Adaptive Iterative Feedback Prompting for Obstacle-Aware Path Planning via
LLMs

Masoud Jafaripour', Shadan Golestan', Shotaro Miwa?, Yoshihiro Mitsuka’, Osmar R. Zaiane'*

'University of Alberta
2Mitsubishi Electric Corporation
3 Alberta Machine Intelligence Institute

Abstract

Planning is essential for agents operating in complex
decision-making tasks, particularly in Human-Robot Interac-
tion (HRI) scenarios, which often require adaptability and the
ability to navigate dynamic environments. Large Language
Models (LLMs), known for their exceptional natural lan-
guage understanding capabilities, hold promise for enhanc-
ing planning in HRI by processing contextual and linguis-
tic cues. However, their effectiveness is limited by inherent
shortcomings in spatial reasoning. Existing LLM-based plan-
ning frameworks often depend on combining with classical
planning methods or struggle to adapt to dynamic environ-
ments, limiting their practical applicability. This paper exam-
ines whether the incorporation of an environmental feedback
mechanism and iterative planning can enhance the planning
capabilities of LLMs. Specifically, we propose the ”Adaptive
Iterative Feedback Prompting” (AIFP) framework for path
planning. In AIFP, an LLM generates partial trajectories it-
eratively, which are evaluated for potential collisions using
environmental feedback. Based on the evaluation, AIFP exe-
cutes the trajectory or re-plans. Our preliminary results show
that AIFP increases the success rate of the baseline by 33.3%
and generates efficient, appropriately complex paths, making
it a promising approach for dynamic HRI scenarios (project
webpage at https://github.com/Masoudjafaripour/AIFP).

Introduction

Planning algorithms provide powerful tools that enable
agents to address complex sequential decision-making prob-
lems (Eysenbach, Salakhutdinov, and Levine 2019), with
applications ranging from robot motion planning (Choset
et al. 2005) and solving sliding-tile puzzles (LaValle 2006)
to performing high-level tasks such as object manipulation
and navigation in kitchens (Brohan et al. 2023). These ca-
pabilities are especially critical in Human-Robot Interaction
(HRI), where agents must operate in environments that de-
mand collaboration with humans and dynamic adaptation to
environment or human intentions (Natarajan et al. 2023).
Path planning and obstacle avoidance are essential for
the effective operation of robots, enabling safe and effi-
cient navigation in dynamic environments (Hewawasam,
Ibrahim, and Appuhamillage 2022). The literature offers a
diverse array of methodologies for solving path planning

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

problem, including classical algorithms such as A* (Hart,
Nilsson, and Raphael 1968) and RRT (Kuffner and LaValle
2000), alongside data-driven approaches like reinforcement
learning-based search (Zhou, Huang, and Frinti 2022).
Despite these advancements, conventional path-planning
frameworks struggle with navigating in complex and dy-
namic environments (Karur et al. 2021). These difficulties
are even more pronounced in HRI applications, where robots
must not only navigate dynamic environments safely but
also adapt to human behavior, preferences, and both phys-
ical and language-based instructions (Natarajan et al. 2023).

—_ @ start
N @ &nd
] i e

Obstacle 2

(a) Unsuccessful paths (b) Successful paths
Figure 1: A 2D path planning task with two obstacles was
conducted across 300 trials, generated by the LLM-agent us-
ing naive few-shot prompting. Successful and unsuccessful
paths are shown separately for clearer illustration.

Large Language Models (LLMs), renowned for their
natural language understanding capabilities (Achiam et al.
2023; Touvron et al. 2023), offer promising opportunities for
planning in HRI (Zhang and Soh 2023). Their ability to pro-
cess linguistic and contextual cues makes them well-suited
for adaptability and understanding human preferences, par-
ticularly in robotic planning (Zhang and Soh 2023; Arora
et al. 2024). However, LLM-agents often struggle with ef-
fective planning across domains (Liu et al. 2023; Bubeck
et al. 2023; Valmeekam et al. 2023; Chen et al. 2024), pri-
marily due to limitations in spatial and long-term temporal
reasoning (Aghzal, Plaku, and Yao 2023). For instance, Fig-
ure 1 illustrates a 2D navigation task where an agent must
navigate to a goal while avoiding obstacles. Using naive
few-shot prompting and repeated 300 times, the paths in Fig-

ure 1 reveal GPT-4’s inconsistency in generating collision-
free paths. However, research shows that integrating LLM-
agents into LLM-based frameworks can significantly en-
hance planning performance (Kambhampati et al. 2024).

