
FPTQuant: Function-Preserving Transforms for LLM Quantization

Boris van Breugel 1 Yelysei Bondarenko 1 Paul Whatmough 1 Markus Nagel 1

Abstract
Large language models (LLMs) are compute- and
energy-intensive at inference time. While quan-
tization improves efficiency, naive approaches
often degrade performance due to outliers. We
introduce FPTQuant, a method that enables ef-
fective transformer quantization through four
novel, lightweight function-preserving trans-
forms (FPTs): (1) a pre-RoPE transform for
queries/keys, (2) a value transform, (3) an MLP
scaling transform, and (4) a dynamic residual
scaling. These FPTs exploit transformer equiv-
ariances to reshape activations without altering
model function, require no custom kernels, and
add negligible inference overhead. FPTQuant en-
ables static INT4 quantization with minimal over-
head and shows SOTA speed-up of up to 3.9×
over FP. Empirically, FPTQuant has an excellent
accuracy-speed trade-off—it is performing on par
or exceeding most prior work and only shows
slightly lower accuracy compared to a method
that is up to 29% slower.

1. Introduction
Motivation. Inference on large language models (LLMs)
incurs a significant compute toll for every token generated,
which ultimately costs money and consumes environmen-
tal resources. These costs limit the proliferation of LLM
use cases, especially on resource constrained edge devices.
They are also a significant barrier to furthering AI research
and democratization. Therefore, improving LLM inference
efficiency is a critical goal. Of the numerous LLM efficiency
techniques proposed to date, quantization is by far the most
successful; significantly reducing the inference cost by re-
ducing the data bit width across the model. However, the
transformer architecture used in LLMs is significantly more

1Qualcomm AI Research. Qualcomm AI Research
is an initiative of Qualcomm Technologies, Inc. Cor-
respondence to: {bvanbreu, ybond, pwhatmou,
markusn}@qti.qualcomm.com.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

challenging to quantize.

Transforms for aggressive quantization. Outliers in
transformer weights and activations hinder quantization by
forcing a trade-off: either increase range and lose preci-
sion near zero, or clip outliers and risk accuracy loss (Bon-
darenko et al., 2021; Kovaleva et al., 2021; Dettmers et al.,
2022; Bondarenko et al., 2023; Sun et al., 2024a). Prior
work mitigates this using operations like scaling or rota-
tion that smooth outliers without altering model behaviour
pre-quantization. For instance, Xiao et al. (2024) apply
per-channel scaling T = diag(s) to inputs X and inverse
scaling to weights W, preserving function in full precision:
(XT)(T−1W) = XW, though not under quantization. We
refer to such operations as function-preserving transforms
(FPTs), for which we desire the following properties:

P1 Function-preservation. Without any quantization, in-
serting transform pairs should not change the output
(up to computational errors). In practice, this means
each FPT typically has an inverse operation.

P2 Expressivity. Transforms with a continuous
parametrization and more degrees of freedom are de-
sirable. Continuity means transforms can be optimized
directly, e.g. using gradient descent. Extra degrees of
freedom offer more flexibility for reducing the quanti-
zation error.

P3 Compute overhead. Depending on the FPT type and
location, it may be possible to merge (or ‘fuse’) it
into an existing operation in a pretrained model. Non-
mergeable FPTs represent a new op in the computa-
tional graph, and incur additional overhead, as well as
requiring software and/or hardware support.

Contributions. Our contributions are threefold:

1. We introduce FPTQuant: Function-Preserving Trans-
forms for Quantization (Figure 1). FPTQuant includes
four novel FPTs that are designed to be both expressive
and cheap.

2. We show FPTQuant enables INT4 quantization with
minimal overhead. This provides a SOTA speed-up of
up to 3.9× over FP.

3. We show FPTQuant has an excellent accuracy-speed
trade-off – it is performing on par or exceeding most
prior work and only shows slightly lower accuracy
compared to a method that is up to 29% slower.

1

FPTQuant: Function-Preserving Transforms for LLM Quantization

Figure 1. FPTQuant. FPTQuant consists of 6 transform types. (Tk, T̄k) is a scale-and-rotate transform merged into the query and key
weights; (Tv, T̄v) consists of invertible matrices per head merged into value and output weights; (Tu,T

−1
u) is a per-channel scaler

merged into up and down projection weights; transforms {Sn}Nn=1 (N = 2×number of transformer blocks for typical LLMs) are
per-token scalers applied to the residual and within the attention and MLP blocks. The scales Sn are computed by existing RMSNorms,
and in practice means now the RMSNorm is also applied to the residual (versus the original network, see ×∗). We also use partly online
Hadamard transform Td (Ashkboos et al., 2024b) and mergeable rotation matrix Tr (Liu et al., 2024b).

2. Related work
Nagel et al. (2019) introduced FPTs for CNN quantiza-
tion, noting that ReLU and per-channel scaling commute,
enabling cross-layer weight scaling. In LLMs, Xiao et al.
(2024) address activation quantization challenges by shifting
outliers to weights via online per-channel scaling. Wei et al.
(2023) refine this with a shift and grid search, while Shao
et al. (2024) extend it using gradient descent and scaling
vectors for queries and keys.

Chee et al. (2024) first explored channel-mixing transforms
for weight quantization, later advancing to vector quantiza-
tion (Tseng et al., 2024). QuaRot (Ashkboos et al., 2024b)
uses Hadamard transforms to reduce outliers, while Spin-
Quant (Liu et al., 2024b) adds trainable rotations to improve
performance without inference cost. DuQuant (Lin et al.,
2024) applies fixed permutations and block rotations, and
FlatQuant (Sun et al., 2024b) introduces efficient Kronecker-
product-based transforms. Appendix A compares the cost
and effectiveness of these methods, and Appendix B reviews
related work on quantization.

3. Method
3.1. Transforms

Equivariances and independencies in pretrained models
should be exploited. When an FPT is equivariant with
respect to a model operation, it can be applied before or
after that operation—potentially enabling mergeability. For

instance, Ashkboos et al. (2024a) leverage the equivari-
ance RMSNorm(XM) = RMSNorm(X)M (for orthogo-
nal M) to insert rotations into residuals and merge them into
linear layers, achieving expressivity without added compute.
Understanding such properties is key to balancing expres-
sivity (P2) and inference cost (P3). We now introduce four
equivariances that motivate four novel transforms.

