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ABSTRACT

Neural collapse (NC) plays a key role in understanding deep neural networks.
However, existing empirical and theoretical studies of NC primarily focus on the
single-task scenarios. This paper studies neural collapse in multi-task learning.
We consider two standard feature-based multi-task learning scenarios: Single-
Source Multi-Task Classification (SSMTC) and Multi-Source Multi-Task Classi-
fication (MSMTC). Interestingly, we find that the task-specific linear classifier and
features converge to the Simplex Equiangular Tight Frame (ETF) in the setting of
MSMTC. In the setting of SSMTC, task-specific linear classifier converges to the
task-specific ETF and these task-specific ETFs are mutually orthogonal. More-
over, the shared features across tasks converge to the scaled sum of the weight
vectors associated with the task-specific labels in each task’s classifier. We also
provide the theoretical guarantee for our empirical findings. Through detailed
analysis, we uncover the mechanism of MTL where each task learns task-specific
latent features that together form the shared features. Moreover, we reveal an
inductive bias in MTL that task correlation reconfigures the geometry of task-
specific classifiers and promotes alignment among the features learned by each
task.

1 INTRODUCTION

Deep neural networks have achieved impressive performance in fields ranging from computer vision
to natural language processing (Brown et al.l 2020; Krizhevsky et al., 2012; Simonyan & Zisser-
man, 2015a; [Vaswani et al 2017). Recent work (Papyan et al., [2020) has revealed an intriguing
phenomenon in deep neural networks, termed Neural Collapse (NC). When deep neural network
training enters the terminal phase of training (TPT) (Papyan et al.,[2020)—the stage where the train-
ing error reaches 0 and the training loss continues to decrease, the features and the last layer of
classifiers exhibit a common pattern across different network architectures and datasets as shown in
Figure[I(a) and Figure[T(d)} This phenomenon can be summarized by the following four properties:

(NC1) Variability collapse. Each last-layer feature with the same class converges to its correspond-
ing class mean.

(NC2) Convergence to Simplex ETF. The vectors of the class means (after centering by their global
mean) converge to a Simplex ETF formally defined in Definition [3] achieving equal lengths, equal
pairwise angles, and maximal distance in the feature space.

(NC3) Convergence to self-duality. Up to rescaling, the class-means and last-layer classifiers
converge to each other.

(NC4) Simplification to Nearest Class-Center. The network classifier converges to selecting the
class with the closest training class mean.

NC provides a mathematical characterization of features and last-layer classifier for deep neural
network during TPT. NC has been observed and applied in various settings, such as imbalanced
learning (Fang et al.,|2021bj; Thrampoulidis et al.,|2022; Xie et al.,[2023;|Yan et al., 2024} Yang et al.,
2022), transfer learning (Galanti et al.| 2022} L1 et al.| 2022} [Munn et al.| [2024), continual learning
(Yang et al.} 2023; Yu et al., [2023), learning for a large number of classes (Jiang et al.| [2024), multi-
label learning (Li et al.| 2024), regression (Andriopoulos et al., [2024), etc. More discussions about
NC are included in Appendix [E.T] Following previous work, the penultimate layers of the network
are considered as the feature extractor and the last layer of the network is referred to as the classifier.
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Figure 1: Illustration of single-task classification, single-source multi-task classification (SSMTC),
and multi-source multi-task classification (MSMTC) settings (top row) and the corresponding neural
collapse phenomenon (bottom row). The colored points represent features of samples from differ-
ent classes. The arrows indicate the classifier weight vectors for each class. Figure [I(a)] shows the
single-task setting: a feature extractor h and a classifier f. Figures and show the network
structure in MTL, which consists of a shared feature extractor h*" and multiple task-specific classi-
fiers {f*} (t € {1,2}). Figure[[(d)|illustrates the geometric structure of the features and classifiers
in the case of three-class classification. In MTL, we consider two binary classification tasks for
clarity. As shown in Figure the features of training samples with label (0, 2) collapse to the
scaled sum of w} and w?. Interestingly, the features of test samples with single label 0 align with
wji and the features of test samples with single label 2 align with w?. Figure shows that the
task-specific features collapse to the scaled task-specific classifier. In Figure and Figure

w} and w? both form the Simplex ETF where * € {1,2}. Moreover, w. is orthogonal to w? in
SSMTC-NC as shown in Figure [[(e)}

However, most empirical and theoretical studies on NC focus on the relationship between a single
linear classifier and features in a single task, with limited attention given to multiple classifiers in
multi-task learning (MTL). Our work investigates NC in the context of MTL, exploring the distinct
latent features each task learns and how task correlation influences the latent features.

Related Work on MTL. Feature-based MTL approach is one of the most popular MTL methods,
which aims to learn the common representations for multiple tasks (Zhang & Yang, [2022). Re-
cent studies on feature-based MTL have predominantly focused on the biases introduced in the
shared features learned across tasks (Collins et al., 2024} [Lippl & Lindsey, 2024} [Maurer et al.,
2016; [Shenouda et al.| 2024; Wu et al.l |2020). Our work focuses on the TPT, providing a geo-
metric characterization of the feature space to offer a more nuanced understanding of MTL. More
discussions about MTL are included in Appendix @} Following Rosenbaum et al.| (2018)); |[Sener
& Koltun| (2018); [Shenouda et al.| (2024); |Yu et al.| (2020), we consider two common scenarios in
MTL according to different datasets: Single-Source Multi-Task Classification (SSMTC) and Multi-
Source Multi-Task Classification (MSMTC). SSMTC focuses on classifying a single label for sam-
ples within each task. For example, each task classifies a label of an image in Multi-MNIST (LeCun
et al.,[2010). In contrast, MSMTC involves classifying data from distinct subsets of categories for
each task, such as in CIFAR100-Split-5x20 (Rosenbaum et al., 2018)), where the dataset is divided
into 20 tasks, with each task classifying 5 categories.
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Contributions. As shown in Figure[I] we study the geometric properties of the learned features and
the task-specific classifiers in MTL to provide a nuanced understanding of MTL. Our contributions
can be summarized as follows:

* Multi-Task Neural Collapse Phenomenon. As shown in Figure[I] we study two standard
settings of MTL: SSMTC (Figure [I(b)) and MSMTC (Figure [I(c)). The two settings ex-
hibit different Simplex ETF structures, termed SSMTC-NC (Figure[I(e)) and MSMTC-NC
(Figure[I(f)). We find that each task-specific classifier converges to the task-specific Sim-
plex ETF in both SSMTC and MSMTC settings. Interestingly, we also find that the shared
features across tasks converge to the scaled sum of weight vectors of the task-specific linear
classifier for each task-specific label in SSMTC-NC. The task-specific last-layer features
in MSMTC converge to their respective task-specific classifiers.

* Global Optimality of SSMTC-NC and MSMTC-NC. Theoretically, we prove that under
the assumption of Unconstrained Feature Model (UFM) (Fang et al., [2021a; Mixon et al.|
2022)), any global optimal solution satisfies the properties of SSMTC-NC and MSMTC-
NC.

* Insights on MTL. Through further detailed analysis, we find that shared features are
formed by the features learned by each task in SSMTC. Moreover, we reveal a fundamental
inductive bias in MTL that task correlation reshapes the space of task-specific classifiers,
thereby promoting alignment among the features learned by each task.

2 PROBLEM FORMULATION

2.1 MULTI-TASK NEURAL NETWORK

Our multi-task architecture employs hard parameter sharing (Rosenbaum et al., 2018; Ruder,
2017) as the multi-task neural network structure composed of shared feature extraction layers h*"
and task-specific linear classifiers { f*} (¢ € [T']) where T is the number of tasks. Given a sample
x, the output g for the ¢-th task is:

g'(x) = f (" (z))
where
fi(h) = W'h + b’
hh(x) =o(Wp_1...0(Wiz +by)...+br_1)
W represents the task-specific linear classifier of the last-layer and h*"(x) is the shared feature
of the input x for all tasks. For a L-layer neural network, each layer consists of an affine transfor-

mation followed by a nonlinear activation function o(-) (e.g.,ReLU). We use 8°" to denote shared
parameters across all the tasks and 8" to denote task-specific parameters.

