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ABSTRACT

Temporal Graph Networks (TGNs), while being accurate, face significant training
inefficiencies due to irregular supervision signals in dynamic graphs, which induce
sparse gradient updates. We first theoretically establish that aggregating historical
node interactions into pseudo-labels reduces gradient variance, accelerating con-
vergence. Building on this analysis, we propose History-Averaged Labels (HAL),
a method that dynamically enriches training batches with pseudo-targets derived
from historical label distributions. HAL ensures continuous parameter updates
without architectural modifications by converting idle computation into produc-
tive learning steps. Experiments on the Temporal Graph Benchmark (TGB) vali-
date our findings and an assumption about slow change of user preferences: HAL
accelerates TGNv2 training by up to 13× while maintaining competitive perfor-
mance. Thus, this work offers an efficient, lightweight, architecture-agnostic, and
theoretically motivated solution to label sparsity in temporal graph learning.

1 INTRODUCTION

Temporal graphs represent evolving interactions between entities over time. Their models capture
complex patterns, improving predictions in diverse applications spanning from recommendation
systems to financial fraud detection Deng et al. (2019); Song et al. (2019); Zhao et al. (2019).

Temporal Graph Networks (TGNs) solve the problem with the state-of-the-art performance Rossi
et al. (2020); Tjandra et al. (2024). Even for TGNs, the training is impeded by the sparsity of super-
vision signals. Node-level labels (e.g., explicit user preferences or interactions) appear irregularly,
leaving many time steps unlabeled. Current TGN implementations process batches in two modes:
full training steps for batches with supervision labels and memory-related state updates for others.
This creates an efficiency bottleneck — as labeled batches constitute less than 2% of interactions for
many applied problems Gastinger et al. (2024). As a result, models skip parameter updates for large
portions of the data, slowing convergence.

For most temporal node prediction datasets, the target is forecasting interaction type, such as a music
genre, a subreddit, or a token Huang et al. (2023) within a specified time frame. Such interactions
are a realization of a marked temporal point process, such as a non-homogeneous Poisson process,
with a dynamics governed by a slowly changing latent state of an object Cai et al. (2018). Although
the latent state may stay stable for long intervals, in practice it typically changes gradually Klenit-
skiy et al. (2024); Li et al. (2024). Such slow evolution provides temporal consistency that models
can leverage: from temporal-neighbor aggregation Trivedi et al. (2019) to Temporal Graph Net-
works with learned memory Rossi et al. (2020) that achieved state-of-the-art results through learned
memory modules. Further discussion of the related work is available in Appendix A.

Given the slow dynamics of node preferences, we propose a history-based pseudo-labeling scheme
based on the moving average idea (MA) that turns unlabeled batches into supervised training signals,
achieving faster training while maintaining model quality for TGNs. The MA operates orthogonally
to model architecture choices and introduces no additional parameters. By augmenting the standard
cross-entropy loss with pseudo-labeled batches, we transform previously idle computation into pro-
ductive training steps. Our work shifts the paradigm from ”train only when supervised” to ”always
train, intelligently extrapolate,” offering a principled solution to gradient sparsity in dynamic graph
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Time
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Figure 1: Our training with historical pseudo-labels. We extend beyond the vanilla method’s sparse
real ground truth supervision (Targets, the bottom row of circles) by generating pseudo-labels de-
rived from historical label patterns (Historical targets, HA, the top row of circles), enabling more
comprehensive training data utilization.

learning. The training pseudo-labels for MA is the exponentially weighted recent targets. We also
compare MA to two alternative pseudo-labels generation strategies, Persistent Forecast, that uses
last-observed labels, and Historical average, that uses window-based averages of past labels.

Comprehensive experiments on the Temporal Graph Benchmark (TGB) Gastinger et al. (2024) val-
idate our approach. Our experiments show consistent acceleration of model convergence by 2-13x
across all four benchmark datasets, while maintaining competitive prediction accuracy and even
improving the final result in some cases.

To summarize, the main claims of this paper are:

• History-based pseudo-labeling approach. We propose a pseudo-labeling based on Ex-
ponential History Moving Averaging (MA) suitable for temporal graphs, reducing label
sparsity.

• Proof of better convergence given HAL. Under the constant user preferences assumption,
we prove faster convergence for history-based aggregation of labels with the theoretical
increase of speed min(h, k), where h is the aggregated history length and k is the number
of possible interactions associated with a user node.

• TGN architectures equipped with MA. We implemented MA for training both
TGNv2 Tjandra et al. (2024) and a modified DyRep Trivedi et al. (2019) model (DyRep v2)
and showed that it reduces training time up to 13 times without degradation of model qual-
ity working better than other aggregation strategies. A study confirms that the improvement
is connected with the intrinsic temporal dynamics for 2 out of 4 considered datasets, where
the appearance order for events can be ignored — further motivating HAL aggregations
and inclusion of additional temporal benchmark with more evident temporal dynamics of
preferences.

2 METHOD

2.1 GENERAL PIPELINE

Let G = (V,E) be a temporal graph with vertices V and temporal interaction edges E. Each
timestamped edge e = (u, v, t, fe), where u, v ∈ V are source and destination nodes, t ∈ R+ is a
timestamp, and fe ∈ Rd is a vector of edge features.

Thus, edges appear and vanish with time, making their prediction a vital problem. Formally, for
a subset of nodes V ′ ⊆ V , |V ′| = n (e.g., users), we predict time-varying affinity toward other
nodes or categories (e.g., items, music genres). The target y(v)

t = (y
(v)
t,1 , . . . , y

(v)
t,n) ∈ ∆n for node

v ∈ V ′ is then an n-dimensional probability vector representing normalized preferences at time t

where ∆n = {y :
∑

yi = 1, yi ≥ 0} (as defined in Section 3.1). Each element y(v)t,i ≥ 0 quantifies
the affinity of v toward the i-th category at time t. These targets are observed irregularly, with most
vectors lacking ground-truth affinities.
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Figure 2: Comparison of batch processing pipelines: The unsupervised pipeline (blue dashed box)
performs memory and neighbor loader updates only, while the supervised pipeline (red dashed box)
encompasses these steps and extends them with subgraph sampling, GNN processing, and loss com-
putation for model training.