3.1.1. PRE-ROPE TRANSFORM (MERGEABLE)

Reducing the bit width of KV cache and queries can sig-
nificantly reduce memory footprint and computational cost
of attention, especially with longer context windows. Un-
fortunately, we cannot naively merge transforms into the
query and key projection weights, because modern LLMs
use RoPE positional encodings (Su et al., 2024) (see Ap-
pendix C). We introduce a pair of pre-RoPE transforms (Tk,
T̄k), where Tk is applied to keys and T̄k can be interpreted
as an inverse of Tk, applied to the queries. The transforms
consist of scaled 2× 2 rotation matrices, and applying these
to the query and key weights Pre-RoPE, the attention out-
put remains unchanged. For simplicity we first assume a
single attention head. Denoting i, j ∈ N as the token in-
dices and RoPE applied to queries and keys as function
f : Rd × N → Rd with f(x, i) = xRdhead

Θ,i (see details
Appendix C), the following holds:

Theorem 1. Let N = dhead/2, and Rn ∈ O(2) and sn ∈
R, for n = 1, ..., N . Define Tk = diag(s) diag({Rn}Nn=1)
and T̄k = diag(s−1) diag({Rn}Nn=1). Given query and key
weights (Wq,Wk) ∈ Rdin×dhead , define W̃q = WqT̄k

2

FPTQuant: Function-Preserving Transforms for LLM Quantization

and W̃k = WkTk. Now it holds:

⟨f(xiW̃q, i), f(xjW̃k, j)⟩ = ⟨f(xiWq, i), f(xjWk, j)⟩

In practice, for multi-head attention and grouped-query at-
tention, we can choose an independent transform for each
key head. Assuming there are H key heads and mH query
heads for some m,H ∈ N (m = 1 for standard multihead
attention), this means we have H independent transforms
as above. For the more typical grouped query-attention
(m > 1), each key head is attended to by multiple query
heads, hence we need to repeat the corresponding Tk trans-
form across these heads. Generally, we can thus write:

s(h) ∈ Rd,R(h)
n ∈ O(2), ∀h, n (1)

T
(h)
k = diag(s(h)) diag({R(h)

n }Nn=1), (2)

Tk = diag({T(h)
k }Hh=1) (3)

T̄k = diag(T̄
(1)
k , ..., T̄

(1)
k︸ ︷︷ ︸

m×

, T̄
(2)
k , ..., T̄

(H)
k), (4)

3.1.2. MULTIHEAD VALUE TRANSFORM (MERGEABLE)

Note that the attention probabilities are shape
(B,mH, l1, l2) and the values (B,mH, l2, d). The
batched matmul (BMM) multiplies these per sample,
head, and token, and sum this over l2. Note d plays no
role in this BMM, consequently we are free to apply any
invertible transform to the d axis. Note that the different
heads in the values are independent, hence we can apply a
different transform to each attention head. Newer models
use grouped-query attention, which requires a bit of
bookkeeping: we need to repeat the inverses per key head,
across the corresponding softmax heads. Assuming there
are again H value heads (repeated to mH heads) and mH
query heads, we can choose any invertible T(h)

v ∈ Rd×d,
and set:

Tv = diag({T(h)
v }Hh=1), (5)

T̄v = diag((T(1)
v)−1, ..., (T(1)

v)−1︸ ︷︷ ︸
m×

, (T(2)
v)−1, ..., (T(H)

v)−1),

(6)

which are merged into respectively Wv and Wo weights.

3.1.3. PSEUDODYNAMIC RESIDUAL SCALING

In modern transformers, residual connections are typically
unnormalized—LayerNorm or RMSNorm is not applied to
the residual. This leads to large per-token scale variation,
making residuals difficult to quantize and contributing to
outliers in downstream layers such as the FFN output (Bon-
darenko et al., 2023). We propose a lightweight, function-
preserving method to normalize residuals dynamically, with-
out altering model outputs or requiring custom kernels. This
involves two steps:

Step 1: Normalize residuals. Let Xn be the residual
input, Yn the output of the n-th block, and Zn = Xn+Yn.
We compute a per-token scaling factor:

Sn = 1⊘ ||Xn||R, where ||x||R =
1√
d
||x||2,

and apply it to both residual and output: X̃n = Sn ⊙Xn,
Ỹn = Sn ⊙Yn, which gives a scaled output Z̃n = X̃n +
Ỹn = Sn ⊙ Zn.

Step 2: Recursive scaling. Earlier scaling affects later
scaling. We can define a recursive relationship:

S0 = 1, Sn = Sn−1 ⊘ ||Z̃n−1||R. (7)

This allows us to compute all scales from the normalized out-
puts alone. Because matrix multiplications, bias-free linear
layers, and BMMs commute with per-token scaling, we can
push the rescaling deep into the attention and FFN blocks
(see Figure 1). This flexibility helps reduce quantization
error within those blocks.

Final output. The final transformer output is Z̃N = SN⊙
ZN . While we could divide by SN to recover the original
output, this is unnecessary in practice, as the LM head
typically begins with an RMSNorm, which cancels the scale.

3.1.4. SCALER TRANSFORM ON UP (MERGEABLE)

The entry-wise product ⊙ is commutative under matrix mul-
tiplication with a diagonal matrix: given A,B ∈ Rn×d and
diagonal M ∈ Rd×d, (A ⊙B)M = A ⊙ (BM). A diag-
onal M is useful for us: it can be used to apply a scaling
transform to up projections, and merge the inverse into the
down projection layer. Note that a scaling vector is also used
in (Xiao et al., 2024; Shao et al., 2024; Wei et al., 2023),
however these works do not consider that scaling commutes
with the entry-wise product, and instead apply a scale to all
linear input activations online before quantizing.

