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Abstract

Prompt tuning has emerged as a powerful parameter-efficient fine-tuning
technique, allowing large pretrained Transformers to adapt to downstream
tasks by optimizing a small set of prompt embeddings. Despite its empirical
success, the extent to which prompt tuning can memorize data remains poorly
understood. In this paper, we provide both theoretical and empirical analyses
of data memorization ability of prompt-tuned Transformers. Building on recent
theoretical frameworks, we derive an upper bound on the required prompt length
for exact memorization of finite datasets and establish a trade-off between prompt
length and the number of autoregressive generation steps. Specifically, we show
that a constant-size Transformer can memorize n input-output pairs with prompts
of length Õ(

√
nN), where N denotes the sequence length. Empirical results

further demonstrate that prompt-tuned, randomly initialized Transformers are able
to effectively memorize finite datasets. These models also capture the intrinsic
low-rank structure of the data, leading to a reduction in the required prompt length.
Finally, we analyze how the initialization of the Transformer backbone affects
the performance of prompt tuning. Our findings provide new insights into the
expressivity, efficiency, and underlying mechanisms of prompt tuning, bridging
theoretical memorization limits with observed empirical behaviors.

1 Introduction

Large pre-trained Transformer models have become the cornerstone of modern artificial intelligence,
exhibiting remarkable capabilities in language understanding, reasoning, and transfer learning
[Devlin et al., 2019, Dosovitskiy et al., 2020, Jumper et al., 2021, Raffel et al., 2020, Liu et al.,
2021b, Ramesh et al., 2021, Tay et al., 2022, Saharia et al., 2022, Villegas et al., 2022, Peebles and
Xie, 2023, Han et al., 2022, Hadi et al., 2023, Naveed et al., 2023, Ji et al., 2025]. To make such
massive models more adaptable to downstream applications, parameter-efficient fine-tuning (PEFT)
techniques have been proposed as practical alternatives to full fine-tuning, substantially reducing the
number of trainable parameters while preserving competitive performance [Hu et al., 2022, Liu et al.,
2021a, Lester et al., 2021]. Among these approaches, prompt tuning stands out for its simplicity and
generality: it freezes the pretrained backbone while learning only a small set of task-specific prompt
embeddings, enabling lightweight yet effective adaptation across diverse domains [Zhou et al., 2022,
Ge et al., 2023, Jia et al., 2022, Fang et al., 2023].

Memorization or generalization? Despite their impressive empirical success, large language
models have reignited a long-standing debate: do they genuinely generalize to unseen inputs, or
do they predominantly memorize patterns and examples from pretraining or finetuning corpora?
Empirical evidence indicates that LLMs often exhibit a blurred boundary between memorization
and generalization—memorizing factual or low-complexity patterns while generalizing in reasoning-
intensive or compositional tasks [Wang et al., 2024, Hartmann et al., 2023]. This duality challenges
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our conventional understanding of what it means for a neural network to understand data, raising
fundamental questions about the nature of knowledge stored within LLMs. Intuitively, parameter-
efficient fine-tuning methods, which updates only a limited number of parameters within otherwise
fixed architectures, are expected to possess weaker memorization capacity than fully fine-tuned
models. With most of the representational power locked in the frozen backbone, such methods may
struggle to encode task-specific information solely through prompt embeddings. This observation
naturally leads to a fundamental question: to what extent can prompt tuning memorize data when
the underlying Transformer remains fixed?

Expressivity or vulnerability? Recent studies have suggested that data memorization should
not merely be interpreted as a byproduct of training, but rather as a quantitative indicator of a
model’s expressive ability. Allen-Zhu and Li [2024] observed that fully trained Transformers can
encode roughly two bits of input information per parameter, while theoretical analyses further
link this memorization ability to the model’s functional richness and representational power [Kim
et al., 2022, Mahdavi et al., 2023, Kajitsuka and Sato, 2024]. However, the same ability to
store detailed information internally also introduces potential vulnerabilities: memorized data
can be extracted via carefully crafted or learned prompts, risking the exposure of sensitive or
proprietary information contained in the training corpus [Carlini et al., 2022, Ozdayi et al., 2023].
Therefore, understanding the mechanisms and implications of memorization is crucial not only for
characterizing the expressive power of large language models, but also for assessing the privacy
risks they inherently pose.

