

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

NEURAL COLLAPSE IN MULTI-TASK LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Neural collapse (NC) plays a key role in understanding deep neural networks. However, existing empirical and theoretical studies of NC primarily focus on the single-task scenarios. This paper studies neural collapse in multi-task learning. We consider two standard feature-based multi-task learning scenarios: Single-Source Multi-Task Classification (SSMTC) and Multi-Source Multi-Task Classification (MSMTC). Interestingly, we find that the task-specific linear classifier and features converge to the Simplex Equiangular Tight Frame (ETF) in the setting of MSMTC. In the setting of SSMTC, task-specific linear classifier converges to the task-specific ETF and these task-specific ETFs are mutually orthogonal. Moreover, the shared features across tasks converge to the scaled sum of the weight vectors associated with the task-specific labels in each task’s classifier. We also provide the theoretical guarantee for our empirical findings. Through detailed analysis, we uncover the mechanism of MTL where each task learns task-specific latent features that together form the shared features. Moreover, we reveal an inductive bias in MTL that task correlation reconfigures the geometry of task-specific classifiers and promotes alignment among the features learned by each task.

1 INTRODUCTION

Deep neural networks have achieved impressive performance in fields ranging from computer vision to natural language processing (Brown et al., 2020; Krizhevsky et al., 2012; Simonyan & Zisserman, 2015a; Vaswani et al., 2017). Recent work (Papyan et al., 2020) has revealed an intriguing phenomenon in deep neural networks, termed *Neural Collapse* (NC). When deep neural network training enters the terminal phase of training (TPT) (Papyan et al., 2020)—the stage where the training error reaches 0 and the training loss continues to decrease, the features and the last layer of classifiers exhibit a common pattern across different network architectures and datasets as shown in Figure 1(a) and Figure 1(d). This phenomenon can be summarized by the following four properties:

(NC1) Variability collapse. Each last-layer feature with the same class converges to its corresponding class mean.

(NC2) Convergence to Simplex ETF. The vectors of the class means (after centering by their global mean) converge to a Simplex ETF formally defined in Definition 3, achieving equal lengths, equal pairwise angles, and maximal distance in the feature space.

(NC3) Convergence to self-duality. Up to rescaling, the class-means and last-layer classifiers converge to each other.

(NC4) Simplification to Nearest Class-Center. The network classifier converges to selecting the class with the closest training class mean.

NC provides a mathematical characterization of features and last-layer classifier for deep neural network during TPT. NC has been observed and applied in various settings, such as imbalanced learning (Fang et al., 2021b; Thrampoulidis et al., 2022; Xie et al., 2023; Yan et al., 2024; Yang et al., 2022), transfer learning (Galanti et al., 2022; Li et al., 2022; Munn et al., 2024), continual learning (Yang et al., 2023; Yu et al., 2023), learning for a large number of classes (Jiang et al., 2024), multi-label learning (Li et al., 2024), regression (Andriopoulos et al., 2024), etc. More discussions about NC are included in Appendix E.1. Following previous work, the penultimate layers of the network are considered as the feature extractor and the last layer of the network is referred to as the classifier.

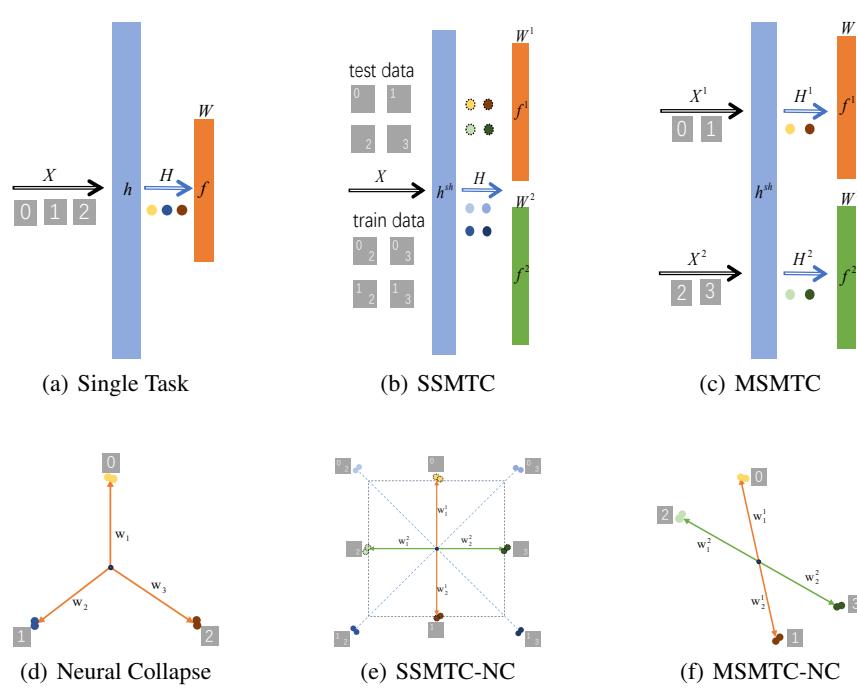


Figure 1: Illustration of single-task classification, single-source multi-task classification (SSMTC), and multi-source multi-task classification (MSMTC) settings (top row) and the corresponding neural collapse phenomenon (bottom row). The colored points represent features of samples from different classes. The arrows indicate the classifier weight vectors for each class. Figure 1(a) shows the single-task setting: a feature extractor h and a classifier f . Figures 1(b) and 1(c) show the network structure in MTL, which consists of a shared feature extractor h^{sh} and multiple task-specific classifiers $\{f^t\}$ ($t \in \{1, 2\}$). Figure 1(d) illustrates the geometric structure of the features and classifiers in the case of three-class classification. In MTL, we consider two binary classification tasks for clarity. As shown in Figure 1(e), the features of training samples with label (0, 2) collapse to the scaled sum of w_1^1 and w_1^2 . Interestingly, the features of test samples with single label 0 align with w_1^1 and the features of test samples with single label 2 align with w_1^2 . Figure 1(f) shows that the task-specific features collapse to the scaled task-specific classifier. In Figure 1(e) and Figure 1(f), w_*^1 and w_*^2 both form the Simplex ETF where $* \in \{1, 2\}$. Moreover, w_*^1 is orthogonal to w_*^2 in SSMTC-NC as shown in Figure 1(e).

However, most empirical and theoretical studies on NC focus on the relationship between a single linear classifier and features in a single task, with limited attention given to multiple classifiers in multi-task learning (MTL). Our work investigates NC in the context of MTL, exploring the distinct latent features each task learns and how task correlation influences the latent features.

Related Work on MTL. Feature-based MTL approach is one of the most popular MTL methods, which aims to learn the common representations for multiple tasks (Zhang & Yang, 2022). Recent studies on feature-based MTL have predominantly focused on the biases introduced in the shared features learned across tasks (Collins et al., 2024; Lippel & Lindsey, 2024; Maurer et al., 2016; Shenouda et al., 2024; Wu et al., 2020). Our work focuses on the TPT, providing a geometric characterization of the feature space to offer a more nuanced understanding of MTL. More discussions about MTL are included in Appendix E.2. Following Rosenbaum et al. (2018); Sener & Koltun (2018); Shenouda et al. (2024); Yu et al. (2020), we consider two common scenarios in MTL according to different datasets: Single-Source Multi-Task Classification (SSMTC) and Multi-Source Multi-Task Classification (MSMTC). SSMTC focuses on classifying a single label for samples within each task. For example, each task classifies a label of an image in Multi-MNIST (LeCun et al., 2010). In contrast, MSMTC involves classifying data from distinct subsets of categories for each task, such as in CIFAR100-Split-5x20 (Rosenbaum et al., 2018), where the dataset is divided into 20 tasks, with each task classifying 5 categories.

108 **Contributions.** As shown in Figure 1, we study the geometric properties of the learned features and
 109 the task-specific classifiers in MTL to provide a nuanced understanding of MTL. Our contributions
 110 can be summarized as follows:

- 112 • **Multi-Task Neural Collapse Phenomenon.** As shown in Figure 1, we study two standard
 113 settings of MTL: SSMTC (Figure 1(b)) and MSMTC (Figure 1(c)). The two settings ex-
 114 hibit different Simplex ETF structures, termed **SSMTC-NC** (Figure 1(e)) and **MSMTC-NC**
 115 (Figure 1(f)). We find that each task-specific classifier converges to the task-specific Sim-
 116 plex ETF in both SSMTC and MSMTC settings. Interestingly, we also find that the shared
 117 features across tasks converge to the scaled sum of weight vectors of the task-specific linear
 118 classifier for each task-specific label in SSMTC-NC. The task-specific last-layer features
 119 in MSMTC converge to their respective task-specific classifiers.
- 120 • **Global Optimality of SSMTC-NC and MSMTC-NC.** Theoretically, we prove that under
 121 the assumption of Unconstrained Feature Model (UFM) (Fang et al., 2021a; Mixon et al.,
 122 2022), any global optimal solution satisfies the properties of SSMTC-NC and MSMTC-
 123 NC.
- 124 • **Insights on MTL.** Through further detailed analysis, we find that shared features are
 125 formed by the features learned by each task in SSMTC. Moreover, we reveal a fundamental
 126 inductive bias in MTL that task correlation reshapes the space of task-specific classifiers,
 127 thereby promoting alignment among the features learned by each task.

128 2 PROBLEM FORMULATION

130 2.1 MULTI-TASK NEURAL NETWORK

132 Our multi-task architecture employs **hard parameter sharing** (Rosenbaum et al., 2018; Ruder,
 133 2017) as the multi-task neural network structure composed of shared feature extraction layers h^{sh}
 134 and task-specific linear classifiers $\{f^t\}$ ($t \in [T]$) where T is the number of tasks. Given a sample
 135 \mathbf{x} , the output g^t for the t -th task is:

$$136 \quad g^t(\mathbf{x}) = f^t(h^{sh}(\mathbf{x}))$$

138 where

$$139 \quad f^t(\mathbf{h}) = \mathbf{W}^t \mathbf{h} + \mathbf{b}^t$$

$$140 \quad h^{sh}(\mathbf{x}) = \sigma(\mathbf{W}_{L-1} \dots \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) \dots + \mathbf{b}_{L-1})$$

141 \mathbf{W}^t represents the task-specific linear classifier of the last-layer and $h^{sh}(\mathbf{x})$ is the shared feature
 142 of the input \mathbf{x} for all tasks. For a L -layer neural network, each layer consists of an affine transfor-
 143 mation followed by a nonlinear activation function $\sigma(\cdot)$ (e.g., ReLU). We use θ^{sh} to denote shared
 144 parameters across all the tasks and θ^t to denote task-specific parameters.

146 2.2 SINGLE-SOURCE MULTI-TASK CLASSIFICATION

148 We consider a MTL problem over an input space \mathcal{X} and a collection of task spaces $\{\mathcal{Y}^t\}_{t \in [T]}$.
 149 Each task space \mathcal{Y}^t contains K_t distinct classes. The MTL dataset is $\{\mathbf{x}_i, y_i^1, \dots, y_i^T\}_{i \in [N]}$ that are
 150 independent and identically distributed. N is the number of samples, and y_i^t is the label of the t -th
 151 task for the i -th data point. We denote $\mathbf{y}_i = (y_i^1, \dots, y_i^T)$ the **label** for the sample \mathbf{x}_i and y_i^t the
 152 **task-specific label** in SSMTC. Consider a parametric hypothesis class per task as $g^t(\mathbf{x}; \theta^{sh}, \theta^t) : \mathcal{X} \rightarrow \mathcal{Y}^t$ and task-specific loss functions $\mathcal{L}^t(\cdot, \cdot) : \mathcal{Y}^t \times \mathcal{Y}^t \rightarrow \mathbb{R}^+$, we minimize the following
 153 empirical risk:

$$155 \quad \min_{\theta^{sh}, \dots, \theta^T} \sum_{t=1}^T c^t \hat{\mathcal{L}}^t(\theta^{sh}, \theta^t) \quad (1)$$

158 where c^t denotes task-specific weights and $\hat{\mathcal{L}}^t(\theta^{sh}, \theta^t)$ denotes empirical loss of the task t , defined
 159 as:

$$161 \quad \hat{\mathcal{L}}^t(\theta^{sh}, \theta^t) \triangleq \frac{1}{N} \sum_{i=1}^N \mathcal{L}(g^t(\mathbf{x}_i; \theta^{sh}, \theta^t), y_i^t)$$

162 2.3 MULTI-SOURCE MULTI-TASK CLASSIFICATION
163

164 The key difference between Single-Source Multi-Task Classification and Multi-Source Multi-Task
165 Classification is that the latter has multiple input spaces $\{\mathcal{X}^t\}_{t \in [T]}$ and corresponding task space
166 $\{\mathcal{Y}^t\}_{t \in [T]}$ where T is the number of the tasks. Assume that each task has N^t data points
167 $\{\mathbf{x}_i^t, y_i^t\}_{i \in [N^t]}$ that are independent and identically distributed. Similarly, we denote the parametric
168 hypothesis class $g^t(\mathbf{x}; \boldsymbol{\theta}^{sh}, \boldsymbol{\theta}^t) : \mathcal{X}^t \rightarrow \mathcal{Y}^t$ and the same task-specific loss functions $\mathcal{L}^t(\cdot, \cdot)$. Taking
169 the task weights into account, we minimize the following empirical risk:

$$170 \min_{\boldsymbol{\theta}^{sh}, \boldsymbol{\theta}^1, \dots, \boldsymbol{\theta}^T} \sum_{t=1}^T \frac{c^t}{N^t} \sum_{i=1}^{N^t} \mathcal{L}(g^t(\mathbf{x}_i^t; \boldsymbol{\theta}^{sh}, \boldsymbol{\theta}^t), y_i^t) \quad (2)$$

174 2.4 TRAINING OBJECTIVE FUNCTION UNDER UFM
175

176 **Unconstrained Feature Model (UFM).** The UFM (Mixon et al., 2022) and layer-peeled model
177 (Fang et al., 2021a), in which the features of the last layer are treated as free optimization variables,
178 are commonly employed for the theoretical analysis of NC phenomena (Jiang et al., 2024; Súkeník
179 et al., 2024; Xie et al., 2023; Yang et al., 2022). The rationale behind this model is that modern deep
180 networks are extremely over-parameterized and expressive such that their feature mapping can be
181 adapted to any training data (Zhang et al., 2021).

182 Following Jiang et al. (2024); Yang et al. (2022), we treat the feature $h^{sh}(x)$ as the free optimization
183 variables. The training objective functions Eq.(1) and Eq.(2) can be transformed into the following
184 Eq.(3) and Eq.(4) based on the UFM:

185 **Definition 1** (SSMTC Nonconvex Training Loss under UFM). Let $\mathbf{W}^t \in \mathbb{R}^{K_t \times d}$, $\mathbf{b}^t \in \mathbb{R}^{K_t}$ be the
186 task-specific weights and biases of last layer linear classifier; $\mathbf{H} = [\mathbf{h}_1; \mathbf{h}_2; \dots, \mathbf{h}_N] \in \mathbb{R}^{d \times N}$ be
187 the feature matrix and \mathbf{Y}^t be the one-hot encoding matrix for the t -th task. d is the dimension of the
188 feature. We consider the following optimization problem:

$$189 \min_{\substack{\mathbf{W}^1, \mathbf{W}^2, \dots, \mathbf{W}^T \\ \mathbf{H}, \mathbf{b}^1, \dots, \mathbf{b}^T}} \sum_{t=1}^T c^t \mathcal{L}_{CE}(\mathbf{W}^t \mathbf{H} + \mathbf{b}^t, \mathbf{Y}^t) + \lambda_{\mathbf{H}} \|\mathbf{H}\|_F^2 + \lambda_{\mathbf{W}} \sum_{t=1}^T c^t \|\mathbf{W}^t\|_F^2 + \lambda_{\mathbf{b}} \sum_{t=1}^T c^t \|\mathbf{b}^t\|_2^2 \quad (3)$$

193 where $\lambda_{\mathbf{H}}$, $\lambda_{\mathbf{W}}$ and $\lambda_{\mathbf{b}}$ are the positive regularization coefficients and control the strength of the
194 weight decay which prevents the norm of \mathbf{W}^t , \mathbf{b}^t and \mathbf{H} from growing to infinity. In this paper,
195 $\|\cdot\|_F$ denotes the Frobenius norm and $\|\cdot\|_2$ denotes the Euclidean norm of the vector.

196 **Definition 2** (MSMTC Nonconvex Training Loss under UFM). Let $\mathbf{W}^t \in \mathbb{R}^{K_t \times d}$, $\mathbf{b}^t \in \mathbb{R}^{K_t}$ be
197 the task-specific weights and biases of last layer linear classifier; $\mathbf{H}^t \in \mathbb{R}^{d \times N_t}$ be the task-specific
198 feature matrix and \mathbf{Y}^t be the one-hot encoding matrix for the t -th task. We consider the following
199 optimization problem:

$$201 \min_{\substack{\mathbf{W}^1, \mathbf{W}^2, \dots, \mathbf{W}^T \\ \mathbf{H}^1, \dots, \mathbf{H}^T, \mathbf{b}^1, \dots, \mathbf{b}^T}} \sum_{t=1}^T c^t \mathcal{L}_{CE}(\mathbf{W}^t \mathbf{H}^t + \mathbf{b}^t, \mathbf{Y}^t) + \sum_{t=1}^T c^t (\lambda_{\mathbf{H}} \|\mathbf{H}^t\|_F^2 + \lambda_{\mathbf{W}} \|\mathbf{W}^t\|_F^2 + \lambda_{\mathbf{b}} \|\mathbf{b}^t\|_2^2) \quad (4)$$

205 **Cross-entropy Loss.** In this work, we adopt the cross-entropy (CE) loss \mathcal{L}_{CE} .

207 **Task Weights.** Following Sener & Koltun (2018); Yu et al. (2020); Zhang & Yang (2022), we
208 use the uniform task weight in this paper. We show the experimental results in Appendix D.3 of
209 SSMTC-NC and MSMTC-NC when using MGDA (Sener & Koltun, 2018), Uncertainty Weight
210 (Kendall et al., 2018), PCgrad (Yu et al., 2020), DWA (Liu et al., 2019), FAMO (Liu et al., 2023),
211 FairGrad (Ban & Ji, 2024) to update the task weights.

212 3 MAIN RESULTS
213

214 In this section, we present our empirical findings of SSMTC-NC and MSMTC-NC, and provide a
215 theoretical guarantee.

216 3.1 SSMTC-NC
217218 Following Fang et al. (2021a); Mixon et al. (2022); Zhu et al. (2021), we assume that the training
219 data is balanced for each label.

220
$$\sum_{i=1}^N \prod_{t=1}^T \mathbb{I}[\mathbf{y}_i^t = k_t] = n, \forall k_1 \in [K_1], k_2 \in [K_2], \dots, k_T \in [K_T]$$

221
222
223

224 In this section, for simplicity, we assume that the number of classes for each classification task is
225 the same and use the uniform task weights (see Appendix B.2 for generalizations):
226

227
$$K_1 = K_2 = \dots = K_T = K \quad (5)$$

228

229
$$c^1 = c^2 = \dots = c^T = 1 \quad (6)$$

230 We denote $\mathbf{h}_j^{k_1, k_2, \dots, k_T}$ the j -th feature whose label is (k_1, k_2, \dots, k_T) , $\boldsymbol{\mu}^{k_1, k_2, \dots, k_T}$ the mean of
231 features with the corresponding label and $\boldsymbol{\mu}_G$ the mean of all features. \mathbf{w}_k^t represents the clas-
232 sification weight for class k in task t and $\tilde{\mathbf{w}}_k^t$ denotes the $\mathbf{w}_k^t / \|\mathbf{w}_k^t\|_2$. $\tilde{\mathbf{h}}_j^{k_1, k_2, \dots, k_T}$ denotes the
233 $(\mathbf{h}_j^{k_1, k_2, \dots, k_T} - \boldsymbol{\mu}_G) / \|\mathbf{h}_j^{k_1, k_2, \dots, k_T} - \boldsymbol{\mu}_G\|_2$. The Kronecker delta, denoted as $\delta_{x,y}$, is a function used
234 to indicate whether two variables x and y are equal. Ave represents the operation of taking the
235 average. $\langle \cdot, \cdot \rangle$ denotes the dot product operation.
236237 We use the objective function (3) to train the multi-task network. When we approach the TPT, we
238 find the following experiment phenomena, which we refer to as SSMTC-NC:239 **(NC1) Variability Collapse.** Each feature with the same label converges to the mean.
240

241
$$\text{Ave}_{k_1, \dots, k_T, j} \{(\mathbf{h}_j^{k_1, \dots, k_T} - \boldsymbol{\mu}^{k_1, \dots, k_T})(\mathbf{h}_j^{k_1, \dots, k_T} - \boldsymbol{\mu}^{k_1, \dots, k_T})^\top\} \rightarrow 0$$

242

243 **(NC2) Task-specific Simplex ETF.** The weights of the classifier for each task form a Simplex ETF.
244

245
$$\|\mathbf{w}_k^t\|_2 - \|\mathbf{w}_{k'}^t\|_2 \rightarrow 0, \forall k, k' \in [K], t \in [T]$$

246
$$\langle \tilde{\mathbf{w}}_k^t, \tilde{\mathbf{w}}_{k'}^t \rangle \rightarrow \frac{K}{K-1} \delta_{k,k'} - \frac{1}{K-1}, \forall k, k' \in [K], t \in [T]$$

247

248 **(NC3) Orthogonality.** The spaces spanned by the weights of the classifiers for any two tasks are
249 mutually orthogonal.