3.1.5. OTHER TRANSFORMS

In addition to these new transforms, FPTQuant uses a ro-
tation matrix Tr for rotating the residuals, since this is
completely mergeable and Liu et al. (2024b) showed this is
effective at reducing activation quantization error. Addition-
ally, the notoriously bad quantization error of activations at
the down projection input (Table 3 in (Liu et al., 2024b))
warrants an online transform here; we use a Hadamard
transform like in (Ashkboos et al., 2024b; Chee et al., 2024),
because it is relatively cheap (Table 3). A schematic illus-
tration of all our transforms applied to a typical transformer
block is shown in Figure 1. We optimize transforms locally
and globally, see Appendix D.

3

FPTQuant: Function-Preserving Transforms for LLM Quantization

Figure 2. Prefill speedup of FPTQuant on a single transformer
block of LLaMA models across different sizes: 3B, 7B, 8B, 13B,
and 70B. We use batch size 1 and sequence length 1024.

4. Experiments
Set-up. We evaluate FPTQuant on Llama-2-7B (Touvron
et al., 2023), Llama-3-8B (Grattafiori et al., 2024), and
Llama-3.2-3B-instruct, covering both standard and edge-
device models. We use Wikitext-2 (Merity et al., 2017) and
six common-sense reasoning tasks from LM-Harness. We
compare against FP, RTN-opt, QuaRot (Ashkboos et al.,
2024b), SpinQuant (Liu et al., 2024b), and FlatQuant (Sun
et al., 2024b). We use round-to-nearest (RTN) for all meth-
ods, since RTN performs competitive to more advanced
quantization methods when using transforms (Sun et al.,
2024b). See Appendix E for more experimental details.

Runtime Performance. We benchmark on an NVIDIA
RTX 3080 Ti using static INT4 quantization and CUTLASS
kernels. Figure 2 shows that FPTQuant achieves 2.8× –
3.9× speedup over FP16, outperforming FlatQuant (15-29%
slower) and matching or exceeding SpinQuant.

Table 1. FPTQuant excels for more activation quantizers. Ex-
ploring different activations quantization settings with W4KV4A4
on Llama 3.2 3B instruct. Linears+KV is the setting used in (Ashk-
boos et al., 2024b; Liu et al., 2024b; Sun et al., 2024b). +BMM
input also quantizes the inputs to the attention batched matmuls
(queries and softmax output). All except residuals includes all
activations except for the residual. We report Wikitext perplexity.

Quant Method W4A4KV4 W4A8KV8
FP16 10.48

Linears+KV
SpinQuant 12.71 11.71
FlatQuant 11.38 10.68
FPTQuant 11.71 10.78

+BMM input
SpinQuant 13.16 10.88
FlatQuant 12.30 10.68
FPTQuant 13.99 10.56

All except residual
SpinQuant 20.13 11.73
FlatQuant 18.60 11.49
FPTQuant 17.17 10.99

Table 2. Comparison of the perplexity score on WikiText-2 (Merity
et al., 2017) for Llama-3.2-3B-instruct (L3.2 3B-it), Llama-3-8B
(L3 8B) and Llama-2-7B (L2 7B). See Appendix F for accuracy
metrics.

#Bits Method L3.2 3B-it L3 8B L2 7B
16-16-16 FP16 10.48 5.75 5.47

4-8-8

RTN-opt 11.20 7.32 7.11
QuaRot 10.89 7.04 6.22
Spinquant 11.03 6.54 5.97
Flatquant 10.67 6.20 6.46
FPTQuant 10.65 6.27 5.85

4-8-4

RTN-opt 11.57 7.78 8.04
QuaRot 11.09 7.29 11.91
Spinquant 11.47 7.43 6.45
Flatquant 10.88 6.51 5.91
FPTQuant 11.12 6.78 6.05

4-4-4

RTN-opt 46.84 543 2220
QuaRot 12.81 19.72 1218
Spinquant 12.71 11.04 1461
Flatquant 11.38 9.55 951
FPTQuant 11.71 9.74 940

Accuracy and perplexity. In Table 1, we consider
Wikitext-2 perplexity of different transforms at W4A4KV4
quantization, varying which activations are quantized. We
observe that FPTQuant is better than baselines at the most
challenging quantization setting (All except residual). Com-
pared to Linears+KV, we see a slight drop for FPTQuant
relative to baseline when going to +BMM input—this is a
setting in which queries are quantized, and our mergeable
Pre-RoPE transform is not as expressive as the online R3

(Liu et al., 2024b) or Ph (Sun et al., 2024b) transforms.
Table 2 shows results across different bit widths, with only
linears and KV cache quantized. FPTQuant consistently
outperforms QuaRot and SpinQuant. It is competitive with
FlatQuant, despite FPTQuant being 15-29% faster. We
observe similar results for reasoning tasks and dynamic
quantization, see Appendix F.

5. Discussion
When choosing FPTs, there is a trade-off between expres-
sivity (P2) and cost (P3): more expressive transforms can
help reduce quantization error, but incur overhead. By un-
derstanding commutation properties of existing operations
within the LLM, we have designed most of FPTQuant’s
transforms to be both expressive, yet mergeable into exist-
ing weights. In many settings, the FPTs used by FPTQuant
provide a good trade-off between accuracy and speed. For
some settings, one may prefer to combine FPTQuant with
more expressive, non-mergeable transforms.

4

FPTQuant: Function-Preserving Transforms for LLM Quantization

References
Ashkboos, S., Croci, M. L., Nascimento, M. G. d., Hoefler,

T., and Hensman, J. SliceGPT: Compress Large Lan-
guage Models by Deleting Rows and Columns, Febru-
ary 2024a. URL http://arxiv.org/abs/2401.
15024. arXiv:2401.15024.

Ashkboos, S., Mohtashami, A., Croci, M. L., Li, B.,
Jaggi, M., Alistarh, D., Hoefler, T., and Hensman, J.
QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs,
March 2024b. URL https://arxiv.org/abs/
2404.00456v1.

Banner, R., Nahshan, Y., Hoffer, E., and Soudry, D. Post-
training 4-bit quantization of convolution networks for
rapid-deployment. arXiv preprint arXiv:1810.05723,
2018.