During training, the edges are processed chronologically and divided into sequential batches
{B1, . . . , BT }, where each batch Bt contains a fixed number N of consecutive edges {et1 , . . . , etN }
that correspond to time moment t. As targets for a single temporal edge are rarely available, batches
also contain sparse labels. This sparse supervision creates the fundamental challenge we address:
labeled batches may represent less than 2% of interactions, leading to the gradient sparsity problem
analyzed in Section 3.

In the Temporal Graph Network framework, batch processing operates in two distinct modes de-
pending on the presence of supervision targets within the batch.

Unsupervised batch processing. When a batch Bt arrives without supervision targets, the model
performs only memory updates, without any gradient-based training. Temporal edges in Bt are used
to update node memories by aggregating interaction history. The neighbor sampler is also refreshed
to incorporate these new interactions for future subgraph construction. Since no ground-truth labels
are available, no loss is computed, and model parameters remain unchanged during this step.

Supervised batch processing. When Bt contains supervision targets {y(v)
t }, the model performs

a full training step, which includes both memory updates and gradient-based optimization.

First, temporal edges in Bt that occurred before the target time are used to update node memories.
This ensures that predictions are based on historical information only (i.e., no information leakage
from the future). The neighbor sampler is also updated accordingly.

Then, for each target node v ∈ V ′, the following steps are performed:

1. Temporal subgraph sampling: A subgraph is extracted using the updated sampler, con-
strained to edges occurring before time t.

2. Initial embeddings: The memory module provides time-aware node embeddings reflecting
their historical state.

3. Forward pass: A graph neural network (GNN) processes the subgraph to compute context-
aware node embeddings.

4. Prediction and loss: The model generates task-specific predictions, which are compared to
the ground-truth labels y(v)

t . The resulting loss L is computed.

5. Backpropagation: The loss is backpropagated to update: GNN parameters (e.g., message-
passing layers, attention mechanisms) and memory-related parameters (e.g., GRU or RNN
weights controlling memory updates over time).

The complete workflow for processing batches is illustrated in Figure 2, showing how the pipeline
integrates memory updates with neural network training.
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The model fθ processes edge sequences to update node embeddings h
(t)
v and predict target labels

ŷ
(v)
t , with loss computed over all active nodes.

L(θ) = 1

T

T∑
t=1

∑
v∈Vt

LCE

(
ŷ
(v)
t ,y

(v)
t

)
→ min

θ
, (1)

where LCE denotes the cross-entropy loss. In our loss function L̃, we replace y
(v)
t with pseudo-

labels ỹ(v)
t , that are non-zero for almost all nodes and batches.

2.2 GENERATION OF HISTORICAL PSEUDO-LABELS

For each batch Bt we compute pseudo-targets ỹ(v)t only for nodes v participating in Bt. The core
component ỹ(v)t is an aggregate of all historical supervision signals observed for node v prior to t,

ỹ
(v)
t = ȳ

(v)
t + γ · ϵ, (2)

where ȳt aggregates past targets, and ϵ is noise generated by first sampling ϵ′ ∼ U(−α, α) and then
subtracting the mean to ensure

∑
i ϵi = 0. This guarantees that the sum

∑
i ỹ

(v)
t,i = 1. Here, γ ≥ 0 is

a noise scaling factor controlling the magnitude of regularization. This formulation ensures that ỹ(v)t,i
remains a valid probability distribution while reducing gradient variance as proven in Theorem 3.
We can define ȳt, derived from v’s past observations, in different ways. This paper considers the
following aggregation strategies.

Historical Average (HA). Aggregates all targets for v across previous batches:

ȳ
(v)
t =

1

L(v)

∑
t′<t

y
(v)
t′ , (3)

where L(v) is the number of observed targets for a node v. This setting corresponds to the HAL case
in Subsection 3.2, where the user affinities remain constant. Below, we provide two options that
make weaker assumptions about the correlation between the current user preferences and the past
observed labels: Moving average and Persistent forecast.

Moving Average (MA). Updates the pseudo-label incrementally when new targets arrive. Sup-
pose a new target y(v)

t is observed for v at batch t. The updated pseudo-label becomes:

ȳ
(v)
t =

w − 1

w
ȳ
(v)
t−1 +

1

w
y
(v)
t , (4)

with w being a method hyperparameter. Initially, ȳ(v)
0 = y

(v)
0 .

Persistent Forecast (PF). Reuses the most recent observed target for v:

ȳ
(v)
t = y(v)

τ , τ = max{t′ ≤ t |y(v)
t′ is available}. (5)

Updating introduced aggregations over timestamps is efficient and can be done iteratively over
batches. Historical Average and Moving Average take into account all past labels, while weight-
ing them differently, while Persistent Forecast uses the last available value. Also, both ȳ

(v)
t and ỹ

(v)
t

are valid probability distribution. For ȳ(v)
t for MA, it easily follows from the induction rule, for HA

it also holds, as it uses a mean value of correct distributions, and for PF it is evident. For ỹ(v)
t , the

introduced normalization procedure leads to the desired effect.

3 STOCHASTIC GRADIENT DESCENT CONVERGENCE FOR HISTORICAL
LABEL AVERAGING

In this section, we present our main theoretical result on the convergence speed for the pseudo-label
generation approach based on Historically Aggregated Labels (HAL). We start with the introduction
of preliminaries on the convergence of Stochastic Gradient Descent (SGD). Then, the theorem de-
scribes an upper bound for the convergence rate of HAL under natural assumptions and compare it
with a vanilla variant. Complete proofs of the presented results are available in the Appendix B.
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3.1 PRELIMINARIES

Let D = {(xi,yi)}mi=1 be i.i.d. samples drawn from an unknown distribution D. x ∈ X ⊆ Rdx ,
y ∈ Y ⊆ Rn. Below, Y = ∆n = {y :

∑
yi = 1, yi ≥ 0} is an n-dimensional simplex for a

classification problem. For one-hot encoding a single component, associated with the true label,
yi = 1 and all others are zero.