250
$$\langle \tilde{\mathbf{w}}_k^t, \tilde{\mathbf{w}}_{k'}^{t'} \rangle \rightarrow 0, \forall k, k' \in [K], t, t' \in [T] \text{ with } t \neq t'$$

251

252 **(NC4) Convergence to Sum of Task-specific Classifiers.** The shared features among different
253 tasks converge to the scaled sum of weight vectors of the task-specific linear classifier for each
254 task-specific label.
255

256
$$\left\| \tilde{\mathbf{h}}_j^{k_1, k_2, \dots, k_T} - \frac{\sum_{t=1}^T \mathbf{w}_{k_t}^t}{\|\sum_{t=1}^T \mathbf{w}_{k_t}^t\|_2} \right\|_2 \rightarrow 0$$

257

258 **(NC5) Simplification to Nearest Class-Center.** The network's classification result converges to
259 choose whichever class has the nearest training class-mean.

260
$$(\underset{k_1}{\text{argmax}} \langle \mathbf{w}_{k_1}^1, \mathbf{h} \rangle + b_{k_1}^1, \dots, \underset{k_T}{\text{argmax}} \langle \mathbf{w}_{k_T}^T, \mathbf{h} \rangle + b_{k_T}^T) \rightarrow \underset{k_1, \dots, k_T}{\text{argmin}} \|\mathbf{h} - \boldsymbol{\mu}^{k_1, \dots, k_T}\|_2 \quad (7)$$

261

262 Theoretically, we rigorously analyze the global minimizers of Problem (3) and get the form of
263 minimizers to validate the experimental results.
264265 **Theorem 3.1.** Assume that the training data is balanced, the feature dimension is larger than the
266 number of classes, i.e., $d \geq \sum_{t=1}^T K_t - T$, the regularization parameters satisfy $\lambda_H \lambda_W < \frac{N}{4K}$, and
267 the Assumptions (5), (6) hold, then, any global minimizers of Problem (3) satisfy the following five
268 properties, which correspond to the five phenomena of SSMTC-NC (SSMTC-NC1 to SSMTC-NC5):
269

1. $\mathbf{h}_j^{k_1, \dots, k_T} = \boldsymbol{\mu}^{k_1, \dots, k_T}$

270 2. $\|\mathbf{w}_k^t\|_2 = \|\mathbf{w}_{k'}^t\|_2, \langle \tilde{\mathbf{w}}_k^t, \tilde{\mathbf{w}}_{k'}^t \rangle = \frac{K}{K-1} \delta_{k,k'} - \frac{1}{K-1}, \forall k, k' \in [K], t \in [T]$
 271

272 3. $\langle \tilde{\mathbf{w}}_k^t, \tilde{\mathbf{w}}_{k'}^{t'} \rangle = 0, \forall k, k' \in [K], t, t' \in [T] \text{ with } t \neq t'$
 273

274 4. $\tilde{\mathbf{h}}_j^{k_1, k_2, \dots, k_T} = \frac{\sum_{t=1}^T \mathbf{w}_{k_t}^t}{\|\sum_{t=1}^T \mathbf{w}_{k_t}^t\|_2}$
 275

276 5. $(\underset{k_1}{\text{argmax}} \langle \mathbf{w}_{k_1}^1, \mathbf{h} \rangle + b_{k_1}^1, \dots, \underset{k_T}{\text{argmax}} \langle \mathbf{w}_{k_T}^T, \mathbf{h} \rangle + b_{k_T}^T) = \underset{k_1, \dots, k_T}{\text{argmin}} \|\mathbf{h} - \mathbf{u}^{k_1, \dots, k_T}\|_2$
 277

278

279 The detailed proof of Theorem 3.1 is deferred to Appendix B. Next, we delve into the implications
 280 of our findings from various perspectives.

281 **Mutually Orthogonal Task-specific Classifiers.** The orthogonality in **NC3** ensures that the task-
 282 specific classifiers can be optimized independently.

283 **Feature Learning in MTL.** **NC3** and **NC4** suggest that the learned features of Problem (3) may
 284 be a combination of features from multiple orthogonal subspaces, which is further validated in the
 285 experimental section 5.1.

286 **General SSMTNC-NC.** Considering a general training scenario without Assumptions (5) and (6), a
 287 similar SSMTNC-NC phenomenon still exists. The detailed descriptions and theories are provided in
 288 Appendix B.2, and the experimental results are provided in Appendix D.2.

291 3.2 MSMTNC-NC

292 We assume that the number of training samples in each class is balanced for each task and the feature
 293 dimension is greater than the largest number of classes in all tasks, i.e., $d \geq \max_t K_t - 1$. We use
 294 the objective function (4) to train the multi-task network and experimentally observe that the neural
 295 collapse phenomenon occurs for each task, referred to as **MSMTNC-NC**.

296 **(NC1) Within-class Variability Collapse.** In each task, the features of the same class are clustered
 297 around the class mean.

298
$$\underset{k,j}{\text{Ave}} (\mathbf{h}_{k,j}^t - \boldsymbol{\mu}_k^t) (\mathbf{h}_{k,j}^t - \boldsymbol{\mu}_k^t)^\top \rightarrow 0, \forall t \in [T]$$

301 **(NC2) Convergence to Simplex ETF.** The classifier and features of each task converge to a Simplex
 302 ETF.

303
$$\langle \tilde{\mathbf{w}}_k^t, \tilde{\mathbf{w}}_{k'}^t \rangle \rightarrow \frac{K_t}{K_t - 1} \delta_{k,k'} - \frac{1}{K_t - 1}, \forall t \in [T], k, k' \in [K_t]$$

 304

305
$$\langle \tilde{\boldsymbol{\mu}}_k^t, \tilde{\boldsymbol{\mu}}_{k'}^t \rangle \rightarrow \frac{K_t}{K_t - 1} \delta_{k,k'} - \frac{1}{K_t - 1}, \forall t \in [T], k, k' \in [K_t]$$

 306

307
$$|\|\mathbf{w}_k^t\|_2^2 - \|\mathbf{w}_{k'}^t\|_2^2| \rightarrow 0, \forall t \in [T], k, k' \in [K_t]$$

 308

309
$$|\|\boldsymbol{\mu}_k^t\|_2^2 - \|\boldsymbol{\mu}_{k'}^t\|_2^2| \rightarrow 0, \forall t \in [T], k, k' \in [K_t]$$

 310

311 **(NC3) Convergence to Self-duality.** The linear classifiers and class-means of each task will con-
 312 verge to align with each other.

313
$$\|\tilde{\boldsymbol{\mu}}_k^t - \tilde{\mathbf{w}}_k^t\|_2^2 \rightarrow 0, \forall t \in [T], k \in [K_t]$$

 314

315 **(NC4) Simplification to Nearest Class-Center.**

316
$$\underset{k}{\text{argmax}} \langle \mathbf{w}_k^t, \mathbf{h} \rangle + b_k^t \rightarrow \underset{k}{\text{argmin}} \|\mathbf{h} - \mathbf{u}_k^t\|_2, \forall t \in [T]$$

 317

318

319 $\mathbf{h}_{k,j}^t$ denotes the feature of the j -th sample belonging to class k in the t -th task and $\boldsymbol{\mu}_k^t$ represents
 320 the mean, i.e., $\boldsymbol{\mu}_k^t = \sum_{j=1}^{n_t} \mathbf{h}_{k,j}^t / n_t$ (n_t denotes the number of samples per class in the t -th task).
 321 $\tilde{\boldsymbol{\mu}}_k^t$ denotes $(\boldsymbol{\mu}_k^t - \boldsymbol{\mu}_G) / \|\boldsymbol{\mu}_k^t - \boldsymbol{\mu}_G\|_2$.
 322

323 Theoretically, we rigorously analyze the global minimizers of Problem (4) and get the form of
 324 minimizers to validate the experimental results.

324 **Theorem 3.2.** Assume that the feature dimension is larger than the largest number of classes in all
 325 tasks, i.e., $d \geq \max_t K_t - 1$, the regularization parameters satisfy $\lambda_H \lambda_W < \frac{n_t}{4}$, and the number of
 326 training samples in each class is balanced for each task, any global minimizers of Problem (4) satisfy
 327 the following four properties, which correspond to the four phenomena of MSMTC-NC (MSMTC-
 328 NC1 to MSMTC-NC4):

- 330 1. $\mathbf{h}_{k,j}^t = \boldsymbol{\mu}_k^t, \forall t \in [T], k \in [K_t]$
- 331 2. $\|\mathbf{w}_k^t\|_2 = \|\mathbf{w}_{k'}^t\|_2, \langle \tilde{\mathbf{w}}_k^t, \tilde{\mathbf{w}}_{k'}^t \rangle = \frac{K}{K-1} \delta_{k,k'} - \frac{1}{K-1}, \forall t \in [T], k, k' \in [K_t]$
- 333 3. $\tilde{\boldsymbol{\mu}}_k^t = \tilde{\mathbf{w}}_k^t, \forall t \in [T], k \in [K_t]$
- 335 4. $\underset{k}{\operatorname{argmax}} \langle \mathbf{w}_k^t, \mathbf{h} \rangle + b_k^t = \underset{k}{\operatorname{argmin}} \|\mathbf{h} - \mathbf{u}_k^t\|_2, \forall t \in [T]$

338 A detailed proof of Theorem 3.2 is provided in Appendix B.3.

341 4 EXPERIMENT

343 4.1 DATASETS

345 The datasets used in this paper are Multi-MNIST (Sabour et al., 2017), Multi-CIFAR10, CIFAR100-
 346 Cross and CIFAR100-Split (Rosenbaum et al., 2018). The detailed description of the datasets is
 347 provided in Appendix C. Table 2 presents the datasets. It is worth mentioning that for SSMTC,
 348 CIFAR100-Cross-10x10 classification task can be viewed as multi-task learning with two tasks, each
 349 containing 10 classes. In contrast, for MSMTC, CIFAR100-Split-5x20 classification task involves
 350 multi-task learning with 20 tasks, each having 5 classes. More experiments on CelebA (Liu et al.,
 351 2015), ImageNet-1K (Deng et al., 2009) are shown in Appendix D.4.

353 4.2 EXPERIMENTAL SETTINGS

355 This paper uses ResNet18, ResNet34 (He et al., 2016), VGG11 and VGG13 (Simonyan & Zis-
 356 serman, 2015b) as the shared feature extractor, and the uniform static weights. Throughout all
 357 the experiments, we use a SGD optimizer with fixed batch size 128, weight decay $(\lambda_H, \lambda_W) =$
 358 $(5 \cdot 10^{-4}, 5 \cdot 10^{-4})$ and momentum 0.9. In the experiment, the learning rate is initially set to $1 \cdot 10^{-1}$
 359 and gradually decays to $1 \cdot 10^{-3}$ over 500 epochs using the CosineAnnealingLR scheduler.

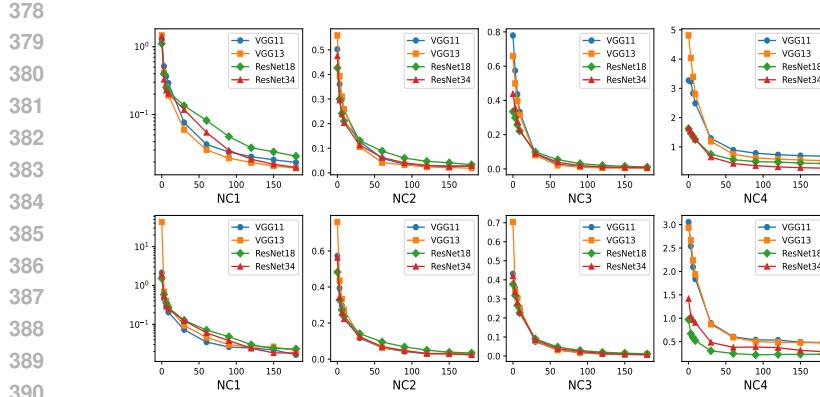
360 Additionally, we employ different multi-task weighting strategies as shown in Appendix D.3, in-
 361 cluding MGDA, Uncertainty Weight, PCgrad, DWA, FAMO, FairGrad. And we also consider the
 362 datasets with different number of classes for each task, as shown in Appendix D.2. Experiments on
 363 different learning rate and (λ_H, λ_W) are shown in Appendix D.5.

365 4.3 EVALUATION METRICS

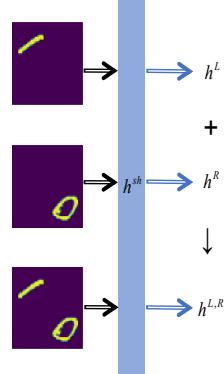
367 **SSMTC-NC.** Following Papyan et al. (2020); Súkeník et al. (2024), we evaluate NC1 using within-
 368 class variance, denoted as SNC1. NC2 assesses the proximity of the classifier to the Simplex ETF
 369 using the angle and norm, denoted as SNC2-1 and SNC2-2. NC3 is assessed by the maximum ab-
 370 solute value of the cosine between classifiers of different tasks, denoted as SNC3. NC4 is evaluated
 371 using the difference between the normalized feature mean and the scaled sum of task-specific clas-
 372 sifiers, denoted as SNC4. NC5 is evaluated using the error rate of classification based on Nearest
 373 Class-Center, denoted as SNC5.

374 **MSMTC-NC.** Following Papyan et al. (2020); Súkeník et al. (2024), we use the mean of all tasks'
 375 metrics similar to SSMTC-NC and name them MNC1, MNC2-1, MNC2-2, MNC3 and MNC4
 376 respectively.

377 The specific metric form is included in the Appendix D.9.



(a) NC on Multi-MNIST-10-10 (top) and Multi-CIFAR10-10-10 (bottom). The NC metrics for NC1, NC2, and NC3 are the means of the NC metrics on two tasks. The horizontal axis represents the epoch.



(b) Task-specific latent feature and shared feature

Figure 2: Illustration of Feature Learning in SSMTC

4.4 VERIFICATION OF SSMTC-NC AND MSMTC-NC

As shown in Figures 6, 7 and Figures 8, 9 in the Appendix, all the metrics approach zero during the terminal phase of training. These results show that SSMTC-NC exists in different networks and datasets. Figures 10, 11 in the Appendix show that MSMTC-NC exists in different networks and datasets. Building on prior works (Li et al., 2024; Yang et al., 2022), we conduct parameter-efficient training experiments leveraging NC properties in MTL as shown in Appendix D.7. Our results demonstrate the presence of both SSMTC-NC and MSMTC-NC phenomena, and verify the replaceability of final-layer parameters.

5 INSIGHTS FROM NC IN MTL

5.1 THE RELATIONSHIP BETWEEN SHARED FEATURES AND TASK-SPECIFIC LATENT FEATURES

To further understand the shared features and what each task learns respectively in SSMTC, we process the training samples $\mathbf{x}^{L,R}$ from the Multi-MNIST-10-10 and Multi-CIFAR10-10-10 datasets, retaining only the top-left and bottom-right features to obtain \mathbf{x}^L and \mathbf{x}^R , respectively. We then feed test samples $\mathbf{x}^L, \mathbf{x}^R$ into the neural network trained on $\mathbf{x}^{L,R}$, to obtain \mathbf{h}^L and \mathbf{h}^R as shown in Figure 2(b). As shown in Figure 2(a), we perform NC analysis on \mathbf{h}^L and the classifier \mathbf{W}^L , as well as on \mathbf{h}^R and the classifier \mathbf{W}^R . We observe that both \mathbf{h}^L and \mathbf{h}^R exhibit the NC properties, including within-class variability collapse (NC1), convergence to Simplex ETF (NC2), and convergence to self-duality (NC3). We also uncover properties corresponding to SSMTC-NC4:

(NC4) Convergence to Sum of Task-Specific Latent Features

$$\left\| \tilde{\mu}_{k_1, k_2}^{L,R} - \frac{\tilde{\mu}_{k_1}^L + \tilde{\mu}_{k_2}^R}{\|\tilde{\mu}_{k_1}^L + \tilde{\mu}_{k_2}^R\|} \right\|_2 \rightarrow 0$$

$\tilde{\mu}_{k_1, k_2}^{L,R}$ denotes the feature mean of sample $\mathbf{x}^{L,R}$ with label (k_1, k_2) after centering and normalization. $\tilde{\mu}_{k_1}^L$ and $\tilde{\mu}_{k_2}^R$ denote the feature means of sample \mathbf{x}^L with class k_1 and sample \mathbf{x}^R with class k_2 after centering and normalization.

NC1, NC2, and NC3 indicate that \mathbf{h}^L and \mathbf{h}^R are the features learned by the two tasks, which we refer to as **task-specific latent features**. NC4 further explains that the shared features of samples in MTL are composed of task-specific latent features. The above findings dissect the specific structure of the shared feature, indicating that task-specific classifiers decompose the shared features into task-specific latent features.

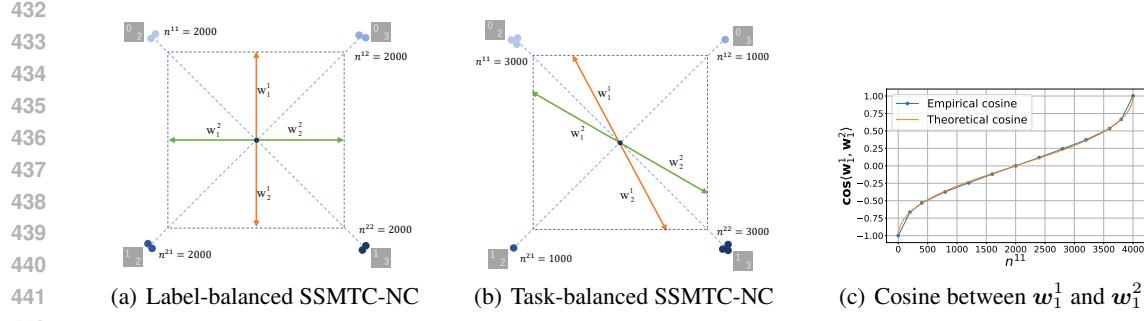


Figure 3: Illustration of SSMTC-NC in the label-balanced case, SSMTC-NC in the task-balanced case, and cosine between w_1^1 and w_1^2 . $n^{k_1 k_2}$ denote the number of samples with label (k_1, k_2) .

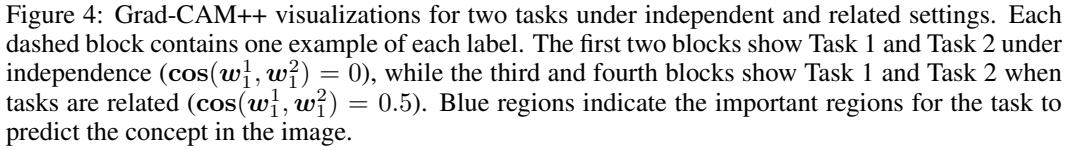


Figure 4: Grad-CAM++ visualizations for two tasks under independent and related settings. Each dashed block contains one example of each label. The first two blocks show Task 1 and Task 2 under independence ($\cos(w_1^1, w_1^2) = 0$), while the third and fourth blocks show Task 1 and Task 2 when tasks are related ($\cos(w_1^1, w_1^2) = 0.5$). Blue regions indicate the important regions for the task to predict the concept in the image.

5.2 IMPACT OF TASK CORRELATION ON TASK-SPECIFIC CLASSIFIERS

With the total sample size fixed at N , we systematically vary the sampling proportions of each label pair (k_1, k_2) and investigate how task correlation (Li et al., 2025; Ma et al., 2018) impacts the task-specific classifiers. Through empirical experiments and theoretical analysis, we find that, when moving from the label-balanced to the task-balanced scenario, all other NC properties continue to hold and SSMTC-NC3 adapts to Correlated-NC:

(NC1) Variability collapse. Each feature with the same label converges to the mean.

(NC2) Task-specific Simplex ETF. The weights of the classifier for each task form a Simplex ETF.

(Correlated-NC3) Alignment of task-specific classifiers. As n^{k_1, k_2} increases, $\cos(w_{k_1}^1, w_{k_2}^2)$ increases.

(NC4) Convergence to weighted sum of task-specific classifiers.

(NC5) Simplification to Nearest Class-Center.

Theorem 5.1. Consider two binary classification tasks, the training data is task-balanced, and the number of samples with label (k_1, k_2) is n^{k_1, k_2} ($k_1 \in [2], k_2 \in [2]$). Assume that the number of all samples is N and $\lambda_H \lambda_W < \frac{n^{k_1, k_2}}{2}$, then any global minimizers of Problem (3) [satisfies the following conditions](#):

1. $h_j^{k_1, k_2} = \mu^{k_1, k_2}$
2. $\|w_k^t\|_2 = \|w_{k'}^t\|_2, \langle \tilde{w}_k^t, \tilde{w}_{k'}^t \rangle = 2\delta_{k, k'} - 1, \forall k, k' \in [2], t \in [2]$
3. As n^{k_1, k_2} increases, $\cos(w_{k_1}^1, w_{k_2}^2)$ increases.

486
487 4. $\hat{\mathbf{h}}_j^{k_1, k_2} = \frac{\mathbf{w}_{k_1}^1 + \mathbf{w}_{k_2}^2}{\|\mathbf{w}_{k_1}^1 + \mathbf{w}_{k_2}^2\|_2}$

488
489 5. $(\underset{k_1}{\text{argmax}} \langle \mathbf{w}_{k_1}^1, \mathbf{h} \rangle + b_{k_1}^1, \underset{k_2}{\text{argmax}} \langle \mathbf{w}_{k_2}^2, \mathbf{h} \rangle + b_{k_2}^2) = \underset{k_1, k_2}{\text{argmin}} \|\mathbf{h} - \mathbf{u}^{k_1, k_2}\|_2$

490
491 The proof is shown in Appendix B.4. As shown in Figure 3(a) and Figure 3(b), we set $N = 8000$,
492 $K = 2$, and then adjust the number of samples belonging to each label. As shown in Figure 3(c),
493 when the number of samples with the label $(0, 2)$ increases, the cosine between \mathbf{w}_1^1 and \mathbf{w}_1^2 increases.
494 We explain the phenomenon theoretically and derive the closed-form expression for $\cos(\mathbf{w}_1^1, \mathbf{w}_1^2)$
495 in Appendix B.4, which aligns with the experimental results as shown in Figure 3(c). The additional
496 experimental results, encompassing extended scenarios with $K \geq 2$, are included in Appendix D.6.
497

498 Through the detailed experiments and theoretical analysis, we find that task correlation reshapes the
499 space of task-specific classifiers.