2.2  SINGLE-SOURCE MULTI-TASK CLASSIFICATION

We consider a MTL problem over an input space X and a collection of task spaces {yt}tem.
Each task space V' contains K, distinct classes. The MTL dataset is {z;, y}, ..., vl }ie[n) that are
independent and identically distributed. N is the number of samples, and y! is the label of the ¢-th
task for the i-th data point. We denote y; = (y},...,y.) the label for the sample x; and y! the
task-specific label in SSMTC. Consider a parametric hypothesis class per task as g*(x; 0", 6?) :
X — V' and task-specific loss functions £(-,-) : V' x Y! — R, we minimize the following
empirical risk:

T
min > Lt (66" (D

where ¢ denotes task-specific weights and ﬁt(HSh, 0") denotes empirical loss of the task ¢, defined
as:

N
ﬁt (esh’ Ot) A % Z£ (gt (iBi; HSh, 0t) ,yf)
i=1
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2.3 MULTI-SOURCE MULTI-TASK CLASSIFICATION

The key difference between Single-Source Multi-Task Classification and Multi-Source Multi-Task
Classification is that the latter has multiple input spaces {X t}te[T] and corresponding task space
{Y'} ey where T is the number of the tasks. Assume that each task has N’ data points
{zt, yf}ie[ ~+] that are independent and identically distributed. Similarly, we denote the parametric

hypothesis class g (x; 0", 6*) : X* — V* and the same task-specific loss functions L*(-, -). Taking
the task weights into account, we minimize the following empirical risk:

T 4 N!
min 317> £ (" (2h:6°.0) ) @)
o',...07 =1 =1

2.4 TRAINING OBJECTIVE FUNCTION UNDER UFM

Unconstrained Feature Model (UFM). The UFM (Mixon et al.l [2022) and layer-peeled model
(Fang et al.;,[2021a)), in which the features of the last layer are treated as free optimization variables,
are commonly employed for the theoretical analysis of NC phenomena (Jiang et al., [2024; |Sukenik
et al.}2024;|Xie et al.| 2023 |Yang et al.,|2022). The rationale behind this model is that modern deep
networks are extremely over-parameterized and expressive such that their feature mapping can be
adapted to any training data (Zhang et al., 2021)).

Following |Jiang et al.[(2024);|Yang et al.| (2022), we treat the feature h*"(z) as the free optimization
variables. The training objective functions Eq.(I)) and Eq.(2) can be transformed into the following
Eq.(3) and Eq.(d) based on the UFM:

Definition 1 (SSMTC Nonconvex Training Loss under UFM). Let Wt € RE¢*d pt ¢ RE¢ pe the
task-specific weights and biases of last layer linear classifier, H = [hi;ho;..., hy] € RN be
the feature matrix and Y'* be the one-hot encoding matrix for the t-th task. d is the dimension of the
feature. We consider the following optimization problem:

T T T
o min S S Lop(WHH + LY 4 A HIE o+ dw D W+ hw e [0
I-I77b1,.7..,l7>T t=1 t=1 t=1
3)
where Agr, A\w and Ay are the positive regularization coefficients and control the strength of the
weight decay which prevents the norm of W, bt and H from growing to infinity. In this paper,
|| - || = denotes the Frobenius norm and || - ||2 denotes the Euclidean norm of the vector.

Definition 2 (MSMTC Nonconvex Training Loss under UFM). Let W' ¢ RE+>xd pt ¢ RE+ pe
the task-specific weights and biases of last layer linear classifier, Ht € RNt be the task-specific
feature matrix and Y'* be the one-hot encoding matrix for the t-th task. We consider the following
optimization problem:

T
min > Lon(WH! 4 BLY) + 37 O H o dw W+ ol

t=1 t=1
“4)
Cross-entropy Loss. In this work, we adopt the cross-entropy (CE) loss Lo p.

Task Weights. Following |Sener & Koltunl (2018); [Yu et al.| (2020); [Zhang & Yang| (2022), we
use the uniform task weight in this paper. We show the experimental results in Appendix [D.3] of
SSMTC-NC and MSMTC-NC when using MGDA (Sener & Koltun, 2018), Uncertainty Weight
(Kendall et al.| 2018])), PCgrad (Yu et al., 2020), DWA (Liu et al.,[2019), FAMO (Liu et al., |2023),
FairGrad (Ban & Ji,[2024)) to update the task weights.

3 MAIN RESULTS

In this section, we present our empirical findings of SSMTC-NC and MSMTC-NC, and provide a
theoretical guarantee.
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3.1 SSMTC-NC

Following |[Fang et al.| (2021a); Mixon et al.|(2022); |[Zhu et al.| (2021), we assume that the training
data is balanced for each label.

S 11wl = ki = n,Vky € [Ki], ks € (K2, ... kr € [K7]

i=1t=1

In this section, for simplicity, we assume that the number of classes for each classification task is
the same and use the uniform task weights (see Appendix [B.2]for generalizations):

Ki=Ky=...=Kr=K (5)
d=c=...=c=1 (6)
We denote h?l’kQ"“’kT the j-th feature whose label is (ky, ko, . .., kr), puFF2-*7 the mean of

features with the corresponding label and g the mean of all features. wj}, represents the clas-
sification weight for class & in task ¢ and W, denotes the w} /||wk || h?l’kQ"”’kT denotes the

(h?l’kQ"“’kT - ug)/||h§1’k2"“’kT — p¢||2. The Kronecker delta, denoted as 0, is a function used
to indicate whether two variables = and y are equal. Ave represents the operation of taking the
average. (-, -) denotes the dot product operation.

We use the objective function (3)) to train the multi-task network. When we approach the TPT, we
find the following experiment phenomena, which we refer to as SSMTC-NC:

(NC1) Variability Collapse. Each feature with the same label converges to the mean.

. A‘]:g j{(h?l---,kT _/ijl...,kT)(h?L,.,kT _ukl...,kT)T} 50

(NC2) Task-specific Simplex ETF. The weights of the classifier for each task form a Simplex ETF.
[[wkll2 — [[whll2| = 0,¥%, K" € [K],t € [T]

K 1 )
;- K T
o 1ok ~ e kK € (K]t € [T]

(NC3) Orthogonality. The spaces spanned by the weights of the classifiers for any two tasks are
mutually orthogonal.

<w;€€7 wi:’) -

(L, i) — 0,Yk, k' € [K],t,t' € [T) with t # ¢/

(NC4) Convergence to Sum of Task-specific Classifiers. The shared features among different
tasks converge to the scaled sum of weight vectors of the task-specific linear classifier for each
task-specific label.
T
’ ffnkaokr >t w/tft
J T
1321 w2
(NC5) Simplification to Nearest Class-Center. The network’s classification result converges to
choose whichever class has the nearest training class-mean.

—0
2

(argmax(w%1 Jh) + b}ﬁ . ,argmax(w,{w h) + bgT) — argmin|h — ukrokr Il (7)
k1 kT y....kp

Theoretically, we rigorously analyze the global minimizers of Problem (3) and get the form of
minimizers to validate the experimental results.

Theorem 3.1. Assume that the training data is balanced, the feature dimension is larger than the

number of classes, i.e., d > Zthl K —T, the regularization parameters satisfy Agiw < %, and

the Assumptions (), (6) hold, then, any global minimizers of Problem (3)satisfy the following five
properties, which correspond to the five phenomena of SSMTC-NC (SSMTC-NC1 to SSMTC-NC5):

1. h.?l...,ktT :Hkl...,k‘T
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2. [lwh |2 = Jwh, ||2, (W], @) = E5 0k — 725, Vk, k' € [K],t € [T]

3. (@, W) =0,k K € [K],t,t' € [T| witht #t'

P yka,okr i Why
4. h; =TS, W, I
5. (argmax(w,ﬁ1 h) by, ,argmax(ng, h) + bfT) = argmin|h — uFF7 |,
k’l k‘T kl,..., T

The detailed proof of Theorem [3.1]is deferred to Appendix [B] Next, we delve into the implications
of our findings from various perspectives.

Mutually Orthogonal Task-specific Classifiers. The orthogonality in NC3 ensures that the task-
specific classifiers can be optimized independently.

Feature Learning in MTL. NC3 and NC4 suggest that the learned features of Problem (3)) may
be a combination of features from multiple orthogonal subspaces, which is further validated in the
experimental section

General SSMTC-NC. Considering a general training scenario without Assumptions (3) and (6)), a
similar SSMTC-NC phenomenon still exists. The detailed descriptions and theories are provided in
Appendix and the experimental results are provided in Appendix

3.2 MSMTC-NC

We assume that the number of training samples in each class is balanced for each task and the feature
dimension is greater than the largest number of classes in all tasks, i.e., d > max;K; — 1. We use
the objective function (4)) to train the multi-task network and experimentally observe that the neural
collapse phenomenon occurs for each task, referred to as MSMTC-NC.

(NC1) Within-class Variability Collapse. In each task, the features of the same class are clustered
around the class mean.

Ave(hl,; — i) (hl; — ul)T = 0.9 € [1]

(NC2) Convergence to Simplex ETF. The classifier and features of each task converge to a Simplex
ETFE.

<1I)£, II’Z/> -

1
Okt — l,Vt € [T), kK € [K,]

t
K, —1 K,

5k k' avt € [T]7k7k/ € [Kt]

K 1
K, — 1" K, —1
w13 — llwi 3] = 0,Vt € [T], k, k' € [K,]
lell5 — sk 3] = 0, V¢ € [T], k, K € [K)

<ﬁ§ca /J'Ilfd> -

(NC3) Convergence to Self-duality.The linear classifiers and class-means of each task will con-
verge to align with each other.