An increasing body of research has focused on enhancing
the planning capabilities of LLM-agents by integrating envi-
ronmental feedback, thereby establishing a closed-loop sys-
tem between the environment and the LLM-agent (Huang
et al. 2022; Song et al. 2023; Zhou et al. 2024). This feed-
back mechanism allows the LLM-agent to interact with the
environment, acquire valuable knowledge, and dynamically
adjust its planning, resulting in improved performance (Song
et al. 2023). For path planning tasks, various hints and feed-
back derived from ground-truth solutions have been inte-
grated into LLM-planner frameworks, significantly enhanc-
ing their effectiveness (Aghzal, Plaku, and Yao 2023; Wu
and Mitra 2024).

In this paper, we explore whether integrating real-time en-
vironment feedback into an LLM-agent framework through
iterative prompting can enhance the spatial reasoning capa-
bilities of LLM-planners in path planning tasks. To achieve
this, we propose AIFP: the Adaptive Iterative Feedback
Prompting framework, which prompts an LLM-agent iter-
atively to generate partial plans, referred to as segments,
for a given path planning task. At each iteration, these seg-
ments are evaluated for collisions using the Receding Hori-
zon Planning (RHP) method (Bergman et al. 2020), which
predicts the agent’s future trajectory over a finite time hori-
zon. If a potential collision is detected, AIFP triggers re-
planning to modify the segment and avoid the collision. Oth-
erwise, part of the segment is executed in the environment.
In both cases, feedback, including the current state represen-
tation and predicted future states, is provided to the LLM-
agent to guide the generation of subsequent segments.

We demonstrate the framework’s application through
static and dynamic obstacle and goal path planning, a sim-
plified example of robot path planning in HRI scenarios
where moving obstacles and goals could represent humans.
Preliminary results indicate that LLM-agents using AIFP
achieve higher success rates in path planning compared to
naive few-shot prompting, across all static environments.
These findings encourage expanding the AIFP framework
to tackle more complex planning scenarios by incorporat-
ing rich environmental feedback through Vision-Language
Models (VLMs) (Radford et al. 2021; Li et al. 2022) and
optimizing trajectories via improved prompting.

Related Work

Few-shot/RAG LLM-agents. Recent studies (Song et al.
2023; Lee, An, and Kim 2024; Xu et al. 2024) demonstrate
that the planning abilities of LLMs can be enhanced by
leveraging improved in-context learning through enriched
contexts, achieved by incorporating few-shot demonstra-
tions (Brown 2020) and employing Retrieval-Augmented
Generation (RAG) (Lewis et al. 2020). These methods are
effective for high-level tasks, such as identifying steps for
cooking, as agents often encounter similar scenarios (e.g.,
opening a fridge door). However, for low-level tasks, includ-
ing path planning, LLMs fail to replicate patterns from few-

shot demonstrations (Aghzal, Plaku, and Yao 2024). Un-
like high-level planning, low-level tasks rely less on abstrac-
tions. Instead, our approach, alongside few-shot examples,
directly extracts knowledge from the environment to enable
grounded actions.

