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Abstract

Turbulence is a nonlinear phenomenon exhibiting chaotic, multiscale behavior.
It is simulated with high-fidelity numerical solvers operating on fine grids, mak-
ing the process both computationally demanding and storage intensive. A prime
example is gyrokinetics, which simulates turbulence in a magnetized plasma. A
single run can take weeks and produce up to tens of terabytes of data, making stor-
age unfeasible even with standard compression algorithms. Raw data is typically
discarded, which is wasteful and prevents routine post-hoc analysis of the simula-
tions. To this end, we investigate neural compression methods capable of extreme
compression ratios (up to 40,000×) while preserving reconstruction quality and
physical fidelity. Our study focuses on autoencoders and neural implicit fields,
specifically trained with novel physics-informed losses. This direction could en-
able practitioners to store high-fidelity turbulence simulations for downstream sci-
entific analysis at a fraction of the volume.

1 Introduction

Turbulence is a nonlinear phenomenon characterized by chaotic, multiscale dynamics in space and
time (38, 26, 44, 6, 22). Turbulent flows are defined by four properties: (i) random emergence
of patterns (irregularity and eddies), (ii) dissipation into heat (diffusivity), (iii) dynamics spanning
many scales (scale separation between viscous and inertial), and (iv) transport and mixing (vorticity
fluctuations). For the Navier-Stokes equations, this leads to a direct energy cascade: energy injected
at large scales transfers nonlinearly to progressively smaller scales until dissipated by viscosity.

An example of a system governed by turbulence is gyrokinetics (16, 27, 37). It describes turbu-
lence in magnetised Plasmas, found for example in solar wind or in magnetically-confined nuclear
fusion devices. Gyrokinetics models the time evolution of particles in a Plasma via a 5D distribu-
tion function f ∈ Rv‖×µ×s×x×y , where x, y and s are spatial coordinates and v‖, µ are velocity
space coordinates. More details and derivation in Appendix A. Importantly, the energy cascade in
gyrokinetics is bi-directional, meaning that energy is redistributed from larger to smaller scales and
vice-versa. Capturing turbulence requires simultaneously resolving large coherent structures and
fine, rapidly evolving ones. Therefore, high-fidelity simulations are needed, but they become pro-
hibitively expensive to store as a single snapshot can exceed hundreds of gigabytes of disk space.
Researchers thus usually only keep derived quantities, making comprehensive temporal post-hoc
analysis of turbulence harder or infeasible.
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In this work, we explore learned neural compression techniques for turbulent gyrokinetics data, and
compare them to traditional lossy methods. To this end, we evaluate two paradigms of neural com-
pression: monolithic models (e.g. VQ-VAE (50)), where a single model is used to generalize across
datasets, and micromodels (e.g. neural implicit representations (35, 36, 13)), which reduce individual
snapshots by encoding them directly into network parameters. By training them on physics-informed
objectives, we steer these methods toward capturing the underlying physical characteristics. More-
over, we evaluate whether the compressed snapshots accurately reproduce ground-truth temporal
turbulent patterns and preserve physical quantities of interest, e.g. flux-trace integrals. To this end,
it is imperative to disentangle transient fluctuations and steady-state quantities in evaluation. The
former captures energy transfer across modes to evaluate whether the turbulent energy cascade is
reproduced. The latter describes the properties of the system once statistical equilibrium is reached.

Our physical and turbulence-focused evaluation provides novel insights that are valuable for prac-
titioners. We find that both neural approaches attain reconstruction errors comparable or better to
traditional lossy compression techniques at similar compression ratios, while significantly outper-
forming them on physics preservation. Interestingly, at these high compression regimes, integral
quantities and temporal turbulence metrics get significantly deteriorated for snapshots compressed
with traditional approaches, while learned models with physics-inspired constraints maintain higher
physical fidelity. These findings highlight the potential of neural methods for extreme compression
in scientific computing.