Motivated by these considerations regarding the practical significance of data memorization, and
inspired by recent theoretical advances [Wang et al., 2023, Petrov et al., 2023, Hu et al., 2024,
Petrov et al., 2024, Nakada et al., 2025], we investigate the expressive ability of prompt tuning in
memorizing finite datasets with zero error. Moreover, to disentangle the architectural expressivity of
the Transformers from the effects of pretraining, we investigate prompt tuning applied to randomly
initialized Transformers. This setting allows us to examine whether prompt embeddings alone can
enable memorization when the backbone model provides no task-specific prior knowledge. Our
main contributions are summarized as follows:

Main Contributions Our main contributions are summarized as follows:

• Building upon the recent theoretical framework in [Nakada et al., 2025], which
demonstrated that prompt tuning a Transformer can exactly implement a ReLU feed-
forward neural network, we derive the first upper bound on required the prompt length
to memorize finite datasets. Specifically, we prove that prompt tuning a constant-size
Transformer with the prompt length of Õ(

√
nN) can memorize n input sequences of length

N .
• We further establish a theoretical trade-off between the prompt length and number of the

intermediate steps during autoregressive generation. When N = 1, we show that prompts
of length O(n) with Õ(1) intermediate steps can memorize n input-output pairs, while
the same memorization capacity can be achieved with shorter prompts of length Õ(

√
n) if

Õ(
√
n) intermediate steps are allowed.

• Our experiments demonstrate that prompt-tuned, randomly initialized Transformers can
effectively memorize finite datasets, especially when the word embeddings exhibit
structural regularity. Moreover, these models are able to capture the intrinsic low-rank
structure of the data, which in turn enables a reduction in the required prompt length.
Finally, we analyze how the initialization of the Transformer backbone influences the
overall performance of prompt tuning.

1.1 Related Works

Theoretical Understanding of Data Memorization One of the fundamental study on the
expressive capacity of Transformers is to see whether Transformers can achieve zero loss on finite
input-label pairs, which is named the data memorization ability. Kim et al. [2022] is the first
work to study the data memorization ability of Transformers. They proved that Transformers with
Õ(d + n +

√
nN) parameters are able to memorize N sequences of d-dimensional tokens with

length n. Mahdavi et al. [2023] showed that a multi-head self-attention mechanism with H heads

2



and O(Hd2) parameters is capable of memorizing O(Hn) data samples. Recently, Kajitsuka and
Sato [2023] proved that Transformers with only one single-head self-attention layer possess data
memorization ability. However, the required parameters in their work have to be O(dnM + d2).
Chen and Zou [2024] built the results of Transformers with ReLU activation function in the self-
attention layers under the assumption each data label is distinct. Kajitsuka and Sato [2024] made
an effort to derive the optimal number of parameters needed to memorize given data points. It was
shown that Transformers with Õ(

√
N) parameters can memorize N input sequences of length n in

the next-token prediction task and Õ(
√
nN) parameters in the next-token prediction setting. They

further proved that Õ(
√
N) parameters in the next-token prediction is optimal up to logarithmic

factors. Dana et al. [2024] proved that a one-layer attention-only Transformer with H heads each of
dimension dh can memorize Hdh + d associations.

Theoretical Understanding of Prompt Tuning Proposed by [Lester et al., 2021], prompt tuning
has emerged as a promising parameter-efficient fine-tuning approach. Wang et al. [2023] analyzed
prompt tuning from the lens of universal approximation ability and limitations with finite-depth
fixed-weight pretrained Transformers. Their results showed that Transformers with prompts are able
to approximate any sequence-to-sequence Lipschitz function. Besides, they constructed a dataset,
that cannot be memorized by a single-layer Transformer with prompts of any length. Hu et al.
[2024] investigated expressive power of a single-layer and single-head Transformer, showing that
prompt tuning is universal approximator and explicitly deriving the lower bound on the length of
required prompt tokens. Petrov et al. [2023] formally showed that soft prompt tuning and prefix
tuning are more expressive than prompting that only operates in the discrete token space. Besides,
they demonstrated that prompt tuning suffers from some structural limitations that hold back the
Transformers from forming task-specific attention patterns. In their another work [Petrov et al.,
2024], Transformers with prompts were proved to be able to universally approximate continuous
functions defined on the hypersphere. However, the number of trainable parameters needed is larger
than training from scratch, which showed that prompt tuning might be less efficient. Oymak et al.
[2023] developed new statistical foundations for gradient-based prompt tuning, characterized its
optimization and generalization dynamics, and explored how it may facilitate attending to context-
relevant information. Qiu et al. [2024] showed there exists a finite-size Transformer such that for
any computable function, there exists a corresponding prompt following which the Transformer
computes the function, meaning that prompt tuning is Turing-complete. Our work is mainly built
upon the framework proposed by Nakada et al. [2025], in which they showed that prompt tuning
a constant-size Transformer can exactly implement a ReLU feed-forward neural network with the
prompt length being determined by the rank of weight matrices in each layer.

2 Preliminaries

2.1 Transformers

In this section, we formalize some basic concepts about Transformer architecture, which was first
proposed by [Vaswani et al., 2017]. In general, Transformers are defined by stacking multiple
Transformer layers, each of which consists of a self-attention layer and a feed-forward layer.