Given the sample D, the empirical risk minimization problem for the parameter vector θ ∈ Rd is:

L(θ) = 1

m

m∑
i=1

ℓ (θ; (xi,yi)) → min
θ∈Rd

, (6)

where ℓ : Rd ×X × Y → R+ is a differentiable loss function.

Stochastic Gradient Descent (SGD) Robbins & Monro (1951) updates the parameter vector, starting
from the initialization θ0, via

θt+1 = θt − αtgt, gt =
1

B

∑
j∈Bt

∇ℓ
(
θt; (xj ,yj)

)
, (7)

where t = 0, . . . , T −1 is the SGD iteration number, Bt is a batch of size |Bt| = B sampled without
replacement. The estimator gt is unbiased, E[gt|θt] = ∇L(θt), but exhibits non–zero variance

σ2 = E∥gt −∇L(θt)∥2 =
1

B
E(x,y)∼D∥∇ℓ(θt; (x,y))−∇L(θt)∥2. (8)

Within this framework, we substitute the original loss function. Specifically, in ℓ(θt; (x,y)) our
method would replace y with a pseudo-labels vector y′. As long as it is unbiased and we can
estimate the variance of it, the theoretical results on convergence speed below hold, as one can
easily see from Rakhlin et al. (2012); Shalev-Shwartz & Ben-David (2014).

For vanilla SGD, there exists an upper bound a regret RT for a diminishing step size αt =
1
µt :

RT = E
[
L(θT )− L(θ⋆)

]
,

where θ⋆ denotes the unique minimizer of L.
Theorem 1 (adopted from Shamir & Zhang (2013)). For a µ-strongly convex loss function and an
unbiased gt defined in equation 7 with variance σ2 and batch size B for the step size αt =

1
λt , the

regret has the upper bound:

RT ≤ 17σ2

µBT
(1 + log T ) . (9)

This bound is sufficiently tight to describe the real dynamics Shalev-Shwartz & Ben-David (2014).
Variations of this bound and SGD are also discussed in literature Bottou et al. (2018); Bubeck (2015),
while the above form would be sufficient for our purposes.

The upper bound σ2(1 + log T )/(µBT ) depends linearly on the gradient–noise variance σ2 and
the inverse of the batch size. Consequently, we can adjust the convergence speed by minimizing
noise variance σ2 and maximizing the batch size. Increasing the batch size B is a common advice
for faster convergence, e.g., You et al. (2018) shows that one can train a ResNet model within 20
minutes using ImageNet with large batches. Momentum-based approaches for SGD also indirectly
increase batch size, improving convergence Kingma & Ba (2015). However, the second component
of the variance reduction, σ2, related to searching for a lower-variance noise, is often overlooked.

3.2 CONVERGENCE SPEED FOR HISTORY-AVERAGE-LABEL SGD

In this subsection, we present our results on the convergence of SGD with historical pseudo-labels
and demonstrate its improvement over a vanilla variant of SGD. Formal proofs for the statements
are presented in the Appendix.

Suppose that there are k out of n true labels with a uniform probability of occurrence over them.
Each time, a user selects a label uniformly at random to produce a single label. In this case, we can

5
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consider an alternative label for a single observation that aggregates past labels to produce y at the
current moment — and that we would define as history-average labels. In this section, we calculate
the variance of the gradients, σ2, by decomposing it into the product of the parameter values and the
variance related to labelling, which we can obtain in a closed form.

Canonically, for multilabel classification y is a one-hot vector with 1 being at the place of the
observed label and 0 at all other places. Let us call it the one-hot label (OH). Aggregating over
history and normalising leads to the ground truth vector of the form y = (k1

h , . . . , kn

h ), where h is
the length of the history of observations and ki is the number of observations of the i-th label within
it. We call it History Average Labels (HA). Below we consider two options to present yi — the i-th
component of y vector that belongs to the set of the true labels.

OH case. In this scenario, our random variable yi = t1:
t1 = ηξ,

where η is the event of observing a specific true label, a Bernoulli random variable Be( 1k ) and ξ is
another Bernoulli random variable, that corresponds to the observation of any of the true labels, it is
∼ Be(u), with u is typically close to 1.

HA case (ours). Now let us consider the aggregation of history. We assume equal probabilities
for each of k correct labels 1

k and the history of size h. Then the presented yi = th:
th = ηkξ,

where ξ is defined above and ηk is a component of a multinomial random vector with equal proba-
bilities 1

k and the total number of observations h, divided by h, as we aim to match the event type
probability. Formally, t1 can be obtained as th for h = 1. Below, we assume that we form batches
from independent observations of HA by considering users separately. In this case, the overall bound
for SGD would have the form from equation 9.
Lemma 2. The expectation of th is u

k and the variance of th is uk−1
k2h + u(1− u) 1

k2 .

For the OH and the HA, we have the same unbiased mean value u
k , but the variances differ: the OH’s

variance is σ2 = u
k

(
1− u

k

)
, and the HAL’s variance is ∼ u

kh + u(1−u)
k2 . Without compromising

tightness, one can upper bound the variance of t1 by u
k and of th by u

kh + u
k2 . For a large history

length aggregated h or a large number of items in a catalogue k, we have lower variance for labels
∼ 1

kmin(h,k) compared to the order 1
k for the first case. Thus, as yi = th we know the variance for it.