500 **Implication of the alignment of task-specific classifiers.** When tasks are correlated, the align-
501 ment of task-specific classifiers implies that the features learned by the two tasks are aligned
502 and closer to shared features. To verify the implication, we choose the `Eyeglasses` and
503 `Mouth_Slightly_Open` attributes on CelebA as Task 1 and Task 2, and boost task correlation.
504 We use Grad-CAM++ (Chattopadhyay et al., 2018) to visualize the important regions for the two
505 tasks to predict the concept in the image. As shown in Figure 4, when tasks are related, their salient
506 regions largely coincide, demonstrating that the two tasks attend to the same facial features and thus
507 learn closely aligned representations.

508 6 CONCLUSION

510 In this work, we demonstrate neural collapse in MTL through SSMTC-NC and MSMTC-NC. We
511 empirically validate both SSMTC-NC and MSMTC-NC across various network architectures and
512 datasets. Theoretically, we prove that any global optimal solution must satisfy the properties of
513 SSMTC-NC and MSMTC-NC. Through further experiments, we find that each task learns task-
514 specific latent features that form shared features. Our empirical findings, supported by theoretical
515 analysis, indicate that MTL is inherently biased toward leveraging task correlation to reconfigure
516 the geometry of task-specific classifiers and promote alignment among the features learned by each
517 task. We believe our work offers valuable insights into the understanding of features and classifiers
518 in MTL.

520 REFERENCES

521 George Andriopoulos, Zixuan Dong, Li Guo, Zifan Zhao, and Keith W. Ross. The prevalence of
522 neural collapse in neural multivariate regression. In *NeurIPS*, 2024.

523 Hao Ban and Kaiyi Ji. Fair resource allocation in multi-task learning. In *ICML*, 2024.

524 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
525 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
526 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
527 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
528 Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
529 Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In *NeurIPS*, 2020.

530 Aditya Chattopadhyay, Anirban Sarkar, Prantik Howlader, and Vineeth N. Balasubramanian. Grad-
531 cam++: Generalized gradient-based visual explanations for deep convolutional networks. In
532 *WACV*, 2018.

533 Liam Collins, Hamed Hassani, Mahdi Soltanolkotabi, Aryan Mokhtari, and Sanjay Shakkottai.
534 Provable multi-task representation learning by two-layer relu neural networks. In *ICML*, 2024.

535 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
536 hierarchical image database. In *CVPR*, 2009.

540 Cong Fang, Hangfeng He, Qi Long, and Weijie J Su. Exploring deep neural networks via layer-
 541 peeled model: Minority collapse in imbalanced training. *Proceedings of the National Academy*
 542 *of Sciences*, 2021a.

543 Cong Fang, Hangfeng He, Qi Long, and Weijie J. Su. Layer-peeled model: Toward understanding
 544 well-trained deep neural networks. *Proceedings of the National Academy of Sciences*, 2021b.

545 Tomer Galanti, András György, and Marcus Hutter. On the role of neural collapse in transfer learn-
 546 ing. In *ICLR*, 2022.

547 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 548 nition. In *CVPR*, 2016.

549 Jiachen Jiang, Jinxin Zhou, Peng Wang, Qing Qu, Dustin G. Mixon, Chong You, and Zhihui Zhu.
 550 Generalized neural collapse for a large number of classes. In *ICML*, 2024.

551 Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
 552 for scene geometry and semantics. In *CVPR*, 2018.

553 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
 554 lutional neural networks. In *NeurIPS*, 2012.

555 Yann LeCun, Corinna Cortes, Chris Burges, et al. Mnist handwritten digit database, 2010.

556 Hongkang Li, Yihua Zhang, Shuai Zhang, Pin-Yu Chen, Sijia Liu, and Meng Wang. When is task
 557 vector provably effective for model editing? A generalization analysis of nonlinear transformers.
 558 In *ICLR*, 2025.

559 Pengyu Li, Xiao Li, Yutong Wang, and Qing Qu. Neural collapse in multi-label learning with
 560 pick-all-label loss. In *ICML*, 2024.

561 Xiao Li, Sheng Liu, Jinxin Zhou, Xinyu Lu, Carlos Fernandez-Granda, Zhihui Zhu, and Qing Qu.
 562 Principled and efficient transfer learning of deep models via neural collapse, 2022.

563 Samuel Lippel and Jack W. Lindsey. Inductive biases of multi-task learning and finetuning: multiple
 564 regimes of feature reuse. In *NeurIPS*, 2024.

565 Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. FAMO: fast adaptive multitask optimization. In
 566 *NeurIPS*, 2023.

567 Shikun Liu, Edward Johns, and Andrew J. Davison. End-to-end multi-task learning with attention.
 568 In *CVPR*, 2019.

569 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
 570 In *ICCV*, 2015.

571 Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H. Chi. Modeling task relation-
 572 ships in multi-task learning with multi-gate mixture-of-experts. In *KDD*, 2018.

573 Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. The benefit of multitask
 574 representation learning. *Journal of Machine Learning Research*, 2016.

575 Dustin G Mixon, Hans Parshall, and Jianzong Pi. Neural collapse with unconstrained features.
 576 *Sampling Theory, Signal Processing, and Data Analysis*, 2022.

577 Michael Munn, Benoit Dherin, and Javier Gonzalvo. The impact of geometric complexity on neural
 578 collapse in transfer learning. In *NeurIPS*, 2024.

579 Vardan Petyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
 580 phase of deep learning training. *Proceedings of the National Academy of Sciences*, 2020.

581 Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks: Adaptive selection of
 582 non-linear functions for multi-task learning. In *ICLR*, 2018.

583 Sebastian Ruder. An overview of multi-task learning in deep neural networks, 2017.

594 Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic routing between capsules. In
 595 *NeurIPS*, 2017.

596

597 Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In *NeurIPS*,
 598 2018.

599 Joseph Shenouda, Rahul Parhi, Kangwook Lee, and Robert D. Nowak. Variation spaces for multi-
 600 output neural networks: Insights on multi-task learning and network compression. *Journal of*
 601 *Machine Learning Research*, 2024.

602

603 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 604 recognition. In *ICLR*, 2015a.

605

606 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 607 recognition. In *ICLR*, 2015b.

608

609 Peter Súkeník, Marco Mondelli, and Christoph H Lampert. Deep neural collapse is provably optimal
 610 for the deep unconstrained features model. In *NeurIPS*, 2024.

611

612 Christos Thrampoulidis, Ganesh Ramachandra Kini, Vala Vakilian, and Tina Behnia. Imbalance
 613 trouble: Revisiting neural-collapse geometry. In *NeurIPS*, 2022.

614

615 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 616 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, 2017.

617

618 Sen Wu, Hongyang R. Zhang, and Christopher Ré. Understanding and improving information trans-
 619 fer in multi-task learning. In *ICLR*, 2020.

620

621 Liang Xie, Yibo Yang, Deng Cai, and Xiaofei He. Neural collapse inspired attraction-repulsion-
 622 balanced loss for imbalanced learning. *Neurocomputing*, 2023.

623

624 Hongren Yan, Yuhua Qian, Furong Peng, Jiachen Luo, zheqing zhu, and Feijiang Li. Neural collapse
 625 to multiple centers for imbalanced data. In *NeurIPS*, 2024.

626

627 Yibo Yang, Shixiang Chen, Xiangtai Li, Liang Xie, Zhouchen Lin, and Dacheng Tao. Inducing
 628 neural collapse in imbalanced learning: Do we really need a learnable classifier at the end of deep
 629 neural network? In *NeurIPS*, 2022.

630

631 Yibo Yang, Haobo Yuan, Xiangtai Li, Zhouchen Lin, Philip H. S. Torr, and Dacheng Tao. Neural
 632 collapse inspired feature-classifier alignment for few-shot class-incremental learning. In *ICLR*,
 633 2023.

634

635 Longhui Yu, Tianyang Hu, Lanqing Hong, Zhen Liu, Adrian Weller, and Weiyang Liu. Continual
 636 learning by modeling intra-class variation. *Transactions on Machine Learning Research*, 2023.

637

638 Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
 639 Gradient surgery for multi-task learning. In *NeurIPS*, 2020.

640

641 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
 642 deep learning (still) requires rethinking generalization. *Commun. ACM*, 2021.

643

644 Yu Zhang and Qiang Yang. A survey on multi-task learning. *IEEE Transactions on Knowledge and*
 645 *Data Engineering*, 2022.

646

647 Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A
 648 geometric analysis of neural collapse with unconstrained features. In *NeurIPS*, 2021.

648

649

650

651

652

653

654

655

656

657

Appendix

APPENDIX ORGANIZATION

Table 1: Appendix Contents

Appendix A	Basic Lemmas
Appendix B	Theoretical Proofs
Appendix C	Dataset Illustration and Visualization
Appendix D	Detailed Experimental Results
Appendix E	Discussions about the Related Work

In Appendix A, we provide the lemmas used in the proofs. Appendices B.1 and Appendix B.3 present the proofs of Theorems 3.1 and Theorems 3.2, respectively, and Appendix B.2 offers the description and theoretical proof of the general SSMTC-NC. In Appendix B.4, we provide the proof for Theorem 5.1. Appendix C provides a detailed description of the datasets. Appendix D.1 presents other metrics. Appendix D.2 contains supplementary experiments for general SSMTC and MSMTC, and Appendix D.3 provides empirical results of SSMTC-NC and MSMTC-NC when we use multiple MTL methods to update the task weights. In Appendix D.4, we provide the experimental results on ImageNet, CelebA and Tiny-ImageNet. In Appendix D.5, we run the experiments on different learning rates and (λ_H, λ_W) . In Appendix D.6, we show the experimental results when the train data is task-balanced. In Appendix D.7, we provide the experimental results on efficient training utilizing NC properties in MTL. In Appendix E.1, we discuss the difference between Li et al. (2024) and our work. In Appendix E.2, we discuss the connection between our work and related work in MTL.

A BASIC DEFINITION AND LEMMAS

Definition 3 (Simplex ETF (Papyan et al., 2020)). *A collection of vectors $\mathbf{m}_i \in \mathbb{R}^d, i = 1, 2, \dots, K, d \geq K - 1$, is said to be a Simplex equiangular tight frame if:*

$$\mathbf{M} = \sqrt{\frac{K}{K-1}} \mathbf{U} (\mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^\top) \quad (8)$$

where $\mathbf{M} = [\mathbf{m}_1, \dots, \mathbf{m}_K] \in \mathbb{R}^{d \times K}$, $\mathbf{U} \in \mathbb{R}^{d \times K}$ allows a rotation and satisfies $\mathbf{U}^\top \mathbf{U} = \mathbf{I}_K$, \mathbf{I}_K is the identity matrix, and $\mathbf{1}_K$ is the all-ones vector. Specially, when $K = 2$, the angle between any two vectors in \mathbf{M} is 180 degrees; When $K = 3$, the angle between any two vectors is 120 degrees.

Lemma A.1. *For a set of n vectors $\mathbf{v}_i \in \mathbb{R}^d$, the point $\mathbf{x} \in \mathbb{R}^d$ that minimizes the sum of squared Euclidean distances*

$$\sum_{i=1}^n \|\mathbf{v}_i - \mathbf{x}\|_2^2$$

is the mean of the vectors, i.e.,

$$\mathbf{x} = \frac{1}{n} \sum_{i=1}^n \mathbf{v}_i.$$

Lemma A.2. *Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be a strictly convex function. Then, for any $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^d$, the following inequality holds:*

$$\sum_{i=1}^n f(\mathbf{x}_i) \geq n \cdot f\left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}_i\right).$$

Equality holds if and only if $\mathbf{x}_1 = \mathbf{x}_2 = \dots = \mathbf{x}_n$.

702 **Lemma A.3.** Consider the function $f(x) = \alpha \log(1 + \beta \exp(-\gamma x)) + x$, where $\alpha, \beta, \gamma \in \mathbb{R}^+$, and
 703 $x \in \mathbb{R}_{\geq 0}$. The minimizer x^* of $f(x)$ is determined as follows:
 704

- 705 - If $\beta + 1 \geq \alpha \beta \gamma$, then $x^* = 0$.
- 706 - Otherwise, $x^* = \frac{1}{\gamma} \log(\alpha \beta \gamma - \beta)$.

707
 708
 709 **B THEORETICAL PROOFS**
 710
 711

712 **Remark.** In the SSMTC setting, all tasks share data drawn from the same source, and thus the cou-
 713 **pling between tasks remains explicitly preserved through shared features. In contrast, in MSMTC,**
 714 **the optimization objective can indeed be decomposed into a sum of single-task objectives. This**
 715 **decomposition reflects that the effect of parameter sharing becomes negligible, but it does not mean**
 716 **that the model becomes multiple independent models; the analysis is still conducted within a sin-**
 717 **gle multi-task model. Therefore, within the UFM framework, the influence of parameter sharing**
 718 **is inherently stronger in SSMTC than in MSMTC. The effect of parameter sharing disappears in**
 719 **MSMTC. The key reasons are twofold: (1) the multi-task model has high representation capacity**
 720 **(UFM model), and (2) the data are drawn from multiple distinct sources (the MSMTC setting). Under**
 721 **these two conditions, the shared features can freely adjust to each task independently, which allows**
 722 **the optimization problem to decouple into task-specific subproblems. This decomposition holds in**
 723 **MSMTC but not in SSMTC. As a result, the theoretical results and experimental results observed in**
 724 **MSMTC closely resembles that in single task learning.**

725
 726
 727 **B.1 PROOF OF THEOREM 3.1**
 728
 729

730 The key idea of the proof of Theorem 3.1 is to lower bound the entropy loss in Problem (3). The
 731 equality holds only if SSMTC-NC is satisfied.
 732

$$\begin{aligned}
 734 \quad & g(\mathbf{W}^1, \mathbf{W}^2, \dots, \mathbf{W}^T, \mathbf{H}, \mathbf{b}^1, \mathbf{b}^2, \dots, \mathbf{b}^T) \\
 735 \quad &= \sum_{t=1}^T \sum_{k=1}^K \sum_{i=1}^{\frac{N}{K}} \log(1 + \sum_{l=1, l \neq k}^K \exp(\mathbf{w}_l^t \mathbf{h}_{k,i}^t - \mathbf{w}_k^t \mathbf{h}_{k,i}^t + b_l^t - b_k^t)) \\
 736 \quad &+ \lambda_{\mathbf{H}} \|\mathbf{H}\|_F^2 + \lambda_{\mathbf{W}} \sum_{t=1}^T \|\mathbf{W}^t\|_F^2 + \lambda_{\mathbf{b}} \sum_{t=1}^T \|\mathbf{b}^t\|_2^2
 \end{aligned} \tag{9}$$

743 where $\mathbf{h}_{k,i}^t$ represents the i -th sample of label k in the t -th task. First, we can find that the margin
 744 will not change if we **subtract** a vector \mathbf{x} for all \mathbf{w}_k^t or we subtract a scalar y for all b_l^t provided
 745 that t is fixed. From Lemma A.1, subtracting the mean minimizes the regularization loss. So, the
 746 minimizer must satisfy:
 747

$$\begin{aligned}
 751 \quad & \sum_{k=1}^K \mathbf{w}_k^t = \mathbf{0}, \forall t \in [T] \\
 752 \quad & \sum_{k=1}^K b_k^t = 0, \forall t \in [T]
 \end{aligned} \tag{10}$$

Observe that

$$\begin{aligned}
& \sum_{t=1}^T \sum_{k=1}^K \sum_{i=1}^{\frac{N}{K}} \log \left(1 + \sum_{l=1, l \neq k}^K \exp(\mathbf{w}_l^t \mathbf{h}_{k,i}^t - \mathbf{w}_k^t \mathbf{h}_{k,i}^t + b_l^t - b_k^t)\right) + \lambda_{\mathbf{H}} \|\mathbf{H}\|_F^2 + \lambda_{\mathbf{W}} \sum_{t=1}^T \|\mathbf{W}^t\|_F^2 + \lambda_{\mathbf{b}} \sum_{t=1}^T \|\mathbf{b}^t\|_2^2 \\
& \stackrel{(a)}{\geq} \sum_{t=1}^T \sum_{k=1}^K \sum_{i=1}^{\frac{N}{K}} \log \left(1 + (K-1) \exp\left(-\frac{K}{K-1} (\mathbf{w}_k^t \mathbf{h}_{k,i}^t + b_k^t)\right)\right) + \lambda_{\mathbf{H}} \|\mathbf{H}\|_F^2 + \lambda_{\mathbf{W}} \sum_{t=1}^T \|\mathbf{W}^t\|_F^2 + \lambda_{\mathbf{b}} \sum_{t=1}^T \|\mathbf{b}^t\|_2^2 \quad (a) \\
& \stackrel{(b)}{\geq} \sum_{t=1}^T \sum_{k=1}^K \frac{N}{K} \log \left(1 + (K-1) \exp\left(-\frac{K^2}{(K-1)N} (\mathbf{w}_k^t \sum_{i=1}^{\frac{N}{K}} \mathbf{h}_{k,i}^t + \frac{N}{K} b_k^t)\right)\right) \\
& \quad + \lambda_{\mathbf{H}} \|\mathbf{H}\|_F^2 + \lambda_{\mathbf{W}} \sum_{t=1}^T \|\mathbf{W}^t\|_F^2 + \lambda_{\mathbf{b}} \sum_{t=1}^T \|\mathbf{b}^t\|_2^2 \quad (b) \\
& \stackrel{(c)}{\geq} \sum_{t=1}^T N \log \left(1 + (K-1) \exp\left(-\frac{K}{(K-1)N} \sum_{k=1}^K \mathbf{w}_k^t \sum_{i=1}^{\frac{N}{K}} \mathbf{h}_{k,i}^t\right)\right) + \lambda_{\mathbf{H}} \|\mathbf{H}\|_F^2 + \lambda_{\mathbf{W}} \sum_{t=1}^T \|\mathbf{W}^t\|_F^2 + \lambda_{\mathbf{b}} \sum_{t=1}^T \|\mathbf{b}^t\|_2^2 \\
& \stackrel{(d)}{\geq} TN \log \left(1 + (K-1) \exp\left(-\frac{K}{(K-1)NT} \sum_{k_1=1}^K \cdots \sum_{k_T=1}^K \sum_{i=1}^n \mathbf{h}_i^{k_1, \dots, k_T} \sum_{j=1}^T \mathbf{w}_{k_j}^j\right)\right) + \lambda_{\mathbf{H}} \|\mathbf{H}\|_F^2 + \lambda_{\mathbf{W}} \sum_{t=1}^T \|\mathbf{W}^t\|_F^2 \quad (d) \\
& \stackrel{(e)}{\geq} TN \log \left(1 + (K-1) \exp\left(-\frac{K}{(K-1)NT} \sqrt{\frac{N}{4K\lambda_{\mathbf{H}}\lambda_{\mathbf{W}}}} (\lambda_{\mathbf{H}} \|\mathbf{H}\|_F^2 + \lambda_{\mathbf{W}} \sum_{t=1}^T \|\mathbf{W}^t\|_F^2)\right)\right) \\
& \quad + \lambda_{\mathbf{H}} \|\mathbf{H}\|_F^2 + \lambda_{\mathbf{W}} \sum_{t=1}^T \|\mathbf{W}^t\|_F^2 \quad (e)
\end{aligned}$$

Invoking Lemma A.3 with $\alpha = TN$, $\beta = K - 1$, $\gamma = \frac{K}{(K-1)NT} \sqrt{\frac{N}{4K\lambda_H\lambda_W}}$ and $x = \lambda_H \|\mathbf{H}\|_F^2 + \lambda_W \sum_{t=1}^T \|\mathbf{W}^t\|_F^2$, we derive that if $\lambda_H \lambda_W \geq \frac{N}{4K}$, the minimizer is $(\mathbf{W}^1, \dots, \mathbf{W}^T, \mathbf{H}) = (\mathbf{0}, \dots, \mathbf{0}, \mathbf{0})$ and otherwise, the minimizer must obey $x^* > 0$. Next, we examine the conditions required to reach the minimum value. In inequalities (a), (b), (c) and (d), we use Lemma A.2. The conditions under which equality holds are as follows:

$$\begin{aligned}
& \forall l_1, l_2 \in [K] \setminus \{k\}, \mathbf{w}_{l_1}^t \mathbf{h}_{k,i}^t + b_{l_1}^t = \mathbf{w}_{l_2}^t \mathbf{h}_{k,i}^t + b_{l_2}^t \\
& \forall i_1, i_2 \in [\frac{N}{K}], \mathbf{w}_k^t \mathbf{h}_{k,i_1}^t = \mathbf{w}_k^t \mathbf{h}_{k,i_2}^t \\
& \forall k_1, k_2 \in [K], \mathbf{w}_{k_1}^t \sum_{i=1}^{\frac{N}{K}} \mathbf{h}_{k_1,i}^t + \frac{N}{K} b_{k_1}^t = \mathbf{w}_{k_2}^t \sum_{i=1}^{\frac{N}{K}} \mathbf{h}_{k_2,i}^t + \frac{N}{K} b_{k_2}^t \\
& \forall t_1, t_2 \in [T], \sum_{k=1}^K \mathbf{w}_k^{t_1} \sum_{i=1}^{\frac{N}{K}} \mathbf{h}_{k,i}^{t_1} = \sum_{k=1}^K \mathbf{w}_k^{t_2} \sum_{i=1}^{\frac{N}{K}} \mathbf{h}_{k,i}^{t_2}
\end{aligned} \tag{11}$$