Self-attention Layer: The core of Transformer architecture is the self-attention mechanism, which
mixes information across different positions in the input sequences. The pair-wise dot-product and
activation function determine how much focus each token should have on others in a sequence. To
be specific, an self-attention layer FSA : RDin×N → RDin×N with H heads is defined as

FSA(X) := X +

H∑
i=1

W
(i)
V Xσ

[
(W

(i)
K X)⊤(W

(i)
Q X)

]
∈ RDin×N , (2.1)

where Din ∈ N+ is the embedding size, W (i)
V ,W

(i)
Q ,W

(i)
K ∈ RDin×Din are the weight matrices,

σ : R → R is the activation function in the self-attention layer. The self-attention layer computes
a weighted average of linearly transformed token representations, with the attention weights
determined by the similarity between query and key projections.

Feed-forward layer: Self-attention layers deal with the interactions between different tokens, while
feed-forward layers provide a non-linear, token-wise transformation, which processes each token
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independently. A feed-forward layer FFF : RDin×N → RDin×N is given by
FFF (X) := X +W2(σ

′(W1X)), (2.2)

where Dhid is the hidden dimension, chosen to be O(Din), W1 ∈ RDhid×Din , W2 ∈ RDin×Dhid ,
and σ′ is the element-wise activation function in the feed-forward layer.

Remark 2.1. Let σS denote the Softmax function (i.e., [σS(x)]i = exi/
∑d

i=1 e
xi , i ∈ [d], for any

x ∈ Rd), and σR denote the ReLU function (i.e., [σR(x)]i = max{xi, 0}, i ∈ [d], for any x ∈ Rd).
In existing literature, σ′ is usually chosen to be ReLU function while σ has many distinct options.
Yun et al. [2019] and Gu et al. [2021] used Hardmax function for mathematical simplicity; Kajitsuka
and Sato [2023] utilized Softmax function and proved that a single self-attention layer with Hardmax
function may not be powerful. Recently, Jiao et al. [2025a] proposed to utilize different σ′, which
may help to break the curse of dimensionality. In this paper, we set σ and σ′ both to be element-wise
ReLU function. See discussion in Appendix D.5.

Based on the definitions of the self-attention and feed-forward layers, the class of Transformer neural
networks can be formally defined as:

T (Din, Dout, Dhid,H, L) :=
{
T : T = Eout ◦F (L)

FF ◦F (L)
SA ◦ · · · ◦F (1)

FF ◦F (1)
SA ◦ Ein

}
,

where Din is the embedding size, Dout is the output size, Dhid is the hidden dimension, H is the
number of heads, L is the number of Transformer layers, each consisting of a self-attention layer and
a feed-forward layer. Eout and Ein are two linear affine functions, which are designed to truncate
the output and embed the input, respectively. For any sequential data point X ∈ Rd×N , we have
Ein(X) ∈ RDin×N , where the embedding size satisfies Din = O(d). If we let the output dimension
Dout ≤ Din, then we have Eout(Y ) = Y:Dout,: ∈ RDout×N for any Y ∈ RDin×N .

2.2 Feed-Forward Neural Networks

We denote FF(W,L,Rd → Rd′
) as the set of vector-valued functions ϕ : Rd → Rd′

that can be
represented by a feed-forward neural network (FFN) with width ≤ W ∈ N+, depth ≤ L ∈ N+,
and activation function is σR. The width of a FFN refers to the maximum number of neurons in
the hidden layers and the depth corresponds to the number of hidden layers. For instance, suppose
ϕ : Rd → Rd′

is a vector-valued function realized by a feed-forward neural network activated by
σR. Then, ϕ can be expressed as

ϕ = LL ◦ σR ◦LL−1 ◦ · · · ◦ σR ◦L1 ◦ σR ◦L0,

where each Lℓ is an affine linear map given by Lℓ(x) := Wℓx + bℓ for ℓ = 0, 1 · · · , L.
Here, Wℓ ∈ Rdℓ+1×dℓ and bℓ ∈ Rdℓ+1 are the weight matrix and bias term, respectively, with
d0 = d, d1, · · · , dL ∈ N+, and dL+1 = d′. Clearly, ϕ ∈ FF(W,L,Rd → Rd′

), where
W = max{d1, · · · , dL}.

2.3 Autoregressive Generation

Given a Transformer T ∈ T (Din, Dout, Dhid,H, T ) for some Din, Dout, Dhid,H, T ∈ N+, which
has the following form

T = Eout ◦F (L)
FF ◦F (L)

SA ◦ · · · ◦F (1)
FF ◦F (1)

SA ◦ Ein.

We let g denote the main part of T , that is

g = F (L)
FF ◦F (L)

SA ◦ · · · ◦F (1)
FF ◦F (1)

SA.