Finally, we need to derive the variance of the gradient with respect to the parameters, given the
variance in labels, derived above. Let us consider the last layer before the softmax function. It has
the form p = softmax(Ce), where e is the embedding vector for the last layer, C is the parameters
matrix, and p is the vector of predicted probabilities for labels. For an index that corresponds to
the correct label y for the cross-entropy loss function, the gradient is ∂L

∂cij
= (pi − yi)ej . Thus, the

variance of the partial derivative var
(

∂L
∂cij

)
= e2jvar(pi − yi) = e2jvar(yi) = e2jvar(th). The main

term here is the variance var(th). For the previous layers, due to the chain rule, we have a similar
linear decomposition of the variance of the gradient of the form c̃var(th), where c̃ is a non-stochastic
constant. Thus, the overall variance of the gradient can be represented in the form c̃var(th) for some
positive constant c̃ > 0.

Plugging in our variance estimates from Lemma 2 for h = 1 and h > 1 into the gradient variance
with respect to the parameters, we obtain the convergence speed for OH and HA cases.
Theorem 3. Consider SGD in settings from Theorem 1. The following inequalities for the regret
hold for a positive constant c:

• Under the assumptions of OH, for the regret RT it holds:

RT ≤
(
1− u

k

)u
k

c

µB

1 + log T

T
≤ u

k

c

µB

1 + log T

T
.

• Under the assumptions of HA, for the regret RT it holds:

RT ≤
(
k − 1

kh
+

1− u

k

)
u

k

c

µB

1 + log T

T
≤ 2

min(h, k)

u

k

c

µB

1 + log T

T
.
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With the rightmost more informal upper bounds for each Rt obtained by upper bounding the colored
terms in the left inequalities, we see that the convergence speed for HA increases by a factor of
min(h, k) when the history is used. From the theorem above, we can also conclude that for small k,
an increase of h doesn’t affect the convergence speed, as in min(h, k), k would dominate. Given this
results, we theoretically justify a label-aggregation approach for better convergence of TGN models.

4 RESULTS

4.1 EXPERIMENTS SETUPS

Datasets and protocol. TGB Huang et al. (2023) is a recent benchmark for Dynamic Node Prop-
erty Prediction. We employ all four large-scale dynamic graphs from this benchmark, with vary-
ing structural patterns and the number of interactions up to 2.5 million. The datasets span diverse
domains: tgbn-trade (international agriculture trade, 1986-2016), tgbn-genre (user-music interac-
tions), tgbn-reddit (user-subreddit activity), and tgbn-token (cryptocurrency transactions). As the
target metric we use NDCG@10 with higher values indicating better model quality. Comprehensive
dataset statistics, including node counts, edge distributions, and label density metrics as well as ex-
panded discussion on NDCG@10 properties, are given in Appendix C. The most sparse dataset is
tgbn-token with label sparsity 0.06%.

Following the TGB Huang et al. (2023) protocol, datasets are split chronologically into training
(70%), validation (15%), and test (15%) sets. For tgbn-genre, tgbn-reddit, and tgbn-token, we further
refine the training regime by retaining only the last 5% of chronologically ordered edges in the
original training set. Validation and test sets remain unchanged.

103 104

Time (s)

0.15

0.20

0.25

0.30

N
D

C
G

@
10

Default
Moving average 
Persistent forecast 
Historical average

13x speedup

Figure 3: NDCG@10 progression versus loga-
rithmic training time for different pseudo-label
strategies on the tgbn-token dataset using the
TGNv2 model. The x-axis shows training time
in seconds (log scale), while the y-axis displays
NDCG@10 on valid split. The bolder curves is
for the average over three seeds, the lighter ones
are for individual learning trajectories.

This 5% adjustment addresses a critical chal-
lenge: the full training sets for these datasets
are excessively large, causing models to con-
verge within a single epoch. Such rapid conver-
gence obscures the impact of pseudo-labeling
strategies, which aim to accelerate training un-
der label scarcity. By truncating training data to
the most recent 5% of interactions, we create a
regime where models cannot rely on memoriza-
tion, thereby emphasizing the role of pseudo-
labels in extrapolating temporal trends and mit-
igating label sparsity. The 5% threshold was
empirically determined through ablation stud-
ies, balancing the need to simulate sparse su-
pervision while retaining sufficient signal for
meaningful learning.

Implementation. TGNv2 Tjandra et al.
(2024) is the only architecture achieving
meaningful performance on TGB; others
collapse to trivial solutions. We focus exper-
iments on TGNv2 and additionally modify
DyRep Trivedi et al. (2019) with TGNv2’s
source-target identification (DyRep v2) to
demonstrate architecture-agnosticism. We
evaluate three aggregation strategies: Moving
Average (MA), Persistent Forecast (PF), and
Historical Average (HA), against the Default
baseline.

4.2 MAIN RESULTS

Table 1 provides a comparison of model performance and efficiency after a single training epoch.
To ensure a more consistent baseline in terms of runtime, we additionally include ”Default-X” con-

7
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Table 1: Performance after one epoch of training on test split. For greater consistency, we also
include Default-X configurations, which show vanilla model training for X epochs. For trade X =
4, for genre, reddit and token X = 2. Results averaged over three seeds with standard deviations
available in Appendix E.

Dataset Model NDCG@10 Test ↑ Time(s) ↓
Default Default-X HA MA PF Default Default-X HA MA PF

trade TGN v2 0.388 0.469 0.669 0.729 0.710 23 84 74 78 68
DyRep v2 0.387 0.448 0.668 0.734 0.711 26 102 91 94 81

genre TGN v2 0.363 0.392 0.419 0.421 0.389 177 355 233 333 259
DyRep v2 0.363 0.393 0.416 0.417 0.387 229 434 248 268 248

reddit TGN v2 0.280 0.336 0.453 0.451 0.355 678 1392 938 1325 1317
DyRep v2 0.282 0.336 0.463 0.449 0.348 716 1402 1018 1116 937

token TGN v2 0.126 0.129 0.158 0.164 0.126 962 1819 1350 1848 1843
DyRep v2 0.126 0.132 0.150 0.159 0.133 974 1842 1333 1495 1386
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Figure 4: NDCG@10 versus Moving Average window size after one epoch of training using the
TGNv2 model. Dashed lines indicate default TGNv2 performance without pseudo-labels.

figurations, where the vanilla model is trained for X epochs. These configurations are selected such
that the total training time of Default-X roughly matches or slightly exceeds that of the aggregation-
based methods. This adjustment ensures a fairer comparison, since aggregation strategies typically
require additional computations for model updates and label computations, which may slightly in-
crease per-step overhead.