Bhalgat, Y., Lee, J., Nagel, M., Blankevoort, T., and Kwak,
N. Lsq+: Improving low-bit quantization through learn-
able offsets and better initialization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, 2020.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi,
Y. PIQA: Reasoning about Physical Commonsense in
Natural Language. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 34(05):7432–7439, April
2020. ISSN 2374-3468. doi: 10.1609/aaai.v34i05.
6239. URL https://ojs.aaai.org/index.
php/AAAI/article/view/6239. Number: 05.

Bondarenko, Y., Nagel, M., and Blankevoort, T. Under-
standing and overcoming the challenges of efficient trans-
former quantization. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, pp. 7947–7969, Online and Punta Cana, Domini-
can Republic, November 2021. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2021.emnlp-main.
627. URL https://aclanthology.org/2021.
emnlp-main.627.

Bondarenko, Y., Nagel, M., and Blankevoort, T. Quan-
tizable Transformers: Removing Outliers by Helping
Attention Heads Do Nothing. Advances in Neural In-
formation Processing Systems, 2023. URL https:
//arxiv.org/abs/2306.12929v2.

Bondarenko, Y., Chiaro, R. D., and Nagel, M. Low-
Rank Quantization-Aware Training for LLMs, Septem-
ber 2024. URL http://arxiv.org/abs/2406.
06385. arXiv:2406.06385.

Cai, Y., Yao, Z., Dong, Z., Gholami, A., Mahoney, M. W.,
and Keutzer, K. Zeroq: A novel zero shot quantization
framework. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 13169–
13178, 2020.

Chee, J., Cai, Y., Kuleshov, V., and De Sa, C. M. Quip: 2-bit
quantization of large language models with guarantees.
Advances in Neural Information Processing Systems, 36,
2024.

Chen, M., Shao, W., Xu, P., Wang, J., Gao, P., Zhang,
K., and Luo, P. Efficientqat: Efficient quantization-
aware training for large language models. arXiv preprint
arXiv:2407.11062, 2024.

Choukroun, Y., Kravchik, E., Yang, F., and Kisilev, P. Low-
bit quantization of neural networks for efficient inference.
In ICCV Workshops, pp. 3009–3018, 2019.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have Solved
Question Answering? Try ARC, the AI2 Reasoning Chal-
lenge, March 2018. URL http://arxiv.org/abs/
1803.05457. arXiv:1803.05457 [cs].

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Gpt3. int8 (): 8-bit matrix multiplication for transformers
at scale. In Advances in Neural Information Processing
Systems, 2022.

Dettmers, T., Svirschevski, R., Egiazarian, V., Kuznedelev,
D., Frantar, E., Ashkboos, S., Borzunov, A., Hoefler, T.,
and Alistarh, D. Spqr: A sparse-quantized representation
for near-lossless llm weight compression. arXiv preprint
arXiv:2306.03078, 2023.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L.
Qlora: Efficient finetuning of quantized llms. Advances
in Neural Information Processing Systems, 36, 2024.

Du, D., Zhang, Y., Cao, S., Guo, J., Cao, T., Chu, X., and Xu,
N. Bitdistiller: Unleashing the potential of sub-4-bit llms
via self-distillation. arXiv preprint arXiv:2402.10631,
2024.

Egiazarian, V., Panferov, A., Kuznedelev, D., Frantar, E.,
Babenko, A., and Alistarh, D. Extreme compression of
large language models via additive quantization. arXiv
preprint arXiv:2401.06118, 2024.

Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy,
R., and Modha, D. S. Learned step size quantization. In
International Conference on Learning Representations
(ICLR), 2020.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

5

http://arxiv.org/abs/2401.15024
http://arxiv.org/abs/2401.15024
https://arxiv.org/abs/2404.00456v1
https://arxiv.org/abs/2404.00456v1
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://aclanthology.org/2021.emnlp-main.627
https://aclanthology.org/2021.emnlp-main.627
https://arxiv.org/abs/2306.12929v2
https://arxiv.org/abs/2306.12929v2
http://arxiv.org/abs/2406.06385
http://arxiv.org/abs/2406.06385
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457

FPTQuant: Function-Preserving Transforms for LLM Quantization

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan,
P. Deep learning with limited numerical precision. In
International conference on machine learning, pp. 1737–
1746. PMLR, 2015.

Huang, W., Qin, H., Liu, Y., Li, Y., Liu, X., Benini, L.,
Magno, M., and Qi, X. Slim-llm: Salience-driven mixed-
precision quantization for large language models. arXiv
preprint arXiv:2405.14917, 2024.

Hubara, I., Nahshan, Y., Hanani, Y., Banner, R., and Soudry,
D. Improving post training neural quantization: Layer-
wise calibration and integer programming. arXiv preprint
arXiv:2006.10518, 2020.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 2704–2713, 2018.

Jeon, Y., Lee, C., Park, K., and Kim, H.-y. A frustratingly
easy post-training quantization scheme for llms. In Pro-
ceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pp. 14446–14461, 2023.

Kim, S., Hooper, C., Gholami, A., Dong, Z., Li,
X., Shen, S., Mahoney, M. W., and Keutzer, K.
Squeezellm: Dense-and-sparse quantization. arXiv
preprint arXiv:2306.07629, 2023.

Kovaleva, O., Kulshreshtha, S., Rogers, A., and Rumshisky,
A. Bert busters: Outlier dimensions that disrupt trans-
formers. In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pp. 3392–3405, 2021.

Krishnamoorthi, R. Quantizing deep convolutional networks
for efficient inference: A whitepaper. arXiv preprint
arXiv:1806.08342, 2018.

Lee, C., Jin, J., Kim, T., Kim, H., and Park, E. Owq: Outlier-
aware weight quantization for efficient fine-tuning and
inference of large language models. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38,
pp. 13355–13364, 2024.

Lee, J. H., Kim, J., Kwon, S. J., and Lee, D. Flexround:
Learnable rounding based on element-wise division for
post-training quantization. In International Conference
on Machine Learning, pp. 18913–18939. PMLR, 2023.

Li, Y., Gong, R., Tan, X., Yang, Y., Hu, P., Zhang, Q., Yu,
F., Wang, W., and Gu, S. Brecq: Pushing the limit of
post-training quantization by block reconstruction. arXiv
preprint arXiv:2102.05426, 2021.