For any sequential data X ∈ Rd×N , and prompts P ∈ RDin×M . Denote Xemb =
[P ,Ein(X)] ∈ RDin×(M+N). In Autoregressive generation, the last token of the output will
be prepended to the original sequence to form the new input. To be specific, suppose that
Xemb = [x1, · · · ,xM ,xM+1, · · · ,xM+N ], where xi = P:,i ∈ RDin for any i ∈ [M ], and
xi = Ein(X):,i−M for any i ∈ {M + 1, · · · , N + M}. Given the generation step K ∈ N+,
g iteratively generates a sequence of tokens xM+N+1, · · · ,xM+N+t,xM+N+t+1, · · · ,xM+N+K

and we have xN+t+1 = g([x1, · · · ,xN+t]):,−1. Following the techniques in [Nakada et al., 2025],
we need to deal with a certain piece of the generated sequence, which motivates us to give the
following definition.

4



Definition 2.1. Given a Transformer T ∈ T (Din, Dout, Dhid,H, L) for some Din, Dout,
Dhid,H, L ∈ N+, and the autoregressive generation step K ∈ N+. T can be written as
T = Eout ◦ g ◦ Ein with g = F (L)

FF ◦ F (L)
SA ◦ · · · ◦ F (1)

FF ◦ F (1)
SA. Given input sequence

X ∈ Rd×N and prompts P ∈ RDin×M with length M ∈ N+, T sequentially generate K
tokens according to the autoregressive algorithm, denoted by xM+N+1, · · · ,xM+N+K , which
satisfy xN+M+i = g([x1, · · · ,xN+M+i−1]):,−1 for i ∈ [K]. Then, for any K1,K2 ∈ N+ with
1 ≤ K1 ≤ K2 ≤ K, we let T̂P ,K1,K2

(X) denote the piece from the K1-th token to the K2-th token
of the generated sequence, that is

T̂P ,K1,K2(X) := Eout([xM+N+K1 , · · · ,xM+N+K2 ]) ∈ RDout×(K2+1−K1).

In particular, we let T̂P ,0,0(X) denote [Eout ◦ g ◦ (P + Ein (X))]:,M+1:.

2.4 Prompt Tuning

Prompt tuning aims to design or learn suitable prompts that can guide Transformers to generate
desired output. Let X ∈ Rd×N be a sequential input. Each column of X , that is, X:,i, for any
i ∈ [N ], is called the i-th token of X . Let y ∈ RDout×N be the label of X . [·, ·] represents the
horizontal concatenation of matrices. In the following, we give the definition of prompt tuning.
Definition 2.2 (Prompt Tuning). Let Transformer T ∈ T (Din, Dout, Dhid,H, L) for some
Din, Dout, Dhid,H, L ∈ N+ be a pretrained model with frozen parameters. For any downstream
task with finetuning dataset S = {(X(1),Y (1)), · · · , (X(n),Y (n))} ⊂ Rd×N × RDout×N , and
prompt P ∈ RDin×M of length M ∈ N, the output of T given input X(i) with prompt P and
autoregressive algorithm is defined as

Ŷ (i) = T̂P ,K1,K2
(X(i)),

where K2 + 1 −K1 = N . Let ℓ : RDout×N × RDout×N → R≥0 be the loss function. The goal of
prompt tuning is to find an optimal prompt P ∗ such that

P ∗ ∈ argmin
P∈RDin×M ,M∈N

n∑
i=1

ℓ
(
Ŷ

(i)
:,M+1,:,Y

(i)
)
.

Technically, we do not approach the above problem above from an optimization perspective. Instead,
we directly prove the existence of suitable prompts that enable a certain pretrained Transformer to
achieve zero loss on any given finite dataset satisfying some assumptions. Note that prompt tuning
only prepends prompt tokens to the original inputs, whereas prefix-tuning inserts such prompt tokens
to the input of each self-attention layers (See details in [Petrov et al., 2023]). In this work, we do
not distinguish between the two.

3 Prompt Tuning Transformers for Data Memorization

In this section, we state the main results of this paper regarding the memorization capacity of
Transformers with prompts. Informally, memorization capacity refers to the possibility that models
can achieve zero loss on a specific number of arbitrary data points. To be more precise, given n
input-label pairs

(
X(1),y(1)

)
, · · · ,

(
X(n),y(n)

)
⊂ Rd×N × [C]1×N , where C ∈ N+ is a constant,

representing the vocabulary size. We are interested in constructing an autoregressive Transformer
T : Rd×N → [C]1×N with prompt P , and generation step K1,K2 such that T̂P ,K1,K2

(X(i)) = y(i)

holds for any i ∈ [n]. Here, we formally state the assumptions regarding the data to be memorized.