2 Related Work

Compression of spatiotemporal data is not a novel topic, and fields such as numerics and High-
Performance Computing (HPC) have produced a great deal of research in this direction (18, 11,
28, 30, 51, 1, 3). Advanced research (2) exists in the domain of computational plasma physics,
and in particular from the neighboring field of Particle-In-Cell (PIC) simulations (5, 49). The most
relevant approaches include ISABELA (28), which is an advanced spline method that promises up to
7× compression with almost no loss of information; and VAPOR (9), a deep learning method which
uses autoencoders to compress expensive PIC data to a latent space. Concurrent to our work, Kelling
et al. (24) proposes steaming ML pipelines for petascale PIC simulations, enabling models to learn
directly from data in-transit, without intermediate storage. Unlike PIC, which tracks individual
particles (Lagrangian representation), gyrokinetics is a distributional approach which models the
dynamics in a phase space (Eulerian specification).

Physics-Informed Neural Networks (PINNs) combine neural network training with physical con-
straints, including them in the loss function (41, 7). This is done to ensure that physical constraints
such as boundary conditions and conservation laws are respected in the learned solutions, and more
generally that they remain consistent with the underlying equations. Sitting at the intersection of
PINNs and neural compression, EinFields (10) use neural fields and "Sobolev" training (45) to
achieve impressive compression and accuracy on storage intensive general relativity data. On the
other hand, we employ problem specific integral loss terms to improve the physical consistency
under highly lossy compression.

3 Methods

Table 1: Monolithic and micromodel.

Property Mono Micro
Cheap compress 3 7

Cheap reconstruct 3 3

Cheap training 7 3

Dataset-free 7 3

Resolution invariant ~ 3

OOD generalization ~ 3

Time dynamics ? ?

We identify two dominant approaches to learned com-
pression, depending of a few key features and where
weight sharing happens. The first, which we denomi-
nate as "monolithic models", shares its weights across
different trajectories and time, and a single model Γθ is
trained. In other words, they are single-model-many-
data: a large model is trained once on a dataset, and
compression is applied to unseen samples. A represen-
tative of the first class is VQ-VAEs (50), where com-
pression explicitly occurs in latent space at the bottle-
neck between encoder and decoder.
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Figure 1: Sketch of the training and evaluation for neural compression models. Training is done at
individual time snapshots for scalability reasons, while evaluation considers turbulence characteris-
tics, taking both spatial and temporal information into account.

In contrast, "micromodels" work by overfitting an independent and compact set of parameters at
each datapoint, for example in time [Γθt ](0...T ), making them many-models-many-data. Unlike
autoencoders, compression occurs implicitly in weight-space and so reconstruction happens without
an explicit representation. Coordinate-conditioned neural implicit fields (13, 43) are an instance
of micromodels, for example trained to represent a 3D scene. Figure 1 outlines our training and
evaluation for a time trajectory: for both cases, time is not explicitly used in compression but only
in evaluation. Table 1 provides a broad comparison of the characteristics of these two approaches,
using a tick (3) where they excel, a cross (7) where they fail, and ~or ?for properties that are
sometimes present or unknown.

3.1 5D autoencoders

*simplified

W-MSA (layer l) SW-MSA (layer l+1)

Figure 2: 5D swin attention.

Because gyrokinetic data is 5-dimensional, there is no
standard architecture for such dimensionalities. We use
nD swin layers (17), based on Shifted Window Atten-
tion (32), which promise good scaling to higher dimen-
sions. They work by first partitioning the domain in non-
overlapping windows, then performing attention only lo-
cally within the window. Swin layers scale linearly with
the sequence length as opposed to the quadratic behaviour
of attention (32, 33, 25). Figure 2 displays the 5-dimensional W-MSE and SW-MSE layers, where
blocks of the same color visualize the receptive field of the local attention.

The autoencoder structure is derived from hierarchical vision transformers (12, 32): the encoder E
first tiles the field into (non-overlapping) patches and projects it to an embedding space, then applies
interleaved swin and downsampling layers. At the bottleneck, the channels are downprojected to
increase the compression level. The decoder D mirrors the encoder, with swin layers and patch
expansions to up-project the fields until the original resolution is restored.

