tasks,
the intermediate feature map is believed to retain the spatial relationship because convolutional filters
are translation-equivariant.

For instance, most of the one-stage object detectors apply location loss for the bounding box on
multiple feature maps, both anchor-based and anchor-free. For example, if a dog is located at
0.1×width to the right of input, its corresponding region in the feature map will be the same. If this
intermediate embedding is translation-equivariant, it is clear that the centre cropping will break this
equivariance. If we crop the centre of the input image, the input be aligned with the smaller feature
map, the relative position of the dog will be changed. In contrast, interpolation (e.g., bilinear) of the
feature map to the same size as the input appears to be a better choice because the whole process
should keep a more consistent spatial alignment.

We now validate this choice by conducting a simple toy experiment. We create a black canvas with
three channels, (100, 100, 3), the height and width equal 100, (see Fig. 8(a)). Then, we fill four
squares with different colours at the four corners where each square has a size of 10 × 10. One
convolution layer with a kernel size of 21 and a stride of one is applied on the input image with the
all weights of the kernel set to one. Note that we only care about the spatial equivariance in this
experiment, so the convolutional filter is applied separately on each channel so as to retain the color
information.

The output of a padded convolution is shown in Fig. 8(b) (100×100), and the output of the convolution
w/o padding is shown in Fig. 8(c) (80×80). Note that the color is enhanced for visualization purposes,
the actual output value will decay gradually towards the center of the feature map, and it will spread
out even more when padding is applied. As discussed previously, one can also crop the center of the
input to match the feature map (see Fig. 8(e)). However, the cropping operation will excludes the
content near the border and the translation-equivariance property no longer holds. Thus, we choose
to interpolate the feature map to the input size. As we can see from Fig 8(d), the resized feature map
can better match the content of the input.

(a) (b) (c) (d) (e)

Figure 8: (a) the input image, (100×100). (b) the output of the convolution with padding, (100×100).
(c) the output of the convolution w/o padding, (80×80). (d) the resized feature map of (c), (100×100).
(e) the center crop of the input image, (80× 80).

A.2 IMPLEMENTATION DEATILS OF VGG-5 NETWORK FOR POSITION INFORMATION

We use a simplified VGG network (VGG-5) for the position encoding experiments in Sec. 2 and
texture recognition experiments in Sec. 6. The details of the VGG-5 architecture are shown in Table 6
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(in this table we show the VGG-5 network trained on the tiny ImageNet dataset, the VGG-5 network
trained on texture recognition has a different input size: 224× 224). Note that the network is trained
from scratch. The tiny ImageNet dataset contains 200 classes and each class has 500 images for
training and 50 for validation. The size of the input image is 64× 64, a random crop of 56× 56 is
used for training and a center crop is applied for validation. The total training epochs is set to 100
with an initial learning rate of 0.01. The learning rate was decayed at the 60th and 80th epochs by
multiplying the learning rate by a factor of 0.1. A momentum of 0.9 and a weight decay of 1e− 4
are applied with the the stochastic gradient descent optimizer. After the pre-training process, a simple
read-out module is applied on the pre-trained frozen backbone for position evaluation, following the
training protocol as used in Islam et al. (2020). Note that the type of padding strategy is consistent
between the pre-training and position evaluation procedures.

Table 6: VGG-5 architecture trained on tiny ImageNet.

RGB image x ∈ R56×56×3

Conv2d (3× 3), Batch Norm, ReLU, MaxPool2d→ R28×28×32

Conv2d (3× 3), Batch Norm, ReLU, MaxPool2d→ R14×14×64

Conv2d (3× 3), Batch Norm, ReLU, MaxPool2d→ R7×7×128

Conv2d (3× 3), Batch Norm, ReLU→ R7×7×256

Global Average Pooling (GAP)→ R1×1×256

FC→ (256, classes)

A.3 GRID-BASED INPUTS FOR POSITIONAL ANALYSIS

Figure 9 shows examples of inputs for the location dependant experiments (Sec. 4 in the main paper),
and the ground truth for each of the tasks on the right hand side. As previously mentioned, all the
experiments were run with three different canvas colors to show the impact of the border effect with
regards to backgrounds. For the segmentation ground truth, the ratio of background pixels to object
pixels grows exponentially as the grid size increases. However, as the evaluation metric is mean
intersection over union (mIoU), the overall performance is averaged between the object classes and
the background class, even though the background class makes up the majority of the ground truth
labels.