Inequality (d) is also based on $\lambda_b \sum_{t=1}^T \|b^t\|_2^2 \geq 0$ and the data is balanced for each label. The number of samples for each label is n . Inequality (d) holds with equality iff

$$\forall t \in [T], k \in [K], b_k^t = 0 \quad (12)$$

Inequality (e) is based on

$$\mathbf{h}_i^{k_1, \dots, k_T} \sum_{j=1}^T \mathbf{w}_{k_j}^j \leq \lambda \|\mathbf{h}_i^{k_1, \dots, k_T}\|_2^2 + \frac{1}{4\lambda} \|\sum_{j=1}^T \mathbf{w}_{k_j}^j\|_2^2 \quad (13)$$

810 where $\lambda = \sqrt{\frac{N\lambda_H}{4K\lambda_W}}$ and the condition for this equality to be true is:
 811

$$813 \quad \forall i \in [n], \mathbf{h}_i^{k_1, \dots, k_T} = \sqrt{\frac{K\lambda_W}{N\lambda_H}} \sum_{j=1}^T \mathbf{w}_{k_j}^j \quad (14)$$

814
 815

816 Due to the condition (14), the optimizer must satisfy **NC1**, **NC4**. Because of the condition (12), we
 817 can remove bias in condition (11). By combining the condition (10), (11) and (14), we can conclude
 818 that:
 819

$$820 \quad \forall k_1, k_2 \in [K], t_1, t_2 \in [T], t_1 \neq t_2, \mathbf{w}_{k_1}^{t_1} \mathbf{w}_{k_2}^{t_2} = 0 \quad (15)$$

821
 822

823 which satisfy **NC3**. Then we can infer that the optimizer must satisfy **NC2**, **NC5**. When one of
 824 the conditions is not met, the loss will be strictly greater than the minimum value. When one of
 825 the conditions is not met, the loss will be strictly greater than the minimum value, so in summary,
 826 combining all the conditions for equality, we can conclude that the optimal solution must satisfy the
 827 **SSMTC-NC**.
 828

829 B.2 GENERAL SSMTC-NC

830
 831

832 When Assumption (5) and Assumption (6) are not satisfied, during the terminal phase of training
 833 using loss function in Problem (3), the features and classifiers of the network exhibit the following
 834 characteristics.
 835

836 **(NC1) Variability collapse.** Each feature with the same label converges to the mean.

$$837 \quad \text{Ave}_{k_1, \dots, k_T, j} \{(\mathbf{h}_j^{k_1, \dots, k_T} - \boldsymbol{\mu}^{k_1, \dots, k_T})(\mathbf{h}_j^{k_1, \dots, k_T} - \boldsymbol{\mu}^{k_1, \dots, k_T})^\top\} \rightarrow 0$$

838

839 **(NC2) Task-specific Simplex ETF.** The weights of the classifier for each task form a Simplex ETF.
 840

$$841 \quad \|\mathbf{w}_k^t\|_2 - \|\mathbf{w}_{k'}^t\|_2 \rightarrow 0, \forall k, k' \in [K_t], t \in [T]$$

842
 843

$$844 \quad \langle \tilde{\mathbf{w}}_k^t, \tilde{\mathbf{w}}_{k'}^t \rangle \rightarrow \frac{K_t}{K_t - 1} \delta_{k, k'} - \frac{1}{K_t - 1}, \forall k, k' \in [K_t], t \in [T]$$

845
 846

847 **(NC3) Orthogonality.** The spaces spanned by the weights of the classifiers for any two tasks are
 848 mutually orthogonal.
 849

$$850 \quad \langle \tilde{\mathbf{w}}_k^t, \tilde{\mathbf{w}}_{k'}^{t'} \rangle \rightarrow 0, \forall k \in [K_t], k' \in [K_{t'}], t, t' \in [T] \text{ with } t \neq t'$$

851
 852

853 **(NC4) Convergence to weighted sum of task-specific classifiers.** The shared features among
 854 different tasks converges to the weighted sum of task-specific linear classifier weight vectors for
 855 each task-specific label.
 856

$$857 \quad \left\| \tilde{\mathbf{h}}_j^{k_1, k_2, \dots, k_T} - \frac{\sum_{t=1}^T \sqrt{c^t K_t} \mathbf{w}_{k_t}^t}{\|\sum_{t=1}^T \sqrt{c^t K_t} \mathbf{w}_{k_t}^t\|_2} \right\|_2 \rightarrow 0$$

858
 859

860 **(NC5) Simplification to Nearest Class-Center.** The network's classification result converges to
 861 choose whichever class has the nearest training class-mean.
 862

$$863 \quad (\underset{k_1}{\text{argmax}} \langle \mathbf{w}_{k_1}^1, \mathbf{h} \rangle + b_{k_1}^1, \dots, \underset{k_T}{\text{argmax}} \langle \mathbf{w}_{k_T}^T, \mathbf{h} \rangle + b_{k_T}^T)$$

864
 865

$$866 \quad \rightarrow \underset{k_1, \dots, k_T}{\text{argmin}} \|\mathbf{h} - \mathbf{u}^{k_1, \dots, k_T}\|_2$$

867
 868

864
865
866

Similar to Appendix B.1, we prove that the optimal solution of the loss function must satisfy the aforementioned constraints. Next, we analyze the loss function in Problem (3).

867

$$\sum_{t=1}^T \sum_{k=1}^{K_t} \sum_{i=1}^{\frac{N}{K_t}} c^t \log(1 + \sum_{l=1, l \neq k}^{K_t} \exp(\mathbf{w}_l^t \mathbf{h}_{k,i}^t - \mathbf{w}_k^t \mathbf{h}_{k,i}^t + b_l^t - b_k^t)) + \lambda_{\mathbf{H}} \|\mathbf{H}\|_F^2 + \lambda_{\mathbf{W}} \sum_{t=1}^T c^t \|\mathbf{W}^t\|_F^2 + \lambda_{\mathbf{b}} \sum_{t=1}^T c^t \|\mathbf{b}^t\|_2^2$$

868

$$\begin{aligned} & \stackrel{(f)}{\geq} \sum_{t=1}^T \sum_{k=1}^{K_t} \sum_{i=1}^{\frac{N}{K_t}} c^t \log(1 + (K_t - 1) \exp(-\frac{K_t}{K_t - 1} (\mathbf{w}_k^t \mathbf{h}_{k,i}^t + b_k^t))) \\ & + \lambda_{\mathbf{H}} \|\mathbf{H}\|_F^2 + \lambda_{\mathbf{W}} \sum_{t=1}^T c^t \|\mathbf{W}^t\|_F^2 + \lambda_{\mathbf{b}} \sum_{t=1}^T c^t \|\mathbf{b}^t\|_2^2 \end{aligned} \quad (f)$$

869

$$\begin{aligned} & \stackrel{(g)}{\geq} \sum_{t=1}^T \sum_{k=1}^{K_t} c^t \frac{N}{K_t} \log(1 + (K_t - 1) \exp(-\frac{K_t^2}{(K_t - 1)N} (\mathbf{w}_k^t \sum_{i=1}^{\frac{N}{K_t}} \mathbf{h}_{k,i}^t + \frac{N}{K_t} b_k^t))) \\ & + \lambda_{\mathbf{H}} \|\mathbf{H}\|_F^2 + \lambda_{\mathbf{W}} \sum_{t=1}^T c^t \|\mathbf{W}^t\|_F^2 + \lambda_{\mathbf{b}} \sum_{t=1}^T c^t \|\mathbf{b}^t\|_2^2 \end{aligned} \quad (g)$$

870

$$\begin{aligned} & \stackrel{(h)}{\geq} \sum_{t=1}^T c^t N \log(1 + (K_t - 1) \exp(-\frac{K_t}{(K_t - 1)N} \sum_{k=1}^{K_t} \mathbf{w}_k^t \sum_{i=1}^{\frac{N}{K_t}} \mathbf{h}_{k,i}^t)) + \lambda_{\mathbf{H}} \|\mathbf{H}\|_F^2 + \lambda_{\mathbf{W}} \sum_{t=1}^T c^t \|\mathbf{W}^t\|_F^2 \end{aligned} \quad (h)$$

871

$$\begin{aligned} & \stackrel{(i)}{\geq} \sum_{t=1}^T c^t N \log(1 + (K_t - 1) \exp(-\frac{K_t}{(K_t - 1)N} \sum_{k=1}^{K_t} \mathbf{w}_k^t \sum_{i=1}^{\frac{N}{K_t}} \mathbf{h}_{k,i}^t)) + \sqrt{\frac{4\lambda_{\mathbf{H}}\lambda_{\mathbf{W}}}{N}} \sum_{t=1}^T \sqrt{c^t K_t} \sum_{k=1}^{K_t} \mathbf{w}_k^t \sum_{i=1}^{\frac{N}{K_t}} \mathbf{h}_{k,i}^t \end{aligned} \quad (i)$$

872

$$= \sum_{t=1}^T (c^t N \log(1 + (K_t - 1) \exp(-\frac{K_t}{(K_t - 1)N} \sum_{k=1}^{K_t} \mathbf{w}_k^t \sum_{i=1}^{\frac{N}{K_t}} \mathbf{h}_{k,i}^t)) + \sqrt{\frac{4\lambda_{\mathbf{H}}\lambda_{\mathbf{W}} c^t K_t}{N}} \sum_{k=1}^{K_t} \mathbf{w}_k^t \sum_{i=1}^{\frac{N}{K_t}} \mathbf{h}_{k,i}^t))$$

873

Invoking Lemma A.3, when $\lambda_{\mathbf{H}}\lambda_{\mathbf{W}} < \min_t \frac{N c^t}{4 K_t}$, the minimizer must obey $x^* > 0$. Inequalities (f), (g), (h) are based on the Lemma A.2, and inequality (i) is based on:

874

$$\begin{aligned} \sum_{t=1}^T \sqrt{c^t K_t} \sum_{k=1}^{K_t} \mathbf{w}_k^t \sum_{i=1}^{\frac{N}{K_t}} \mathbf{h}_{k,i}^t &= \sum_{k_1=1}^{K_1} \dots \sum_{k_T=1}^{K_T} \sum_{i=1}^n \mathbf{h}_i^{k_1, \dots, k_T} \sum_{j=1}^T \sqrt{c^t K_t} \mathbf{w}_{k_j}^j \\ &\leq \sum_{k_1=1}^{K_1} \dots \sum_{k_T=1}^{K_T} \sum_{i=1}^n (\lambda \|\mathbf{h}_i^{k_1, \dots, k_T}\|_2^2 + \frac{1}{4\lambda} \|\sum_{j=1}^T \sqrt{c^t K_t} \mathbf{w}_{k_j}^j\|_2^2) \\ &= \sum_{k_1=1}^{K_1} \dots \sum_{k_T=1}^{K_T} \sum_{i=1}^n (\lambda \|\mathbf{h}_i^{k_1, \dots, k_T}\|_2^2 + \frac{1}{4\lambda} \sum_{j=1}^T c^t K_t \|\mathbf{w}_{k_j}^j\|_2^2) \quad (16) \\ &= \lambda \|\mathbf{H}\|_F^2 + \frac{N}{4\lambda} \sum_{t=1}^T c^t \|\mathbf{W}^t\|_F^2 \\ &= \sqrt{\frac{N}{4\lambda_{\mathbf{H}}\lambda_{\mathbf{W}}}} (\lambda_{\mathbf{H}} \|\mathbf{H}\|_F^2 + \lambda_{\mathbf{W}} \sum_{t=1}^T c^t \|\mathbf{W}^t\|_F^2). \end{aligned}$$

875

where $\lambda = \sqrt{\frac{N\lambda_{\mathbf{H}}}{4\lambda_{\mathbf{W}}}}$ and the condition for equality is:

876

877

$$\mathbf{h}_i^{k_1, \dots, k_T} = \frac{1}{2\lambda} \sum_{j=1}^T \sqrt{c^t K_t} \mathbf{w}_{k_j}^j \quad (17)$$

918 When one of the conditions is not met, the loss will be strictly greater than the minimum value.
 919 Combining all the conditions for equality, we can conclude that the optimal solution must satisfy the
 920 general SSMTNC-NC.

924 B.3 PROOF OF THEOREM 3.2

926 The loss in Problem (4) can be viewed as a weighted sum of the entropy losses of multiple indepen-
 927 dent variables $(\mathbf{W}^t, \mathbf{H}^t)$. Thus, we decompose the loss into a weighted sum of multiple entropy
 928 losses and prove that for each loss, the minimizers $(\mathbf{W}^t, \mathbf{H}^t)$ must satisfy Neural Collapse.
 929

$$\begin{aligned}
 & g(\mathbf{W}^1, \dots, \mathbf{W}^T, \mathbf{H}^1, \dots, \mathbf{H}^T, \mathbf{b}^1, \dots, \mathbf{b}^T) \\
 &= \sum_{t=1}^T c^t \sum_{k=1}^{K_t} \sum_{i=1}^{n_t} \log(1 + \sum_{l=1, l \neq k}^{K_t} \exp(\mathbf{w}_l^t \mathbf{h}_{k,i}^t - \mathbf{w}_k^t \mathbf{h}_{k,i}^t + b_l^t - b_k^t)) \\
 &+ \sum_{t=1}^T c^t (\lambda_{\mathbf{H}} \|\mathbf{H}^t\|_F^2 + \lambda_{\mathbf{W}} \|\mathbf{W}^t\|_F^2 + \lambda_{\mathbf{b}} \|\mathbf{b}^t\|_2^2)
 \end{aligned} \tag{18}$$

943 The specific form of the loss is shown in (18), which, as in equation (19), is decomposed into task-
 944 specific loss g^t .

$$\begin{aligned}
 & g(\mathbf{W}^1, \dots, \mathbf{W}^T, \mathbf{H}^1, \dots, \mathbf{H}^T, \mathbf{b}^1, \dots, \mathbf{b}^T) = \sum_{t=1}^T c^t g^t(\mathbf{W}^t, \mathbf{H}^t, \mathbf{b}^t) \\
 & g^t(\mathbf{W}^t, \mathbf{H}^t, \mathbf{b}^t) = \sum_{k=1}^{K_t} \sum_{i=1}^{n_t} \log(1 + \sum_{l=1, l \neq k}^K \exp(\mathbf{w}_l^t \mathbf{h}_{k,i}^t - \mathbf{w}_k^t \mathbf{h}_{k,i}^t + b_l^t - b_k^t)) \\
 &+ \lambda_{\mathbf{H}} \|\mathbf{H}^t\|_F^2 + \lambda_{\mathbf{W}} \|\mathbf{W}^t\|_F^2 + \lambda_{\mathbf{b}} \|\mathbf{b}^t\|_2^2
 \end{aligned} \tag{19}$$

956 Similar to the proof of Theorem 3.1, since subtracting the mean from each \mathbf{w}_k^t and b_k^t leaves the
 957 cross-entropy loss unchanged while reducing the regularization loss, the optimal solution must sat-
 958 isfy the following condition:
 959

$$\begin{aligned}
 & \sum_{k=1}^{K_t} \mathbf{w}_k^t = \mathbf{0}, \forall t \in [T] \\
 & \sum_{k=1}^{K_t} b_k^t = 0, \forall t \in [T]
 \end{aligned} \tag{20}$$

969
 970
 971 Observe that:

$$\begin{aligned}
g^t &= \sum_{k=1}^{K_t} \sum_{i=1}^{n_t} \log(1 + \sum_{l=1, l \neq k}^{K_t} \exp(\mathbf{w}_l^t \mathbf{h}_{k,i}^t - \mathbf{w}_k^t \mathbf{h}_{k,i}^t + b_l^t - b_k^t)) + \lambda_{\mathbf{H}} \|\mathbf{H}^t\|_F^2 + \lambda_{\mathbf{W}} \|\mathbf{W}^t\|_F^2 + \lambda_{\mathbf{b}} \|\mathbf{b}^t\|_2^2 \\
&\stackrel{(j)}{\geq} \sum_{k=1}^{K_t} \sum_{i=1}^{n_t} \log(1 + (K_t - 1) \exp(-\frac{K_t}{K_t - 1} (\mathbf{w}_k^t \mathbf{h}_{k,i}^t + b_k^t))) + \lambda_{\mathbf{H}} \|\mathbf{H}^t\|_F^2 + \lambda_{\mathbf{W}} \|\mathbf{W}^t\|_F^2 + \lambda_{\mathbf{b}} \|\mathbf{b}^t\|_2^2 \\
&\stackrel{(k)}{\geq} \sum_{k=1}^{K_t} n_t \log(1 + (K_t - 1) \exp(-\frac{K_t}{n_t(K_t - 1)} (\mathbf{w}_k^t \sum_{i=1}^{n_t} \mathbf{h}_{k,i}^t + n_t b_k^t))) + \lambda_{\mathbf{H}} \|\mathbf{H}^t\|_F^2 + \lambda_{\mathbf{W}} \|\mathbf{W}^t\|_F^2 + \lambda_{\mathbf{b}} \|\mathbf{b}^t\|_2^2 \\
&\stackrel{(l)}{\geq} K_t n_t \log(1 + (K_t - 1) \exp(-\frac{1}{n_t(K_t - 1)} \sum_{k=1}^{K_t} \mathbf{w}_k^t \sum_{i=1}^{n_t} \mathbf{h}_{k,i}^t)) + \lambda_{\mathbf{H}} \|\mathbf{H}^t\|_F^2 + \lambda_{\mathbf{W}} \|\mathbf{W}^t\|_F^2 \\
&\stackrel{(m)}{\geq} K_t n_t \log(1 + (K_t - 1) \exp(-\frac{1}{n_t(K_t - 1)} \sqrt{\frac{n_t}{4\lambda_{\mathbf{H}}\lambda_{\mathbf{W}}}} (\lambda_{\mathbf{H}} \|\mathbf{H}^t\|_F^2 + \lambda_{\mathbf{W}} \|\mathbf{W}^t\|_F^2))) + \lambda_{\mathbf{H}} \|\mathbf{H}^t\|_F^2 + \lambda_{\mathbf{W}} \|\mathbf{W}^t\|_F^2
\end{aligned}$$

Invoking Lemma A.3 with $\alpha = K_t n_t$, $\beta = K_t - 1$, $\gamma = \frac{1}{n_t(K_t-1)} \sqrt{\frac{n_t}{4\lambda_H \lambda_W}}$ and $x = \lambda_H \|\mathbf{H}^t\|_F^2 + \lambda_W \sum_{t=1}^T \|\mathbf{W}^t\|_F^2$, we get that if $\lambda_H \lambda_W \geq \frac{n_t}{4}$, the minimizer is $(\mathbf{W}^t, \mathbf{H}^t) = (\mathbf{0}, \mathbf{0})$ and otherwise, the minimizer must obey $x^* > 0$. In [inequalities \(j\), \(k\), and \(l\)](#), we use Lemma A.2, the conditions under which equality holds are as follows:

$$\begin{aligned}
& \forall l_1, l_2 \in [K_t] \setminus \{k\}, \mathbf{w}_{l_1}^t \mathbf{h}_{k,i}^t + b_{l_1}^t = \mathbf{w}_{l_2}^t \mathbf{h}_{k,i}^t + b_{l_2}^t \\
& \forall i_1, i_2 \in [n_t], \mathbf{w}_k^t \mathbf{h}_{k,i_1}^t = \mathbf{w}_k^t \mathbf{h}_{k,i_2}^t \\
& \forall k_1, k_2 \in [K_t], \mathbf{w}_{k_1}^t \sum_{i=1}^{n_t} \mathbf{h}_{k_1,i}^t + n_t b_{k_1}^t = \mathbf{w}_{k_2}^t \sum_{i=1}^{n_t} \mathbf{h}_{k_2,i}^t + n_t b_{k_2}^t \\
& \forall k \in [K], b_k^t = 0
\end{aligned} \tag{21}$$

Inequality (m) is based on:

$$\begin{aligned} \mathbf{w}_k^t \sum_{i=1}^{n_t} \mathbf{h}_{k,i}^t &\leq \lambda \|\mathbf{w}_k^t\|_2^2 + \frac{1}{4\lambda} \left\| \sum_{i=1}^{n_t} \mathbf{h}_{k,i}^t \right\|_2^2 \\ &\leq \lambda \|\mathbf{w}_k^t\|_2^2 + \frac{n_t}{4\lambda} \sum_{i=1}^{n_t} \|\mathbf{h}_{k,i}^t\|_2^2 \end{aligned} \quad (22)$$

where $\lambda = \sqrt{\frac{n_t \lambda_W}{4 \lambda_H}}$ and the condition for equality to hold is:

$$\forall i \in [n_t], \mathbf{w}_k^t = \sqrt{\frac{\lambda_H n_t}{\lambda_W}} \mathbf{h}_{k,i}^t \quad (23)$$

Based on the above condition, we conclude that the classifier and features must satisfy the NC conditions within each task.