Given an autoencoder Γ(f) = D◦E(f), the distribution function f is compressed by the encoder E ,
which maps to a low-dimensional latent space. Namely, the compressed representation Z = E(f).
Similarly, decompression is performed by the decoder D, which transforms latent representations
to the 5D physical space. In particular, we experiment with both standard autoencoders and Vector-
Quantized Variational Autoencoders (VQ-VAE) (50). In VQ-VAEs, the encoder E outputs indices
of a codebook, learned end-to-end during autoencoder training. The discrete and compact nature of
the codebook enables a very high compression ratio in the latent representation. Finally, the decoder
D reconstructs the input by mapping the quantized latent codes back to the data space.
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3.2 Neural implicit fields

Neural fields implicitly represent continuous signals as coordinate-based learnable functions (35, 36,
13). In general, neural fields map input coordinates to the respective values of a physical field. They
are usually implemented as MLPs with special activation functions (43, 42, 14). Most importantly,
this representation is independent of the data resolution and offers flexible compression methods,
while allowing for continuous interpolation.

The distribution function f is a complex matrix indexed by a five-tuple of coordinates (v‖, µ, s, x, y).
We train a separate neural field Γθt,c to overfit each f c

t , a snapshot at time t of a trajectory config-
ured as c, for performance, compute and scalability reasons. Coordinates are first embedded in a
sinusoidal positional embedding, then fed in an MLP such as SIREN (43). Fitting a neural field
Γθt,c takes ∼5 minutes (NVIDIA H100), and since we use independent networks for each timestep
and trajectory, training is easily parallelizable or can be performed in a staggered, pipelined fashion.

3.3 Physics-informed training

To ensure conservation of important characteristics, we include supervision on physical quantities.
In particular, we train on the (scalar) heat flux Q ∈ R and electrostatic potential φ ∈ Rx×s×y

integrals. These are integrals of the distribution function f and are formulated as

φ = A

∫
J0f dv‖dµ, Q =

∫
B

∫
v2φf dv‖dµ dxdyds,

where A,B ∈ Rx×s×y encompass geometric and physical parameters, v is the particle energy, and
J0 denotes the Bessel function. The electrostatic potential φ is obtained by integrating velocity-
space from f , while the heat flux Q depends on both f and φ. The corresponding losses are defined
as deviations from the ground truth, for both the 5D distribution function f and its integrals:

Lrecon =
∑

v‖,µ,x,s,y

∥∥f pred − fGT
∥∥2 , LQ = |Qpred −QGT| , Lφ =

∑
x,s,y

∥∥φpred − φGT
∥∥2 .

LQ and Lφ losses rely on global quantities, as the Q and φ integrals require information on the spec-
tral structure of f , or in general spanning the entire phase space domain. This slightly complicates
their application as losses.

Still, these losses can be included in both autoencoder and neural field training, with two caveats:
First, because they rely on mode composition of f , they are effective only once the reconstruction is
already "reasonably close" to the ground truth. To address this, we apply LQ and Lφ only after the
predicted fs have converged, and with a reduced learning rate (generally 100× smaller than the one
used for f ). Second, due to their global nature, they cannot be applied on small coordinate batches
normally used for neural field training. Instead, the full field must be reconstructed to evaluate them.

4 Results

Setup. The neural fields are SIREN networks (43), with 64 latent dimension, 5 layers and skip
connections. They are fit using AdamW (34) with learning rate decaying between [1e− 3, 1e− 12]
(details in Appendix C.3). Autoencoders have latent dimension of 1024 and a total of 152M param-
eters. They are trained on a dataset of 12,985 distribution function f time snapshots, amounting
to around 1TB of data (data information in Appendix B), and compression/reconstruction is subse-
quently expected to happen out of distribution, to unseen trajectories. Autoencoder training takes
∼60 hours (300 epochs, 4× NVIDIA H100) for both AE and VQ-VAE, trained using Muon (23)
with learning rate decaying between [1e− 4, 1e− 7] (details in Appendix C.4).