”ﬂz - ‘I’ZHg — 07Vt € [T]vk € [Kt}
(NC4) Simplification to Nearest Class-Center.

argmax(w,, h) + b}, — argmin||h — ul |2, Vt € [T]
K K

hfa ; denotes the feature of the j-th sample belonging to class k in the ¢-th task and p}. represents
tfle mean, i.e., pi = Z?;l hi, j /mn¢ (ng denotes the number of samples per class in the ¢-th task).
fuj, denotes (pj, — pe)/llpf, — pcll2-

Theoretically, we rigorously analyze the global minimizers of Problem (@) and get the form of
minimizers to validate the experimental results.
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Theorem 3.2. Assume that the feature dimension is larger than the largest number of classes in all
tasks, i.e., d > max;K; — 1, the regularization parameters satisfy \g A\w < ‘i, and the number of
training samples in each class is balanced for each task, any global minimizers of Problem (@) satisfy
the following four properties, which correspond to the four phenomena of MSMTC-NC (MSMTC-

NCI to MSMTC-NC4):
L hj ;= p, vt € [T]k € [K,]
2. ||w§€\|2 = H'lUZ,HQ, <1I)2,’1I)1t€/> = %5]@’]@/ - ﬁ,vt S [T},k‘,kl € [Kt}
3. b =L,V € [T,k € [K]

4. argmax(w}, h) + b}, = argmin|h — ul |2, Vt € [T]
k k
A detailed proof of Theorem [3.2]is provided in Appendix

4 EXPERIMENT

4.1 DATASETS

The datasets used in this paper are Multi-MNIST (Sabour et al.,[2017), Multi-CIFAR 10, CIFAR100-
Cross and CIFAR100-Split (Rosenbaum et al., [2018). The detailed description of the datasets is
provided in Appendix [C] Table 2] presents the datasets. It is worth mentioning that for SSMTC,
CIFAR100-Cross-10x10 classification task can be viewed as multi-task learning with two tasks, each
containing 10 classes. In contrast, for MSMTC, CIFAR100-Split-5x20 classification task involves
multi-task learning with 20 tasks, each having 5 classes. More experiments on CelebA (Liu et al.,
2015)), ImageNet-1K (Deng et al.,|2009) are shown in Appendix

4.2 EXPERIMENTAL SETTINGS

This paper uses ResNetl8, ResNet34 (He et al., [2016), VGG11 and VGG13 (Simonyan & Zis-
serman, 2015b) as the shared feature extractor, and the uniform static weights. Throughout all
the experiments, we use a SGD optimizer with fixed batch size 128, weight decay (Agr, A\w) =
(5-107%,5-10~%) and momentum 0.9. In the experiment, the learning rate is initially set to 1-10~*
and gradually decays to 1 - 10~2 over 500 epochs using the CosineAnnealingLLR scheduler.

Additionally, we employ different multi-task weighting strategies as shown in Appendix [D.3] in-
cluding MGDA, Uncertainty Weight, PCgrad, DWA, FAMO, FairGrad. And we also consider the
datasets with different number of classes for each task, as shown in Appendix[D.2} Experiments on
different learning rate and (Agr, Aw) are shown in Appendix

4.3 EVALUATION METRICS

SSMTC-NC. Following Papyan et al.|(2020); Sukenik et al.|(2024), we evaluate NC1 using within-
class variance, denoted as SNC1. NC2 assesses the proximity of the classifier to the Simplex ETF
using the angle and norm, denoted as SNC2-1 and SNC2-2. NC3 is assessed by the maximum ab-
solute value of the cosine between classifiers of different tasks, denoted as SNC3. NC4 is evaluated
using the difference between the normalized feature mean and the scaled sum of task-specific clas-
sifiers, denoted as SNC4. NCS5 is evaluated using the error rate of classification based on Nearest
Class-Center, denoted as SNCS5.

MSMTC-NC. Following |Papyan et al.|(2020); [Sukenik et al.| (2024), we use the mean of all tasks’
metrics similar to SSMTC-NC and name them MNCI1, MNC2-1, MNC2-2, MNC3 and MNC4
respectively.

The specific metric form is included in the Appendix [D.9]



Under review as a conference paper at ICLR 2026

100 —8— VGG11 —8— VGG11 T —e— VGG11 —8— VGG11
VGG13 0512 VGG13 VGG13 4 VGG13
- Restet1s | ~4— ResNet18 | 06 + ~&- ResNet18 ~4— ResNet18 /'
—4— ResNet34 —&— ResNet34 —&— ResNet34 —&— ResNet34
L
0.4 > : 1 % % h
107 h 2 \
0.2 »
v N +
0.0
0 50 100 150 0 50 100 150 0 50 100 150 o 50 100 150
NC1 NC2 NC3 NC4 = —> Wt
—e— VG611 —o- VGG11 07 —e- VGG11 3048 —o— VGG11
" VGG13 VGG13 0.6 VGG13 1 VGG13
10 - ResNet18 | 0.6 ~#— ResNet18 & resnetis | 2571 ~#— ResNet18
—4— ResNet34 —4— ResNet34 05 —4— ResNet34 20 [] —— ResNet34 l
100 0.4
03 15 \
o1 N— s ds
-\-\ 05 —a—
0.0 0
) 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
NC1 NC2 NC3 NC4
(a) NC on Multi-MNIST-10-10 (top) and Multi-CIFAR10-10-10 (bottom). (b) Task-specific latent
The NC metrics for NC1, NC2, and NC3 are the means of the NC metrics on feature and shared fea-
two tasks. The horizontal axis represents the epoch. ture

Figure 2: Illustration of Feature Learning in SSMTC

4.4  VERIFICATION OF SSMTC-NC AND MSMTC-NC

As shown in Figures [6] [7] and Figures [8] 0] in the Appendix, all the metrics approach zero during
the terminal phase of training. These results show that SSMTC-NC exists in different networks
and datasets. Figures[I0] [I1]in the Appendix show that MSMTC-NC exists in different networks
and datasets. Building on prior works (Li et al., |2024; |Yang et al., 2022, we conduct parameter-
efficient training experiments leveraging NC properties in MTL as shown in Appendix [D.7} Our
results demonstrate the presence of both SSMTC-NC and MSMTC-NC phenomena, and verify the
replaceability of final-layer parameters.

5 INSIGHTS FROM NC IN MTL

5.1 THE RELATIONSHIP BETWEEN SHARED FEATURES AND TASK-SPECIFIC LATENT
FEATURES

To further understand the shared features and what each task learns respectively in SSMTC, we pro-
cess the training samples = from the Multi-MNIST-10-10 and Multi-CIFAR10-10-10 datasets,
retaining only the top-left and bottom-right features to obtain 2’ and a'?, respectively. We then
feed test samples L, 2T into the neural network trained on X%, to obtain hL and h¥ as shown in
Figure As shown in Figure we perform NC analysis on b’ and the classifier W, as well
as on h'? and the classifier W . We observe that both h’ and h " exhibit the NC properties, includ-
ing within-class variability collapse (NC1), convergence to Simplex ETF (NC2), and convergence
to self-duality (NC3). We also uncover properties corresponding to SSMTC-NC4:

(NC4) Convergence to Sum of Task-Specific Latent Features

HM i, + g,
By ks — AL “R
b ||Nk1 +I"’k2||

2

[Liﬁw denotes the feature mean of sample % with label (k1, ko) after centering and normaliza-

tion. 1 and fif denote the feature means of sample " with class k1 and sample =" with class
ko after centering and normalization.

NC1, NC2, and NC3 indicate that h~ and h® are the features learned by the two tasks, which we
refer to as task-specific latent features. NC4 further explains that the shared features of samples in
MTL are composed of task-specific latent features. The above findings dissect the specific structure
of the shared feature, indicating that task-specific classifiers decompose the shared features into
task-specific latent features.
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Figure 3: Illustration of SSMTC-NC in the label-balanced case, SSMTC-NC in the task-balanced
case, and cosine between wi and w?. n*1*2 denote the number of samples with label (k1 k2).

Figure 4: Grad-CAM++ visualizations for two tasks under independent and related settings. Each
dashed block contains one example of each label. The first two blocks show Task 1 and Task 2 under

independence (cos(wi, w?) = 0), while the third and fourth blocks show Task 1 and Task 2 when

tasks are related (cos(w},w?) = 0.5). Blue regions indicate the important regions for the task to

predict the concept in the image.

5.2 IMPACT OF TASK CORRELATION ON TASK-SPECIFIC CLASSIFIERS

With the total sample size fixed at N, we systematically vary the sampling proportions of each
label pair (k1, k2) and investigate how task correlation (Li et al.,[2025; [Ma et al., 2018)) impacts the
task-specific classifiers. Through empirical experiments and theoretical analysis, we find that, when
moving from the label-balanced to the task-balanced scenario, all other NC properties continue to
hold and SSMTC-NC3 adapts to Correlated-NC:

(NC1) Variability collapse. Each feature with the same label converges to the mean.
(NC2) Task-specific Simplex ETF. The weights of the classifier for each task form a Simplex ETF.

(Correlated-NC3) Alignment of task-specific classifiers. As n*'*2 increases, cos(wy}, ,wy}, )
increases.