B.4 SSMT-NC IN THE TASK-BALANCED CASE

Theorem B.1. Consider two binary classification tasks, the training data is task-balanced, and the number of samples with label (k_1, k_2) is n^{k_1, k_2} ($k_1 \in [2]$, $k_2 \in [2]$). Assume that the number of all samples is N , then any global minimizers of Problem 3 satisfies the following conditions: Consider two binary classification tasks, the training data is task-balanced, and the number of samples with label (k_1, k_2) is n^{k_1, k_2} ($k_1 \in [2]$, $k_2 \in [2]$). Assume that the number of all samples is N and $\lambda_H \lambda_W < \frac{n^{k_1, k_2}}{2}$, then any global minimizers of Problem (3) satisfies the following conditions:

1026 1. $\mathbf{h}_j^{k_1, k_2} = \mu^{k_1, k_2}$
 1027
 1028 2. $\|\mathbf{w}_k^t\|_2 = \|\mathbf{w}_{k'}^t\|_2, \langle \tilde{\mathbf{w}}_k^t, \tilde{\mathbf{w}}_{k'}^t \rangle = 2\delta_{k, k'} - 1, \forall k, k' \in [2], t \in [2]$
 1029
 1030 3. As n^{k_1, k_2} increases, $\cos(\mathbf{w}_{k_1}^1, \mathbf{w}_{k_2}^2)$ increases.
 1031
 1032 4. $\tilde{\mathbf{h}}_j^{k_1, k_2} = \frac{\mathbf{w}_{k_1}^1 + \mathbf{w}_{k_2}^2}{\|\mathbf{w}_{k_1}^1 + \mathbf{w}_{k_2}^2\|_2}$
 1033
 1034 5. $(\underset{k_1}{\operatorname{argmax}} \langle \mathbf{w}_{k_1}^1, \mathbf{h} \rangle + b_{k_1}^1, \underset{k_2}{\operatorname{argmax}} \langle \mathbf{w}_{k_2}^2, \mathbf{h} \rangle + b_{k_2}^2) = \underset{k_1, k_2}{\operatorname{argmin}} \|\mathbf{h} - \mathbf{u}^{k_1, k_2}\|_2$
 1035
 1036

1037 *Proof.* The key idea of the proof of Theorem 5.1 is to lower bound the entropy loss in Problem (3),
 1038 and obtain the form of $\cos(\mathbf{w}_{k_1}^1, \mathbf{w}_{k_2}^2)$ ($k_1 \in [2], k_2 \in [2]$). We denote the cross-entropy loss for
 1039 samples with labels (k_1, k_2, \dots, k_T) as $u(k_1, k_2, \dots, k_T)$. Different from the theories in Appendix
 1040 B.1, we can only scale the cross-entropy loss for samples with the same labels.

$$\begin{aligned}
 & u(k_1, k_2) \\
 &= \sum_{t=1}^2 \sum_{i=1}^{n^{k_1, k_2}} \log(1 + \sum_{l=1}^2 \exp(\mathbf{w}_l^t \mathbf{h}_i^{k_1, k_2} - \mathbf{w}_{k_t}^t \mathbf{h}_i^{k_1, k_2} + b_l^t - b_{k_t}^t)) \\
 &= \sum_{t=1}^2 \sum_{i=1}^{n^{k_1, k_2}} \log(1 + \exp(-2(\mathbf{w}_{k_t}^t \mathbf{h}_i^{k_1, k_2} + b_{k_t}^t))) \\
 &\geq \sum_{t=1}^T n^{k_1, k_2} \log(1 + (K-1) \exp(-2(\mathbf{w}_{k_t}^t \frac{1}{n^{k_1, k_2}} \sum_{i=1}^{n^{k_1, k_2}} \mathbf{h}_i^{k_1, k_2} + b_{k_t}^t))) \\
 &\geq 2n^{k_1, k_2} \log(1 + \exp(-\sum_{t=1}^2 (\mathbf{w}_{k_t}^t \frac{1}{n^{k_1, k_2}} \sum_{i=1}^{n^{k_1, k_2}} \mathbf{h}_i^{k_1, k_2} + b_{k_t}^t)))
 \end{aligned} \tag{24}$$

1055 In 24, the second equality is due to the condition 10. Combining the sum of all the cross-entropy
 1056 loss and the regularization term, we derive the following composite loss function:
 1057

$$\begin{aligned}
 & g(\mathbf{W}^1, \mathbf{W}^2, \mathbf{H}, \mathbf{b}^1, \mathbf{b}^2) \\
 &= \sum_{k_1=1}^2 \sum_{k_2=1}^2 u(k_1, k_2) + \lambda_{\mathbf{H}} \|\mathbf{H}\|_F^2 + \lambda_{\mathbf{W}} \sum_{t=1}^2 \|\mathbf{W}^t\|_F^2 + \lambda_{\mathbf{b}} \sum_{t=1}^2 \|\mathbf{b}^t\|_2^2 \\
 &\geq \sum_{k_1=1}^2 \sum_{k_2=1}^2 (u(k_1, k_2) + \lambda_{\mathbf{H}} \sum_{i=1}^{n^{k_1, k_2}} \|\mathbf{h}_i^{k_1, k_2}\|_2^2 + \frac{\lambda_{\mathbf{W}}}{2} \|\sum_{t=1}^2 \mathbf{w}_{k_t}^t\|_2^2) \\
 &\geq \sum_{k_1=1}^2 \sum_{k_2=1}^2 (2n^{k_1, k_2} \log(1 + \exp(-\frac{1}{n^{k_1, k_2}} \sqrt{\frac{n^{k_1, k_2}}{2\lambda_{\mathbf{W}}\lambda_{\mathbf{H}}}} \\
 &\quad (\lambda_{\mathbf{H}} \sum_{i=1}^{n^{k_1, k_2}} \|\mathbf{h}_i^{k_1, k_2}\|_2^2 + \frac{\lambda_{\mathbf{W}}}{2} \|\sum_{t=1}^2 \mathbf{w}_{k_t}^t\|_2^2)) + \lambda_{\mathbf{H}} \sum_{i=1}^{n^{k_1, k_2}} \|\mathbf{h}_i^{k_1, k_2}\|_2^2 + \frac{\lambda_{\mathbf{W}}}{2} \|\sum_{t=1}^2 \mathbf{w}_{k_t}^t\|_2^2))
 \end{aligned} \tag{25}$$

1072 We can get the conditions that need to be satisfied as follows:

$$\mathbf{w}_{k_t}^t \mathbf{h}_i^{k_1, k_2} = \mathbf{w}_{k_t}^t \mathbf{h}_j^{k_1, k_2}, \forall i, j \in [n^{k_1, k_2}], t \in [2] \tag{26}$$

$$\mathbf{w}_{k_1}^1 \mathbf{h}_i^{k_1, k_2} = \mathbf{w}_{k_2}^2 \mathbf{h}_i^{k_1, k_2}, \forall k_1, k_2 \in [2], i \in [n^{k_1, k_2}] \tag{27}$$

$$\mathbf{b}^t = \mathbf{0}, \forall t \in [2] \tag{28}$$

$$\sqrt{\frac{2\lambda_{\mathbf{H}} n^{k_1, k_2}}{\lambda_{\mathbf{W}}}} \mathbf{h}_i^{k_1, k_2} = \sum_{t=1}^2 \mathbf{w}_{k_t}^t, \forall k_1, k_2 \in [2], i \in [n^{k_1, k_2}] \tag{29}$$

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Figure 5: The image on the left shows examples from Multi-MNIST with the label (3, 8), while the image on the right shows examples from Multi-CIFAR10 with the label (truck, automobile).

1104

1105

1106 Combining all the conditions mentioned, we can conclude that NC1, NC2, NC4, NC5 need to be
1107 satisfied. Moreover, we conclude that:

1108

1109

$$\|\mathbf{w}\|_2^2 = \|\mathbf{w}_{k_1}^1\|_2^2 = \|\mathbf{w}_{k_2}^2\|_2^2, \forall k_1, k_2 \in [2] \quad (30)$$

1110

1111

1112

1113

1114

1115

$$\begin{aligned} (\sum_{t=1}^2 \mathbf{w}_{k_t}^t)^2 &= 2\|\mathbf{w}\|_2^2 + 2\|\mathbf{w}\|_2^2 \cos(\mathbf{w}_{k_1}^1, \mathbf{w}_{k_2}^2) \\ &= \sqrt{\frac{2\lambda_H n^{k_1, k_2}}{\lambda_W}} \log\left(\sqrt{\frac{2n^{k_1, k_2}}{\lambda_H \lambda_W}} - 1\right) \end{aligned} \quad (31)$$

1116

1117

1118

1119

1120

1121

1122

1123

1124

C DATASET ILLUSTRATION AND VISUALIZATION

1125

1126

C.1 MULTI-MNIST AND MULTI-CIFAR10

1127

1128

1129

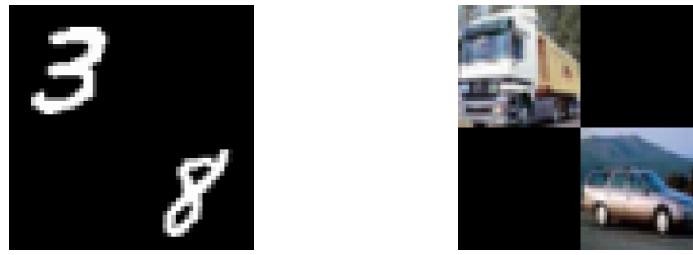
1130

1131

1132

1133

Multi-MNIST and Multi-CIFAR10 are used in the case of two tasks in the SSMTC (Single-Source Multi-Task Classification) scenario. As illustrated in Figure 5, we follow [Sener & Koltun \(2018\); Li et al. \(2024\)](#) to place the images from any two classes in MNIST dataset in the top-left and bottom-right corners, respectively, with the empty areas filled using zero-padding. The same approach is applied to the CIFAR10 dataset. We use Multi-MNIST-P-Q to refer to the dataset constructed using the first P classes and the first Q classes of MNIST. Similarly, Multi-CIFAR10-P-Q denotes the dataset constructed using the first P classes and the first Q classes of CIFAR10. By default, Multi-MNIST and Multi-CIFAR10 refer to Multi-MNIST-10-10 and Multi-CIFAR10-10-10, respectively.



1134 **C.2 CIFAR100-CROSS AND CIFAR100-SPLIT-5x20**
 1135
 1136 CIFAR100-Cross-10x10 refers to assigning the label (i, j) ($i \in \{0, 1, 2, \dots, 9\}$, $j \in \{0, 1, 2, \dots, 9\}$) to each class in the CIFAR100 dataset. CIFAR100-Cross-10x10 involves two tasks and each task classifies a task-specific label in the label (i, j) . Specifically, the samples of class $K \in \{0, 1, 2, \dots, 99\}$ in CIFAR100 correspond to the samples with the label $(\lfloor K/10 \rfloor, K \% 10)$ in CIFAR100-Cross-10x10. Similarly, CIFAR100-Cross-4x4x4 involves three tasks, utilizing the first 64 classes of CIFAR100, and CIFAR100-Cross-3x3x3x3 involves four tasks, selecting the first 81 classes.
 1142

1143 For CIFAR100-Split-5x20, we follow [Rosenbaum et al. \(2018\)](#) to treat 20 coarse labels as distinct
 1144 tasks and create a multi-task dataset with 2500 train images and 500 test images in each task.
 1145

1146 For the MNIST-Split-5x2 dataset (CIFAR10-Split-5x2), the first five classes and the last five classes
 1147 of MNIST (CIFAR10) are used as a task-specific dataset respectively.
 1148

D DETAILED EXPERIMENTAL RESULTS

1150
 1151 In Appendix D.1, we provide experimental results in the validation experiments of SSMTC-NC and
 1152 MSMTC-NC. In Appendix D.2, we show the validation experimental results of SSMTC-NC and
 1153 MSMTC-NC under different numbers of task classes and non-uniform task weights. In Appendix
 1154 D.3, we show that when using the MGDA, Uncertainty Weight, PCgrad, DWA, FAMO, FairGrad
 1155 algorithms to update task weights, NC still exists in SSMTC and MSMTC. In Appendix D.4, we
 1156 conduct experiments on ImageNet, TinyImageNet and CelebA. In Appendix D.5, we run the ex-
 1157 periments on different learning rates and (λ_H, λ_W) . In Appendix D.6, we show the experimental
 1158 results when the train data is task-balanced. In Appendix D.7, we provide the experimental results
 1159 on efficient training utilizing NC properties in MTL. We provide the specific experimental metrics
 1160 in the Appendix . We run experiments on a single NVIDIA RTX 4090 (24GB) GPU.
 1161

D.1 EXPERIMENTAL RESULTS ON SSMTC-NC AND MSMTC-NC UNDER 1162 LABEL-BALANCED CONDITIONS

1163
 1164 Figures 6 and 7 depict the trends of the SNC1, SNC2-1, SNC2-2, SNC3, SNC4 and SNC5 met-
 1165 rics on the Multi-MNIST-10-10 and Multi-CIFAR10-10-10 datasets, all converging toward zero.
 1166 Figures 8, 9 show the trends on CIFAR100-Cross-10x10, CIFAR100-Cross-4x4x4 and CIFAR100-
 1167 Cross-3x3x3x3 datasets. Figures 10, 11 depict the trends of the MNC1, MNC2-1, MNC2-2, MNC3,
 1168 MNC4 metrics on the MNIST-Split-5x2, CIFAR10-Split-5x2 and CIFAR100-Split-5x20 datasets.
 1169 The convergence of all metrics toward zero validates both the SSMTC-NC and MSMTC-NC phe-
 1170 nomena.
 1171

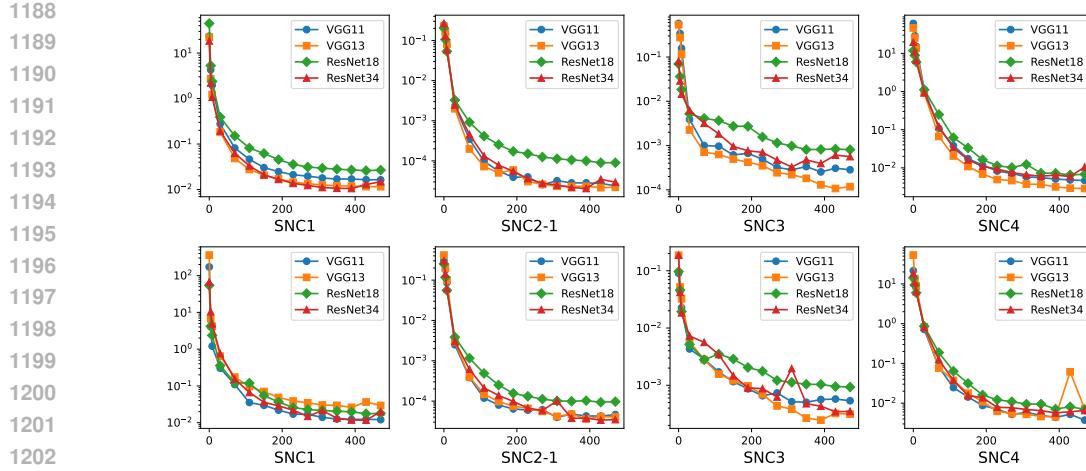
D.2 SUPPLEMENTARY EXPERIMENT FOR GENERAL SSMTC-NC AND MSMTC-NC

1172
 1173 **General SSMTC-NC.** To verify the theory in Appendix B.3 empirically, we use Multi-MNIST-4-
 1174 6, Multi-MNIST-3-9, Multi-CIFAR10-4-6 and Multi-CIFAR10-3-9 to verify our results and set the
 1175 task weight ratios to be inversely proportional to the class counts. Concretely, we set task weights
 1176 to 1.5 and 1 for Multi-MNIST-4-6, and set task weights to 3 and 1 for Multi-MNIST-3-9. As shown
 1177 in Figure 12, SSMTC-NC generalize to cases where the number of classes and the task weights are
 1178 different in different tasks.
 1179

1180 **General MSMTC-NC.** To verify the neural collapse across different task weights and different class
 1181 number, we use MNIST-Split-3-4 and MNIST-Split-3-7 datasets with uniform and non-uniform task
 1182 weights respectively. As shown in Figure 13, MSMTC-NC extends to cases where different tasks
 1183 have varying numbers of classes and distinct task weights.
 1184

D.3 VALIDATION EXPERIMENTS OF NC UNDER MULTIPLE MTL LEARNING METHODS

1185
 1186 We show the experimental results on Multi-MNIST-10-10 and Multi-CIFAR10-10-10 datasets in the
 1187 setting of SSMTC, and the experimental results on CIFAR100-Split-5x20 in the MSMTC setting
 when using the MGDA algorithm. As shown in the Figure 14 and Figure 15, when the MGDA



1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure 6: Illustration of SSMTC-NC across different network architectures on Multi-MNIST-10-10 (top) and Multi-CIFAR10-10-10 (bottom). The horizontal axis represents the training epochs.

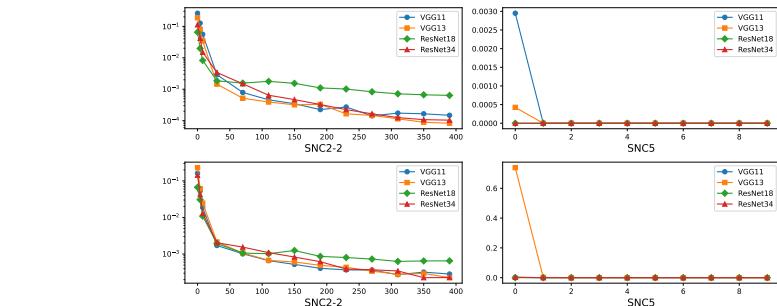


Figure 7: Illustration of SSMTC-NC across different network architectures on Multi-MNIST-10-10 (top) and Multi-CIFAR10-10-10 (bottom) (Supplementary Experimental Metrics). The horizontal axis represents the training epochs.

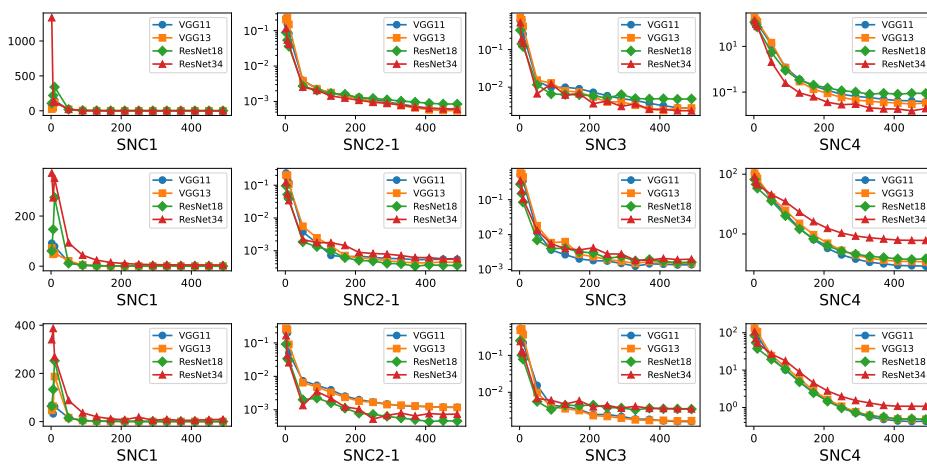


Figure 8: Illustration of SSMTC-NC across different network architectures on CIFAR100-Cross-10x10 (top), CIFAR100-Cross-4x4x4 (middle) and CIFAR100-Cross-3x3x3x3 (bottom). The horizontal axis represents the training epochs.

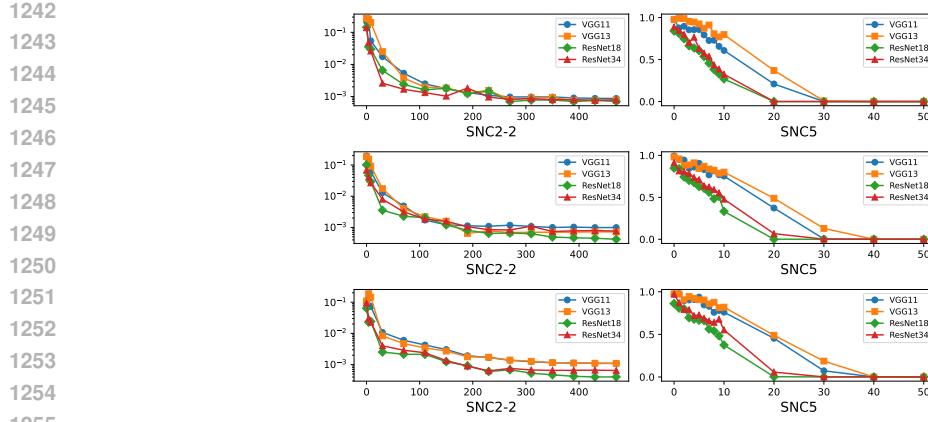


Figure 9: Illustration of SSMTC-NC across different network architectures on CIFAR100-Cross-10x10 (top), CIFAR100-Cross-4x4x4 (middle) and CIFAR100-Cross-3x3x3 (bottom). (Supplementary Experimental Metrics). The horizontal axis represents the training epochs.

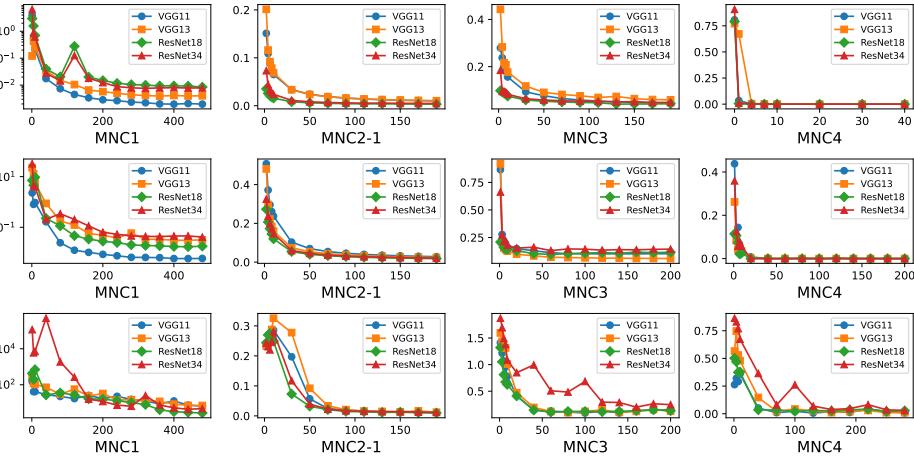


Figure 10: Illustration of MSMTC-NC across different network architectures on MNIST-Split5x2 (top), CIFAR10-Split-5x2 (middle) and CIFAR100-Split-5x20 (bottom). The horizontal axis represents the training epochs.