LLM-agent frameworks. Several studies have explored in-
tegrating LL.Ms with planning algorithms to enhance plan-
ning capabilities (Brohan et al. 2023; Meng et al. 2024). Ahn
et al. (Brohan et al. 2023) proposed the SayCan framework,
enabling robots to follow high-level language instructions
by using value functions and pre-trained low-level skills to
ensure feasible actions. However, its reliance on pr-etrained
skills may limit applicability in domains requiring rapid
adaptation to new, low-level tasks, especially when such
skills are not already learned. Another approach (Meng et al.
2024) uses LLMs to guide an A* algorithm for more effec-
tive path planning. Yet, in dynamic HRI environments, this
method struggles with computational efficiency due to the
complexity of A* cost calculations. In contrast, our approach
uses a simple, effective feedback mechanism that requires no
training and performs well in dynamic HRI environments.
LLM-agents with feedback. Several works aim to improve
the feasibility and accuracy of LLM-generated plans through
feedback mechanisms. Recent studies (Sharan et al. 2023;
Zhou et al. 2024) introduced novel feedback techniques to
handle environmental uncertainties. However, these often re-
quire simulating or executing entire trajectories, which can
be computationally expensive. Other studies, such as (Singh
etal. 2023), ground LLM actions in the current environment
state, enabling dynamic plan modifications for high-level,
long-horizon tasks. Similarly, AIFP integrates feedback by
providing LLLMs with a representation of the current envi-
ronment state to ground their actions. Unlike these, AIFP
uses RHP (Bergman et al. 2020) to evaluate near-future ac-
tions at each state and predict potential collisions.

Method

Problem Formulation. In this paper, we focus on path plan-
ning in a 2D environment comprising obstacles, an agent,
and specified start and goal coordinates. An instance of a

RHP: Receding Plan :
Horizon Planner Pt Peksr -+ Pran}

Environment

.
Obstaclel ~ ® Start

Obstacle2 ® Goal

.....

Prompt
Generator

Figure 2: The AIFP framework for path planning. Gray and
green arrows indicate whether the RHP component detects a
collision or not, respectively.

path planning problem is defined by an initial state sg, a
goal state sy, and a set of obstacles O = {O4,...,0n}
representing prohibited configurations (Choset et al. 2005).
At each time-step ¢, the environment transitions from state
s¢ to s;41 based on the agent’s action p;. The goal is to de-
termine a sequence of actions P that transitions the envi-
ronment from sg to s, while ensuring that the straight line
connecting consecutive waypoints avoids all obstacles (Fig-
ure 2).

The AIFP Framework

We now present the AIFP framework. Figure 2 illustrates
its application to our path planning task. The AIFP frame-
work comprises five main components, each detailed in the
following sections.

Prompt Generator The initial prompt to the LLM-agent
comprises four key components: (1) task description, speci-
fying the task to be performed; (2) scene description, detail-
ing the environment, including the agent’s current position,
goal, and obstacle locations in textual format; (3) few-shot
examples of successful paths; and (4) additional hints and
output format (see the Appendix for details). In the case of
re-planning, additional environment feedback is appended to
the initial prompt, enhancing the agent’s environmental per-
ception and instructions for re-planning and exploring alter-
native routes to generate an improved partial plan.

LLM-agent The LLM-agent plays a central role in gen-
erating actions based on the instructions compiled by the
Prompt Generator. It receives a prompt as input and gen-
erates a sequence of n actions forming a plan, referred to
as a segment S. This segment is subsequently evaluated to
ensure it is collision-free.

Plan A plan refers to a segment comprising a sequence
of n actions, i.e., S={p¢, ..., Dt+k, --., Pt+n 1> Where each p;,
1€{t, ..., t+n}, represents the agent’s (planned) position at
time-step ¢. We denote p; as a tuple (x;,y;), specifying the
location of the agent in the environment at time-step <. Each
position transition (p;—p;+1) is considered an action, with
the step size constrained by predefined bounds: |Ax;|<d,
|Ay;|<é, and |Az;|>€, |Ay;|>€, where § is the maximum
allowed step size, and € is the minimum threshold.

Receding Horizon Planner The RHP component takes
the current state of the environment, s;, and the segment S
as input and evaluates whether executing S would result in a
collision with any obstacle. If no collision is detected, a sub-
set of the segment, comprising the first k£ actions and denoted
as St.x={pt, ..., Pt+k }» is executed in the environment. Oth-
erwise, no action ({)) is executed. Figure 3 illustrates two
examples of segment evaluation.

State Representation The current location of the agent,
goal, and obstacles are embedded in s; as the current envi-
ronment state. The State Representation component trans-
forms s; into a textual description, which is sent to the
prompt generator to append to the scene description in the
prompt.

Obstacle 1 ® Goal Obstaclel —e— Segment 1
Obstacle2 -#-- Segment 1 Obstacle2 -#- Segment 2
® start Start --+-- Replanned Segment 2
Goal

(a) Evaluation of a collision free (b) After the first iteration in
segment with size 3. If k=1, (a), RHP detects a collision (blue
then the agent moves to the next path), triggering re-planning via
dot in the path. the LLM-agent (green path).