We compare with traditional compression based on different techniques: ZFP (30), a very popular
compression method for scientific data relying on block-quantization, Wavelet-based compression
and spatial PCA. Baselines are tuned to achieve compression rates of around 1,000× (99.9% size
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Figure 3: Energy cascade visualized as the energy transfer from higher to lower modes as turbulence
develops. The three time snapshots at [8.4, 16.4, 24.4]R/Vr are specifically sampled in the transi-
tional phase where mode growth and energy cascade happens, before reaching the statistically stable
phase. Pairs of columns are two different trajectories for kspec

y (left pair) and Qspec (right pair), rows
are compression methods, with first row being ground truth. Lines of varied colors are the spectras
at specific times (non time-averaged), and background lines are respective ground truth.

reduction), comparable with neural fields and vanilla autoencoders. For reference, off-the-shelf tra-
ditional techniques such as gzip achieve a lossless compression ratio of ∼1.1x (8% reduction).
More information on baselines can be found in Appendix C.2.

Interpretation. Table 2 quantitatively summarizes the results of our analysis. Baselines are evalu-
ated on both traditional compression metrics, integral and turbulence errors. To measure f recon-
struction quality after compression, L1 error, Peak Signal-to-Noise-Ratio (PSNR) and Bits-per-Pixel
(BPP) (defined in Appendix C.1) are reported. Integral errors are mean absolute error of flux Q and
potential φ obtained by integration of the reconstructed distribution field according to Section 3.3.
As for turbulence, Pearson correlation (PC) for time-averaged (TA) kspec

y and Qspec are reported.
kspec
y and Qspec are spatially averaged spectras along the ky coordinates of the potential φ and the

flux field (Q before second integral) respectively. Accurately capturing them is a requirement for
properly reconstructing turbulence.

At this regime, neural fields and autoencoders are comparable or better than traditional methods on
the compression metrics, while providing a clear promotion on integrated quantities. The difference

Table 2: Comparison between neural compression and traditional methods on compression metrics
and physical measures (integrals, steady-state turbulence metrics). Evaluation on 30 total fs (10
different turbulent trajectories, 3 random time snapshots), sampled in the statistically steady phase.
()int models are trained with physics-informed integral training. L1 errors are not normalized. Best
result in bold, second best underlined.

Compression f Integrals Q,φ Turbulence Qspec, kspec
y

CR L1 ↓ PSNR ↑ BPP ↓ L1(Q) ↓ L1(φ) ↓ PC(kspec
y ) ↑ PC(Qspec) ↑

NF 988× 0.43 34.19 0.097 29.65 414.24 0.90 0.90
NFint 988× 0.39 34.88 0.097 2.80 118.82 0.91 0.91
NFint + ZFP 2,581× 0.39 34.88 0.037 3.51 256.91 0.90 0.91
AE 1,208× 0.55 32.94 0.079 56.51 272.88 0.90 0.91
AEint 1,208× 0.77 32.13 0.079 24.66 536.06 0.89 0.96
VQ-VAE 38,684× 0.41 33.06 0.002 37.01 121.74 0.91 1.00
VQ-VAEint 38,684× 0.55 32.60 0.002 9.71 593.56 0.89 0.78

ZFP 982× 0.65 28.65 0.103 91.01 1064.73 0.90 -0.19
Wavelet 920× 0.44 33.05 0.127 90.63 691.64 0.89 -0.93
PCA 1,020× 0.47 31.95 0.094 63.38 425.49 0.90 0.67
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in integral error between NF and NFint in Table 2 highlights the advantage of training on LQ and
Lφ, considerably boosting physical soundness. At the same time, comparing "plain" autoencoders
with those trained with integral losses reveals the challenges of balancing the loss terms, as training
instabilities disrupt the f reconstruction quality when jointly optimizing Lrecon, LQ and Lφ.

Recovering turbulence. Figure 3 shows how well different models capture the direct energy cas-
cade phenomena across different simulations (energy shifting to lower modes over time), by visual-
izing the per-timestep spectras kspec

y and Qspec. Note that this figure provides a qualitative compar-
ison of turbulence recovery on the temporal axis, in contrast to the steady-state statistics reported
in Table 2. The time snapshots examined in Figure 3 ([8.4, 16.4, 24.4]R/Vr) are sampled in the
transitional phase where turbulence grows, at the so called overshoot. These are different to those in
Table 2 (random in the saturated phase). On kspec

y , traditional compression methods already achieve
reasonable performance in most cases, but on Qspec they produce severely non-physical results (flat
curves, negative numbers). In contrast, neural fields and VQ-VAE can reproduce the overall profiles
consistently, with VQ-VAE excelling at the flux spectra. However, both often fail to capture the
higher-frequency magnitudes, especially autoencoders. The behaviors can be attributed to the spec-
tral bias of neural networks (40, 48), where low-frequency (high-energy) components are favored
over high-frequencies.