Lin, H., Xu, H., Wu, Y., Cui, J., Zhang, Y., Mou, L.,
Song, L., Sun, Z., and Wei, Y. DuQuant: Distribut-
ing Outliers via Dual Transformation Makes Stronger
Quantized LLMs. In Advances in Neural Informa-
tion Processing Systems. arXiv, November 2024. doi:
10.48550/arXiv.2406.01721. URL http://arxiv.
org/abs/2406.01721. arXiv:2406.01721.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and
Han, S. Awq: Activation-aware weight quantization
for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Liu, Z., Oguz, B., Zhao, C., Chang, E., Stock, P., Mehdad,
Y., Shi, Y., Krishnamoorthi, R., and Chandra, V. LLM-
QAT: Data-Free Quantization Aware Training for Large
Language Models. In Ku, L.-W., Martins, A., and Sriku-
mar, V. (eds.), Findings of the Association for Computa-
tional Linguistics: ACL 2024, pp. 467–484, Bangkok,
Thailand, August 2024a. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2024.findings-acl.
26. URL https://aclanthology.org/2024.
findings-acl.26/.

Liu, Z., Zhao, C., Fedorov, I., Soran, B., Choudhary, D., Kr-
ishnamoorthi, R., Chandra, V., Tian, Y., and Blankevoort,
T. SpinQuant: LLM quantization with learned ro-
tations, May 2024b. URL https://arxiv.org/
abs/2405.16406v2.

Liu, Z., Zhao, C., Huang, H., Chen, S., Zhang, J., Zhao,
J., Roy, S., Jin, L., Xiong, Y., Shi, Y., Xiao, L., Tian,
Y., Soran, B., Krishnamoorthi, R., Blankevoort, T., and
Chandra, V. Paretoq: Scaling laws in extremely low-bit
llm quantization, 2025. URL https://arxiv.org/
abs/2502.02631.

Luo, Y., Gao, Y., Zhang, Z., Fan, J., Zhang, H., and Xu, M.
Long-range zero-shot generative deep network quantiza-
tion. Neural Networks, 166:683–691, 2023.

Meller, E., Finkelstein, A., Almog, U., and Grobman, M.
Same, same but different: Recovering neural network
quantization error through weight factorization. In In-
ternational Conference on Machine Learning, pp. 4486–
4495. PMLR, 2019.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. In International Conference on
Learning Representations, 2017.

6

http://arxiv.org/abs/2406.01721
http://arxiv.org/abs/2406.01721
https://aclanthology.org/2024.findings-acl.26/
https://aclanthology.org/2024.findings-acl.26/
https://arxiv.org/abs/2405.16406v2
https://arxiv.org/abs/2405.16406v2
https://arxiv.org/abs/2502.02631
https://arxiv.org/abs/2502.02631

FPTQuant: Function-Preserving Transforms for LLM Quantization

Nagel, M., Baalen, M. v., Blankevoort, T., and Welling,
M. Data-free quantization through weight equalization
and bias correction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV),
October 2019.

Nagel, M., Amjad, R. A., van Baalen, M., Louizos, C., and
Blankevoort, T. Up or Down? Adaptive Rounding for
Post-Training Quantization, April 2020. URL https:
//arxiv.org/abs/2004.10568v2.

Nagel, M., Fournarakis, M., Amjad, R. A., Bondarenko,
Y., Van Baalen, M., and Blankevoort, T. A white pa-
per on neural network quantization. arXiv preprint
arXiv:2106.08295, 2021.

Nagel, M., Fournarakis, M., Bondarenko, Y., and
Blankevoort, T. Overcoming oscillations in quantization-
aware training. In International Conference on Machine
Learning, pp. 16318–16330. PMLR, 2022.

Paperno, D., Kruszewski, G., Lazaridou, A., Pham, N.-Q.,
Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G., and
Fernández, R. The lambada dataset: Word prediction
requiring a broad discourse context. In Proceedings of
the 54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 1525–
1534, 2016.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
WinoGrande: an adversarial winograd schema challenge
at scale. Commun. ACM, 64(9):99–106, August 2021.
ISSN 0001-0782. doi: 10.1145/3474381. URL https:
//dl.acm.org/doi/10.1145/3474381.

Shao, W., Chen, M., Zhang, Z., Xu, P., Zhao, L., Li, Z.,
Zhang, K., Gao, P., Qiao, Y., and Luo, P. OmniQuant:
Omnidirectionally Calibrated Quantization for Large Lan-
guage Models, March 2024. URL http://arxiv.
org/abs/2308.13137. arXiv:2308.13137 [cs].

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

Sun, M., Chen, X., Kolter, J. Z., and Liu, Z. Massive
activations in large language models. arXiv preprint
arXiv:2402.17762, 2024a.

Sun, Y., Liu, R., Bai, H., Bao, H., Zhao, K., Li, Y., Hu, J.,
Yu, X., Hou, L., Yuan, C., Jiang, X., Liu, W., and Yao, J.
FlatQuant: Flatness Matters for LLM Quantization, Octo-
ber 2024b. URL http://arxiv.org/abs/2410.
09426. arXiv:2410.09426.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,

Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Tseng, A., Chee, J., Sun, Q., Kuleshov, V., and De Sa, C.
QuIP#: Even Better LLM Quantization with Hadamard
Incoherence and Lattice Codebooks, February 2024. URL
https://arxiv.org/abs/2402.04396v2.

Wei, X., Zhang, Y., Li, Y., Zhang, X., Gong, R., Guo, J.,
and Liu, X. Outlier Suppression+: Accurate quantization
of large language models by equivalent and optimal shift-
ing and scaling, October 2023. URL http://arxiv.
org/abs/2304.09145. arXiv:2304.09145 [cs].

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J.,
and Han, S. SmoothQuant: Accurate and Efficient
Post-Training Quantization for Large Language Mod-
els, March 2024. URL http://arxiv.org/abs/
2211.10438. arXiv:2211.10438 [cs].