Figure 3: Examples of segment evaluation via RHP.

Experiments

We evaluate the impact of iterative feedback prompting on
the performance of LLMs in path planning across various
static and dynamic environments.

Setup Our AIFP framework leverages GPT-40 (Achiam
et al. 2023) accessed via the OpenAl API (OpenAl 2023)
as the LLM-agent for plan generation. We define a hyper-
parameter g as the allowed total number of planning (and
re-planning) iterations. To ensure reproducibility, we set the
temperature to 0, and limited the outputs to 256 tokens.

Problems We evaluate the performance of the AIFP
framework across three path planning problem categories:
(1) static and deterministic obstacle configurations, tested
over 300 experiments; (2) randomly configured obstacles,
where two quadrilateral obstacles’ vertices are randomly
perturbed by 20% of their initial locations to generate new
configurations, with 10 configurations and 20 experiments
conducted for each; and (3) either a moving obstacle or a
moving goal, both following linear trajectories at speeds of
0.015 and 0.002, respectively, evaluated in 200 experiments.

Metrics Our metric evaluation focuses on assessing the
path planning performance of LLMs using three primary
metrics which have been used in planning literature (Aghzal,
Plaku, and Yao 2023, 2024; Wu and Mitra 2024): (1) Suc-
cess Rate (SR%), which measures the percentage of suc-
cessful paths that navigate from the start to the goal while
satisfying constraints; (2) Planning iterations (N), which
quantifies the average number of all iterations including
feedback loops required to generate a feasible path; and (3)
Path length (PL), which captures the complexity of solutions
by counting the number of points in the final path.

Baseline In experiments with static and randomly posi-
tioned obstacles, we compare our method with a naive
few-shot prompting approach (similar to naive prompting
in (Aghzal, Plaku, and Yao 2023)) as a baseline (see Fig-
ure 1 and the Appendix for more details) for using LLMs as
path planners.

Results

Table 1 presents the results for various categories of path
planning problems, comparing the baseline with our AIFP

(a) The LLM-agent cannot find (b) The LLM-agent successfully
a feasible path in ¢ feedback it- planned a feasible path from the
erations; therefore, it marks this start to the goal position without
scenario as an unsuccessful plan. any collisions with obstacles.

Figure 4: Examples of planned paths via AIFP in an envi-
ronment with two obstacles.

planning methods. This subsection explores the key obser-
vations derived from the table.

Table 1: AIFP performance in path planning across different
environments

Environment AIFP
SR% N PL SR% N PL

Naive Prompt

Single Obstacle 556 206 176 223 10 74
Double Obstacles 36.7 248 37.7 14.05 1.0 7.6
Random Obstacles 31.5 27.7 29.1 125 10 6.9

Moving Obstacle 48.5 228 24.1 - - -
Moving Goal 515 149 154 - - -

Note:’-" indicate where results were not applicable for dynamic environments

Naive few-shot prompting falls short: Naive few-shot
prompting, without feedback and iterative refinement, fails
to achieve a high success rate in all static environments. The
results of naive prompt path planning are listed in Table 1.
Despite its poor performance in the SR% metric, the non-
iterative nature of naive prompting ensures N = 1, indicat-
ing low computational requirements. Additionally, the path
lengths in all naive prompting experiments are substantially
shorter than those in AIFP experiments indicating simplic-
ity of generated plans by LLM-agent in this scenario.

Static obstacle avoidance of AIFP is promising: Our
proposed AIFP method outperforms the naive prompting
baseline in path planning success rate within static environ-
ments, including single, double, and random obstacles (see
Table 1), achieving more than twice the success rate. How-
ever, it requires significantly more computation, as the num-
ber of iterations in AIFP is at least 20 times greater than
that of naive prompting. In Figure 4, we present results of
the AIFP framework in an environment with two obstacles.

AIFP planning is robust to moving obstacle and goal:
Experimental results (Table 1) show that AIFP can adap-
tively solve path planning in environments with one moving
obstacle or goal, albeit with a slightly lower SR% than in
static environments. The success rate for a single moving
obstacle is lower than that for a moving target, and planning
requires more iterations and a more complex path to solve.