(NC4) Convergence to weighted sum of task-specific classifiers.
(NC5) Simplification to Nearest Class-Center.

Theorem 5.1. Consider two binary classification tasks, the training data is task-balanced, and the
number of samples with label (k1,k2) is n*1*2(ky € [2],ky € [2]). Assume that the number of

all samples is N and A\giw < "k;’kQ , then any global minimizers of Problem satisfies the

following conditions:

I. h§17k2 — Nk1,k2
2w lla = 0yl (4, L) = 26pr — 1V, ¥ € [2],¢ € 2

3. As nFvk2 increases, cos(wy, , wy, ) increases.
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1 2
4. il,?“k? Wiy T Why

= Twl, Twi, [z

5. (argmax(w} ,h) + b} ,argmax(w; ,h)+ b} ) = argmin|h — uF*2 |,
3

k1 2 k1,ko

The proof is shown in Appendix [B.4] As shown in Figure [3(a) and Figure 3(b)} we set N' = 8000,
K = 2, and then adjust the number of samples belonging to each label. As shown in Figure [3(c)l
when the number of samples with the label (0, 2) increases, the cosine between w{ and w? increases.
We explain the phenomenon theoretically and derive the closed-form expression for cos(wi, w?)
in Appendix[B.4] which aligns with the experimental results as shown in Figure[3(c)] The additional
experimental results, encompassing extended scenarios with K > 2, are included in Appendix [D.6]

Through the detailed experiments and theoretical analysis, we find that task correlation reshapes the
space of task-specific classifiers.

Implication of the alignment of task-specific classifiers. When tasks are correlated, the align-
ment of task-specific classifiers implies that the features learned by the two tasks are aligned
and closer to shared features. To verify the implication, we choose the Eyeglasses and
Mouth_Slightly_Open attributes on CelebA as Task 1 and Task 2, and boost task correlation.
We use Grad-CAM++ (Chattopadhyay et al.l |2018)) to visualize the important regions for the two
tasks to predict the concept in the image. As shown in Figure 4] when tasks are related, their salient
regions largely coincide, demonstrating that the two tasks attend to the same facial features and thus
learn closely aligned representations.

6 CONCLUSION

In this work, we demonstrate neural collapse in MTL through SSMTC-NC and MSMTC-NC. We
empirically validate both SSMTC-NC and MSMTC-NC across various network architectures and
datasets. Theoretically, we prove that any global optimal solution must satisfy the properties of
SSMTC-NC and MSMTC-NC. Through further experiments, we find that each task learns task-
specific latent features that form shared features. Our empirical findings, supported by theoretical
analysis, indicate that MTL is inherently biased toward leveraging task correlation to reconfigure
the geometry of task-specific classifiers and promote alignment among the features learned by each
task. We believe our work offers valuable insights into the understanding of features and classifiers
in MTL.
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Appendix

APPENDIX ORGANIZATION

Table 1: Appendix Contents

Appendix Basic Lemmas
Appendix Theoretical Proofs
Appendix Dataset Illustration and Visualization

Appendix |§| Detailed Experimental Results
Appendix Discussions about the Related Work

In Appendix [A] we provide the lemmas used in the proofs. Appendices [B.I] and Appendix [B.3]
present the proofs of Theorems and Theorems [3.2] respectively, and Appendix offers the
description and theoretical proof of the general SSMTC-NC. In Appendix[B.4] we provide the proof
for Theorem[5.1] Appen provides a detailed description of the datasets. Appendix[D.I|presents
other metrics. Appendix|D.2|contains supplementary experiments for general SSMTC and MSMTC,
and Appendix [D.3| provides empirical results of SSMTC-NC and MSMTC-NC when we use multi-
ple MTL methods to update the task weights. In Appendix [D.4] we provide the experimental results
on ImageNet, CelebA and Tiny-ImageNet. In Appendix we run the experiments on different
learning rates and (Agr, Aw ). In Appendix [D.6] we show the experimental results when the train
data is task-balanced. In Appendix [D.7} we provide the experimental results on efficient training
utilizing NC properties in MTL. In Appendix [E.I| we discuss the difference between|Li et al.| (2024)
and our work. In Appendix [E2] we discuss the connection between our work and related work in
MTL.

A BASIC DEFINITION AND LEMMAS

Definition 3 (Simplex ETF (Papyan et al. 2020)). A collection of vectors m; € R? i =
1,2...,K,d > K — 1, is said to be a Simplex equiangular tight frame if:

K 1
M= /-2 Ul — —1x17

where M = [my, ..., mg| € R>*E U € R>XK qllows a rotation and satisfies UTU = Iy, Ik
is the identity matrix, and 1 is the all-ones vector. Specially, when K = 2, the angle between any
two vectors in M is 180 degrees; When K = 3, the angle between any two vectors is 120 degrees.

Lemma A.1. For a set of n vectors v; € RY, the point x € R? that minimizes the sum of squared
Euclidean distances
n
2
> llvi — =3
i=1

is the mean of the vectors, i.e.,
n
1
r = — E v;.
n
=1

Lemma A.2. Let f : RY — R be a strictly convex function. Then, for any x1, s, ..., x, € R?
the following inequality holds:

Equality holds if and only if €1 = 3 = - -+ = Ty,
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Lemma A.3. Consider the function f(z) = alog(1l + Sexp(—~vx)) + z, where o, 3,7 € RT, and
x € R>q. The minimizer x* of f(x) is determined as follows:

-If B+ 1> apfy, then x* = 0.
- Otherwise, x* = %log (afy = B).

B THEORETICAL PROOFS

Remark. In the SSMTC setting, all tasks share data drawn from the same source, and thus the cou-
pling between tasks remains explicitly preserved through shared features. In contrast, in MSMTC,
the optimization objective can indeed be decomposed into a sum of single-task objectives. This
decomposition reflects that the effect of parameter sharing becomes negligible, but it does not mean
that the model becomes multiple independent models; the analysis is still conducted within a sin-
gle multi-task model. Therefore, within the UFM framework, the influence of parameter sharing
is inherently stronger in SSMTC than in MSMTC. The effect of parameter sharing disappears in
MSMTC. The key reasons are twofold: (1) the multi-task model has high representation capacity
(UFM model), and (2) the data are drawn from multiple distinct sources (the MSMTC setting).Under
these two conditions, the shared features can freely adjust to each task independently, which allows
the optimization problem to decouple into task-specific subproblems. This decomposition holds in
MSMTC but not in SSMTC. As a result, the theoretical results and experimental results observed in
MSMTC closely resembles that in single task learning.

B.1 PROOF OF THEOREM 3.1

The key idea of the proof of Theorem 3.1 is to lower bound the entropy loss in Problem (3). The
equality holds only if SSMTC-NC is satisfied.

gWiw? ... wWT H b'b% ... b")

K % K
= Z Z Z log(1 + Z exp(wihj, ; — wihj, ; + b — bt))
t=1 k=1 i=1 1=1,i#k 9)

T T
FAm[HE +Aw Y IWHE+ 2> (163
t=1 t=1

where hfc)i represents the i-th sample of label k in the ¢-th task. First, we can find that the margin

will not change if we subtract a vector x for all w! or we subtract a scalar y for all b} provided
that ¢ is fixed. From Lemma [AT] subtracting the mean minimizes the regularization loss. So, the
minimizer must satisfy:

(10)
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Observe that
T K % K T T
DD D log(l+ Y exp(wihi,; —wihi; + b — b)) + AullHIE + w Y W5+ X Y 1163
t=1 k=1 i=1 I=1,1#k t=1 =1
@ L. K ® K T T
> > > log(l+ (K - Dexp(— = (wihi; + b)) + Aul | H |7 + Aw DWW+ e Y 11613
t=1 k=1 i=1 =1 t=1
()
(b)TKNl K? t%hf N
> “log(l+ (K —1 S —
_;;KOg( +( )exp( (Kil)N(wkzzzl k7z+
T T
+Am | HIE+Aw D IWHE -+ Y 3 (b)
t=1 t=1
0 L K K ®
= 7 Nlog(1-+ (I~ exp(— e Sowl >0 hh ) + A HE e I 0 Y 1618
t=1 k=1 =1 t=1 t=1
()
(d) K K K n . . T ) T
> TNlog(1+ (K — 1)9XP(—m Do DD Ry il )+ AmlHIE A Aw Y [[WE
Ei=1  kp=1i=1 j=1 t=1
(d)
© K N 4
> T'Nlog(1+ (K —1 - Mg l[H|7 + A W7
= TVIog(1-+ (K Dexp (3 i gy I+ A 32 W)
T
+mlHE A w > W3 (@)
t=1
Invoking Lemmawith a=TN,f=K—-1,v= (K—If)NT‘/éLK)\JI\;)\W and z = g | H||% +
Aw S [WH[3, we derive that if Agrdw > 2%, the minimizer is (W?,...,WT H) =

.,0,0) and otherwise, the minimizer must obey x* > 0. Next, we examine the conditions

required to reach the minimum value. In inequalities (a), (), (c) and (d), we use Lemma[A.2] The
conditions under which equality holds are as follows:

Vi, 1o € [K]\{k},wltlh —H)l1 = wZQh ,Z-—f—be

o N
Vi, 12 € [K} wkhk 1 = wihj, s
Vki, kg € [ wklzhklz by, = wi, th2z an
K £ K ¥

RS D S IR 9D 9113
k=1 1=1 k=1 =1

Inequality @ is also based on \p 23:1 6|2 > 0 and the data is balanced for each label. The
number of samples for each label is n. Inequality (d) holds with equality iff

vt € [T),k € [K],b, =0 (12)

Inequality (g) is based on

T T
. 1 .
ki,...k ki,....k
Rty Jwl < NRERE Y w3 (13)
j=1 j=1
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where \ = 41;@\’:‘/ and the condition for this equality to be true is:
Kw —
. kv, kr w E J
V'L c [n},hl = m‘jil wkj (14)

Due to the condition (T4)), the optimizer must satisfy NC1, NC4. Because of the condition (I2), we
can remove bias in condition (TT). By combining the condition (T0), (TT) and (T4), we can conclude
that:

t t
Vk1, ko € [K],tl,tg S [T],tl ;étg,wkllw,fz =0 (15)
which satisfy NC3. Then we can infer that the optimizer must satisfy NC2, NC5. When one of
the conditions is not met, the loss will be strictly greater than the minimum value. When one of
the conditions is not met, the loss will be strictly greater than the minimum value, so in summary,

combining all the conditions for equality, we can conclude that the optimal solution must satisfy the
SSMTC-NC.

B.2 GENERAL SSMTC-NC

When Assumption (5) and Assumption (6) are not satisfied, during the terminal phase of training
using loss function in Problem (3), the features and classifiers of the network exhibit the following
charactistics.

(NC1) Variability collapse. Each feature with the same label converges to the mean.

A A\]ge ,{(hflm,kT —IJ/klu-,kT)(h";IH'ykT —[,Lkl""kT)T} 50
1--RTH]

(NC2) Task-specific Simplex ETF. The weights of the classifier for each task form a Simplex ETF.
wk, 2 — wk,/ 2 — 5 P t]s
[[whll2 — [[will2| = 0,¥k, K" € [K),t € [T]

K
K —1

~1

1
(W}, W) — Sy — Yk, k' € [K,],t € [T]

K —1

(NC3) Orthogonality. The spaces spanned by the weights of the classifiers for any two tasks are
mutually orthogonal.

(W, WL — 0,Yk € [Ki], k' € [Ky),t,t' € [T] with t # ¢/

(NC4) Convergence to weighted sum of task-specific classifiers. The shared features among
different tasks converges to the weighted sum of task-specific linear classifier weight vectors for
each task-specific label.

T
‘ ill?lvkz,-u,k'p - thl \/CtiKt’wzt
’ IS, VR, |l

(NC5) Simplification to Nearest Class-Center. The network’s classification result converges to
choose whichever class has the nearest training class-mean.

2

(arg}:nax(w,i1 )+ b ,argkmax<wkTT, h) + b))
1 T

— argmin||h — wkrkr Il2
k1o ko
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Similar to Appendix [B.T} we prove that the optimal solution of the loss function must satisfy the
aforementioned constraints. Next, we analyze the loss function in Problem (3).

N
T K: K¢ K T T
DD D clog(l+ Y exp(wihi; —wihi; +bf —00) + Au|HIE +Aw Y W E + Ao Y cl|b']3

t=1 k=1 i=1 1=1,1£k

t=1 t=1
(f) T K Kt K ,
> ZZZC log(1 + (K — 1)exp(— X, - 1(wkh c+ b))
t=1 k=1 i=1
T T
+Am|HIE+Aw Y IWHE+ X ) b3 ®
t=1
@ et , N
¢
> ;;c Elog 1+ (K; — 1)exp(— (Kt—l wkZh bi)))
T
+>\H||HH%+>\cht||WtH%+)\bzct||bt||§ (@)
t=1 t=1
" & ¢ 2 - At (12
> ZC Nlog(1 + (K¢ — 1)exp(— K _1 Zwkzh +>\HHHHF+)\WZC||W 2
t=1 t i= t=1
(h)
() & L [Bw d Lo &
> thNlog(l + (K; — 1)exp(— K 1 Zwk Zh N Z VK, Zw,ﬁ Zh}‘/m
t=1 e i= t=1 k=1 i=1
@)
T K Rr
ANgAW K} ¢
= Z(ctNlog(l + (K¢ — 1exp(— K 1 Zwk Zh )+ 4/ %ct Z wy, Z hi.;)
t=1 t i= k=1 =1

Invoking Lemma | when AgA\w < min; & I K s
@®. (2. (B) are based on the Lemma[A.2] and 1nequa11ty is based on:

N
T K Ky n
E \/cthE w}ig hfc E E E hkl’ kTE cthw
t=1 k=1 i=1

k)ll ]CT].Z].

<3S SRR 5||Z¢ct7thjna>
j=1

k1=1 kr=11i=1

ki1=1 kr=11i=1
T

Kt n 1 T .
=3 R S ] ) (1)
j=1

N
= MHIE + o5 W

t=1

T
N 2 t 2
=\ T el HE + e S e[ W ).

i=1

where A = 4/ % and the condition for equality is:
1 <& ,
ot = Y Ve K, (17)
j=1
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When one of the conditions is not met, the loss will be strictly greater than the minimum value.
Combining all the conditions for equality, we can conclude that the optimal solution must satisfy the
general SSMTC-NC.

B.3 PROOF OF THEOREM 3.2

The loss in Problem (4) can be viewed as a weighted sum of the entropy losses of multiple indepen-
dent variables (W', H?). Thus, we decompose the loss into a weighted sum of multiple entropy
losses and prove that for each loss, the minimizers (W, H') must satisfy Neural Collapse.

gwt .. owT H' ... HT b, .. . b

T Ky ny Ky
=YY Y log(l+ Y exp(wihj; —wihj ; +bj —b}))
t=1 k=1i=1 1=1,1#£k (18)

+ 3 SOuH G+ Aw [WEE + X [[6]3)

t=1

The specific form of the loss is shown in (I8), which, as in equation (I9), is decomposed into task-
specific loss gt.

T
oW, W H . H"b,. . b") =) g (W' H' b
t=1

Ky n K
t t (19)
g (W' H" b") = E g log(1 + E exp(wjhy ; — wihj ; + b —b},))
k=11i=1 I=1,l#k

+ A | H [ + Aw W[ E + Mo||b"3

Similar to the proof of Theorem 3.1, since subtracting the mean from each w! and b} leaves the
cross-entropy loss unchanged while reducing the regularization loss, the optimal solution must sat-
isfy the following condition:

K,
> wj, =0,vt € [T]
k=1 (20)

Ky
> b =0Vt € [T]
k=1

Observe that:
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Ki ng K,
g =>_ > log(l+ > exp(wihi,—wihi,+b —b) + | H' %+ w [ W[5 + 2[5
k=11i=1 1=1,1#k
() Fr e
>3 > log(l + (K — 1)exp(—ﬁfl<w2h}i¢ + b)) + Aa [ H |7 + Aw [[WH 7 + X161
k=1 1i1=1
)
(k) = t t 13
> > nidog(l+ (K; — 1)exp(—————— o wkzhkﬁrnt )+ Au | H 5 + Aw (W[5 + X6 [[6°]3
k=1

k)

K ne
1
> Kinilog(1 + (K — 1)eXp(*m Z"Ui thm)) +Aul|H' % 4+ Aw W
k= i

)
2 Kinglog(1+ (K — Dexp(————— O [+ MW 30)) + A L[+ dawl| W2
= ni(K; — 1)\ 4\ g A oW r AT aw r
(m)
Invoking Lemmawith a = Ky, = K, — 1, v = nt(Klt 7/ Ty and z =
Aa || H %+ A\w Zt 1||Wt||F,wegetthatif)\H)\W 2t the minimizer is (W*, H') = (0, 0)

and otherwise, the minimizer must obey z* > 0. In 1nequahtles (@. (KD, and (). we use Lemma[A2]
the conditions under which equality holds are as follows:

Viy, 1o € [Ki) \ {k}, wj hj; +bj, = wj,hj ; +bj,
Vi1, iz € [ng], wihy ;= wihg

ne ne
(21)
ki, ky € (K], wh, Y bl + bl = wh, Y bl + b,

=1 =1
Vk € [K], b}, =0

Inequality (m)) is based on:

nt Nt
1
wf D7 hE, < Mkl + 551> R
i=1 i=1

: (22)

g :

< Allwills + 3¢ > I3
i=1
where A = 4/ %ﬂ and the condition for equality to hold is:
H
A

Vi € [ng],w), = | 2R (23)

s

Aw
Based on the above condition, we conclude that the classifier and features must satisfy the NC
conditions within each task.