Black White Mean

Class Label Cat Ship Deer

Segmentation
Label

Figure 9: An illustration of our proposed grid settings (k = 3) with all three different canvas colors
for the location dependant tasks.
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A.4 LOCATION DEPENDANT IMAGE CLASSIFICATION AND SEGMENTATION

In this section, we revisit the location dependant image classification and segmentation experiments
from Sec. 3 of the main paper, but present them in a visual format (See Fig. 10) to enhance the
reader’s ability to see patterns in performance as the grid size increases. It is apparent that zero
padding provides a massive performance boost for location dependant tasks as larger grid sizes are
used. Also, it is apparent that zero padding is particularly helpful as the ratio of background pixels
to image pixels increases in the input. For segmentation, the performance decreases even with zero
padding; however, a large performance drop is still observed with lack of padding. Additionally, note
the increase in performance when a black canvas is used compared with white or mean canvases (see
Sec. 5 in the main paper for a discussion on black canvases).

Black w/ Padding White w/ Padding Mean w/ Padding Black w/o Padding White w/o Padding Mean w/o Padding
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Figure 10: Location dependant image classification (left) and semantic segmentation (right).
This figure contains the same results as in Table 2 in the main paper, but visualized as a plot. Note
the performance gains when zero padding or a black canvas is used.

Results using VGG-11 Networks. We extend the location dependent segmentation experiment
by applying a different backbone architecture. We choose VGG-11 network to further validate
the correlation between network architectures and boundary effects. Table presents the Image
segmentation results. We observe a similar pattern as segmentation experiment (Sec. 3.2). Networks
trained with padding consistently outperform networks trained w/o padding, and the difference grows
larger as the grid size increases.

Table 7: Location dependant semantic segmentation accuracy on CIFAR-10 under zero/no padding
and black canvas settings using VGG-11 network.

Padding
Image Segmentation

3×3 5×5 7×7 9×9 11×11 13×13 15×15

B
Zero Pad 66.8 66.2 64.5 63.2 56.9 56.0 52.6

w/o Pad 63.2 55.8 53.3 50.1 48.8 47.2 48.7

Results on reference grid size using ResNet-18 Networks. We extend the location dependent seg-
mentation experiment by applying different even grid sizes. Table 8 presents the Image segmentation
results. We observe a similar pattern as other grid sizes in segmentation experiment (Sec. 3.2).

Table 8: Location dependant semantic segmentation accuracy on CIFAR-10 under zero/no padding
and black canvas settings using ResNet18 network.

Padding
Segmentation

4×4 6×6

B
Zero Pad 68.8 68.1

w/o Pad 58.1 54.9
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A.5 DIMENSIONALITY ESTIMATION OF DIFFERENT SEMANTIC CONCEPTS

For an image pair (Ia, Ib) ∼ p(Ia, Ib|k) which are similar in the k-th semantic concept, follow-
ing (Esser et al., 2020), we approximate the mutual information with their correlation for each
dimension i:

Correlationk = Ck =
∑
i

Cov
(
E (Ia)i ,E

(
Ib
)
i

)√
Var (E (Ia)i)Var (E (Ib)i)

, (1)

We assume that the residual factor has a maximum dimension of |z| (the total dimension of the latent
representation) and use the softmax equation to get the resulting dimension:

|zk| =

⌊
expCk∑F
f=0 expCf

N

⌋
, (2)

where |zk| is the dimension of the semantic factor k, and F is the total number of semantic factors
including the residual factor. Note we do not need an estimate of the absolute mutual information for
estimating the proportion of location and semantic dimensions. Only the differences between the
mutual information for position and semantic class for image pairs are used to quantify the ratio of
location and semantic-specific neurons. Therefore, the relative difference is still meaningful and only
the absolute numbers might not be.

A.5.1 ADDITIONAL DIMENSIONALITY ESTIMATION RESULTS

Table 9 presents additional results of dimensionality estimation for different semantic concepts based
on the latent representation (see Table 3 in the main paper). We observe consistent results as zero
padding encodes more location and semantic information compared to the no padding case.

Table 9: Dimensionality estimation (%) of two semantic concepts (location and semantic category)
under different tasks and settings. Remaining dimensions are assigned to residual factor.