Xu, Y., Xie, L., Gu, X., Chen, X., Chang, H., Zhang, H.,
Chen, Z., Zhang, X., and Tian, Q. Qa-lora: Quantization-
aware low-rank adaptation of large language models.
arXiv preprint arXiv:2309.14717, 2023.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi, Y.
HellaSwag: Can a Machine Really Finish Your Sentence?,
May 2019. URL http://arxiv.org/abs/1905.
07830. arXiv:1905.07830 [cs].

Zhao, R., Hu, Y., Dotzel, J., De Sa, C., and Zhang, Z. Im-
proving neural network quantization without retraining
using outlier channel splitting. In International confer-
ence on machine learning, pp. 7543–7552. PMLR, 2019.

7

https://arxiv.org/abs/2004.10568v2
https://arxiv.org/abs/2004.10568v2
https://dl.acm.org/doi/10.1145/3474381
https://dl.acm.org/doi/10.1145/3474381
http://arxiv.org/abs/2308.13137
http://arxiv.org/abs/2308.13137
http://arxiv.org/abs/2410.09426
http://arxiv.org/abs/2410.09426
https://arxiv.org/abs/2402.04396v2
http://arxiv.org/abs/2304.09145
http://arxiv.org/abs/2304.09145
http://arxiv.org/abs/2211.10438
http://arxiv.org/abs/2211.10438
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830

FPTQuant: Function-Preserving Transforms for LLM Quantization

A. Detailed transform comparison
In Table 3 we include the representation and theoretical cost of existing transforms. In Table 4 we review existing works, the
transforms they use, and their placements.

Table 3. Comparing different transforms. Cost is measured in terms of a single matrix vector multiplication, xM , where M ∈ Rn×n

and row vector x ∈ Rn. Memory is total parameters.
Transform Cost Memory Matrix representation

Scaler O(n) n A = diag(s), with s ∈ Rn, si ̸= 0
Full matrix O(n2) n2 Any invertible matrix A ∈ Rn×n

Orthogonal O(n2) n2 A ∈ Rn×n s.t. AAT = I
Rotation O(n2) n2 A ∈ Rn×n s.t. AAT = I and det(A) = 1

Block diagonal (K blocks) O(n
2

K
) n2

K
A = diag(B1, ..., BK), with invertible Bk ∈ R

n
K

× n
K , k = 1, ...,K

Kronecker O(n
√
n) ∼ 2n P = P1 ⊗ P2, with invertible Pi ∈ Rni×ni and n1n2 = n (usually

n1 ≈ n2 ≈
√
n)

Hadamard Transform (HT) O(n logn) 0 Hn = 1√
n

⊗log2 n
i=1

[
+1 +1
+1 −1

]
Randomized HT (RHT) O(n logn) n diag(s)Hn, with Bernoulli s ∈ {−1,+1}n
Block HT (K blocks) O(n log[n/K]) 0 A = diag({Hn/K}K)

B. Quantization related work
Quantization Neural network quantization has been demonstrated as an effective technique for reducing the model size
and improving computational efficiency (Krishnamoorthi, 2018; Nagel et al., 2021). Quantization methods can generally be
categorized into post-training quantization (PTQ) and quantization-aware training (QAT) families. PTQ algorithms take a
pretrained high precision network and convert it directly into a fixed-point network without the need for the original training
pipeline (Banner et al., 2018; Cai et al., 2020; Choukroun et al., 2019; Hubara et al., 2020; Meller et al., 2019; Zhao et al.,
2019; Nagel et al., 2019; 2020; Li et al., 2021). These methods are data-free or only require a small calibration dataset, and
are generally fast and easy to use. Quantization-aware training (QAT) methods (Gupta et al., 2015; Jacob et al., 2018; Esser
et al., 2020; Bhalgat et al., 2020; Nagel et al., 2022) simulate quantization during training, allowing the model to find more
optimal solutions compared to PTQ. However, they generally require longer training times, increased memory usage, need
for labeled data and hyperparameter tuning.

LLM quantization The excessive training cost and memory usage of traditional QAT methods make them less suitable for
quantizing modern LLMs. A few works focus on developing efficient variants of QAT for LLMs include (Liu et al., 2024a;
Du et al., 2024; Chen et al., 2024; Dettmers et al., 2024; Xu et al., 2023; Bondarenko et al., 2024). Notably, ParetoQ (Liu
et al., 2025) is the only work we are aware of that scale QAT to billions of tokens.

Post-training quantization of LLMs is a challenging task due to presence of strong numerical outliers in weights and
activations (Bondarenko et al., 2021; Kovaleva et al., 2021; Dettmers et al., 2022; Bondarenko et al., 2023; Sun et al., 2024a).
Various strategies have been explored at tackling these difficulties. These include employing second-order information
to mitigate the quantization error (Frantar et al., 2022); emphasizing the importance of so-called “salient” weights that
correspond to high-magnitude activations (Dettmers et al., 2023; Lin et al., 2023; Lee et al., 2024); separating outliers and
use mixed-precision (Kim et al., 2023; Huang et al., 2024; Egiazarian et al., 2024). Some of the other LLM PTQ methods
include (Jeon et al., 2023; Lee et al., 2023; Luo et al., 2023; Chee et al., 2024). Note that many of these PTQ techniques
focus primarily on weight quantization and memory size reduction.

C. Proof Theorem 1
RoPE background. RoPE’s (Su et al., 2024) aim is to modify the queries and keys, such that the output of the query-key
multiplication is dependent on their relative positions. RoPE achieves this by multiplying queries and keys with a time-
dependent rotation matrix, i.e. RoPE is a function f : Rd × N → Rd with f(x, i) = xRdhead

Θ,i , where i denotes the token
index, Θ the RoPE parameters, and dhead the head dimension. Matrix Rdhead

Θ,i is a block-diagonal matrix with N = dhead/2
blocks. Each block n has size 2 × 2 and denotes a rotation of angle iθn of two dimensions. Denoting a 2-dimensional
rotation of angle θ by R

(2)
θ , we can thus write Rdhead

Θ,i = diag((Riθn)
N
n=1). As desired, the product between embedded

8

FPTQuant: Function-Preserving Transforms for LLM Quantization

Table 4. Transformations in LLM quantization literature. (R)HT: (randomized) hadamard transform. CW: Channel-wise. E2E:
end-to-end training, with either original [Label] or student-teacher [ST] loss.