Hybrid compression. Finally, we additionally showcase an example to further push the idea of
high-compression: neural fields can be compressed by applying traditional techniques in weight
space, with very minor degradation in performance ("NFint+ZFP" row in Table 2). Similarly to how
data can be compressed into a compact neural field representation, the network weights themselves
are redundant and also lie on a lower-dimensional manifold. This is related to pruning (29, 19),
network compression (21), and the lottery ticket hypothesis (15).

5 Conclusions

Our study provides compelling evidence that for gyrokinetic simulations of plasma turbulence, neu-
ral compression can preserve underlying characteristics of the physical system while achieving ex-
treme compression levels of up to 40,000×. This is accomplished by constraining the compression
during training to maintain integral quantities over the 5D fields. We expect that similar approaches
are extendable to large-scale scientific datasets of other disciplines, enabling practitioners to store
compressed simulations that accurately capture specified physical phenomena across time and space,
which was previously infeasible due to storage requirements. These tools may provide considerable
impact in simplifying accessibility and transfer of data, hence accelerating research in the scientific
community: our results are a first step in adopting machine learning for physics-preserving, on-the-
fly (in-situ) compression of simulation snapshots, enabling more comprehensive post-hoc analysis.

Future work should systematically explore the trade-off between compression rate, reconstruction
quality, and the preservation of physical quantities, over the different neural compression method-
ologies. A more thorough ablation of different modeling choices, such as WIRE (42) and SIREN
(43) networks as neural fields, is an essential direction for future work. Further, at the moment, our
current physics training relies on heuristics such as two-stage training to balance compression and
reconstruction of physics constraints. Especially for autoencoders, which showed instabilities when
training on integral losses, gradient normalization (8, 31) or adaptive loss weighting (4) could help.
Finally, so far we only evaluate transient turbulent phenomena quantitatively and for a limited setup.
A larger scape, quantitative and systematic evaluation of time dynamics reconstruction would be
beneficial, especially for applications.
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A Gyrokinetics

Gyrokinetics (16, 27, 37) is a reduced form of Plasma kinetics that is computationally more effi-
cient and can be use to locally simulate Plasma behaviour within a so-called flux tube in the torus.
Local gyrokinetics is a theoretical framework to study plasma behavior on perpendicular spatial
scales comparable to the gyroradius, i.e., the radius of circular motion exhibited by charged parti-
cles in a magnetic field, and frequencies much lower than the particle cyclotron frequencies, i.e.,
the frequency at which charged particles spiral around magnetic field lines due to the Lorentz force.
Gyrokinetics models the time evolution of electrons and ions via the distribution function f , which
is based on 3D coordinates, their parallel and perpendicular velocities, together with the angle w.r.t.
the field lines. However, the latter dimension is averaged out by modelling only the so-called guiding
center of a particle instead of its gyral movement. Furthermore, instead of modelling the perpendic-
ular velocity, usually only its magnitude is considered, which is also referred to as the magnetic mo-
ment µ. Hence, the 5D gyrokinetic distribution function can be written as f = f(kx, ky, s, v‖, µ),
where kx and ky are spectral coordinates, s is the toroidal coordinate along the field line, and v‖
the parallel velocity component. The perturbed time-evolution of f , for each species (ions and
electrons), is governed by

∂f

∂t
+ (v‖b+ vD) · ∇f − µB

m

B · ∇B

B2

∂f

∂v‖︸ ︷︷ ︸
Linear

+ vχ · ∇f︸ ︷︷ ︸
Nonlinear

= S , (1)

where v‖b is the motion along magnetic field lines, b = B/B is the unit vector along the magnetic
field B with magnitude B1, vD the magnetic drift due to gradients and curvature in B, and vχ

describes drifts arising from the E × B force, a key driver of plasma dynamics. Finally, S is the
source term that represents the external supply of energy. The term vχ · ∇f models the nonlinear
interaction between the distribution function f and its velocity space integral φ, and it describes tur-
bulent advection. The resulting nonlinear coupling constitutes the computationally most expensive
term.