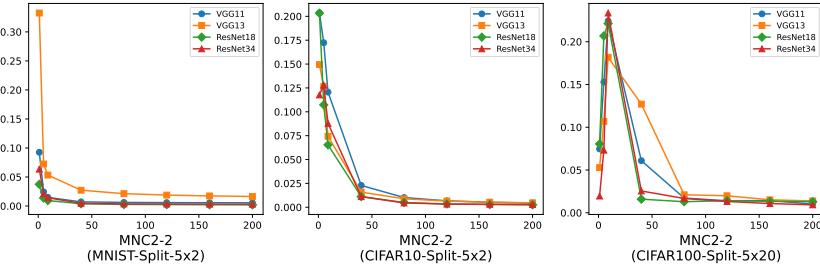


Figure 11: Illustration of MSMTC-NC (metric MNC2) across different network architectures on MNIST-Split5x2 (left), CIFAR10-Split-5x2 (middle) and CIFAR100-Split-5x20 (right). The horizontal axis represents the training epochs.

algorithm is used to update the task weights, SSMTC-NC and MSMTC-NC still exist even though

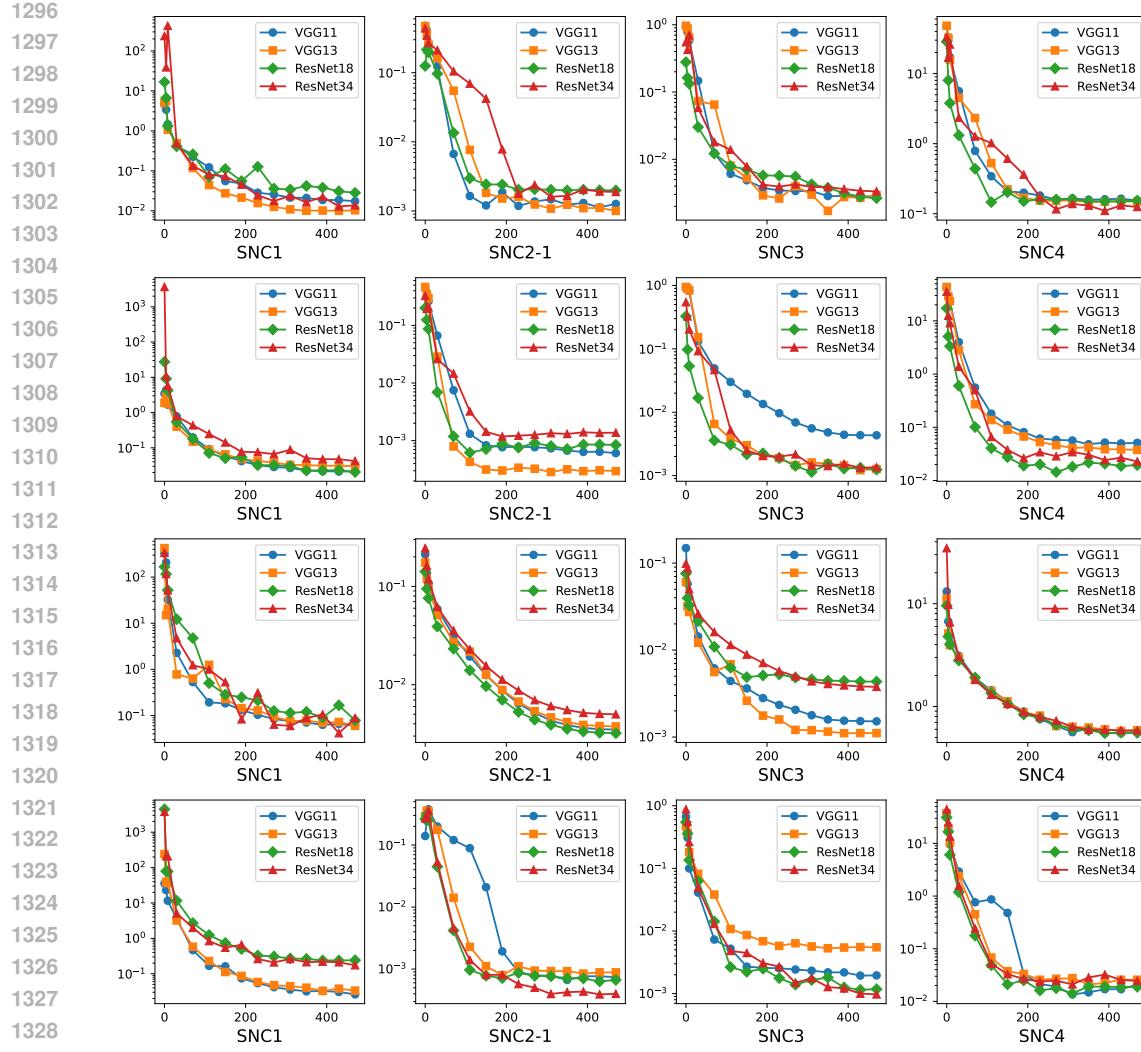


Figure 12: Illustration of SSMTC-NC across different network architectures on Multi-MNIST-3-9 (first row), Multi-MNIST-4-6 (second row), Multi-CIFAR10-3-9 (third row), and Multi-CIFAR10-4-6 (fourth row). The horizontal axis represents the training epochs.

the task weights are constantly changing during training, indicating that SSMTC-NC and MSMTC-NC exhibit generalization across different task weights.

Similar to MGDA experiments, we show the experimental results using Uncertainty Weight, DWA, PCgrad, FAMO, FairGrad. As shown from Figure 16 to Figure 35, SSMTC-NC and MSMTC-NC still exist when using different multiple MTL learning methods.

D.4 EXPERIMENTS ON LARGE-SCALE DATASETS

We validate the SSMTC-NC and MSMTC-NC on ImageNet, TinyImageNet and CelebA. We utilize the first 512 classes of ImageNet to construct ImageNet-Cross-2x2x2x2x2x2x2x2, utilize the first 729 classes of ImageNet to construct the ImageNet-Cross-3x3x3x3x3, and utilize the 1000 classes of ImageNet to construct the ImageNet-Cross-10x10x10 for SSMTC. We select the 1000 classes of ImageNet to construct the ImageNet-Split-10x100 for MSMTC. We select two groups of attributes on CelebA and keep the dataset label-balanced. As shown in Figures 36, 37, 38, 39, 40, 41, 42, 43, SSMTC-NC and MSMTC-NC still exist in ImageNet, TinyImageNet and CelebA.

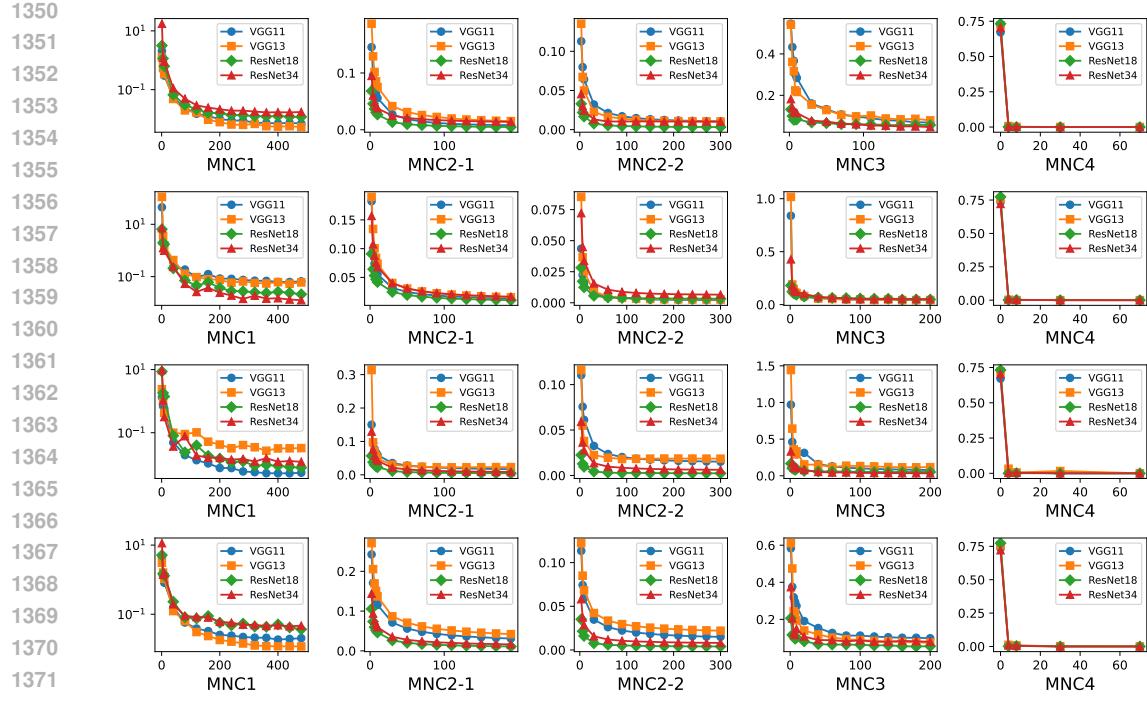


Figure 13: Illustration of MSMTC-NC across different network architectures on MNIST-Split-3-4 (first row) with uniform task weights, MNIST-Split-3-7 with uniform task weights (second row), MNIST-Split-3-4 with non-uniform task weights (third row), and MNIST-Split-3-7 with non-uniform task weights (fourth row).

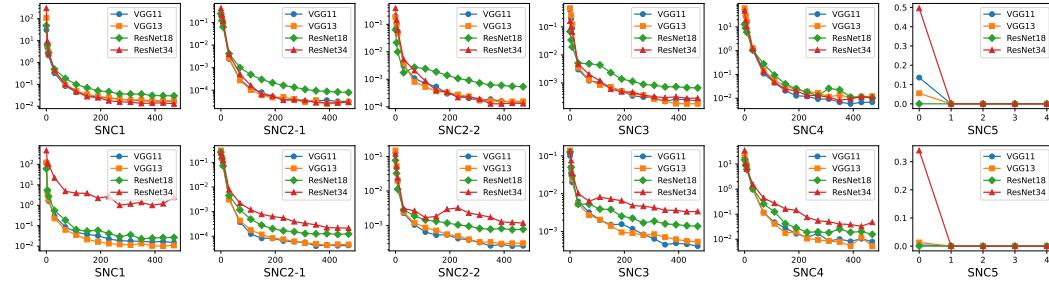


Figure 14: Illustration of SSMTC-NC across different network architectures on Multi-MNIST-10-10 (top) and Multi-CIFAR10-10-10 (bottom) by using MGDA algorithm.

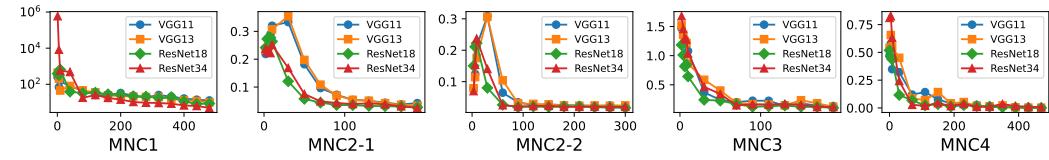


Figure 15: Illustration of MSMTC-NC on CIFAR100-Split-5x20 by using MGDA algorithm.

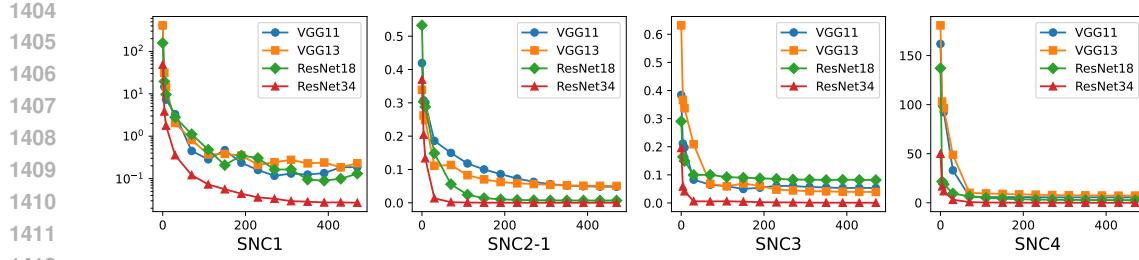


Figure 16: Experiment on Multi-MNIST using DWA method

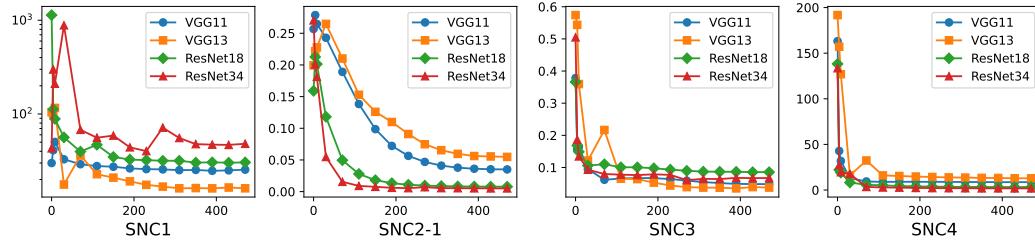


Figure 17: Experiment on Multi-CIFAR10 using DWA method

1427 D.5 EXPERIMENTS WITH DIFFERENT LEARNING RATES AND REGULARIZATION 1428 COEFFICIENTS

1430 We have supplemented the experimental results for learning rates of $1 \cdot 10^{-2}$ and $1 \cdot 10^{-3}$, as well as
1431 (λ_H, λ_W) of $5 \cdot 10^{-3}$ and $5 \cdot 10^{-5}$. As shown from Figure 44 to Figure 59, the experimental results
1432 further validate the generality of our findings.

1433 D.6 EXPERIMENTS ON SSMTC-NC IN THE TASK-BALANCED CASE

1436 We run experiments on the Multi-MNIST with $K = 2$, $K = 3$, $K = 10$. By varying the number of samples for each label (k_1, k_2) while keeping the train data task-balanced, we find that
1437 $\cos\langle w_{k_1}^1, w_{k_2}^2 \rangle$ increases as the the number of samples with label (k_1, k_2) increases as shown in
1438 Figures 60, 61, 62. The other NC phenomena still exist.