Canvas Grid Padding Semantic Factors, z
|zLocation| |zClass|

Black 5×5 Zero Pad 17.0% 16.3%
No Pad 12.6% 12.8%

White 5×5 Zero Pad 16.4% 15.4%
No Pad 11.5% 11.6%

(a) Semantic Segmentation

Canvas Grid Padding Semantic Factors, z
|zLocation| |zClass|

Black 9×9 Zero Pad 11.2% 11.2%
No Pad 10.9% 10.9%

(a) Image Classification

A.6 EXTENDED PER-LOCATION ANALYSIS

We now present additional ‘per-location’ results. That is, we take advantage of the location dependant
grid-based input and analyze the performance of CNNs at each location on the grid. This is done to
reveal the impact of border effects with respect to the absolute location of the object of interest. We
first show class-wise performance for the location dependant semantic segmentation task (Sec. A.6.1).
Next, we show the performance as a function of the distance to the nearest border by averaging the
accuracy over all locations which are a specified number of grid locations away from the nearest
border (Sec. A.6.2). We then provide additional t-SNE (Maaten & Hinton, 2008) visualizations to
examine the separability of the CNN’s learned semantic features (Sec. A.6.3). Finally, we display
location dependant semantic segmentation predictions and analyze the impact that border effects have
on per-pixel predictions for various input locations (Sec. A.7). Note that all experiments are done
with the same settings as Sec. 4 in the main paper, on the CIFAR-10 (Krizhevsky et al., 2014) dataset.
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Table 10: Location dependant image segmentation: Category-wise mIoU on CIFAR-
10 (Krizhevsky et al., 2014) for two different locations under w/ and w/o padding settings and
Black and Mean canvas color. The grid size for both canvases is 7× 7.

Categories
Black Mean

L = 7 L = 25 L = 7 L = 25

w/ Pad w/o Pad w/ Pad w/o Pad w/ Pad w/o Pad w/ Pad w/o Pad

Background 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99
Plane 0.67 0.34 0.65 0.53 0.50 0.07 0.55 0.31
Car 0.80 0.51 0.76 0.68 0.58 0.08 0.69 0.55
Bird 0.57 0.18 0.57 0.44 0.42 0.01 0.47 0.24
Cat 0.46 0.14 0.43 0.35 0.34 0.01 0.40 0.16
Deer 0.63 0.30 0.62 0.49 0.47 0.01 0.55 0.18
Dog 0.53 0.30 0.53 0.39 0.43 0.01 0.50 0.20
Frog 0.67 0.41 0.64 0.59 0.53 0.03 0.63 0.48
Horse 0.70 0.41 0.70 0.57 0.52 0.02 0.62 0.32
Ship 0.78 0.43 0.74 0.64 0.58 0.03 0.66 0.48
Truck 0.74 0.41 0.71 0.60 0.57 0.04 0.67 0.44
Overall 0.66 0.40 0.67 0.57 0.54 0.12 0.61 0.40

Black No Padding White No Padding Mean No Padding Padding Baseline
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Figure 11: Location dependant image classification (left two) and segmentation (right two).
Results show the accuracy difference between padding (blue horizontal line) and no padding (orange
markers), at various distances to the border and canvas colors.

A.6.1 PER-LOCATION CATEGORY-WISE MIOU ANALYSIS

Table 10 shows the category-wise mIoU for the location dependant image segmentation task for a
7× 7 grid with black and mean canvases. We show the category-wise performance for a location at
the very top right corner (L = 7) and at the center of the grid (L = 25), which highlights how the
encoding of absolute position information affects the learning of semantic representations.

For both locations, the border and the center, zero padding gives a large increase in performance
for all classes compared to lack of padding. This is particularly pronounced with a mean canvas,
demonstrating how the black canvas explicitly injects position information, even without the use of
zero padding. For example, comparing the black and mean canvas at L = 7 shows how important
absolute position information can be in learning distinct semantic representations. The network
trained with a mean canvas has a difficult time learning to segment images at this location when
no padding is used and suffers a large drop in performance compared to the black canvas. Some
classes even score around 1% mIoU, which implies that the network fails to learn to segment certain
classes (i.e., Bird, Cat, Deer, and Dog) with these settings. When zero padding is added (i.e., Mean,
w/ padding, L = 7), the network achieves a performance boost of between 35% − 60%. When a
black canvas is used to inject position information instead (i.e., Black, w/o padding, L = 7), the
performance gains range from 15%− 40%. Clearly, the encoding of position information, by means
of zero padding or a black canvas, has a stark effect on a CNN’s ability to learn distinctive semantic
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Figure 12: t-SNE (Maaten & Hinton, 2008) visualization of the CIFAR-10 test set classification
logits for a 7 × 7 grid. Examples of a single input are given in the top row, while the embedding
visualizes the entire dataset (bottom two rows).

features. We see a similar, but not quite as drastic, pattern at the center of the image, further showing
how the boundary effects impact all locations in an image, and not just at the image border.

A.6.2 DISTANCE TO BORDER PERFORMANCE

Figure 11 shows the performance as a function of the distance to the closest border for all three
canvas colors. The networks with zero padding are represented as a blue horizontal line, where the
plotted markers show the difference in performance when no padding is used. Consistent with the
results in the main paper, locations near the border are on average, much more difficult for networks
to classify and segment, particularly as the grid size increases.

A.6.3 T-SNE VISUALIZATIONS

We use t-SNE (Maaten & Hinton, 2008) to visualize the test set classification logits (from the location
dependant classification task) in Fig. 12. Note that the single input examples at the top row are shown
merely to highlight the location L, and that the second and third rows show embeddings of the entire
test set. The separability of the semantic classes is significantly improved when padding is used, and
the effect is particularly pronounced at locations near the border (L = 7). This further supports the
hypothesis that absolute position information, by means of zero padding, enables CNNs to learn more
robust semantic features, which in turn allows for greater separability in the predicted logits.