Work Transform style Transform location Mergeable Optimization

Smoothquant (Xiao et al., 2024) CW Scaler after RMSNorm True Local L∞
Outlier supp+(Wei et al., 2023) CW Affine after RMSNorm True Grid search
OmniQuant(Shao et al., 2024) CW Affine after RMSNorm and Wv True Block-wise

CW Scaler on embedded queries and
keys

False† Block-wise

QuaRot (Ashkboos et al., 2024b) HT on embedded queries and
keys, before Wo,Wd

‡
False -

HT on values True -
RHT residual True -

SpinQuant (Liu et al., 2024b) RHT on embedded queries and
keys (R3), before Wd (R4)

False -

Rotation residual (R1)‡, values R2 True E2E[Label]
FlatQuant (Sun et al., 2024b) Kronecker after RMSNorm (Pa and

Pug), before Wo (Po), be-
fore Wd (Pd),

False E2E[Label]

Full embedded queries and keys
(Ph)

False E2E[Label]

Full values (Pv) True E2E[Label]
DuQuant (Lin et al., 2024) Scaler-permute-

rotate
linear weights/inputs False Iterative greedy

FPTQuant (us)‡ PreRoPE merged into Wq,Wk True Local
Lp+E2E[ST]

Full per head merged into Wv,Wo True Local
Lp+E2E[ST]

CW Scaler merged into Wu,Wd True Local
Lp+E2E[ST]

Sequence Scaler residual, on softmax output
and before Wd

False -

† Authors claim channel-wise scaling of queries and keys can be merged, which does not hold for non-additive positional encodings (e.g. RoPE). ‡We also use SpinQuant’s
mergeable R1 rotation, and non-mergeable HT at mm.

keys and queries depends only on their relative, not absolute, position: ⟨f(qi, i), f(kj , j)⟩ = qiR
d
Θ,i−jk

⊺
j . We develop

transforms that we can apply to queries and keys, yet do not alter the output of the attention softmax. We design these to
commute with RoPE’s Rd

Θ,i for all i, so that they can be applied before RoPE and merged into Wq and Wk.

Theorem 1 Let N = dhead/2, and Rn ∈ O(2) and sn ∈ R, for n = 1, ..., N . Define Tk = diag(s) diag({Rn}Nn=1)
and T̄k = diag(s−1) diag({Rn}Nn=1). Given query and key weights (Wq,Wk) ∈ Rdin×dhead , define W̃q = WqT̄k and
W̃k = WkTk. Now it holds:

⟨f(xiW̃q, i), f(xjW̃k, j)⟩ = ⟨f(xiWq, i), f(xjWk, j)⟩

Proof. First, let us prove that Tk commutes with Rdhead

Θ,i for any i and Θ. Both are block diagonal (with blocks of size
2×2), so we can treat each block individually. For the individual blocks of Rd

Θ,i and Tk, write Riθn and wnRϕn . Trivially,
scalars commute with matrices, i.e. wA = Aw for any matrix A and w ∈ R. Additionally, 2× 2 rotations commute, hence
RiθnwnRϕn

= wnRϕn
Riθn . As this holds for all blocks, Rdhead

Θ,i Tk = TkR
dhead

Θ,i .

Second, note that T̄kT
⊺
k = I ,1 since weights and rotations cancel out. Replacing Wq,Wk by respectively W̃q and W̃k

1For single-headed attention, T̄k = T−1
k , but this is not true for grouped query attention (Eq. 1which is typically used in LLMs.

9

FPTQuant: Function-Preserving Transforms for LLM Quantization

thus gives attention values:

⟨f(xiW̃q, i), f(xjW̃k, j)⟩ = ⟨xiWqT̄kR
d
Θ,m,xjWkTkR

d
Θ,n⟩

= ⟨xiWqR
d
Θ,iT̄k,xjWkR

d
Θ,jTk⟩

= ⟨xiWqR
d
Θ,iT̄kT

⊺
k,xjWkR

d
Θ,j⟩

= ⟨f(xiWq, i), f(xjWk, j)⟩,

as desired.

Remark 2. Note: Rd
Θ,i overall is a rotation matrix, however rotation matrices generally do not commute unless they share

the same axes of rotations. This motivates a transform that uses the same block structure. Note also that a block-wise
orthogonal matrix would not suffice, since orthogonal matrices that are not rotations (i.e. that contain also a reflection) do
not commute with rotations.

D. Transform optimization
D.1. Local optimization

To reduce the worst outliers, we optimize all transforms first locally and independently. We minimize the Lp norm of each
transform’s merged weights and use gradient descent. For example, for the rotation transform R1 (Liu et al., 2024b), we
optimize:

min
Tr

#layers∑
i=1

[∑
W∈{Wi

q,W
i
k,W

i
v,W

i
u,W

i
g}

||T−1
r W||p +

∑
W∈{Wi

o,W
i
d,W

i
g}

||WTr||p
]
, (8)

whilst for the PreRoPE transforms Ti
q and Ti

k of layer i with shared parameters Φ, we just minimize:

min
Φ

||Wi
qT

i
q||p + ||Wi

kT
i
k||p.

Since Tr affects all linear layers, we optimize it first (Eq 8). Locally optimized transforms are merged into the weights,
after which the next transform is optimized and so forth. We set p = 4, following LR-QAT (Bondarenko et al., 2024) who
showed L4 is good for determining the quantization grid.

D.2. End-to-end optimization

We follow (Liu et al., 2024a) and use student-teacher training for reducing the quantization error further. We train the
student (the quantized model with transforms) to approximate the teacher (the unquantized FP model), with Jensen-Shannon
Divergence loss:

min
Φ

EX [JSD[f(X), fΦ(X)], (9)

where f denotes the original model, fΦ the quantized model, and Φ includes both the transformation and the quantization
grid parameters. It is essential we include the latter—the grid cannot adapt to the transformed input otherwise.