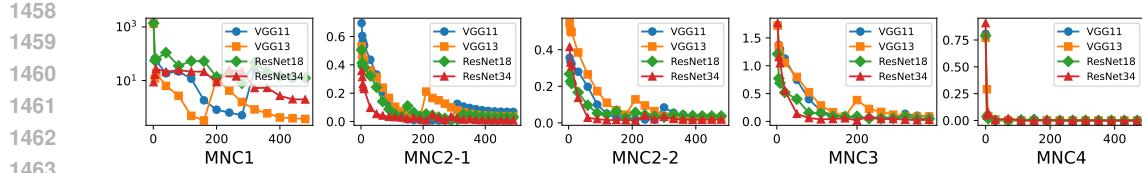


Figure 18: Experiment on MNIST-Split-5x2 using DWA method

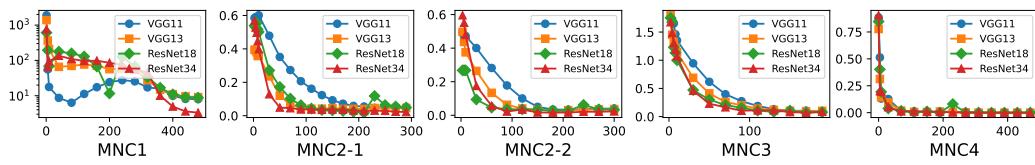


Figure 19: Experiment on CIFAR10-Split-5x2 using DWA method

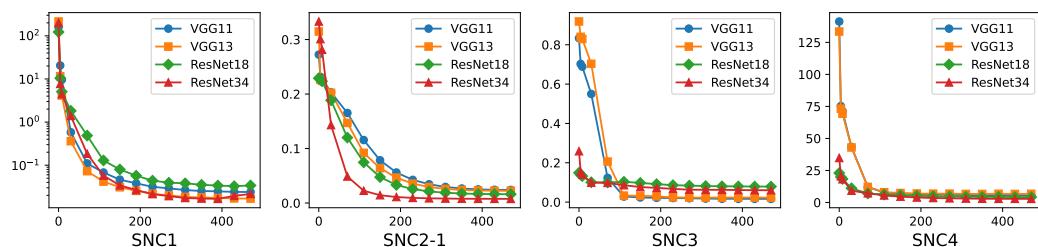


Figure 20: Experiment on Multi-MNIST using Uncertainty Weight method

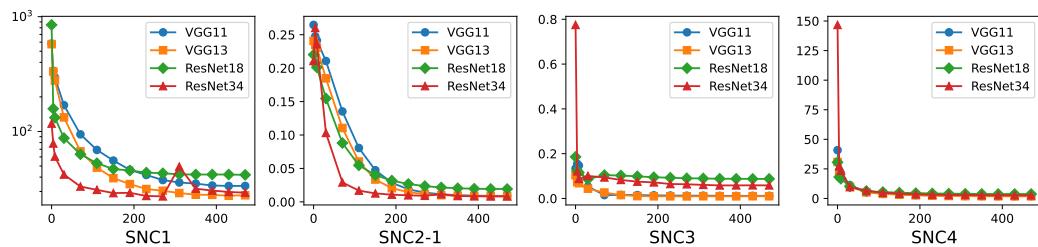


Figure 21: Experiment on Multi-CIFAR10 using Uncertainty Weight method

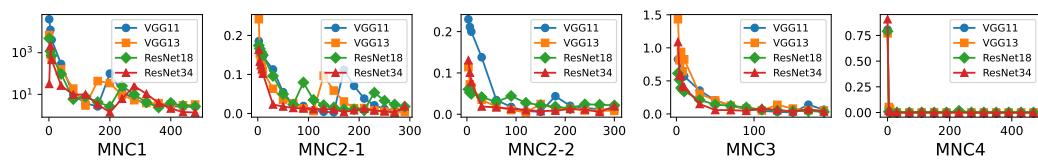


Figure 22: Experiment on MNIST-Split-5x2 using Uncertainty Weight method

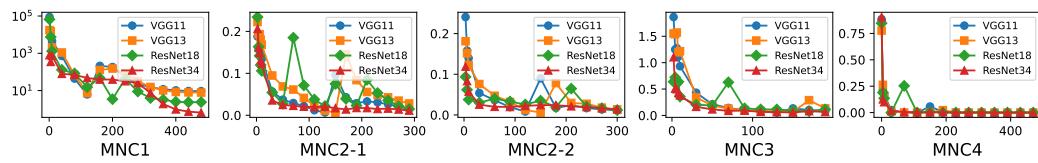


Figure 23: Experiment on CIFAR10-Split-5x2 using Uncertainty Weight method

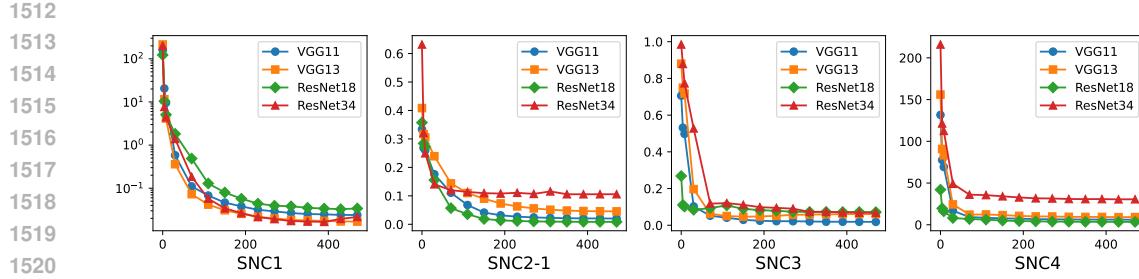


Figure 24: Experiment on Multi-MNIST using PCgrad method

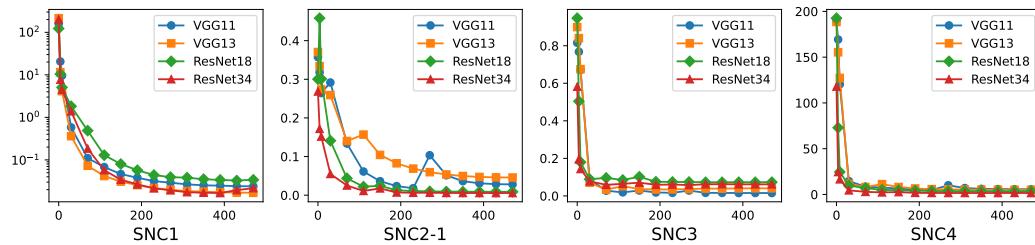


Figure 25: Experiment on Multi-CIFAR10 using PCgrad method

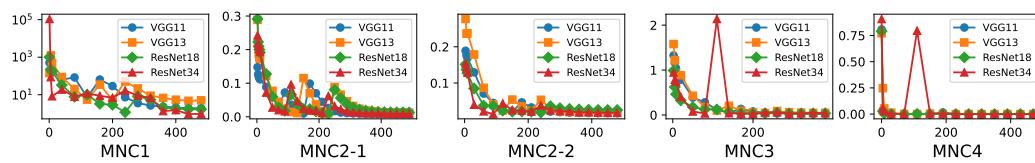


Figure 26: Experiment on MNIST-Split-5x2 using PCgrad method

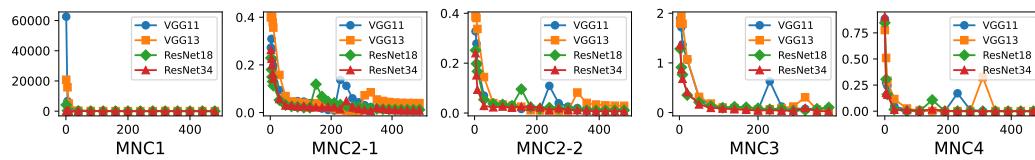


Figure 27: Experiment on CIFAR10-Split-5x2 using PCgrad method

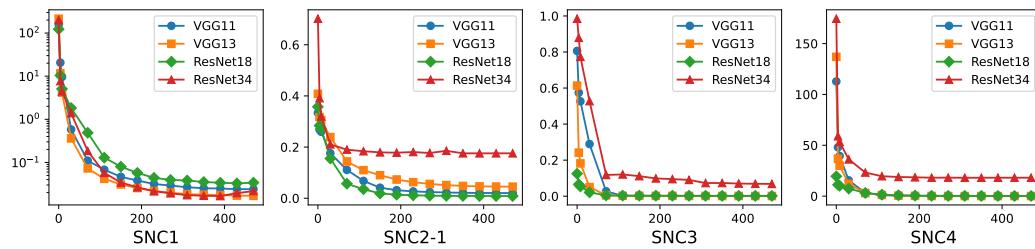


Figure 28: Experiment on Multi-MNIST using FAMO method

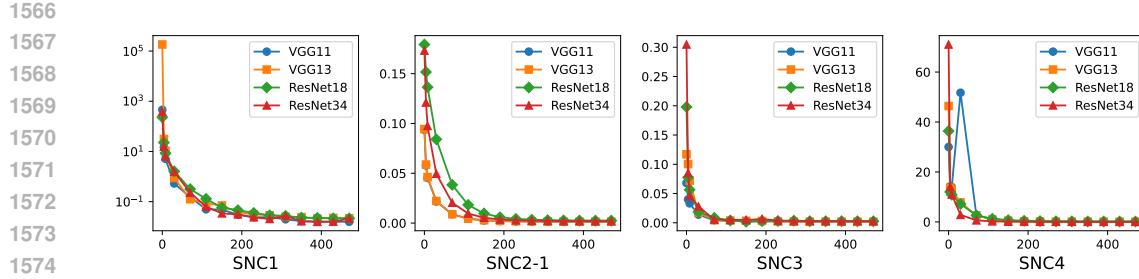


Figure 29: Experiment on Multi-CIFAR10 using FAMO method

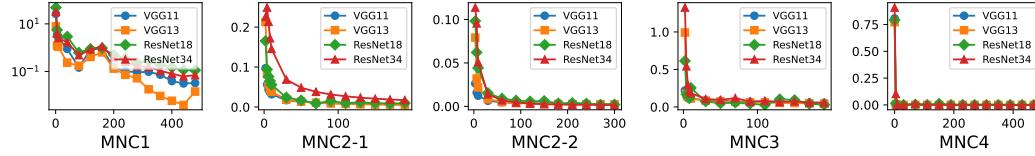


Figure 30: Experiment on MNIST-Split-5x2 using FAMO method

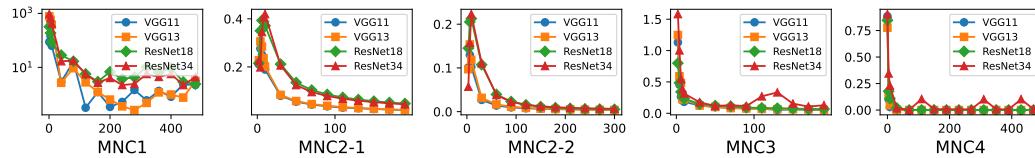


Figure 31: Experiment on CIFAR10-Split-5x2 using FAMO method

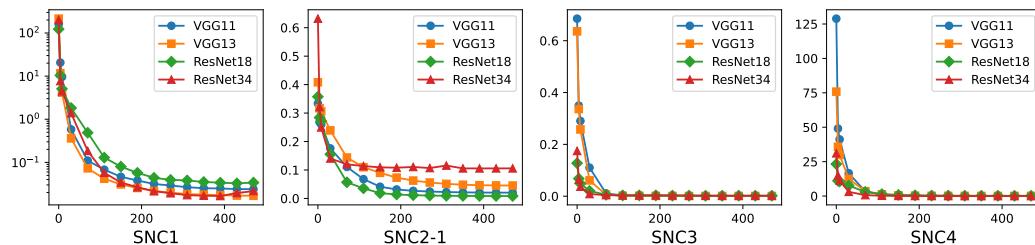


Figure 32: Experiment on Multi-MNIST using FairGrad method

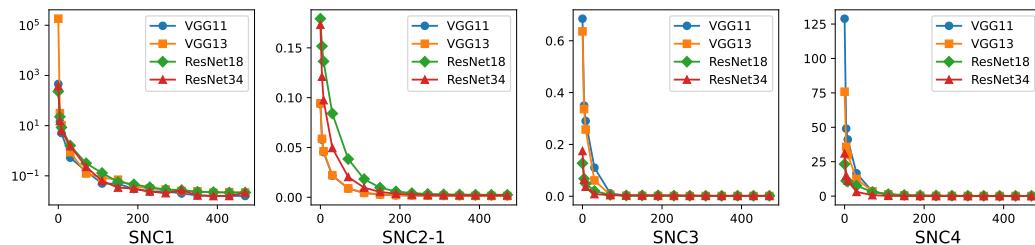


Figure 33: Experiment on Multi-CIFAR10 using FairGrad method

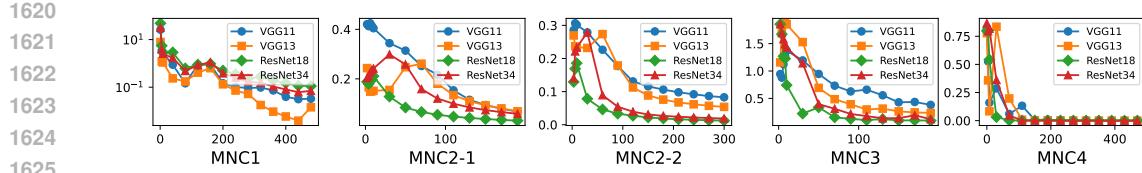


Figure 34: Experiment on MNIST-Split-5x2 using FairGrad method

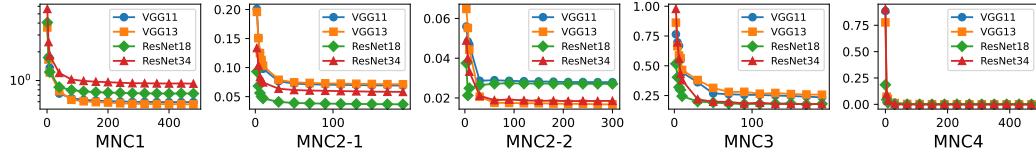


Figure 35: Experiment on CIFAR10-Split-5x2 using FairGrad method

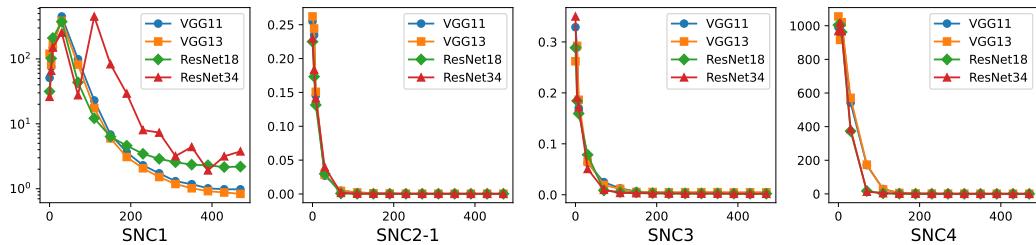


Figure 36: Experiment on ImageNet-Cross-2x2x2x2x2x2x2x2x2x2

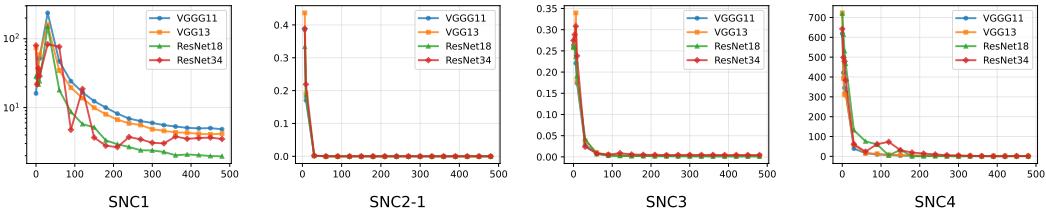


Figure 37: Experiment on ImageNet-Cross-3x3x3x3x3x3



Figure 38: Experiment on ImageNet-Cross-10x10x10

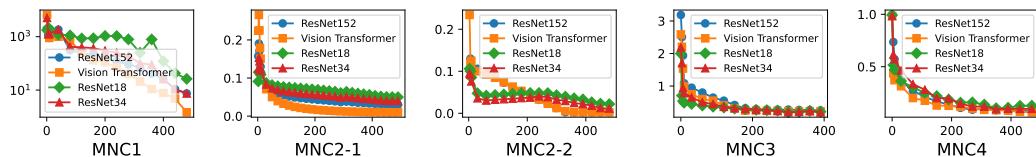


Figure 39: Experiment on ImageNet-Split-10x100

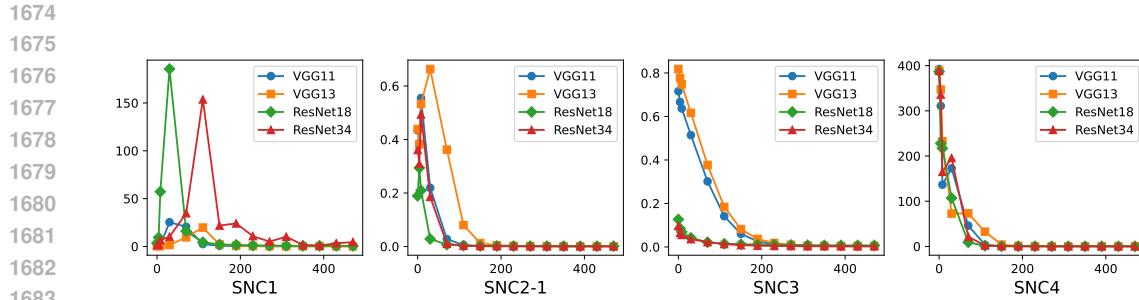


Figure 40: Experiment on TinyImageNet-Cross-10x20

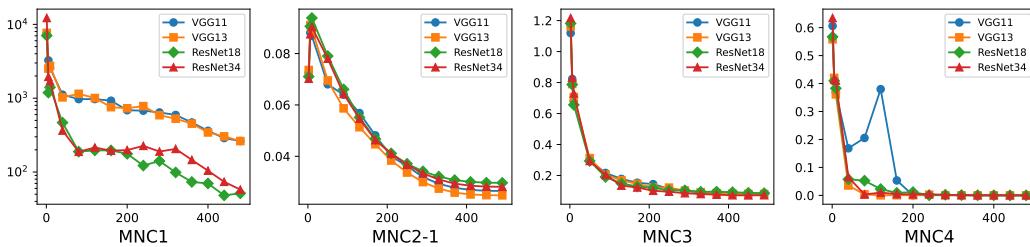


Figure 41: Experiment on TinyImageNet-Split-10x20

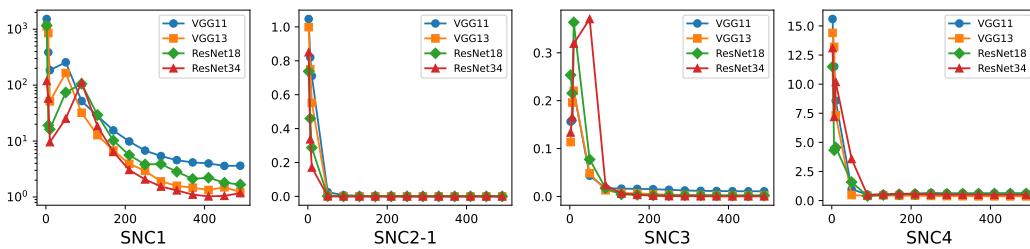


Figure 42: Experiment on CelebA on three tasks (Smiling, High_cheekbones, Mouth_Slightly_open)

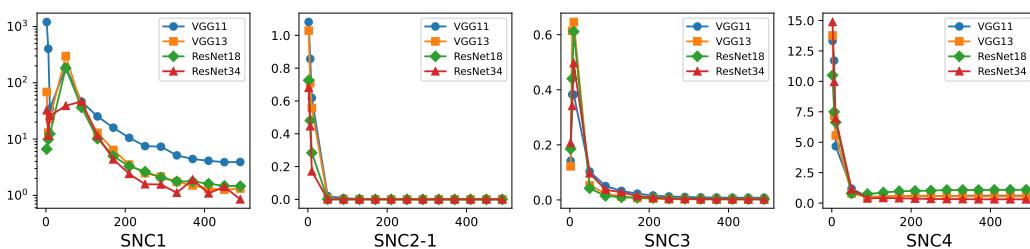
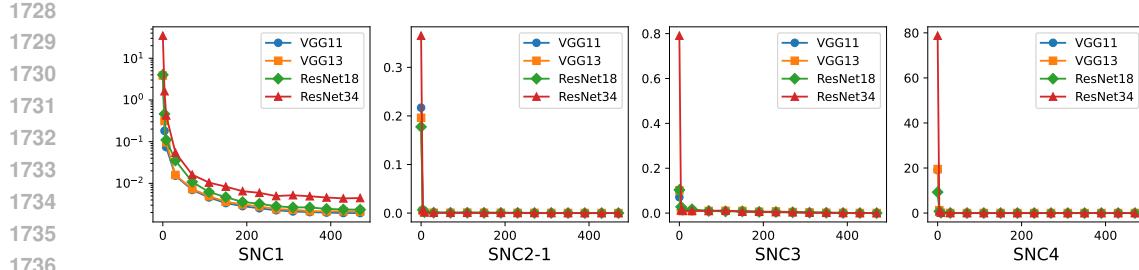
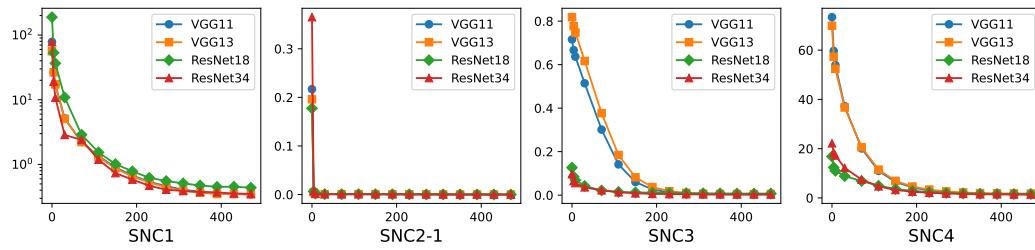
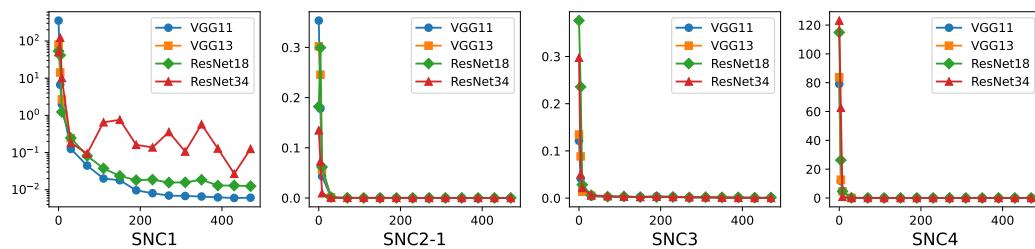
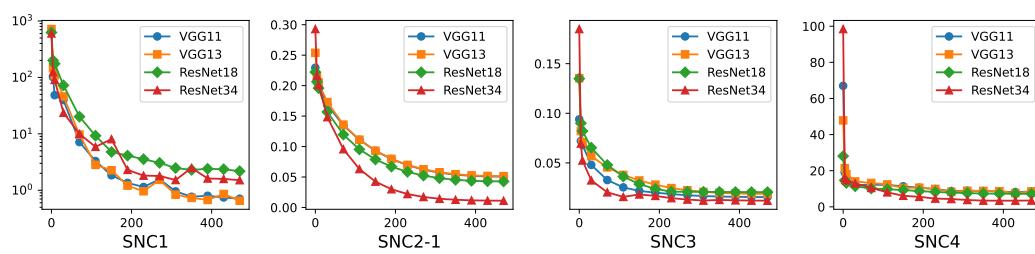
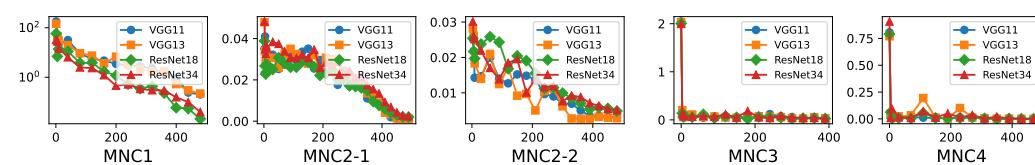
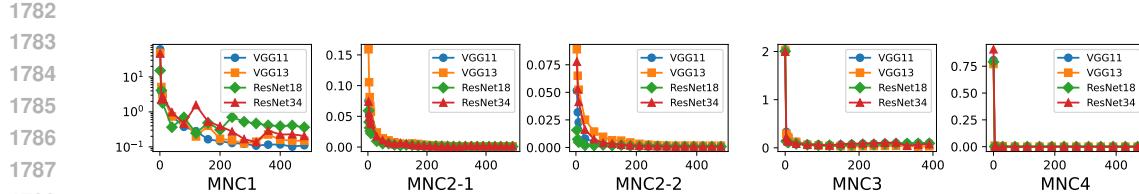
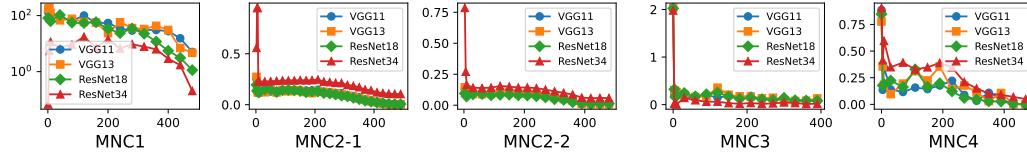
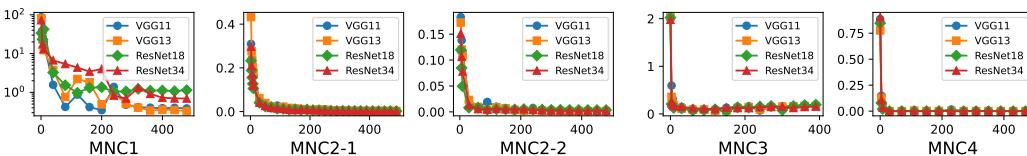
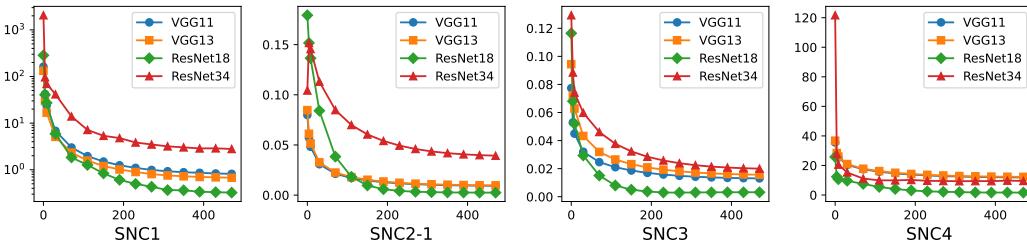
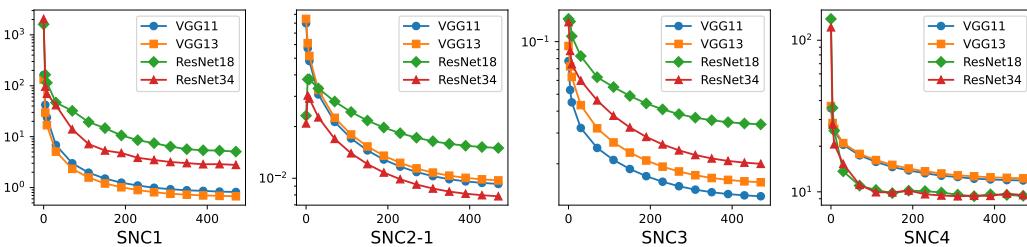
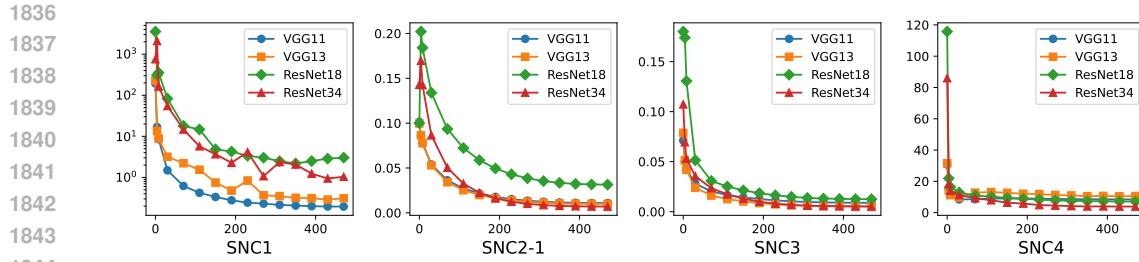
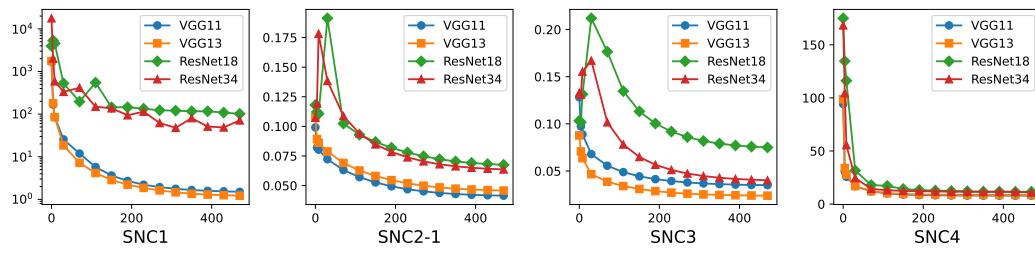
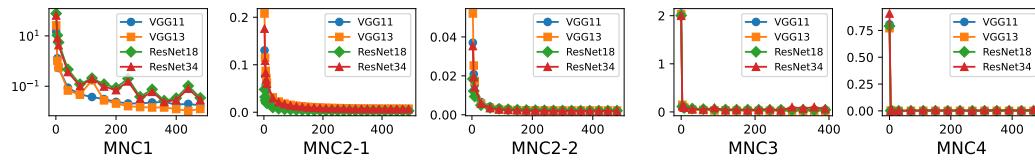
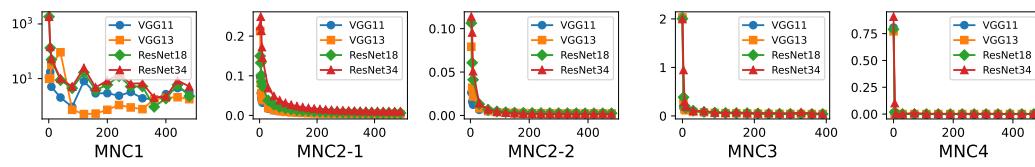
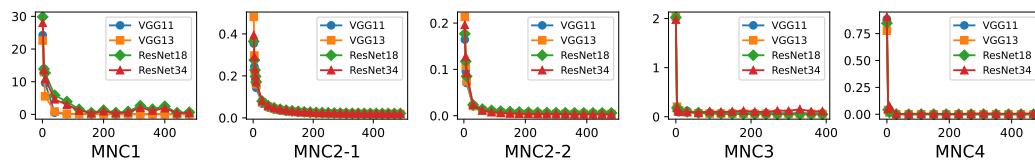
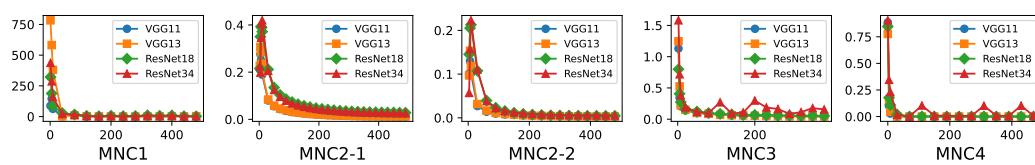
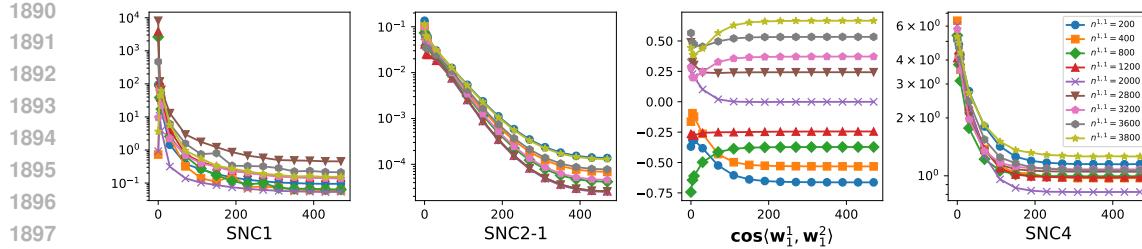
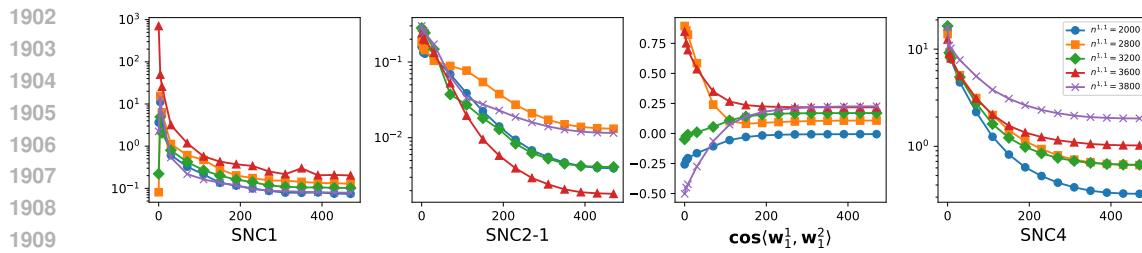
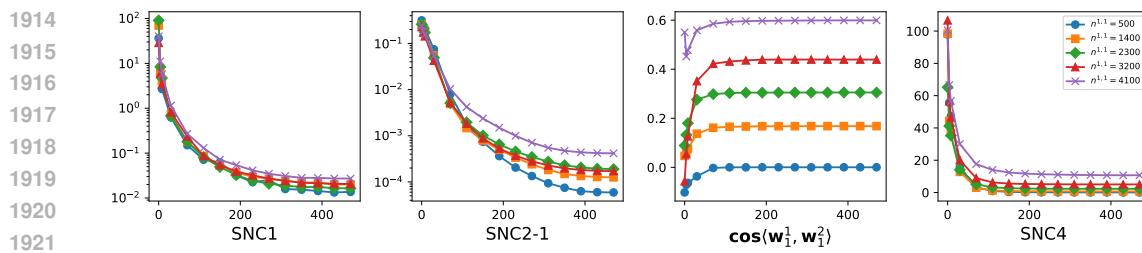