Discussion and Future Work

The experimental results highlight the strengths and trade-
offs of the AIFP framework in diverse path planning sce-
narios. Compared to naive few-shot prompting, AIFP, lever-
aging an iterative prompting mechanism, achieves higher
success rates and can generate more complex path geome-
tries. However, it requires significantly more iterations (over
20 times) than the naive approach. Despite higher computa-
tional cost, using pre-trained LLMs (solely for inference) for
path planning with AIFP eliminates the need for a training
phase, as required in data-driven or learning-based methods.

The results demonstrate AIFP’s ability to adapt generated
plans to moving obstacles and goal, which is achieved by im-
plementing a receding horizon planning approach. This ap-
proach grounds segments by ensuring the prediction horizon
(segment size, n) is always longer than the implementation
horizon (k, see Figure 2). This allows AIFP to plan further
into the future while executing only a small portion of the
planned path conservatively, accounting for the possibility
of environmental changes.

One main limitation of our approach is that the planned
paths are not optimal (see Figure 4), as they are generated
by an LLM-agent over a short horizon (each segment). This
can be partially addressed by exploring more routes (e.g.,
using graph representations (Shang, Zhu, and Huang 2024))
and adding evaluation heuristics to the prompt to select more
optimal routes. Another limitation for real-world applica-
tions is that a global map is provided, while some mobile
robot applications rely only on local observations, requiring
autonomous mapping. This could be addressed by adding
a memory of observations to enrich the LLM context and
gradually build a global map.

Future studies should explore the potential of AIFP in
real-world HRI tasks with human collaborators. Addition-
ally, verbalized feedback could further help LLM-agents
better understand human intentions, aligning their actions
with expectations. To enhance applicability in HRI, incor-
porating explainability techniques for LLM-agents (Malhi,
Knapic, and Frimling 2020; Papagni et al. 2023; Taghian
et al. 2024) will improve transparency and interpretability.

Conclusion

This study investigates the use of the adaptive iterative
feedback prompting (AIFP) framework to leverage GPT-4
for solving 2D path planning problems. The AIFP method
shows significant improvement over naive few-shot prompt-
ing techniques in static scenarios, highlighting the effective-
ness of iterative prompting. However, its performance de-
clines slightly in more complex settings, such as random ob-
stacles or dynamic environments. Random obstacle pertur-
bations reveal further challenges, including increased itera-
tions and more complext paths. While AIFP demonstrates
promising adaptability, limitations persist, such as subopti-
mal path generation and the reliance on a global map. Future
work will address these issues by incorporating heuristics,
graph-based path representations, and memory mechanisms
to construct a global map, as well as exploring applications
in real-world environments.

References

Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.;
Aleman, F. L.; Almeida, D.; Altenschmidt, J.; Altman, S.;
Anadkat, S.; et al. 2023. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.

Aghzal, M.; Plaku, E.; and Yao, Z. 2023. Can large lan-
guage models be good path planners? a benchmark and in-
vestigation on spatial-temporal reasoning. arXiv preprint
arXiv:2310.03249.

Aghzal, M.; Plaku, E.; and Yao, Z. 2024. Look Further
Ahead: Testing the Limits of GPT-4 in Path Planning. arXiv
preprint arXiv:2406.12000.

Arora, R.; Singh, S.; Swaminathan, K.; Datta, A.; Baner-
jee, S.; Bhowmick, B.; Jatavallabhula, K. M.; Sridharan,
M.; and Krishna, M. 2024. Anticipate & Act: Integrating
LLMs and Classical Planning for Efficient Task Execution
in Household Environments. In International Conference
on Robotics and Automation.

Bergman, K.; Ljunggvist, O.; Glad, T.; and Axehill, D. 2020.
An optimization-based receding horizon trajectory planning
algorithm. IFAC-PapersOnLine, 53(2): 15550-15557.

Brohan, A.; Chebotar, Y.; Finn, C.; Hausman, K.; Herzog,
A.; Ho, D.; Ibarz, J.; Irpan, A.; Jang, E.; Julian, R.; et al.
2023. Do as i can, not as i say: Grounding language in
robotic affordances. In Conference on robot learning, 287—
318. PMLR.