A.1 Derivation of the Gyrokinetic equation

We begin with the Vlasov equation for the distribution function f(r,v, t):

∂f

∂t
+ v · ∇f +

q

m
(E + v ×B) · ∇vf = 0 (2)

The Vlasov equation describes the conservation of particles in phase space in the absence of col-
lisions. Here, r = (x, y, z) and v = (vx, vy, vz) correspond to coordinates in the spatial and the
velocity domain, respectively. Hence the Vlasov equation is a 7D (including time) PDE representing
the density of particles in phase space at position r, velocity v, and time. The term ∇vf describes
the response of the distribution function to accelerations of particles and q

m (E+ v ×B) denotes
the Lorentz force, which depends on particle charge q and mass m, as well as electric field E and
magnetic field B. Finally, the advection (or convection) term v∇f describes transport of the distri-
bution functon through space due to velocities.

To derive the gyrokinetic equation, we transform from particle coordinates to guiding center coordi-
nates (R, v‖, µ, θ), where µ =

mv2
⊥

2B is the magnetic moment, θ the gyrophase, which describes the
position of a particle around its guiding center as it gyrates along a field line, and R is the coordinate
of the guiding center.

Assuming the time scale L at which the background field changes is much longer than the gyroperiod
with a small Larmor radius ρ � L, we can gyroaverage to remove the dependency on the gyrophase
θ, yielding:

∂f

∂t
+ Ṙ · ∇f + v̇‖

∂f

∂v‖
= 0 (3)

1We adopt uppercase notation for vector fields E and B to adhere with literature.
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A.1.1 Linear Terms

The unperturbed (background) motion of the guiding center is governed by:

Ṙ = v‖b+ vD (4)

v̇‖ = − µ

m
b · ∇B (5)

Here, b = B/B is the unit vector along the magnetic field, and vD represents magnetic drifts.
Substituting into the kinetic equation yields

∂f

∂t
+ (v‖b+ vD) · ∇f − µ

m
b · ∇B

∂f

∂v‖
= 0 (6)

We can express the magnetic gradient term using:

b · ∇B =
B · ∇B

B
(7)

so that:
µ

m
b · ∇B =

µB

m

B · ∇B

B2
(8)

A.1.2 Nonlinear Term

Fluctuating electromagnetic potentials δφ, δA induce E×B and magnetic flutter drifts. We define
the gyroaveraged generalized potential as

χ = 〈φ−
v‖

c
A‖〉, (9)

where A‖ is the parallel component of the vector potential, 〈·〉 denotes the gyroaverage, and c is the
speed of light, which is added to ensure correct units. φ is the electrostatic potential, the computation
of which involves an integral of f over the velocity space (see eq. 1.41 in the GKW manual 2 for a
complete description).

This gives rise to the drift
vχ =

c

B
b×∇χ, (10)

and yields the nonlinear advection term vχ · ∇f .

A.1.3 Final Equation

We arrive at the gyrokinetic equation in split form:

∂f

∂t
+ (v‖b+ vD) · ∇f − µB

m

B · ∇B

B2

∂f

∂v‖
+ vχ · ∇f = S (11)

Here, S represents external sources, collisions, or other drive terms. To enhance the tractability of
Equation (1), the distribution function f is usually split into equilibrium and perturbation terms

f = f0 + δf = f0 −
Zφ

T
f0︸ ︷︷ ︸

Adiabatic

+
∂h

∂t︸︷︷︸
Kinetic

, (12)

where f0 is a background or equilibrium distribution function, T the particle temperature, Z the par-
ticle charge, φ the electrostatic potential, and δf the total perturbation to the distribution function,
which comprises of adiabatic and kinetic response. The adiabatic term describes rapid and passive
responses to the electrostatic potential that do not contribute to turbulent transport, while the kinetic
term governs irreversible dynamics that facilitate turbulence. Numerical codes, such as GKW (37),
rely on solving for δf instead of f . A common simplification is to assume that electrons are adia-
batic, which allows us to neglect the kinetic term in the respective δf . Hence, the respective f for
electrons (fe) does not need to be modelled, effectively halving the computational cost.