B.4 SSMTC-NC IN THE TASK-BALANCED CASE

Theorem B.1. Consider two binary classification tasks, the training data is task-balanced, and the
number of samples with label (k1, ko) is n*1%2 (k1 € [2], ko € [2]). Assume that the number of all
samples is N, then any global minimizers of Problem 3 satisfies the following conditions: Consider
two binary classification tasks, the training data is task-balanced, and the number of samples with
label (ky, ko) is n*v*2(ky € [2],ky € [2]). Assume that the number of all samples is N and

AHAMW < ' 2 then any global minimizers of Problem (3) satisfies the following conditions:
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1. h";l7k2 _ Hkl’kz
2. ||wi\|2 = HU)};/H% <II)Z,’[[7£,> = 26}6,]6/ — ].,Vk.,k/ S [2],t S [2]

3. As n*vF2 increases, cos(wy, ,wy,) increases.

pkike _ wil—&-wfz
N
5. (argmax(wy, , h) + by ,argmax(wk ,h) + b7 ) = argmin||h — u*1-72||
k1 k2 k1,k2

Proof. The key idea of the proof of Theorem [5.1]is to lower bound the entropy loss in Problem (3),
and obtain the form of cos(wj, ,wi )(k1 € [2], k2 € [2]). We denote the cross-entropy loss for
samples with labels (ki, k2, ..., k1) as u(kq, ko, . . ., k). Different from the theories in Appendix
[B1] we can only scale the cross-entropy loss for samples with the same labels.

u(kl,kg)
2 pkik2
=> ) log(l+ Z exp(wiht*? —w}f RV 4 b! b))
t=1 i=1
2 nkik2
= log(1 + exp(—2(wj, k™" +b],))
EEZQ ' ' (24)
T 1 nk1.k2
k1k
Z Fuk21og(1 4 (K — 1)exp(—2(w};tm Z h;v™ + bzt))
=1 i=1
2 nki.k2
1, k1,k
> an k210g 1 +eXp Z wkt nkl,kz Z h e +b ))
t=1 =1

In [24] the second equality is due to the condition [[0}] Combining the sum of all the cross-entropy
loss and the regularization term, we derive the following composite loss function:

g(W*', W2 H,b',b%)

I
Mm
Mm

2 2
ulk, k) + AmllHIIE +Aw D (IWE5 + X Y (167113

k1=1ko=1 t=1 t=1
2 2 nk1-k2 A\ 2
> (ulk k) + Xer Y (BE2 3 4+ 22 S wf, 1)
ki=1ko=1 i=1 t=1 (25)
2 2
1 nki.ke
k1,k _
> > (20" *log(1 + exp( ke \| 2w A
klzl k‘g:l
nk1.k2 )\ 2 nk1.k2 )\ 2
K1,k w K1,k w
Qe Y2 IR I3+ SN wh 3D+ Am Y IR 3+ S Y wh, 3)
i=1 t=1 i=1 t=1
We can get the conditions that need to be satisfied as follows:
wh, b = wi hER vi e [t e 2] (26)
wi, = wi b ks € [2],0 € [nF0R2) 27)
b' =0,Vt € [2] (28)
2A g nkke
AT plke = Zwk V1, k2 € [2],7 € [n*h] (29)
Aw =
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Table 2: Dataset illustration

Setting Dataset T K
Multi-MNIST 2 >2
Multi-CIFAR10 2 >2
SSMTC-NC CIFAR100-Cross >2 >2
CelebA > 2 2
MNIST-Split 2 >2
MSMTC-NC CIFAR-Split 2 >2
CIFAR100-Split-5x20 20 5

[ L=

3

e
==

5

Figure 5: The image on the left shows examples from Multi-MNIST with the label (3, 8), while the
image on the right shows examples from Multi-CIFAR10 with the label (truck, automobile).

Combining all the conditions metioned, we can conclude that NC1, NC2, NC4, NCS5 need to be
satisfied. Moreover, we conclude that:

w3 = [lwp, I3 = lw, |13, Vk1, k2 € [2] (30)

2
(D wi,)? = 2l|wl3 + 2] w|[3cos(wj, , w},)

t=1
2/\an'17k21 2nk1:kz
- pumt (Y s v

ki,ky _ 2 t )2 1 2\ _ 2wk1-k2
Let whihs = (327, wk,,) . And the cos(w; ,wj; ) = SR po R

ical expression of cos(wy ,w? ), we can conclude that cos(wy ,w} ) increases with growing

€29

— 1. From the analyt-

X . .. ki.k2 .
nkF1*2 when fixing the number of training samples N. So as pyhyz(kl, ko) = 2 ~ increases,

cos(wj, ,wyf, ) increases. O

C DATASET ILLUSTRATION AND VISUALIZATION

C.1 MULTI-MNIST AND MULTI-CIFAR10

Multi-MNIST and Multi-CIFAR10 are used in the case of two tasks in the SSMTC (Single-Source
Multi-Task Classification) scenario. As illustrated in Figure@ we follow Sener & Koltun|(2018)); L1
et al.| (2024) to place the images from any two classes in MNIST dataset in the top-left and bottom-
right corners, respectively, with the empty areas filled using zero-padding. The same approach is
applied to the CIFAR10 dataset. We use Multi-MNIST-P-Q to refer to the dataset constructed using
the first P classes and the first Q classes of MNIST. Similarly, Multi-CIFAR10-P-Q denotes the
dataset constructed using the first P classes and the first Q classes of CIFAR10. By default, Multi-
MNIST and Multi-CIFAR10 refer to Multi-MNIST-10-10 and Multi-CIFAR10-10-10, respectively.
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C.2 CIFAR100-Cross AND CIFAR100-SPLIT-5X20

CIFAR100-Cross-10x10 refers to assigning the label (i,5)(¢ € {0,1,2,---,9},5 €
{0,1,2,---,9}) to each class in the CIFAR100 dataset. CIFAR100-Cross-10x10 involves two tasks
and each task classifies a task-specific label in the label (¢,5). Specifically, the samples of class
K €{0,1,2,---,99} in CIFAR100 correspond to the samples with the label (| K/10], K%10) in
CIFAR100-Cross-10x10. Similarly, CIFAR100-Cross-4x4x4 involves three tasks, utilizing the first
64 classes of CIFAR100, and CIFAR100-Cross-3x3x3x3 involves four tasks, selecting the first 81
classes.

For CIFAR100-Split-5x20, we follow Rosenbaum et al.[(2018]) to treat 20 coarse labels as distinct
tasks and create a multi-task dataset with 2500 train images and 500 test images in each task.

For the MNIST-Split-5x2 dataset (CIFAR10-Split-5x2), the first five classes and the last five classes
of MNIST (CIFAR10) are used as a task-specific dataset respectively.

D DETAILED EXPERIMENTAL RESULTS

In Appendix we provide experimental results in the validation experiments of SSMTC-NC and
MSMTC-NC. In Appendix we show the validation experimental results of SSMTC-NC and
MSMTC-NC under different numbers of task classes and non-uniform task weights. In Appendix
D.3| we show that when using the MGDA, Uncertainty Weight, PCgrad, DWA, FAMO, FairGrad
algorithms to update task weights, NC still exists in SSMTC and MSMTC. In Appendix [D.4] we
conduct experiments on ImageNet, TinyImageNet and CelebA. In Appendix [D.5] we run the ex-
periments on different learning rates and (Agr, Aw ). In Appendix we show the experimental
results when the train data is task-balanced. In Appendix [D.7] we provide the experimental results
on efficient training utilizing NC properties in MTL. We provide the specific experimental metrics
in the Appendix . We run experiments on a single NVIDIA RTX 4090 (24GB) GPU.

D.1 EXPERIMENTAL RESULTS ON SSMTC-NC AND MSMTC-NC UNDER
LABEL-BALANCED CONDITIONS

Figures @ and [/| depict the trends of the SNC1, SNC2-1, SNC2-2, SNC3, SNC4 and SNC5 met-
rics on the Multi-MNIST-10-10 and Multi-CIFAR10-10-10 datasets, all converging toward zero.
Figures [§] 0] show the trends on CIFAR100-Cross-10x10, CIFAR100-Cross-4x4x4 and CIFAR100-
Cross-3x3x3x3 datasets. Figures[I0] [TT|depict the trends of the MNC1, MNC2-1, MNC2-2, MNC3,
MNC4 metrics on the MNIST-Split-5x2, CIFAR10-Split-5x2 and CIFAR100-Split-5x20 datasets.
The convergence of all metrics toward zero validates both the SSMTC-NC and MSMTC-NC phe-
nomena.

D.2 SUPPLEMENTARY EXPERIMENT FOR GENERAL SSMTC-NC AND MSMTC-NC

General SSMTC-NC. To verify the theory in Appendix empirically, we use Multi-MNIST-4-
6, Multi-MNIST-3-9, Multi-CIFAR10-4-6 and Multi-CIFAR10-3-9 to verify our results and set the
task weight ratios to be inversely proportional to the class counts. Concretely, we set task weights
to 1.5 and 1 for Multi-MNIST-4-6, and set task weights to 3 and 1 for Multi-MNIST-3-9. As shown
in Figure SSMTC-NC generalize to cases where the number of classes and the task weights are
different in different tasks.