Figure 43: Experiment on CelebA on three tasks (Arched_Eyebrows, Narrow_Eyes, Bags_Under_Eyes)

Figure 44: Experiment on Multi-MNIST using regularization terms $5 \cdot 10^{-3}$ Figure 45: Experiment on Multi-MNIST using regularization terms $5 \cdot 10^{-5}$ Figure 46: Experiment on Multi-CIFAR10 using regularization terms $5 \cdot 10^{-3}$ Figure 47: Experiment on Multi-CIFAR10 using regularization terms $5 \cdot 10^{-5}$ Figure 48: Experiment on MNIST-Split-5x2 using regularization terms $5 \cdot 10^{-3}$

Figure 49: Experiment on MNIST-Split-5x2 using regularization terms $5 \cdot 10^{-5}$ Figure 50: Experiment on CIFAR10-Split-5x2 using regularization terms $5 \cdot 10^{-3}$ Figure 51: Experiment on CIFAR10-Split-5x2 using regularization terms $5 \cdot 10^{-5}$ Figure 52: Experiment on Multi-MNIST using learning rate $1 \cdot 10^{-2}$ Figure 53: Experiment on Multi-MNIST using learning rate $1 \cdot 10^{-3}$

Figure 54: Experiment on Multi-CIFAR10 using learning rate $1 \cdot 10^{-2}$ Figure 55: Experiment on Multi-CIFAR10 using learning rate $1 \cdot 10^{-3}$ Figure 56: Experiment on MNIST-Split-5x2 using learning rate $1 \cdot 10^{-2}$ Figure 57: Experiment on MNIST-Split-5x2 using learning rate $1 \cdot 10^{-3}$ Figure 58: Experiment on CIFAR10-Split-5x2 using learning rate $1 \cdot 10^{-2}$ Figure 59: Experiment on CIFAR10-Split-5x2 using learning rate $1 \cdot 10^{-3}$

Figure 60: Experiment on Multi-MNIST ($K = 2, N = 8000$).Figure 61: Experiment on Multi-MNIST ($K = 3, N = 18000$).Figure 62: Experiment on Multi-MNIST ($K = 10, N = 50000$).

1926 D.7 EXPERIMENTS ON EFFICIENT TRAINING UTILIZING NEURAL COLLAPSE PROPERTIES

1928 By leveraging the characteristics of neural collapse, modifications can be made to the multi-task
 1929 network structure by reducing the dimension of the features to the number of classes, achieving
 1930 parameter savings without compromising performance. Given the properties of SSMTC-NC and
 1931 MSMTC-NC, we initialize the task-specific classifiers as orthogonal Simplex ETFs. We reduce the
 1932 feature dimension to the sum of the number of classes for each task, and freeze the parameters of
 1933 the last layer in the deep neural network during training.

1934 As shown in Table 3, the experimental results demonstrate that we achieve parameter savings without
 1935 compromising model performance by utilizing the ETF classifier. When applied to CIFAR100-Split-
 1936 5x20, better performance can be achieved. For example, we achieve the 25.74% parameter saving
 1937 when using the VGG11 network for classifying the CIFAR100-Split-5x20 dataset.

1938 Since the NC behavior in MSMTC closely resembles that in single task learning, it naturally suggests
 1939 that methods developed for NC under imbalanced single-task learning could also be effective for
 1940 imbalanced MSMTC. Following Yang et al. (2022), the final layer is replaced with a Simplex ETF
 1941 and dot-regression (DR) loss is adopted to improve accuracy under class imbalance. We evaluate
 1942 the approach on CIFAR-10 and CIFAR-100 with an imbalance ratio of 0.01. As shown in Table 4,
 1943 this strategy leads to consistent performance gains in imbalanced MSMTC, indicating that insights
 derived from NC in single task learning could be transferable to the MSMTC setting.

1944
1945

D.8 EXPERIMENTS ON GENERAL MTL

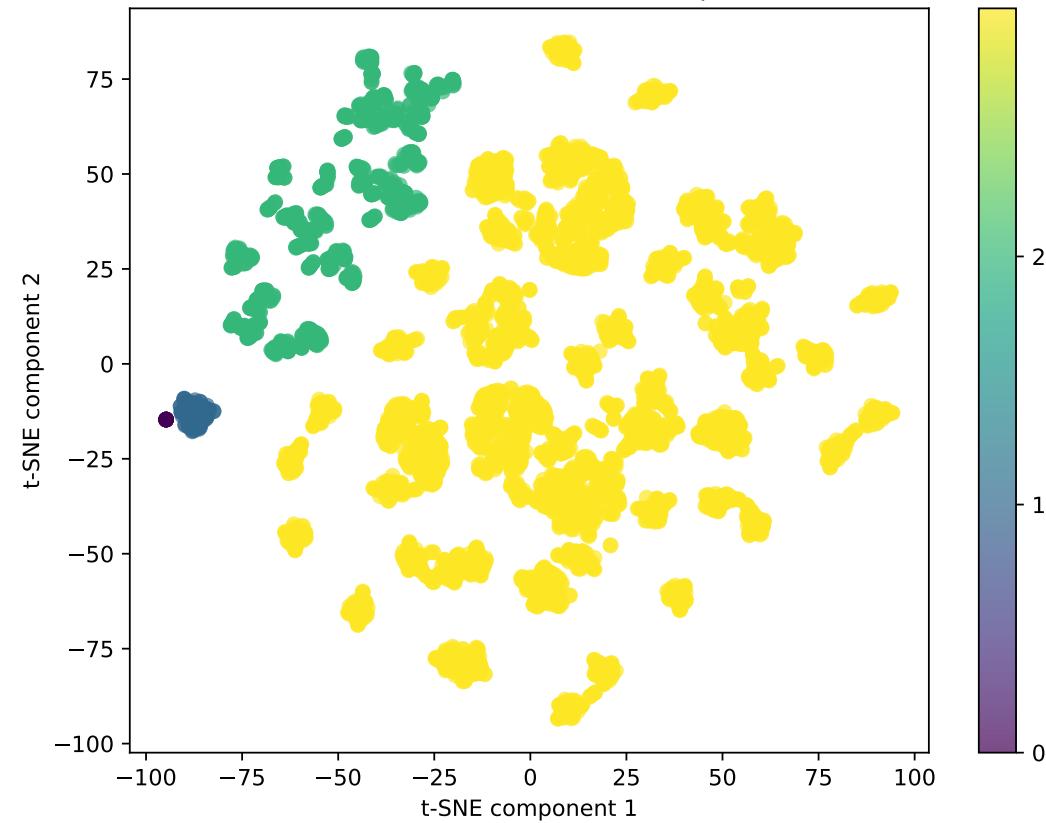
1946
1947

When no assumptions are made about task distribution and class, we find that features of the same class collapse together as illustrated in Figure 63.

1948

1949

t-SNE visualization of features at epoch 500



1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

Figure 63: Experiment on Multi-MNIST

1979

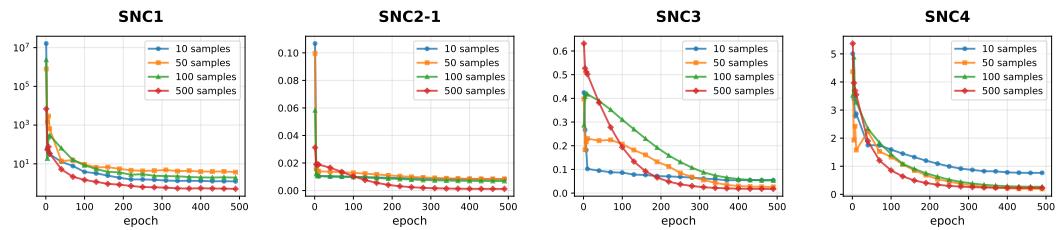
We change the sample size for each class from 500 to 10 and found that neural collapse still exists, as illustrated in Figure 64 and Figure 65.

1980

1981

1982

1983



1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

Figure 64: Experiment on Multi-MNIST

D.9 EXPERIMENTAL METRICS

Table 5 and Table 6 show the metrics of verify SSMTNC-NC and MSMTC-NC respectively.

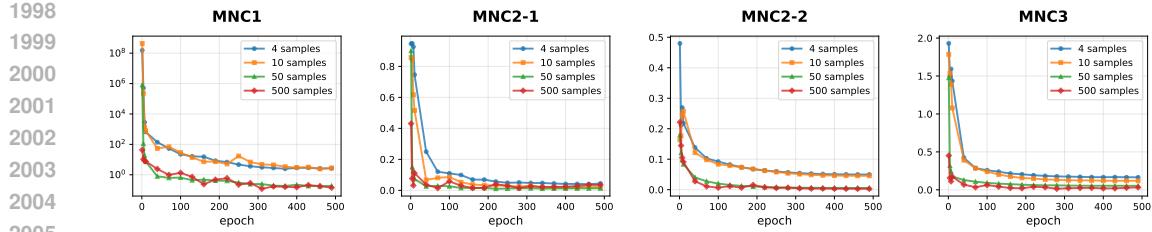


Figure 65: Experiment on MNIST-Split-5x2

Table 3: Performance and parameter saved using learned and ETF classifier

Dataset Arch	ResNet18		ResNet34		VGG11		VGG13	
	Learned	ETF	Learned	ETF	Learned	ETF	Learned	ETF
Test Accuracy (%)								
CIFAR100-Cross-10x10	53.32	53.52	56.58	57.16	55.68	55.54	59.94	60.27
MNIST-Split-5x2	99.90	99.83	99.81	99.78	99.68	99.78	99.85	99.75
CIFAR10-Split-5x2	90.44	91.22	92.04	91.82	90.61	91.43	93.38	93.46
CIFAR100-Split-5x20	62.45	65.20	60.03	61.90	68.82	69.76	69.07	70.53
Parameter Saved (%)								
CIFAR100-Cross	0	21.26	0	11.18	0	25.74	0	25.24
CIFAR100-Split	0	20.71	0	10.87	0	25.13	0	24.63

E DISCUSSION ABOUT THE RELATED WORK

E.1 RELATED WORK ABOUT NEURAL COLLAPSE

The difference between [Li et al. \(2024\)](#) and ours.

- Analytical Focus.** [Li et al. \(2024\)](#) primarily investigates neural collapse patterns under multi-label settings and implications on guiding multi-label training. Our work mainly focuses on the geometry of task-specific classifiers and features learned by each task, and investigates how task correlation impacts features learned by each task.
- Experiment Difference.** Our experimental setup differs substantially from that of [Li et al. \(2024\)](#), encompassing the network architecture, loss function, and dataset construction. The network in [Li et al. \(2024\)](#) includes a single classifier layer, while our work employs a task-specific classifier layer for each task.
- Theoretical Contribution.** Whereas [Li et al. \(2024\)](#) establishes theoretical guarantees for NC in multi-label classification, our work provides the first formal characterization of NC phenomena in MTL frameworks, incorporating heterogeneous task weights, class-imbalanced scenarios, and task-correlation-driven geometric transformations of task-specific classifier manifolds. Previous research never required consideration of alignment between task-specific classifiers and features. In their UFM proofs, \mathbf{h} and \mathbf{w} maintain a one-to-one correspondence, expressed as $\mathbf{h} = \lambda \mathbf{w}$, where λ is the same for each class. In the SSMTTC setting, we need to consider the weighting coefficients of features learned by different task-specific classifiers within the shared feature representation as shown in (32). These coefficients are influenced by the number of classes per task, the task weights assigned to each task, and the task correlation. Only with properly configured coefficients can the equality conditions of a series of inequalities hold simultaneously, thereby ensuring that the optimal solution is attainable.

$$\mathbf{h} = \lambda_1 \mathbf{w}_1 + \lambda_2 \mathbf{w}_2 + \cdots + \lambda_T \mathbf{w}_T \quad (32)$$

2052

2053

Table 4: Long-tailed classification accuracy (%).

2054

2055

Dataset Arch	ResNet18		ResNet34		VGG11		VGG13	
	Learned	ETF+DR	Learned	ETF+DR	Learned	ETF+DR	Learned	ETF+DR
CIFAR10-Split-5x2	73.47	77.21	74.92	78.29	73.32	76.62	74.81	79.12
CIFAR100-Split-5x20	53.24	56.61	54.13	57.21	53.76	55.87	54.48	56.13

2056

2057

2058

2059

2060

2061

2062

$$\text{Ave}_{k_1, \dots, k_T, j} \{ (\mathbf{h}_j^{k_1, \dots, k_T} - \boldsymbol{\mu}^{k_1, \dots, k_T})(\mathbf{h}_j^{k_1, \dots, k_T} - \boldsymbol{\mu}^{k_1, \dots, k_T})^\top \}$$

$$\text{Ave}_{k, k' \neq k, t} \{ |\cos(\mathbf{w}_k^t, \mathbf{w}_{k'}^t) + \frac{1}{K-1}| \}$$

$$\text{Ave}_t \{ \text{Std}(\{\|\mathbf{w}_1^t\|_2, \|\mathbf{w}_2^t\|_2, \dots, \|\mathbf{w}_K^t\|_2\}) / \text{Ave} \{ \|\mathbf{w}_1^t\|_2, \|\mathbf{w}_2^t\|_2, \dots, \|\mathbf{w}_K^t\|_2 \} \}$$

$$\text{Ave}_{k, k', t, t' \neq t} \{ \|\cos(\mathbf{w}_k^t, \mathbf{w}_{k'}^{t'})\| \}$$

$$\text{Ave}_{k_1, k_2, \dots, k_T, j} \left\{ \left\| \tilde{\mathbf{h}}_j^{k_1, k_2, \dots, k_T} - \frac{\sum_{t=1}^T \mathbf{w}_{k_t}^t}{\|\sum_{t=1}^T \mathbf{w}_{k_t}^t\|_2} \right\|_2 \right\}$$

$$\text{SNC5} \quad \frac{1}{N} \sum_{i=1}^N [(\underset{k_1}{\text{argmax}} \langle \mathbf{w}_{k_1}^1, \mathbf{h}_i \rangle + b_{k_1}^1, \dots, \underset{k_T}{\text{argmax}} \langle \mathbf{w}_{k_T}^T, \mathbf{h}_i \rangle + b_{k_T}^T) \neq \underset{k_1, \dots, k_T}{\text{argmin}} \|\mathbf{h}_i - \mathbf{u}^{k_1, \dots, k_T}\|_2]$$

2072

2073

E.2 RELATED WORK ABOUT MULTI-TASK LEARNING

Shenouda et al. (2024) indicates that the norm associated with vector-valued variation spaces encourages the learning of shared features that are useful for multiple tasks. Our framework provides mechanistic insights through two key advancements. (1) We explicitly characterize shared features as a linear combination of task-specific classifiers. (2) Moreover, task-specific classifiers are aligned with the task-specific latent features, which are the features learned by each task. Our work provides the granular characterization of how shared features are useful for each task in modern deep neural networks.

Collins et al. (2024) indicates that multi-task training aligns points with the same label across tasks. Consistent with the theoretical framework, our experimental observations of NC1 further confirm that features sharing the same label collapse to their class mean.

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129

Table 6: MSMTC-NC Metrics

2131	MNC1	$\text{Ave}_{t,k,j}\{(h_{k,j}^t - \mu_k^t)(h_{k,j}^t - \mu_k^t)^\top\}$
2132	MNC2-1	$\text{Ave}_{k,k' \neq k,t}\{ \cos(w_k^t, w_{k'}^t) + \frac{1}{K-1} \}$
2133	MNC2-2	$\text{Ave}_t\{\text{Std}(\{\ w_1^t\ _2, \ w_2^t\ _2, \dots, \ w_K^t\ _2\}) / \text{Ave}\{\ w_1^t\ _2, \ w_2^t\ _2, \dots, \ w_K^t\ _2\}\}$
2134	MNC3	$\text{Ave}_{k,t}\{\ \tilde{\mu}_k^t - \tilde{w}_k^t\ _2^2\}$
2135	MNC4	$\text{Ave}_{k,t,i}\{[\text{argmax}_k \langle w_k^t, h_{k,i}^t \rangle + b_k^t \neq \text{argmin}_k \ h_{k,i}^t - u_k^t\ _2]\}$

2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159