Assumption 3.1. Let (X(1),y(1)), · · · , (X(n),y(n)) ⊂ Rd×N × [C]1×N be a sequence of input-
output pairs, where d is the input dimension, N is the sequence length, and C ∈ N+ represents the
size of the vocabulary. We treat d,C as constant and assume the following conditions are satisfied:

1. For every i ∈ [n] and k ∈ [N ], X(i)
:,k ∈ [0, 1]d and ∥X(i)

:,k∥2 ≤ r for some r ≥ 1.

2. For every i, j ∈ [n] and k, l ∈ [N ], either X(i)
:,k = X

(j)
:,l or ∥X(i)

:,k −X
(j)
:,l ∥2 ≥ δ holds for

some 0 < δ ≤ 1.
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Figure 1: Attention patterns of prompt tuning Roberta-base [Liu et al., 2019]. We report the
attention patterns of prompt tuning Roberta-base (12 layers, 12 heads) for classification task on SST-
2 dataset (first row) and regression task on unstructured random dataset (second row). When prompt
tuning on SST-2 dataset, even if we provide a prompt with 8 tokens, the model mainly uses only
two of them. However, when prompt tuning on a random dataset consisting of random input-output
pairs, the model tends to use more prompt tokens.

3. For every i ∈ [n], we can not find any j ∈ [n] with j ̸= i such that

X(i) = X(j) up to permutations.

4. For every i ∈ [n], and any k, l ∈ [N ], if X(i)
:,k = X

(i)
:,l , we have

y
(i)
:,k = y

(i)
:,l .

Since we only consider finite datasets in this work, we can always find the desired r and δ, meaning
that 1) and 2) in Assumption 3.1 are inherently satisfied without imposing extra limitations on the
datasets. Mentioned in [Sontag, 1997], without 1) and 2), a linear order of parameters is needed to
memorize n arbitrary data points. In order to achieve a sub-linear memorization capacity, 1) and 2)
are necessary, which are two common assumptions in existing works [Park et al., 2021, Vardi et al.,
2021, Kim et al., 2022, Kajitsuka and Sato, 2023, 2024]. As for 3) and 4) in Assumption 3.1, we
know that Transformer architecture is permutation invariant, that is, given any permutation matrix
P , T (XP ) = T (X)P holds for any Transformer T . If X(i) = X(j) up to a certain permutation,
meaning that T (X(i)) = T (X(j)) up to the same permutation. Since in this work, we do not focus
on positional encoding, that is why 3) and 4) are assumed to be satisfied. Otherwise, we can easily
construct certain datasets that Transformers trivially cannot memorize. In the following, Proposition
3.1 shows that prompt tuning Transformers can memorize single token input-output pairs.

Proposition 3.1. Fix any n, d ∈ N+. There exists a Transformer T ∈ T (Din, Dout, Dhid,H, L)
such that for any sequence of input-output pairs (x(1), y(1)), · · · , (x(n), y(n)) ∈ Rd× [C] satisfying
Assumption 3.1, there exsit a prompt P ∈ RDin×M and K ∈ N+ such that

T̂P ,K,K(x(i)) = y(i) for any i ∈ [n],

where Din = O(d), Dout = O(1), Dhid = O(Din), H = O(1), L = O(1), and M = Õ(
√
n),

K = Õ(
√
n).

The proof of Proposition 3.1 is in Appendix D. Our proof depends on the following lemma, which
shows that a prompt-tuned Transformer with autoregressive algorithm is able to exactly implement
ReLU neural networks with various width and depth by extending the results in [Nakada et al.,
2025].

Lemma 3.1. Fix any W,d ∈ N+. There exists a Transformer T ∈ T (Din, Dout, Dhid,H, L) such
that for any ReLU feed-forward neural network f ∈ FF(W,L,Rd → Rd′

), where W,L, d, d′ ∈
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N+ with d′ ≤ d, and n inputs X(1), · · · ,X(n) ⊂ Rd×N , there exists a prompt P ∈ RDin×M ,
K1,K2 ∈ N+ such that

T̂P ,K1,K2
(X(i)) = [f(X

(i)
:,1 ), · · · ,f(X

(i)
:,N )] for any i ∈ [n],

where Din = O(W ∨ d), Dout = O(d′), Dhid = O(Din), H = O(1), L = O(1), and M =
O((W ∨ d)L), K1,K2 = O(NL).