Even under this more favorable setup for the baseline, aggregation strategies consistently outper-
form the Default-X variants. These results confirm that the benefits of pseudo-label aggregation are
not limited to faster convergence in terms of steps, but also translate directly into real-world time
savings. Aggregation-based strategies enable more effective learning even under tight time budgets,
making them especially suitable for scenarios with limited computational resources or where models
must be frequently retrained in streaming environments.

Figure 3 shows NDCG@10 progression on tgbn-token, the most challenging dataset due to extreme
sparsity. All aggregation strategies dramatically outperform Default, achieving orders of magni-
tude faster convergence. MA shows steepest improvement (short-term trends), HA demonstrates
strong early performance (long-term patterns), while PF lags due to rigid assumptions in dynamic
cryptocurrency settings.

4.3 ADDITIONAL STUDIES

Dependence on Moving Average Window Size The Moving Average (MA) aggregation strategy
balances temporal responsiveness and stability through its window size w. Small windows prioritize
recent interactions, enabling rapid adaptation but amplifying noise, while large windows emphasize
historical trends, stabilizing predictions but potentially delaying response to shifts.

Figure 4 shows NDCG@10 versus window size across datasets after one epoch of training. For all
considered window sizes and dataset, MA outperforms the Default approach. Performance initially

8
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Figure 5: Impact of target shuffling across pseudo-label strategies after one epoch of training using
the TGNv2 model.

improves with window size as pseudo-labels integrate sufficient context, then plateaus or declines
as over-smoothing occurs. Optimal windows vary by dataset: trade networks (tgbn-trade) favor
short windows (w = 3) for volatile patterns, while music genres (tgbn-genre) perform best with
w = 7, reflecting gradual preference evolution.

Order importance check with target shuffling. Randomizing target chronology severely im-
pacts all strategies, as evident from Figure 5, with absolute NDCG@10 reductions of 15–45%
across datasets. This degradation demonstrates that temporal alignment between labels and node
states is critical for effective learning. While performance drops vary by dataset (e.g., 31% for
tgbn-token vs. 8% for tgbn-trade), all aggregations exhibit sensitivity to shuffled supervi-
sion. These results validate HA’s core premise: leveraging temporally coherent historical signals is
essential for mitigating sparse supervision in dynamic graphs.

Detailed results. Further experiments, including robustness studies, are reported in Appendix D,
further support our findings. We demonstrate that the proposed aggregation methods maintain stabil-
ity under varying levels of label noise, degrading gracefully as noise increases, while a vanilla loss
provides sharper decline. Detailed tables with results equipped with standard deviations show both
rapid quality improvements after a single epoch. A separate table details the test performance for an
epoch selected via validation for training until convergence. There MA also provides competitive
results.

5 CONCLUSION

We addressed a fundamental bottleneck in training Temporal Graph Networks (TGNs): the inef-
ficiency caused by sparse supervision in real-world temporal data. Motivated by the observation
that node-level preferences evolve gradually over time, we propose a simple yet effective pseudo-
labeling strategy rooted in temporal aggregation of past labels. Our approach—comprising persistent
forecasting, historical averaging, and moving averages—requires no additional parameters, incurs
negligible computational overhead, and is agnostic to the underlying model architecture.

By employing pseudo-labeled batches, we convert otherwise idle training steps into meaningful
updates, significantly accelerating convergence. Our theoretical analysis supports these findings,
demonstrating that leveraging multiple plausible labels through historical aggregation improves the
convergence speed.

Empirical results on the Temporal Graph Benchmark confirm the practical benefits of our method:
up to 13× faster convergence with no degradation in predictive performance when applied to the
state-of-the-art TGNv2 model. These findings highlight the untapped potential of temporal consis-
tency as a supervisory signal, offering a new direction for efficient learning on dynamic graphs.

Future work may explore adaptive aggregation strategies that learn optimal temporal weighting
schemes or extend our method to other tasks such as link prediction or temporal graph completion.
Ultimately, our approach contributes a lightweight yet powerful tool for overcoming supervision
sparsity in temporal graph learning.
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A RELATED WORK

Temporal graph node classification Early approaches like TGAT Xu et al. (2020) used temporal
attention for neighbor aggregation, while JODIE Kumar et al. (2019) learned coupled user-item em-
beddings via recurrent updates. The introduction of Temporal Graph Networks (TGNs) Rossi et al.
(2020) with memory modules and continuous-time message passing marked a significant advance,
enabling state-of-the-art performance on dynamic tasks. TGNv2 Tjandra et al. (2024) further im-
proved expressivity by encoding node identities, addressing limitations in capturing persistent pat-
terns. Recent work explores transformer architectures Yu et al. (2023) and lightweight MLP-based
models Cong et al. (2023), balancing accuracy and efficiency.

Sparsity of labels Scarcity of available labels appears even in regular graphs with no tempo-
ral component Zhan & Niu (2021). However, introducing pseudo-labels provides limited benefits
for most existing methods, as methods suffer from information redundancy and noise in pseudo-
labels Li et al. (2023). Moreover, these methods add a new training stage that employs pseudo-
labels generated by a trained model, increasing overall training time. Label propagation through
nodes is another approach Zhu (2005). While it allows for better introduction of the connections
between nodes, more advanced methods are still required to unite them with graph convolutional
networks Wang & Leskovec (2020).