Brown, T. B. 2020. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165.

Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, J.;
Horvitz, E.; Kamar, E.; Lee, P.; Lee, Y. T.; Li, Y.; Lundberg,
S.; etal. 2023. Sparks of artificial general intelligence: Early
experiments with gpt-4. arXiv preprint arXiv:2303.12712.

Chen, Y.; Arkin, J.; Dawson, C.; Zhang, Y.; Roy, N.; and
Fan, C. 2024. Autotamp: Autoregressive task and motion
planning with llms as translators and checkers. In 2024

IEEE International Conference on Robotics and Automation
(ICRA), 6695-6702. IEEE.

Choset, H.; Lynch, K. M.; Hutchinson, S.; Kantor, G. A.;
and Burgard, W. 2005. Principles of robot motion: theory,
algorithms, and implementations. MIT press.

Eysenbach, B.; Salakhutdinov, R. R.; and Levine, S. 2019.
Search on the Replay Buffer: Bridging Planning and Re-
inforcement Learning. In Wallach, H.; Larochelle, H.;
Beygelzimer, A.; d'Alché-Buc, F.; Fox, E.; and Garnett, R.,
eds., Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics, 4(2): 100-107.

Hewawasam, H.; Ibrahim, M. Y.; and Appuhamillage, G. K.
2022. Past, present and future of path-planning algorithms
for mobile robot navigation in dynamic environments. /[EEE
Open Journal of the Industrial Electronics Society, 3: 353—
365.

Huang, W.; Xia, F; Xiao, T.; Chan, H.; Liang, J.; Flo-
rence, P.; Zeng, A.; Tompson, J.; Mordatch, I.; Chebotar,
Y.; et al. 2022. Inner monologue: Embodied reasoning
through planning with language models. arXiv preprint
arXiv:2207.05608.

Kambhampati, S.; Valmeekam, K.; Guan, L.; Verma, M.;
Stechly, K.; Bhambri, S.; Saldyt, L. P.; and Murthy, A. B.
2024. Position: LLMs Can’t Plan, But Can Help Planning
in LLM-Modulo Frameworks. In Forty-first International
Conference on Machine Learning.

Karur, K.; Sharma, N.; Dharmatti, C.; and Siegel, J. E. 2021.
A survey of path planning algorithms for mobile robots. Ve-
hicles, 3(3): 448-468.

Kuffner, J. J.; and LaValle, S. M. 2000. RRT-connect: An
efficient approach to single-query path planning. In Pro-
ceedings 2000 ICRA. Millennium Conference. IEEE Inter-
national Conference on Robotics and Automation. Symposia
Proceedings (Cat. No. 00CH37065), volume 2, 995-1001.
IEEE.

LaValle, S. M. 2006. Planning algorithms. Cambridge uni-
versity press.

Lee, M.; An, S.; and Kim, M.-S. 2024. PlanRAG: A
Plan-then-Retrieval Augmented Generation for Generative
Large Language Models as Decision Makers. arXiv preprint
arXiv:2406.12430.

Lewis, P.; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V.;
Goyal, N.; Kiittler, H.; Lewis, M.; Yih, W.-t.; Rocktéschel,
T.; et al. 2020. Retrieval-augmented generation for
knowledge-intensive nlp tasks. Advances in Neural Infor-
mation Processing Systems, 33: 9459-9474.

Li, L. H.; Zhang, P.; Zhang, H.; Yang, J.; Li, C.; Zhong, Y;
Wang, L.; Yuan, L.; Zhang, L.; Hwang, J.-N.; et al. 2022.
Grounded language-image pre-training. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 10965—-10975.

Liu, B.; Jiang, Y.; Zhang, X.; Liu, Q.; Zhang, S.; Biswas, J.;
and Stone, P. 2023. Llm+ p: Empowering large language
models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477.

Malhi, A.; Knapic, S.; and Frimling, K. 2020. Explain-
able agents for less bias in human-agent decision making.
In Explainable, Transparent Autonomous Agents and Multi-
Agent Systems: Second International Workshop, EXTRAA-
MAS 2020, Auckland, New Zealand, May 9—13, 2020, Re-
vised Selected Papers 2, 129—146. Springer.