2https://bitbucket.org/gkw/gkw/src/develop/doc/manual/
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B Dataset

The simulations used for both the autoencoder training (49 trajectories) and the evaluation (10 tra-
jectories) are generated with the numerical code GKW (37). They are sampled by varying four
parameters: R/Lt, R/Ln, ŝ, and q, which significantly affect emerging turbulence in the Plasma.

• R/Lt is the ion temperature gradient, which is the main driver of turbulence.

• R/Ln is the density gradient, whose effect is less pronounced. It can have a stabilizing
effect, but can sometimes also lead to increased turbulence.

• ŝ denotes magnetic shearing, hence it usually has a stabilizing effect as more magnetic
shearing results in better isolation of the Plasma.

• q denotes the so-called safety factor, which is the inverse of the rotational transform and
describes how often a particle takes a poloidal turn before taking a toroidal turn.

We specify the ranges for sampling the four parameters as R/LT ∈ [1, 12], R/Ln ∈ [1, 7], q ∈ [1, 9],
and ŝ ∈ [0.5, 5]. Additionally, we also vary the noise amplitude of the initial condition (within
[1e− 5, 1e− 3]).

To make storage more feasible, simulations are time-coarsened by saving snapshot every 60. Each
GKW run with the specified configurations takes around ∼6 hours (76 cores, Intel Ice Lake 4.1GHz
CPU) and ∼20GBs of storage.

C Implementation details

C.1 Evaluation an training metrics

We evaluate reconstruction with spatial and physical metrics. Since gyrokinetic data is complex-
valued, we can also apply complex-generalizations of common metrics.

Complex Mean Squared Error. Given two complex-valued fields z1, z2 ∈ CN , the complex mean
squared error is:

cMSE(z1, z2) =
〈
<(z1 − z2)

2 + =(z1 − z2)
2
〉
=

〈
|z1 − z2|2

〉
where 〈·〉 denotes the average over all spatial or spatiotemporal dimensions.

Complex Pearson Correlation Coefficient. Given complex-valued vectors x1, x2 ∈ CN , the com-
plex Pearson correlation is computed as (47):

r(x1, x2) =

∑N
n=1 (x1,n − x̄1) (x2,n − x̄2)

∗√∑N
n=1 |x1,n − x̄1|2 ·

∑N
n=1 |x2,n − x̄2|2

where: - x̄1, x̄2 are the mean values of each series, - (·)∗ denotes complex conjugation.

Peak Signal-to-Noise Ratio. The PSNR for complex-valued fields we defined as:

cPSNR(z1, z2) = 10 · log10
(

max(|z1|)2

cMSE(z1, z2)

)

Bits Per Pixel (BPP). The BPP measures compression efficiency. Given a discrete representation of
a field z and its compressed encoding, the bits per pixel is defined as

BPP =
Total number of bits used to encode z

Number of spatial points in z
.

Lower BPP values indicate higher compression, while higher BPP generally corresponds to more
faithful reconstruction.
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C.2 Traditional compression

In the following paragraphs we briefly describe how the traditional compressions were implemented.

ZFP Compression. ZFP (30) is a compression library for numerical arrays designed for fast random
access. It partitions the data into small blocks (typically 4× 4× 4 elements for 3D data) and trans-
forms them into a decorrelated representation using an orthogonal block transform. The transformed
coefficients are quantized according to a user-specified tolerance, then entropy-coded to produce a
compact bitstream. High-speed random access and tunable compression ratios are possible, making
ZFP a very common choice for scientific data storage.

We rearrange f into a 3D array as ((v‖ × µ), (s× y), x) for ZFP block-based compression scheme
(up to 3D), and compress with ZFP with a specified absolute error tolerance. The compressed
representation is a compact byte representation. Reconstruction is performed by decompressing
with ZFP and reshaping the output back to the original tensor layout.