Generation of pseudo-labels Pseudo-labeling techniques have been widely adopted to address
label scarcity. Semi-supervised approaches Lee et al. (2013); Xie et al. (2020) generate labels via
self-training but suffer from confirmation bias in low-supervision regimes Arazo et al. (2020). Tem-
poral knowledge graph (TKG) methods Han et al. (2023) interpolate entity distributions or missing
facts but focus on triple completion, not node-level affinity prediction. Our key innovation lies in
exploiting intrinsic temporal consistency through lightweight aggregation (e.g., moving averages),
inspired by time series forecasting Hyndman & Athanasopoulos (2018). Unlike model-dependent
pseudo-labeling Li et al. (2023), our method requires no auxiliary parameters, using historical in-
teraction patterns to guide training during label-scarce periods. This aligns with streaming learning
principles where historical baselines mitigate concept drift Ma et al. (2021).

Few works also considered the dynamics of user preferences Klenitskiy et al. (2024) and more
general node classification problem Li et al. (2024) change over time. In both works, the authors
come to the conclusion that for different datasets the dynamics ca be different: with some problems
demonstrating close-to-constant user preferences, justifying label propagation and smoothing under
true labels sparsity.

Convergence for SGD. The convergence speed of Stochastic Gradient Descent (SGD) is fun-
damentally constrained by the variance of stochastic gradients, especially in the presence of label
sparsity or noise. Classical results Shalev-Shwartz & Ben-David (2014); Bubeck (2015) show that,
under natural assumptions, SGD converges at a rate of O(σ2/T ), where T is the number of itera-
tions, and σ2 is the gradient variance. While approaches like SVRG Johnson & Zhang (2013) and
Adam Kingma & Ba (2015) target variance reduction through optimization techniques, relatively
less attention has been paid to variance reduction at the label level. While empirically, label smooth-
ing and pseudo-labeling methods address supervision sparsity by generating soft targets based on
model predictions or historical trends, they consider different problem statements and ignore the
sequential nature of the data, also avoiding a theoretical analysis of the convergence speed and fo-
cusing on quality improvement, significantly increasing training time.

Research gap Current temporal graph methods address sparsity via architectural changes Tjandra
et al. (2024) or sampling Cong et al. (2023), neglecting pseudo-label-driven acceleration. While
CAW-N Wang et al. (2021) uses temporal walks for induction, it introduces sampling overhead.
GraphMixer Cong et al. (2023) improves efficiency but remains supervision-bound. Our work
bridges this gap by demonstrating that simple temporal aggregates—requiring no new parame-
ters—transform idle batches into productive training steps, leveraging temporal consistency for
faster convergence without quality loss from both empirical and theoretical perspectives.
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B PROOFS OF THE THEORETICAL RESULTS

For convenience, we repeat below the statements we aim to prove.
Lemma 4. The expectation of th is u

k and the variance of th is uk−1
k2h + u(1− u) 1

k2 .

Proof. We now prove Lemma 2.

By definition, th:
th = ηkξ,

where ξ is a Bernoulli random variable Be(u) and ηk is a component of a multinomial random vector
with equal probabilities 1

k and the total number of observations h, divided by h, as we aim to match
the event type probability. Thus, it has the binomial distribution with parameters Binomial

(
h, 1

k

)
,

divided by h. These two random variables are independent.

We’ll derive the mean and the variance for the random variable that is the product of a Bernoulli and
a Binomial random variable. Then, we’ll scale the results by the coefficient n.

Let B ∼ Bernoulli(u), so B ∈ {0, 1} and E[B] = u, Var(B) = u(1 − u). Let X ∼
Binomial(h, q), so E[X] = hq, Var(X) = hq(1− q); B and X are independent.

Define the product random variable:
Y = BX.

Now let us derive the mean and the variance for Y .

We start with the mean. Because B and X are independent,

E[Y ] = E[B]E[X] = uhq.

The second moment for Y is also easy to derive. Since B2 = B, as it takes only 0 and 1 values,

Y 2 = B2X2 = BX2.

Again, using independence,
E[Y 2] = E[B]E[X2] = uE[X2].

For a binomial variable,

E[X2] = Var(X) + (E[X])2 = hq(1− q) + h2q2.

Hence
E[Y 2] = u

[
hq(1− q) + h2q2

]
.

Now we are ready to obtain the variance of Y .

Var(Y ) = E[Y 2]−
(
E[Y ]

)2
= u

[
hq(1− q) + h2q2

]
− u2h2q2.

Simplifying this expression, we get:

Var(Y ) = uhq(1− q) + u(1− u)h2q2.

Going back to our original notation, we get the desired mean and variance:

E[th] =
1

h
uh

1

k
=

u

k
.

Var(th) =
1

h2

(
uh

1

k

k − 1

k
+ u(1− u)h2 1

k2

)
=

= u
k − 1

k2h
+ u(1− u)

1

k2
.
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Theorem 5. We consider SGD in settings from Theorem 1. The following inequalities for the regret
hold for a positive constant c for the constants defined above:

• Under the assumptions of OHL, for the regret RT it holds:

RT ≤
(
1− u

k

)u
k

c

µB

1 + log T

T
≤ u

k

c

µB

1 + log T

T
.

• Under the assumptions of HAL, for the regret RT it holds:

RT ≤
(
k − 1

kh
+

1− u

k

)
u

k

c

µB

1 + log T

T
≤

≤ 2

min(h, k)

u

k

c

µB

1 + log T

T
.

Proof. We now prove Theorem 3.

Settings of Theorem 1 hold, so the regret is bounded by:

RT ≤ 17σ2

µBT
(1 + log T ) .

The variance σ2 following the discussion in the main part of the paper has the form: σ2 = cVar(th).
Taking Var(th) from Lemma 2, we get Var(σ2) = c

(
uk−1

k2h + u(1− u) 1
k2

)
.

Plugging the expression for σ2 into a general equation for regret for an arbitrary h and h = 1, we
get the first pair of the desired bounds in the Theorem.

Now, by construction

1− u

k
≤ 1,

k − 1

kh
+

1− u

k
<

1

h
+

1

k
≤ 2

min(h, k)
.

There is a pair of rightmost upper bounds.