Meng, S.; Wang, Y.; Yang, C.-F.; Peng, N.; and Chang, K.-
W. 2024. Llm-a*: Large language model enhanced incre-
mental heuristic search on path planning. arXiv preprint
arXiv:2407.02511.

Natarajan, M.; Seraj, E.; Altundas, B.; Paleja, R.; Ye, S.;
Chen, L.; Jensen, R.; Chang, K. C.; and Gombolay, M. 2023.
Human-robot teaming: grand challenges. Current Robotics
Reports, 4(3): 81-100.

OpenAl. 2023. OpenAl API. https://platform.openai.com.
Papagni, G.; de Pagter, J.; Zafari, S.; Filzmoser, M.; and
Koeszegi, S. T. 2023. Artificial agents’ explainability to

support trust: considerations on timing and context. Ai &
Society, 38(2): 947-960.

Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
et al. 2021. Learning transferable visual models from nat-
ural language supervision. In International conference on
machine learning, 8748-8763. PMLR.

Shang, W.; Zhu, X.; and Huang, X. 2024. Path-LLM: A
Shortest-Path-based LLM Learning for Unified Graph Rep-
resentation. arXiv preprint arXiv:2408.05456.

Sharan, S.; Pittaluga, F.; Chandraker, M.; et al. 2023. Llm-
assist: Enhancing closed-loop planning with language-based
reasoning. arXiv preprint arXiv:2401.00125.

Singh, I.; Blukis, V.; Mousavian, A.; Goyal, A.; Xu, D.;
Tremblay, J.; Fox, D.; Thomason, J.; and Garg, A. 2023.
Progprompt: Generating situated robot task plans using large
language models. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), 11523-11530. IEEE.

Song, C. H.; Wu, J.; Washington, C.; Sadler, B. M.; Chao,
W.-L.; and Su, Y. 2023. Llm-planner: Few-shot grounded
planning for embodied agents with large language models.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2998-3009.

Taghian, M.; Miwa, S.; Mitsuka, Y.; Giinther, J.; Golestan,
S.; and Zaiane, O. 2024. Explainability of deep reinforce-
ment learning algorithms in robotic domains by using Layer-
wise Relevance Propagation. Engineering Applications of
Artificial Intelligence, 137: 109131.

Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; et al. 2023. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288.

Valmeekam, K.; Marquez, M.; Sreedharan, S.; and Kamb-
hampati, S. 2023. On the planning abilities of large lan-
guage models-a critical investigation. Advances in Neural
Information Processing Systems, 36: 75993-76005.

Wu, E.; and Mitra, S. 2024. Can LLMs plan paths with extra
hints from solvers? arXiv preprint arXiv:2410.05045.

Xu, W.; Wang, M.; Zhou, W,; and Li, H. 2024. P-RAG:
Progressive Retrieval Augmented Generation For Planning
on Embodied Everyday Task. In Proceedings of the 32nd
ACM International Conference on Multimedia, 6969—-6978.

Zhang, B.; and Soh, H. 2023. Large language models
as zero-shot human models for human-robot interaction.
In 2023 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 7961-7968. IEEE.

Zhou, C.; Huang, B.; and Frinti, P. 2022. A review of mo-
tion planning algorithms for intelligent robots. Journal of
Intelligent Manufacturing, 33(2): 387-424.

Zhou, Z.; Song, J.; Yao, K.; Shu, Z.; and Ma, L. 2024. Isr-
Ilm: TIterative self-refined large language model for long-
horizon sequential task planning. In 2024 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
2081-2088. IEEE.

Appendix

We present below a detailed description of the prompt used
for the naive few-shot prompting method. This process was
run 300 times, and the resulting paths are plotted in Fig. 1.

Prompt:
-

Task Description

You are tasked with planning a path based on specific in-
structions in a 2D environment containing objects and an
obstacle. The path must navigate from a starting position
to the final goal. Avoid entering the obstacles (blue and
orange boxes) at any point.