In Lemma E.1, the prompt length depends on the width and depth of the target feed-forward neural
network, while the number of intermediate steps only depends on the depth. This is because any self-
attention layer can capture the interaction between arbitrary token pairs due to the inner product,
meaning that self-attention layer is in some sense infinitely "wide" if we plug in long enough
prompt tokens. Based on this, we can establish a trade-off between the number of intermediate
steps in autoregressive generation between the prompt length, which is summarized in the following
corollary.
Corollary 3.1. Fix any n, d ∈ N+. There exists a Transformer T ∈ T (Din, Dout, Dhid,H, L)
such that for any sequence of input-output pairs (x(1), y(1)), · · · , (x(n), y(n)) ∈ Rd× [C] satisfying
Assumption 3.1, there exist a prompt P ∈ RDin×M and K ∈ N+ such that

T̂P ,K,K(x(i)) = y(i) for any i ∈ [n],

where Din = O(n), Dout = O(1), Dhid = O(Din), H = O(1), L = O(1), and M = Õ(n),
K = Õ(1).

The result in Corollary 3.1 reveals a trade-off between prompt length and the computational path:
a prompt of length Õ(

√
n) with Õ(

√
n) intermediate steps and a prompt of length Õ(n) with

Õ(1) intermediate steps have the same memorization ability, which underscores the advantage of
employing longer chains of intermediate computation prior to producing the final answer [Wei et al.,
2022]. To extend our result to the case where sequence length N > 1, we need to consider the
interactions between data tokens instead of only the interaction between data tokens and prompt
tokens. This idea results in the following theorem.

Theorem 3.1. Fix any n, d ∈ N+. There exists a composition of three Transformers T = T (3) ◦
T (2) ◦T (1) with T (i) ∈ T (D

(i)
in , D

(i)
out, D

(i)
hid,H

(i), L(i)), such that for any sequence of input-output
pairs (X(1),y(1)), · · · , (X(n),y(n)) ∈ Rd×N × [C]1×N satisfying Assumption 3.1 and N > 1,
there exist prompts P (i) ∈ RD

(i)
in ×M(i)

and K
(i)
1 ,K

(i)
2 ∈ N such that

T̂
(3)

P (3),K
(3)
1 ,K

(3)
2

◦ T̂ (2)

P (2),K
(2)
1 ,K

(2)
2

◦ T̂ (1)

P (1),K
(1)
1 ,K

(1)
2

(X(i)) = y(i) for any i ∈ [n],

where D
(i)
in = O(d), D(i)

out = O(1), D(i)
hid = O(D

(i)
in ), H

(i) = O(1), L(i) = O(1), and M (i) =

Õ(
√
nN), K(i)

1 ,K
(i)
2 = Õ(N ·

√
nN), for i = 1, 2, 3.

The proof of Theorem of 3.1 is provided in Appendix D, which basically follows the framework in
[Kajitsuka and Sato, 2024]. The primary difference between two cases N = 1 and N > 1 is that
we need to include the influence from other data tokens. For example, let X(1) = [x1,x2] and
X(2) = [x1,x3], where x2 ̸= x3. If y(1) and y(2) are their corresponding labels, it is possible that
y
(1)
:,1 ̸= y

(2)
:,1 even if x1 appears in both sequences, which reflects the real-world fact that the same

words in different contexts may carry different meanings. To address this, we need to differentiate
x1 in X(1) and X(2) based on the context where it appears by mapping it to different values via self-
attention mechanism. Besides, we also need to retain information in originally distinct tokens. This
approach is grounded in the concept of "Contextual Mapping", first formulated in [Yun et al., 2019],
and further developed in [Kim et al., 2022, Kajitsuka and Sato, 2023, 2024]. In Theorem 3.1, we
adopt the technique from [Kajitsuka and Sato, 2024]. In particular, we use Transformer T (i) to map
each token into a space with higher dimension to enhance separability. The subsequent layer T (2) is
designed to integrate contextual information by simply computing the summation of columns over
input sequences. This process ensures that each token is mapped to a unique vector determined by
both the token itself and its context: if two tokens differ, or if identical tokens appear in different
contexts, the resulting representations will differ as well. One important thing to point out is that in
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[Kajitsuka and Sato, 2023], the separation gap between such vectors decays exponentially in terms
of the number of data points to be memorized. But in Theorem 3.1. we can keep it as a constant due
to the separation in high dimensional space, thereby keeping the required prompt length controllable.
Finally, we build T (3) to perform point-wise fitting, mapping the contextualized representations to
their corresponding labels.
Remark 3.1. T (1) and T (2) in Theorem 3.1 are mainly designed to implement a feed-forward neural
network through prompt tuning. According to Lemma E.1, we know the prompt length depends on
the rank of [W , b] in each layer of the target feed-forward neural network, where [W , b] denotes
the concatenation of the weight matrix and bias term. It is known that neural networks exhibit a
low-rank bias, that is, they tend to converge toward solutions with low-rank weight matrices which
leads to a possible reduction in prompt length in our setting. One explanation lies in the fact that
natural datasets usually present a low-dimensional structure, implying inherently limited intrinsic
complexity [Balzano et al., 2025]. As illustrated in Figure 1, prompt tuning indeed favors low-
complexity solutions by allowing data tokens to primarily attend to only a small subset of prompt
tokens even when longer prompts are provided. Further discussion of this phenomenon can be found
in Appendix H.