General MSMTC-NC. To verify the neural collapse across different task weights and different class
number, we use MNIST-Split-3-4 and MNIST-Split-3-7 datasets with uniform and non-uniform task
weights respectively. As shown in Figure [I3] MSMTC-NC extends to cases where different tasks
have varying numbers of classes and distinct task weights.

D.3 VALIDATION EXPERIMENTS OF NC UNDER MULTIPLE MTL LEARNING METHODS

We show the experimental results on Multi-MNIST-10-10 and Multi-CIFAR10-10-10 datasets in the
setting of SSMTC, and the experimental results on CIFAR100-Split-5x20 in the MSMTC setting
when using the MGDA algorithm. As shown in the Figure [14] and Figure when the MGDA
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Figure 6: Illustration of SSMTC-NC across different network architectures on Multi-MNIST-10-10
(top) and Multi-CIFAR10-10-10 (bottom). The horizontal axis represents the training epochs.
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Figure 7: Illustration of SSMTC-NC across different network architectures on Multi-MNIST-10-10
(top) and Multi-CIFAR10-10-10 (bottom) (Supplementary Experimental Metrics). The horizontal

axis represents the training epochs.
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Figure 8: Illustration of SSMTC-NC across different network architectures on CIFAR100-Cross-
10x10 (top), CIFAR100-Cross-4x4x4 (middle) and CIFAR100-Cross-3x3x3x3 (bottom). The hori-

zontal axis represents the training epochs.
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Figure 9: Illustration of SSMTC-NC across different network architectures on CIFAR100-Cross-
10x10 (top), CIFAR100-Cross-4x4x4 (middle) and CIFAR100-Cross-3x3x3x3 (bottom). (Supple-
mentary Experimental Metrics). The horizontal axis represents the training epochs.
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Figure 10: Illustration of MSMTC-NC across different network architectures on MNIST-Split5x2

(top), CIFAR10-Split-5x2 (middle) and CIFAR100-Split-5x20 (bottom). The horizontal axis repre-
sents the training epochs.
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Figure 11: Illustration of MSMTC-NC (metric MNC2) across different network architectures on
MNIST-Split5x2 (left), CIFAR10-Split-5x2 (middle) and CIFAR100-Split-5x20 (right). The hori-
zontal axis represents the training epochs.

algorithm is used to update the task weights, SSMTC-NC and MSMTC-NC still exist even though
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Figure 12: Illustration of SSMTC-NC across different network architectures on Multi-MNIST-3-9
(first row), Multi-MNIST-4-6 (second row), Multi-CIFAR10-3-9 (third row), and Multi-CIFAR10-
4-6 (fourth row). The horizontal axis represents the training epochs.

the task weights are constantly changing during training, indicating that SSMTC-NC and MSMTC-
NC exhibit generalization across different task weights.

Similar to MGDA experiments, we show the experimental results using Uncertainty Weight, DWA,
PCgrad, FAMO, FairGrad. As shown from Figure[T6]to Figure 35} SSMTC-NC and MSMTC-NC
still exist when using different multiple MTL learning methods.

D.4 EXPERIMENTS ON LARGE-SCALE DATASETS

We validate the SSMTC-NC and MSMTC-NC on ImageNet, TinyImageNet and CelebA. We utilize
the first 512 classes of ImageNet to construct ImageNet-Cross-2x2x2x2x2x2x2x2x2, utilize the first
729 classes of ImageNet to construct the ImageNet-Cross-3x3x3x3x3x3, and utilize the 1000 classes
of ImageNet to construct the ImageNet-Cross-10x10x10 for SSMTC. We select the 1000 classes of
ImageNet to construct the ImageNet-Split-10x100 for MSMTC. We select two groups of attributes

on CelebA and keep the dataset label-balanced. As shown in Figures [36} [37] 38] [39] {0} 1] 2] 3]
SSMTC-NC and MSMTC-NC still exist in ImageNet, TinyImageNet and CelebA.
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Figure 13: Illustration of MSMTC-NC across different network architectures on MNIST-Split-
3-4 (first row) with uniform task weights, MNIST-Split-3-7 with uniform task weights (second
row), MNIST-Split-3-4 with non-uniform task weights (third row), and MNIST-Split-3-7 with non-
uniform task weights (fourth row).
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Figure 14: Illustration of SSMTC-NC across different network architectures on Multi-MNIST-10-
10 (top) and Multi-CIFAR10-10-10 (bottom) by using MGDA algorithm.
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Figure 15: Illustration of MSMTC-NC on CIFAR100-Split-5x20 by using MGDA algorithm.
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Figure 16: Experiment on Multi-MNIST using DWA method
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Figure 17: Experiment on Multi-CIFAR10 using DWA method

D.5 EXPERIMENTS WITH DIFFERENT LEARNING RATES AND REGULARIZATION
COEFFICIENTS

We have supplemented the experimental results for learning rates of 1-10~2 and 1- 1073, as well as
(Aer, Aw ) of 5- 1072 and 5- 10~°. As shown from Figure to Figure the experimental results
further validate the generality of our findings.

D.6 EXPERIMENTS ON SSMTC-NC IN THE TASK-BALANCED CASE

We run experiments on the Multi-MNIST with K = 2, K = 3, K = 10. By varying the num-
ber of samples for each label (k1,k2) while keeping the train data task-balanced, we find that
cos(w]. ,w? ) increases as the the number of samples with label (k1, k2) increases as shown in
Figures @ [62] The other NC phenomena still exist.
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Figure 18: Experiment on MNIST-Split-5x2 using DWA method

0.6

103 4 ~@— VGG11 ~— VGG11 ~— VGG11 ] ~— VGG11 | -~ VGG11
~- VGG13 ~- VGG13 ~- VGG13 15 ~#~ VGG13 0.75 ~#- VGG13
102 9 ResNet1g | 0.4 —@- ResNet18 &~ ResNet1s |, | - ResNet18 | g 50 | —@- ResNet18
3 —&— ResNet34 —h— ResNet34 —h— ResNet34 : —h— ResNet34 —&— ResNet34
0.2 0.51
10' 4 ’
T T T 0.0+ T E 0.0 T
0 200 400 0 100 200 300 0 100 200 300 0 100

MNC1 MNC2-1 MNC2-2 MNC3

Figure 19: Experiment on CIFAR10-Split-5x2 using DWA method
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Figure 20: Experiment on Multi-MNIST using Uncertainty Weight method
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Figure 21: Experiment on Multi-CIFAR10 using Uncertainty Weight method
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Figure 22: Experiment on MNIST-Split-5x2 using Uncertainty Weight method
105 o
—8- VGG11 0.2 —8- VGG11 021 —8- VGG11 - VGGl || —8- VGG11
—#- VGG13 ) —#- VGG13 : —#- VGG13 1.51 —#- VGG13 : —#- VGG13
103 4 —@— ResNet18 —@— ResNet18 —@— ResNet18 104 - ResNet18 |50 | —@— ResNet18

—A— ResNet34 | 7 —h— ResNet34 —A— ResNet34

—&— ResNet34

0.14 —A— ResNet34

- - , 0.0 4, . : 1004 . ks ’ - ;
0 200 400 0 100 200 300 0 100 200 300 0 100 0 200 400
MNC1 MNC2-1 MNC2-2 MNC3 MNC4

Figure 23: Experiment on CIFAR10-Split-5x2 using Uncertainty Weight method
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Figure 24: Experiment on Multi-MNIST using PCgrad method
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Figure 25: Experiment on Multi-CIFAR10 using PCgrad method
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Figure 26: Experiment on MNIST-Split-5x2 using PCgrad method
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Figure 27: Experiment on CIFAR10-Split-5x2 using PCgrad method
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Figure 28: Experiment on Multi-MNIST using FAMO method
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Figure 29: Experiment on Multi-CIFAR10 using FAMO method
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Figure 30: Experiment on MNIST-Split-5x2 using FAMO method
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Figure 31: Experiment on CIFAR10-Split-5x2 using FAMO method
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Figure 32: Experiment on Multi-MNIST using FairGrad method
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Figure 33: Experiment on Multi-CIFAR10 using FairGrad method
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Figure 34: Experiment on MNIST-Split-5x2 using FairGrad method
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Figure 35: Experiment on CIFAR10-Split-5x2 using FairGrad method

—e— VGG11 0.25 —e— VGG11 —e— VGG11 1000 4 —8— VGG11
—#— VGG13 —#— VGG13 0.39 —#— VGG13 —#— VGG13
102 4 —&— ResNet18 0.20 —&— ResNet18 —&— ResNet18 800 - —&— ResNetl8