Environment Description

Environment Details:

o Start: [name: start point, shape: circle, color: green,
center position: [-1.5, 1.2]]

¢ Goal: [name: goal point, shape: circle, color: red, cen-
ter position: [1.0, -0.5]]

* Obstacle 1: [name: Obstacle-1, shape: quadrilateral,
color: blue, corners at [[0.0, -0.15], [0.5, 0.3], [0.3,
0.8], [-0.2, 0.4]]]

* Obstacle 2: [name: Obstacle-2, shape: quadrilateral,
color: orange, corners at [[-1.0, 0.0], [-0.6, 0.4], [-1.2,
0.7], [-1.4,0.3] 1]

Important: The blue and orange areas are restricted zones
and must be avoided completely during the path. No point
in the path can intersect or enter this area.

Detail Instructions

Navigation Instructions:
 Start at the green box, then navigate in 2D plane and
finally end at the red box.

* Avoid entering the obstacle areas (blue and orange) at
any point during the path.

* The path should include curved motions or additional
waypoints to smoothly navigate around obstacles and
restricted zones.

Obstacle Avoidance Instruction:

1. Identify which corners of the obstacle areas are at the
lower side (downside) and which ones are at the up-
per side (upside) based on their y-coordinates. Assume
that a larger y-coordinate indicates the upper direction.

2. Identify which corners of the obstacle areas are on the
left side and which ones are on the right side based on
their z-coordinates. Assume that a larger x-coordinate
indicates the right direction.

3. Assign the following labels to the corners of the obsta-
cle area:

e Left top corner: C1

* Right top corner: C2

* Right bottom corner: C3
e Left bottom corner: C4

4. For each corner of the obstacle areas, the path must
avoid specific directions based on the corner’s posi-
tion. Use the following rules for path planning:

e For C1 (left top corner): The path must stay either
on its left, on its top, or both on its left and top.

— The path (waypoints of path) must never be di-
rectly in the region below and the right of C1.

— However, the path can move above and right of C1,
or below and left of C1.

¢ For C2 (right top corner): The path must stay either
on its right, on its top, or both on its right and top.

— The path (waypoints of path) must never be di-
rectly in the region below and the left of C2.

— However, the path can move above and left of C2,
or below and right of C2.

* For C3 (right bottom corner): The path must stay
either on its right, on its bottom, or both on its right
and bottom.

— The path (waypoints of path) must never be di-
rectly in the region above and the left of C3.

— However, the path can move below and right of
C3, or above and left of C3.

¢ For C4 (left bottom corner): The path must stay ei-
ther on its left, on its bottom, or both on its left and
bottom.

— The path (waypoints of path) must never be di-
rectly in the region above and the right of C4.

— However, the path can move below and left of C4,
or above and right of C4.

5. Ensure that no path points are placed on the edges of
the obstacle areas. All path points should be located
entirely outside the obstacle areas, avoiding any points
along its boundaries.

Few-Shot Examples

Examples for Reference:

» Example 1: Starting from the green cirle and ending
at the red circle while avoiding the obstacle area can
be done by this trajectory or path:

{ [1L;=0.8], [0.0;=0,25]

g [=0.85,0.5],;
[=0:8,0:8], [=lo5,le2]

» Example 2: Starting from the green circle and ending
at the red circle while avoiding the obstacle area can
be done by this trajectory or path:

1 [1,=0.8], [0.0,=0,38]

p [=i,=0:28];
[=l08;0.25]1, [=1.8;do2] J

Output Format

Output Format: Please generate the trajectory as a list
of coordinates in the format [x, y], structured as a JSON
object like this:

{ "Trajectory": [

[(x1, y11,
[x2, y2],

L

cooll
Additional Notes:
* Ensure the JSON is properly formatted with correct
syntax.
¢ Include curved motions where necessary to avoid the
osbtacles area.
* The path must consider the entire area of the obstacles,
avoiding it completely.

GPT-4 Output:

Then, executing this prompt, GPT-4 will generate an output
similar to the box below which is a series of point from start

to goal:

Output Format

LLM Output: “Trajectory”: [[1.0, -0.5], [0.5, -0.5], [0.5,
0.0], [0.7, 0.5], [0.7, 1.0], [0.5, 1.2], [0.0, 1.2], [-1.0, 1.2],
[-1.5,1.2]]