4 Prompt Tuning Random Transformers

The Transformer constructed in Theorem 3.1 is universal across the datasets to be memorized. Its
architecture and parameters only depend on the input dimension d, while the number of data points
only affects the embedding layer. The backbone Transformer contains no task-specific information,
rather, it defines a general mechanism governing the interactions between data tokens and prompt
tokens. Motivated by this universality, we shift our attention to studying the effectiveness of prompt
tuning randomly initialized Transformers. Specifically, we investigate its memorization ability under
different word embeddings, how initialization affects the performance and whether datasets with a
low-rank structure can reduce the prompt length. This section seeks to understand the inductive bias
of Transformer architecture, the fundamental limitations of prompt tuning, and the extent to which
prompt tuning can steer the behavior of a model with frozen parameters.

4.1 Data Memorization Ability

We conduct experiments to evaluate the memorization ability of prompt tuned random Transformers.
Specifically, we employ a two layer randomly initialized Transformer with an embedding size of 512,
matching that of T5-small. The initialization strategy is the default in Pytorch. The data points to
be memorized are randomly sampled from the IMDb [Maas et al., 2011] dataset. As our focus is
on whether models can memorize finite datasets, we report the training accuracy for dataset sizes of
1600, 2500, and 3600. Correspondingly, the prompt length is set to be 40, 50, and 60, respectively.
Each input sequence is truncated to a length of 8 and the outputs at the last data token are compared
with labels using cross-entropy loss.

We consider two activation functions in each self-attention layer: ReLU and Softmax. The
motivation for this choice is that Softmax is widely adopted in practice, while ReLU is used in
the construction of Theorem 3.1. For each activation function, we examine two types of word
embeddings: those initialized using the T5-small embeddings (frozen), and those that are randomly
initialized and also kept untrainable. We compare prompt tuning against embedding-only training of
Transformers [Zhong and Andreas, 2024]. Results are shown in Table 1 and a summary of findings
is provided below.

Meaningful word embeddings boost accuracy As shown in Table 1, when the word embeddings
are initialized with T5-small pretrained embeddings and kept frozen, the resulting accuracy is
substantially higher than that with randomly initialized embeddings. This indicates that meaningful
pretrained embeddings already encode strong signals that facilitate the mapping from inputs to
labels. and are kept untrainable, the accuracy is much higher than random word embeddings.
Meaningful word embeddings already contain strong signal mapping from the inputs to labels. In
this setting, the influence of prompt tokens appears to serve primarily as a slight calibration rather
than a fundamental driver of the model’s behavior. This interpretation is supported by the attention
patterns visualized in Figure 2: both Softmax and ReLU Transformer automatically allocate most of
their attention weights to data tokens, with only minimal focus on prompt tokens.
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ReLU outperforms Softmax As shown in Table 1, prompt-tuned ReLU Transformers initialized
at random consistently outperform their Softmax counterparts under both T5-small and random
embedding settings. To further understand this phenomenon, the visualization in Figure 2 offers
a plausible explanation. When using T5 embeddings, ReLU-based attention layers can assign
disproportionately large weights (often exceeding 10) to data tokens, as they are not constrained
by the normalization inherent in Softmax attention. In contrast, Softmax-based attention inevitably
distributes its weights across both data and prompt tokens, limiting the emphasis that can be
placed on individual data tokens. However, this flexibility of ReLU attention comes with a trade-
off: Transformers trained from scratch with ReLU attention often exhibit less stable optimization
dynamics, since the lack of normalization may amplify gradient-related instabilities during training
[Shen et al., 2023].

Table 1: Training accuracy across different activation functions, embeddings and dataset sizes.
Activation Prompts Embedding Acc(1600) Acc(2500) Acc(3600)

ReLU " T5-small 0.9962 0.9944 0.9925
ReLU " Random 0.8619 0.8216 0.8164
ReLU % Trainable 0.9962 0.9944 0.9947

Softmax " T5-small 0.8888 0.8740 0.8486
Softmax " Random 0.5375 0.5484 0.5186
Softmax % Trainable 0.9969 0.9928 0.9936

4.2 Random Backbone Still Captures the Low-rank Structure In the Dataset

Based on the observations from Figure 1, 2, 3, and Lemma E.1, the required prompt length appears
to depend on the complexity of the downstream tasks. This raises an important question: does
this property depend specifically on pretrained LLMs, or can prompt-tuned random Transformer
also capture the intrinsic structure of datasets. To investigate this, we examine performance across
different prompt lengths using datasets generated by a low-rank feed-forward neural network.