—A— ResNet34 —&— ResNet34 —4— ResNet34 —A— ResNet34

0151 600
10% 4§ 0.10 4 400 4
0.05 - 2001
10% 4 0.001 0
0 200 400 0 200 400
SNC1 SNC2-1 SNC3 SNC4

Figure 36: Experiment on ImageNet-Cross-2x2x2x2x2x2x2x2x2
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Figure 37: Experiment on ImageNet-Cross-3x3x3x3x3x3
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Figure 38: Experiment on ImageNet-Cross-10x10x10
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Figure 39: Experiment on ImageNet-Split-10x100
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Figure 40: Experiment on TinyImageNet-Cross-10x20
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Figure 41: Experiment on TinyImageNet-Split-10x20
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Figure 42: Experiment on CelebA on three tasks (Smiling, High_cheekbones, Mouth_Slightly_open)
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Figure 43:  Experiment on CelebA on three tasks (Arched_Eyebrows, Narrow_Eyes,
Bags_Under_Eyes)
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Figure 44: Experiment on Multi-MNIST using regularization terms 5 - 103
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Figure 45: Experiment on Multi-MNIST using regularization terms 5 - 10~5
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Figure 46: Experiment on Multi-CIFAR10 using regularization terms 5 - 10~3
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Figure 47: Experiment on Multi-CIFAR10 using regularization terms 5 - 10~°
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Figure 48: Experiment on MNIST-Split-5x2 using regularization terms 5 - 10~3
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Figure 49: Experiment on MNIST-Split-5x2 using regularization terms 5 - 107>
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Figure 50: Experiment on CIFAR10-Split-5x2 using regularization terms 5 - 10
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Figure 51: Experiment on CIFAR10-Split-5x2 using regularization terms 5 - 10~°
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Figure 52: Experiment on Multi-MNIST using learning rate 1 - 10
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Figure 53: Experiment on Multi-MNIST using learning rate 1 - 1073
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Figure 54: Experiment on Multi-CIFAR10 using learning rate 1 - 102
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Figure 55: Experiment on Multi-CIFAR10 using learning rate 1 - 103
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Figure 56: Experiment on MNIST-Split-5x2 using learning rate 1 - 102
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Figure 57: Experiment on MNIST-Split-5x2 using learning rate 1 - 1073
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Figure 58: Experiment on CIFAR10-Split-5x2 using learning rate 1 - 102
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Figure 59: Experiment on CIFAR10-Split-5x2 using learning rate 1 - 10~3
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Figure 60: Experiment on Multi-MNIST (K = 2, N = 8000).
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Figure 61: Experiment on Multi-MNIST (/K = 3, N = 18000).
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Figure 62: Experiment on Multi-MNIST (K = 10, N = 50000).

D.7 EXPERIMENTS ON EFFICIENT TRAINING UTILIZING NEURAL COLLAPSE PROPERTIES

By leveraging the characteristics of neural collapse, modifications can be made to the multi-task
network structure by reducing the dimension of the features to the number of classes, achieving
parameter savings without compromising performance. Given the properties of SSMTC-NC and
MSMTC-NC, we initialize the task-specific classifiers as orthogonal Simplex ETFs. We reduce the
feature dimension to the sum of the number of classes for each task, and freeze the parameters of
the last layer in the deep neural network during training.

As shown in Table[3] the experimental results demonstrate that we achieve parameter savings without
compromising model performance by utilizing the ETF classifier. When applied to CIFAR100-Split-
5x20, better performance can be achieved. For example, we achieve the 25.74% parameter saving
when using the VGG11 network for classifying the CIFAR100-Split-5x20 dataset.

Since the NC behavior in MSMTC closely resembles that in single task learning, it naturally suggests
that methods developed for NC under imbalanced single-task learning could also be effective for
imbalanced MSMTC. Following (2022), the final layer is replaced with a Simplex ETF
and dot-regression (DR) loss is adopted to improve accuracy under class imbalance. We evaluate
the approach on CIFAR-10 and CIFAR-100 with an imbalance ratio of 0.01. As shown in Table 4]
this strategy leads to consistent performance gains in imbalanced MSMTC, indicating that insights
derived from NC in single task learning could be transferable to the MSMTC setting.
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D.8 EXPERIMENTS ON GENERAL MTL

When no assumptions are made about task distribution and class, we find that features of the same
class collapse together as illustrated in Figure[63]

t-SNE visualization of features at epoch 500
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Figure 63: Experiment on Multi-MNIST

We change the sample size for each class from 500 to 10 and found that neural collapse still exists,
as illustrated in Figure [64] and Figure[63]
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Figure 64: Experiment on Multi-MNIST

D.9 EXPERIMENTAL METRICS

Table 5] and Table 6] show the metrics of verify SSMTC-NC and MSMTC-NC respectively.
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Figure 65: Experiment on MNIST-Split-5x2

Table 3: Performance and parameter saved using learned and ETF classifier

Dataset ResNet18 ResNet34 VGG11 VGG13
Arch Learned ETF Learned ETF Learned ETF Learned ETF

Test Accuracy (%)

CIFAR100-Cross-10x10  53.32  53.52 56.58 57.16 55.68 5554 59.94 60.27

MNIST-Split-5x2 99.90 99.83 99.81 99.78 99.68 99.78 99.85 99.75
CIFAR10-Split-5x2 90.44 91.22 92.04 91.82 90.61 9143 9338 93.46
CIFAR100-Split-5x20 6245 6520 60.03 6190 6882 69.76 69.07 70.53

Parameter Saved (%)

CIFAR100-Cross
CIFAR100-Split
MNIST-Split
CIFAR10-Split

0 21.26 0 11.18 0 25.74 0 25.24

o

20.71 0 10.87 0 25.13 0 24.63

E DISCUSSION ABOUT THE RELATED WORK

E.1

RELATED WORK ABOUT NEURAL COLLAPSE

The difference between Li et al.[|(2024) and ours.

* Analytical Focus. [Li et al|(2024) primarily investigates neural collapse patterns under
multi-label settings and implications on guiding multi-label training. Our work mainly
focuses on the geometry of task-specific classifiers and features learned by each task, and
investigates how task correlation impacts features learned by each task.

* Experiment Difference. Our experimental setup differs substantially from that of |Li et al.
(2024), encompassing the network architecture, loss function, and dataset construction.
The network in|Li et al.|(2024) includes a single classifier layer, while our work employs a
task-specific classifier layer for each task.

* Theoretical Contribution. Whereas |Li et al.| (2024) establishes theoretical guarantees
for NC in multi-label classification, our work provides the first formal characteriza-
tion of NC phenomena in MTL frameworks, incorporating heterogeneous task weights,
class-imbalanced scenarios, and task-correlation-driven geometric transformations of task-
specific classifier manifolds. Previous research never required consideration of alignment
between task-specific classifiers and features. In their UFM proofs, h and w maintain a
one-to-one correspondence, expressed as h = Aw, where A is the same for each class.
In the SSMTC setting, we need to consider the weighting coefficients of features learned
by different task-specific classifiers within the shared feature representation as shown in
(32). These coefficients are influenced by the number of classes per task, the task weights
assigned to each task, and the task correlation. Only with properly configured coefficients
can the equality conditions of a series of inequalities hold simultaneously, thereby ensuring
that the optimal solution is attainable.

h = /\1w1 + )\2’11]2 + -4 )\TwT (32)
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Table 4: Long-tailed classification accuracy (%).
Dataset ResNet18 ResNet34 VGGl11 VGG13
Arch Learned ETF+DR Learned ETF+DR Learned ETF+DR Learned ETF+DR

CIFAR10-Split-5x2 73.47 77.21 74.92 78.29 73.32 76.62 74.81 79.12
CIFAR100-Split-5x20  53.24 56.61 54.13 57.21 53.76 55.87 54.48 56.13

Table 5: SSMTC-NC Metrics

k‘?l“.,kTi ki....kp kf)l“"ka Ky kp T
e GAYe {( T bk (el ke Ty
SNC2-1 k?zg {|cos(wi, w}) + 251}

Kkt
SNC2-2 Ave{Std({|lwi |, [w3, 2, .., [wk |2}/ Ave{wil|z, [W]|2, ..., [wkll2})}
SNC3 A L

k,k’,t‘,’?;«ét{Hcos(wk’wk bibs
7 kiko,....kp M

s kl’kﬁyim{ h 172, wi, ll2 2}
SNC5 & Zf\;1[(argkrnax<wllc1 ) + b, argkmax<w1{T, hi) + b)) # argn;inuhi e
' T 1..,kp

E.2 RELATED WORK ABOUT MULTI-TASK LEARNING

Shenouda et al.| (2024) indicates that the norm associated with vector-valued variation spaces en-
courages the learning of shared features that are useful for multiple tasks. Our framework provides
mechanistic insights through two key advancements. (1) We explicitly characterize shared features
as a linear combination of task-specific classifiers. (2) Moreover, task-specific classifiers are aligned
with the task-specific latent features, which are the features learned by each task. Our work provides
the granular characterization of how shared features are useful for each task in modern deep neural
networks.

Collins et al.[(2024) indicates that multi-task training aligns points with the same label across tasks.
Consistent with the theoretical framework, our experimental observations of NC1 further confirm
that features sharing the same label collapse to their class mean.
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Table 6: MSMTC-NC Metrics

MNCI
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MNC4
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