Wavelet Compression. Discrete wavelet transform (DWT) is applied using the level 1 Haar wavelet,
on both spatial and temporal information. The multi-dimensional array is decomposed into wavelets
(coefficient and slices). To achieve lossy compression, coefficients are pruned based on a fixed
threshold dependent on the desired compression ratio, effectively discarding small high-frequency
components. Reconstruction is performed by inverting the DWT.

Principal Component Analysis Compression. f is reshaped into a 2D array ((v‖×µ, s), (x×y)),
by rearranging together the velocity space v‖, µ with the field line s and the spatial coordinates
x, y. PCA is applied on the flattened spatial components, retaining a fixed number of principal
components dependent on the desired compression ratio (N = 2 for 1000× from Table 2). The
compressed representation consists of the principal components, the mean vector, and the explained
variance. Reconstruction is achieved by projecting back to the original space, followed by reshaping
to the original dimensions.

C.3 Neural fields

Neural fields are trained by representing the distribution function as a continuous signal, taking
coordinates as inputs. A dataset consists, for a given simulation, of the 5D density function f at a
specific timestep, and the 5D grid coordinates of each cell. Data normalization is applied both to the
field values and to the coordinates.

A SIREN (43) model with win
0 = 1.0, wh

0 = 3.0, wout
0 = 3.0, 64 hidden dimension, 5 layers, con-

tinuous sincos embedding for the coordinates and skip connections between the layers is optimized
using AdamW (34), with cosine annealing learning rate scheduling decaying the learning rate from
1e−3 to 1e−12 and . Auxiliary optimizers can be used for additional integral losses, also with their
scheduler that decays learning rate from 1e − 5 to 1e − 12. The neural field training loop iterates
over batches of (2048) coordinates and field values. On a first pass of 20 epochs, the loss Lrecon

from Section 3.3 is fitted. Auxiliary integral losses are trained of such a pretrained model for 100
more epochs, with the whole 5D field as batch.

C.4 Autoencoders

The autoencoder and VQ-VAE baselines are both built on the 5D Swin Transformer (17). GELU
activations are used (20). In particular, swin transformers are modified using the gated attention Qiu
et al. (39) for stability. Relative Positional Bias (32) and RoPE (46) are used as positional encodings.
Patch size is (4, 8, 2, 5, 4) and window size is (4, 1, 4, 9, 4). A stack of 4 swin blocks and 16 attention
heads is applied after patching in the encoder and before unpatching in the decoder. Then, a single
downsample level which further halves the resolution is applied before going in the bottleneck part.
Here, a stack of 2 swin blocks is applied, which reduces the channels to increase the compression
further. The decoder mirrors and inverts this.

The autoencoder has latent space of dimension 1024, with a bottleneck of 32, yielding a compression
ratio of 1208. The model is trained with cMSE. For VQ-VAE, the latent dimension is also 1024,
but the bottleneck effectively reduces to 1 with a codebook size of 8192, resulting in a much higher
compression ratio of 38684. Training uses cMSE and VQ commit loss (50).

14



C.5 Extra results
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Figure 4: Extra models for the energy cascade (left Figure 3). The three time snapshots at
[8.4, 16.4, 24.4]R/Vr are specifically sampled in the transitional phase where mode growth and
energy cascade happens, before reaching the statistically stable phase. Visualized as the energy
transfer from higher to lower modes as turbulence develops. Columns are different trajectories,
rows are compression methods, lines of varied colors are the kspec

y at specific timesteps, and trans-
parent lines are respective ground truth.
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Figure 5: Extra models for the Q spectra (right Figure 3). The three time snapshots at
[8.4, 16.4, 24.4]R/Vr are specifically sampled in the transitional phase where mode growth and
energy cascade happens, before reaching the statistically stable phase. Visualized as the energy
transfer from higher to lower modes as turbulence develops. Columns are different trajectories,
rows are compression methods, lines of varied colors are the Qspec at specific timesteps, and trans-
parent lines are respective ground truth.
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