A.7 LOCATION DEPENDANT IMAGE SEGMENTATION PREDICTIONS

Figure 13 shows predictions of the location dependant image segmentation task for a grid size k = 5.
We visualize the predictions as a heatmap, where each pixel is colored according to the confidence
that the semantic category appears in that pixel’s location. We show predictions with padding (left)
and without padding (right) for various grid locations, L. Note how boundary effects significantly
impact locations near the border. In particular, locations in the corners are most affected, as they
suffer from boundary effects originating from two borders (e.g., top and left border for L = 1).
Figure 13 shows predictions of the location dependant image segmentation task for a grid size k = 5.
We visualize the predictions as a heatmap, where each pixel is colored according to the confidence
that the semantic category appears in that pixel’s location. We show predictions with padding (left)
and without padding (right) for various grid locations, L. Note how boundary effects significantly
impact locations near the border. In particular, locations in the corners are most affected, as they
suffer from boundary effects originating from two borders (e.g., top and left border for L = 1).
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Figure 13: Sample predictions of image segmentation on all the locations of a 5× 5 grid under the
mean canvas setting. Confidence maps are plotted with the ‘viridis’ colormap, where yellow and dark
blue indicates higher and lower confidence, respectively.

Figure 14: Example predictions on the Cityscapes validation set when training w/ and w/o
padding. Best viewed with zoom.
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Table 11: IoU comparison of DeepLabv3 for
semantic segmentation task with three different
padding (Zero, Reflect, and No pad) settings.

Eval. Region Zero Pad Reflect No Pad

0%- 5% 72.6 71.9 63.7
5%- 10% 72.7 72.0 66.4
10%- 15% 73.8 73.7 67.2
15%- 20% 73.9 74.1 67.9
20%- 25% 74.7 74.8 68.5
25%- 30% 75.3 75.4 69.6
30%- 35% 75.1 75.2 69.4
35%- 40% 74.7 75.2 69.3
40%- 45% 74.4 74.8 69.2
45%- 50% 74.2 74.5 69.4
50%- 55% 74.4 74.9 69.8
55%- 60% 74.3 74.8 69.7
60%- 65% 73.8 74.3 69.2
65%- 70% 73.8 74.4 68.8
70%- 75% 73.9 74.5 68.9
75%- 80% 73.8 74.4 69.2
80%- 85% 73.5 74.1 68.1
85%- 90% 71.4 71.9 65.1
90%- 95% 71.3 72.0 64.2

95%- 100% 69.7 70.1 70.2
Overall 74.0 73.9 69.1

Figure 15: An illustration of the evaluation
regions used for the analysis in Table 11 and
Fig. 7.
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Figure 16: Performance comparison of
DeepLabv3 network with respect to various im-
age regions and padding settings.

A.8 EXTENDED BOUNDARY EFFECT ANALYSIS ON CITYSCAPES DATASET

We continue to investigate the impact that zero padding has on the ability of a strong and deep CNN to
segment objects near the image boundary. Results shown use the same network and training settings
as in Sec. 6 of the main paper, on the Cityscapes (Cordts et al., 2016) dataset. We first show additional
qualitative examples in Fig. 14, which clearly shows a large reduction in performance at locations
near the border when no padding is used, particularly for thin objects (e.g., street lamps or column
poles).

We present additional results (see Table 11 and Fig. 16) of the analysis presented in Sec. 6 (semantic
segmentation) in the main paper. Fig. 15 shows sample evaluation regions used for this analysis. The
no padding case has a steeper drop-off in performance as regions of evaluation get closer to the image
boundary. Note how, in all cases, the performance increases from the border to the inner 25%, at
which point the performance is somewhat stagnant until it reaches the innermost 80%.

Surprisingly, we also observe a steeper drop off in the middle of the image for the no padding case,
supporting our hypothesis that boundary effects play a role at all regions of the image without the use
of padding. We believe the drop in performance at the center regions is due to Cityscapes being an
automotive-centric dataset, where pixels at the center of the image are often at large distances away
from the camera, unless the vehicle collecting the data has an object directly in front of it.

A.9 CANVAS ANALYSIS: CUTOUT & ADVERSARIAL ROBUSTNESS

Figure 17 shows two training examples of Cutout strategy. Following Cutout, we simply place a
rectangular mask (black and white) over a random region during the training. Note that we evaluate
on the standard PASCAL VOC 2012 validation images.
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Cutout Black Canvas Cutout White Canvas Cutout Black Canvas Cutout White Canvas

Figure 17: Sample training images generated using Cutout under two different canvases.
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