C ADDITIONAL EXPERIMENTS SETUPS

Dataset properties The dataset properties are listed in Table 2

Table 2: Statistics for used datasets. Density is the number of batches with non-zero labels divided
by the total number of batches

Dataset Number of Density

Nodes Edges

tgbn-trade 255 337,224 1.30%
tgbn-genre 5% 1,505 625,044 1.31%
tgbn-reddit 5% 11,766 951,095 0.44%
tgbn-token 5% 61,756 2,552,796 0.06%

Metrics. We evaluate model performance using Normalized Discounted Cumulative Gain at rank
10 (NDCG@10) Järvelin & Kekäläinen (2002), which measures the ranking quality of the top-
10 predicted affinities against ground-truth distributions. For example, in music genre prediction,
NDCG@10 quantifies how well the model prioritizes genres a user is likely to engage with, based
on their historical listening frequencies. Higher NDCG@10 indicates better model quality.
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D ADDITIONAL EXPERIMENTS

Noise factor An important consideration is the robustness of HAL to noisy historical labels, as
real-world temporal graphs often contain imperfect supervision signals. Our empirical analysis
demonstrates that the method maintains stability across varying noise levels, with performance de-
grading gracefully as noise increases rather than suffering catastrophic failure. The aggregation
mechanism inherently provides some noise resilience by smoothing individual noisy observations
across temporal windows, making the approach practical for real-world deployment where perfect
labels are rarely available.
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Figure 6: NDCG@10 versus noise factor after one epoch of training using the TGNv2 model.

Target shuffle Table 3 demonstrates the critical importance of temporal alignment in pseudo-
labeling strategies through a comprehensive target shuffling ablation study. When target chronol-
ogy is randomized, all aggregation methods experience substantial performance degradation across
datasets, with absolute NDCG@10 reductions ranging from 15% to 45%. The impact varies signif-
icantly by domain: cryptocurrency transactions (tgbn-token) show extreme sensitivity, while trade
networks demonstrate greater resilience. This validates the fundamental premise that temporal con-
sistency in node preferences is essential for effective pseudo-labeling in dynamic graphs.

Table 3: Impact of target shuffling across pseudo-label strategies.

Dataset Strategy Test Valid

Original Shuffled Original Shuffled

tgbn-trade

Default 0.388 ± 0.006 0.335 ± 0.040 0.405 ± 0.008 0.356 ± 0.034
HA 0.669 ± 0.005 0.670 ± 0.007 0.737 ± 0.002 0.739 ± 0.008
MA 0.729 ± 0.010 0.665 ± 0.021 0.813 ± 0.015 0.732 ± 0.025
PF 0.710 ± 0.003 0.558 ± 0.060 0.800 ± 0.001 0.605 ± 0.065

tgbn-genre 5%

Default 0.363 ± 0.005 0.339 ± 0.005 0.369 ± 0.005 0.347 ± 0.004
HA 0.419 ± 0.003 0.393 ± 0.004 0.422 ± 0.002 0.395 ± 0.002
MA 0.421 ± 0.003 0.387 ± 0.005 0.421 ± 0.001 0.391 ± 0.001
PF 0.389 ± 0.003 0.367 ± 0.008 0.387 ± 0.002 0.366 ± 0.008

tgbn-reddit 5%

Default 0.280 ± 0.006 0.283 ± 0.013 0.298 ± 0.007 0.308 ± 0.019
HA 0.453 ± 0.014 0.328 ± 0.018 0.510 ± 0.006 0.408 ± 0.018
MA 0.451 ± 0.011 0.306 ± 0.014 0.497 ± 0.006 0.390 ± 0.014
PF 0.355 ± 0.019 0.289 ± 0.002 0.421 ± 0.016 0.358 ± 0.004

tgbn-token 5%

Default 0.126 ± 0.004 0.052 ± 0.043 0.123 ± 0.009 0.047 ± 0.041
HA 0.158 ± 0.029 0.074 ± 0.063 0.253 ± 0.022 0.102 ± 0.084
MA 0.164 ± 0.024 0.078 ± 0.064 0.266 ± 0.009 0.099 ± 0.082
PF 0.129 ± 0.016 0.088 ± 0.070 0.217 ± 0.017 0.106 ± 0.086

E ADDITIONAL RESULTS

Table 4 demonstrates comprehensive performance comparisons across four TGB datasets, showing
both NDCG@10 scores and training times after a single epoch.
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Table 4: Quality and efficiency metrics after 1 training epoch. For more consistent comparison, we
also include Default-X options, which correspond to the training of the vanilla TGNv2 for X epochs.
Results averaged across 3 seeds.

Dataset Model Strategy NDCG@10 ↑ Time(s) ↓
Test Val

tgbn-trade

TGN v2

Default 0.388 ± 0.006 0.405 ± 0.008 23 ± 2
Default-4 0.469 ± 0.003 0.499 ± 0.003 84 ± 4
HA 0.669 ± 0.005 0.737 ± 0.002 74 ± 11
MA 0.729 ± 0.010 0.813 ± 0.015 78 ± 15
PF 0.710 ± 0.003 0.800 ± 0.001 68 ± 6

Dyrep v2

Default 0.387 ± 0.014 0.403 ± 0.016 26 ± 1
Default-4 0.448 ± 0.001 0.479 ± 0.002 102 ± 2
HA 0.668 ± 0.001 0.738 ± 0.001 91 ± 7
MA 0.734 ± 0.003 0.821 ± 0.001 94 ± 18
PF 0.711 ± 0.003 0.800 ± 0.002 81 ± 16

tgbn-genre 5%

TGN v2

Default 0.363 ± 0.005 0.369 ± 0.005 177 ± 6
Default-2 0.392 ± 0.002 0.399 ± 0.003 355 ± 7
HA 0.419 ± 0.003 0.422 ± 0.002 233 ± 5
MA 0.421 ± 0.003 0.421 ± 0.001 333 ± 10
PF 0.389 ± 0.003 0.387 ± 0.002 259 ± 31