The end-to-end student-teacher approach deviates from SpinQuant (Liu et al., 2024b) and FlatQuant (Sun et al., 2024b).
SpinQuant uses the LLM’s original next-token prediction loss. Compared to next-token prediction, student-teacher training:
1) provides more signal (i.e., for each data point and sequence element, a full vector of probabilities, vs. a single label), and
in turn this 2) decreases overfitting. This is an important reason to avoid next-token prediction loss: although we are working
with transforms that in the absence of quantization do not change the model output, the combination of the large number of
parameters |Φ| and the quantization non-linearities (i.e. rounding), actually provide the transformed and quantized model
with enough capacity to overfit. FlatQuant optimizes the mean squared error (MSE) per transformer block. This is not
directly applicable for transforms that may affect multiple blocks at once, for example a rotation applied to the residual and
merged into all linears, as used here and by (Ashkboos et al., 2024b; Liu et al., 2024b).

10

FPTQuant: Function-Preserving Transforms for LLM Quantization

E. Experimental details
E.1. Models and Tasks

We evaluate on Llama-2-7B, Llama-3-8B, and Llama-3.2-3B-instruct. We evaluate perplexity on Wikitext-2 and use
LLM-harness to evaluate the same Common Sense Reasoning tasks used in FlatQuant (Sun et al., 2024b): Piqa (Bisk et al.,
2020), WinoGrande (Sakaguchi et al., 2021), HellaSwag (Zellers et al., 2019), ARC-e and ARC-c (Clark et al., 2018), and
LAMBADA (Paperno et al., 2016). .

E.2. Baselines

We compare against:

• FP: Full-precision baseline.

• RTN-opt: RTN with optimized ranges.

• QuaRot, SpinQuant, FlatQuant: State-of-the-art FPT-based methods.

All methods use RTN quantization, as it performs well with transforms (Liu et al., 2024b; Sun et al., 2024b).

E.3. Training Setup

To understand the value of the transforms we introduce, we use end-to-end student-teacher training for all methods, including
baselines. This means we train the quantization grid for RTN and QuaRot, thereby getting much better results than in the
original paper (Ashkboos et al., 2024b). Similarly, we get better results for SpinQuant (Liu et al., 2024b), since we found
that student-teacher training does better than the original next-token prediction loss. All methods are trained for 1024 steps
with batch size 16 and sequence length 2048 on Wikitext-2.

E.4. Runtime Setup

We implement all methods in PyTorch with CUDA 12.1, using INT4 CUTLASS kernels from the QuaRot repository2.
Runtime is measured on a single transformer block (due to memory limits) on an NVIDIA RTX 3080 Ti. Each configuration
is run 1000 times, and we report mean speed-up over FP16.

F. Additional experiments
F.1. Table 1: extended

Set-up. In Table 5 we extend Table 2 to include Common Sense Reasoning tasks using LM-Harness. We use the same tasks
as used in FlatQuant (Sun et al., 2024b): Piqa (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2021), HellaSwag (Zellers
et al., 2019), ARC-e and ARC-c (Clark et al., 2018), and LAMBADA (Paperno et al., 2016).

Results. Overall, we see FPTQuant performs competitive—outperforming baselines except FlatQuant, but being faster
than FlatQuant. For the very challenging setup of W4A4KV4 and Llama-2-7B at W4A8KV4 the gap is sometimes larger,
especially for zero-shot accuracy.

F.2. Dynamic quantization

Setup. We repeat the previous experiment with W4A4KV4 in a dynamic quantization setting. This is identical to the
FlatQuant (Sun et al., 2024b) setup, from which we report baseline results.

Results. We observe (Table 6) that FPTQuant outperforms all baselines except FlatQuant. However, FPTQuant is up to
29% faster than FlatQuant.

2https://github.com/spcl/QuaRot

11

https://github.com/spcl/QuaRot

FPTQuant: Function-Preserving Transforms for LLM Quantization

Table 5. Table 2 extended. Comparison of the perplexity score on WikiText-2 (Merity et al., 2017) and averaged accuracy on 6 Zero-shot
Common Sense Reasoning tasks for Llama-3.2-3B-instruct (L3.2 3B-it), Llama-3-8B (L3 8B) and Llama-2-7B (L2 7B).

L3.2 3B-it L3 8B L2 7B
#Bits Method Wiki 0-shot6 Wiki 0-shot6 Wiki 0-shot6

(W-A-KV) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑)
16-16-16 FP16 10.48 65.63 5.75 73.33 5.47 69.79

4-8-8

RTN-opt 11.20 61.09 7.32 67.35 7.11 56.93
QuaRot 10.89 63.12 7.04 67.60 6.22 63.43
Spinquant 11.03 63.28 6.54 71.60 5.97 66.01
Flatquant 10.67 65.04 6.20 72.11 6.46 62.07
FPTQuant 10.65 64.00 6.27 72.72 5.85 65.96

4-8-4

RTN-opt 11.57 58.92 7.78 64.73 8.04 48.09
QuaRot 11.09 63.18 7.29 66.71 11.91 39.71
Spinquant 11.47 59.04 7.43 65.56 6.45 59.28
Flatquant 10.88 63.69 6.51 70.83 5.91 66.04
FPTQuant 11.12 62.42 6.78 69.46 6.05 62.68

4-4-4

RTN-opt 46.84 31.16 543 30.04 2220 29.98
QuaRot 12.81 54.38 19.72 42.76 1218 30.21
Spinquant 12.71 54.88 11.04 54.58 1461 29.24
Flatquant 11.38 61.00 9.55 61.43 951 29.70
FPTQuant 11.71 59.27 9.74 52.96 940 29.65

Table 6. Dynamic quantization. We run the dynamic quantization experiment from FlatQuant (Table 1 and Table 2) (Sun et al., 2024b),
reporting their results for baselines. FPTQuant outperforms baselines, except FlatQuant, yet FlatQuant is up to 29% slower.

LLaMA-2 7B LLaMA-3 8B
Method Wiki 0-shot6 Wiki 0-shot6

(↓) Avg.(↑) (↓) Avg.(↑)
FP16 5.47 69.79 5.75 73.33
SmoothQuant 83.1 - 210.2 -
QuaRot 8.56 57.73 10.60 61.34
SpinQuant 6.14 63.52 7.96 66.98
FlatQuant 5.79 67.96 6.98 71.23
FPTQuant 5.97 66.06 7.17 68.09

12