Dyrep v2

Default 0.363 ± 0.005 0.368 ± 0.006 229 ± 14
Default-2 0.393 ± 0.002 0.398 ± 0.001 434 ± 12
HA 0.416 ± 0.002 0.420 ± 0.004 248 ± 20
MA 0.417 ± 0.001 0.421 ± 0.001 268 ± 37
PF 0.387 ± 0.003 0.384 ± 0.002 248 ± 22

tgbn-reddit 5%

TGN v2

Default 0.280 ± 0.006 0.298 ± 0.007 678 ± 4
Default-2 0.336 ± 0.003 0.366 ± 0.002 1393 ± 13
HA 0.453 ± 0.014 0.510 ± 0.006 938 ± 29
MA 0.451 ± 0.011 0.497 ± 0.006 1325 ± 7
PF 0.355 ± 0.019 0.421 ± 0.016 1317 ± 10

Dyrep v2

Default 0.282 ± 0.006 0.299 ± 0.006 716 ± 42
Default-2 0.336 ± 0.001 0.367 ± 0.001 1402 ± 54
HA 0.463 ± 0.001 0.513 ± 0.002 1018 ± 127
MA 0.449 ± 0.011 0.496 ± 0.003 1116 ± 144
PF 0.348 ± 0.011 0.415 ± 0.008 937 ± 58

tgbn-token 5%

TGN v2

Default 0.126 ± 0.004 0.123 ± 0.009 962 ± 20
Default-2 0.129 ± 0.003 0.133 ± 0.004 1819 ± 33
HA 0.158 ± 0.029 0.253 ± 0.022 1350 ± 56
MA 0.164 ± 0.024 0.266 ± 0.009 1848 ± 4
PF 0.126 ± 0.016 0.217 ± 0.017 1843 ± 18

Dyrep v2

Default 0.126 ± 0.004 0.124 ± 0.008 974 ± 21
Default-2 0.132 ± 0.003 0.133 ± 0.004 1842 ± 28
HA 0.150 ± 0.012 0.255 ± 0.005 1333 ± 31
MA 0.159 ± 0.012 0.259 ± 0.012 1495 ± 166
PF 0.133 ± 0.019 0.221 ± 0.016 1386 ± 158

Table 5 shows the performance and efficiency of the considered approaches with and without aggre-
gation. The NDCG@10 for all methods is very similar, with aggregation approaches slightly below
the metric for the Default approach without aggregation. Time measurement spans from the start of
training until convergence at the best validation epoch, inclusive of periodic validation/testing eval-
uations during training. This reflects real-world training scenarios where early stopping depends on
validation performance, and runtime costs incorporate both learning and evaluation phases. Regard-
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ing efficiency, both our metrics, Number of steps and Time, show improvements for all aggregation
methods. The best aggregation method varies among datasets, but MA shows a more consistent
improvement in efficiency and higher average quality.

Table 5: Quality and efficiency metrics until convergence. Time measurement spans from training
start until the best validation epoch, including evaluation phases. Results averaged across 3 seeds.

Dataset Model Strategy NDCG@10 ↑ Time(s) ↓
Test Val

tgbn-trade

TGN v2

Default 0.735 ± 0.012 0.807 ± 0.008 5811 ± 124
HA 0.674 ± 0.009 0.745 ± 0.011 3249 ± 89
MA 0.741 ± 0.006 0.828 ± 0.004 887 ± 25
PF 0.715 ± 0.008 0.800 ± 0.007 3717 ± 156

DyRep v2

Default 0.728 ± 0.015 0.801 ± 0.012 5942 ± 138
HA 0.681 ± 0.007 0.751 ± 0.009 3187 ± 95
MA 0.745 ± 0.008 0.832 ± 0.006 923 ± 31
PF 0.719 ± 0.011 0.796 ± 0.008 3845 ± 172

tgbn-genre 5%

TGN v2

Default 0.432 ± 0.007 0.437 ± 0.006 1071 ± 22
HA 0.422 ± 0.005 0.424 ± 0.004 223 ± 8
MA 0.420 ± 0.004 0.423 ± 0.003 264 ± 12
PF 0.388 ± 0.006 0.387 ± 0.005 238 ± 15

DyRep v2

Default 0.427 ± 0.009 0.432 ± 0.008 1158 ± 28
HA 0.418 ± 0.006 0.421 ± 0.005 241 ± 11
MA 0.416 ± 0.005 0.419 ± 0.004 278 ± 14
PF 0.384 ± 0.007 0.383 ± 0.006 252 ± 18

tgbn-reddit 5%

TGN v2

Default 0.461 ± 0.011 0.496 ± 0.009 29890 ± 485
HA 0.461 ± 0.008 0.514 ± 0.006 1922 ± 67
MA 0.462 ± 0.009 0.513 ± 0.007 2547 ± 88
PF 0.384 ± 0.012 0.446 ± 0.011 17710 ± 324

DyRep v2

Default 0.456 ± 0.013 0.491 ± 0.011 30567 ± 512
HA 0.468 ± 0.007 0.518 ± 0.005 1845 ± 72
MA 0.467 ± 0.010 0.517 ± 0.008 2398 ± 91
PF 0.379 ± 0.014 0.441 ± 0.013 18256 ± 348

tgbn-token 5%

TGN v2

Default 0.297 ± 0.013 0.312 ± 0.015 45580 ± 892
HA 0.295 ± 0.011 0.336 ± 0.008 6768 ± 145
MA 0.301 ± 0.009 0.337 ± 0.007 8910 ± 198
PF 0.269 ± 0.014 0.307 ± 0.012 14071 ± 287

DyRep v2

Default 0.289 ± 0.016 0.305 ± 0.017 47234 ± 923
HA 0.302 ± 0.012 0.341 ± 0.009 6521 ± 152
MA 0.308 ± 0.010 0.343 ± 0.008 8654 ± 206
PF 0.276 ± 0.015 0.312 ± 0.013 13789 ± 295
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