We randomly generate input data X ∈ R16×8 ∼ N(−1, 4), and initialize a ReLU feed-forward
neural network f with 8 layers, input dimension 16, and width 32. For the Normal task, f is
initialized following the default strategy and kept frozen. For the low-rank mapping task, we replace
each concatenation of weight matrix and the bias term, that is, [W , b] by a rank-1 matrix and also
make each of them untrainable. For the low-rank input and mapping task, we constrain the input
data points to be in a low-rank linear space. The training dataset size is 2000 and test dataset size is
200. As shown in Table 2, prompt tuning a random Transformer can capture the low-rank structure
in the dataset and prompts with much less length can even better performance.

Table 2: MSE Loss with a low-rank structure in the dataset.

Dataset
Prompt Length

10 20 30 40

Normal 0.3258 0.2580 0.2674 0.2364
Low-rank mapping 0.0076 0.0053 0.0026 0.0022

Low-rank input and mapping 0.0038 0.0015 0.0015 0.0007

4.3 Initialization and Limitation

For mathematical simplicity, let T = FFF ◦FSA denote a single layer Transformer consisting of
one self-attention layer and one feed-forward layer. We omit the embedding and decoding matrices
here and consider a dataset (X(1),y(1)), · · · , (X(n),y(n)) ⊂ Rd×N × Rd consisting of n input-
label pairs to be memorized. Let P ∈ Rd×M denote the prompt. If T ([P ,X(i)]):,−1 = y(i)

for some i ∈ [n], this implies that FSA([P ,X(i)]):,−1 ∈ F−1
FF (y

(i)), where F−1
FF (y

(i)) :={
x ∈ Rd : FFF (x) = y(i)

}
. In other words, during the computation of self-attention, the output
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representation of the last token must be shifted into the space F−1
FF (y

(i)). Since all the parameters
of T are frozen and further the interactions between data tokens are fixed, this shift can only
be achieved through prompt tokens. In [Wang et al., 2023], they explicitly constructed a
counterexample showing that regardless of the number of prompt tokens, the data tokens can not be
shifted to F−1

FF (y
(i)). Motivated by this, we can identify several constrained initialization strategies

as follows:

• Low-norm FFF : if W1 and W2 in FFF satisfy ∥W1∥2 · ∥W2∥2 < 1, then FFF is
invertible [Wang et al., 2023, Behrmann et al., 2019]. As a result, F−1

FF (y
(i)) remains

small.
• Low-rank WV : Since the output of any self-attention layer is a linear combination of the

column vectors of WV , constraining the rank of WV can reduce the diversity of the output.
• Low-rank WK : As shown in [Bhojanapalli et al., 2020], the ranks of WK and WQ affect

the diversity of the ways tokens interacting with others.
• Low-rank WQ: Similar to the effect of low-rank WK .

As shown in Table 3, low-norm FFN degrades the performance only when the prompt length is small.
Among the low-rank variants, low-rank WV exhibits the lowest accuracy, while low-rank WK and
low-rank WQ have relatively a slight negative impact on the performance.

Table 3: Training Accuracy across different initialization strategies.

Initialization
Prompt Length

10 20 30 40

Random 0.7865 0.8263 0.8462 0.8619
Low-norm FFN 0.7788 0.8119 0.8550 0.8631
Low-rank WV 0.5125 0.6625 0.5994 0.5631
Low-rank WK 0.7163 0.7356 0.7394 0.7512
Low-rank WQ 0.7506 0.7569 0.7538 0.7481

5 Conclusion

Our study provides a new perspective on how prompt tuning enables Transformers to memorize
and represent data. Rather than viewing prompts merely as task adaptors, we show that they can
encode substantial structural information about the dataset itself. Theoretical analysis reveals that
the prompt length required for memorization scales sublinearly with the dataset size, while empirical
results confirm that prompt-tuned random Transformers can still capture low-rank regularities in
data embeddings. These findings suggest that prompt tuning leverages the implicit inductive bias of
Transformers to compress information efficiently, even without task-specific supervision.

Limitations: Our analysis primarily focuses on simplified Transformer architectures and small
datasets, which allow for controlled theoretical and empirical investigation but do not fully capture
the complexity of large-scale pretrained models. Extending the current framework to realistic large
language model settings, and studying how prompt tuning interacts with pretraining dynamics,
remain promising directions for future work.
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A Notation Table
Functions

f : A → B The function f with domain A and range B

f ◦ g Composition of the functions f and g

f(x;θ) A function of x parametrized by θ. (Sometimes we write
f(x) and omit the argument θ to lighten notation)

σR(x) ReLU function, max{x, 0}

σS(x) Softmax function, σS(x)i =
exp(xi)∑d
i=1 exp(xi)

||x||p Lp norm of x

||x||2 L2 norm of x

||X||2 Spectral norm of matrix X

||x||∞ ∞ norm of x

x+ Positive part of x, i.e., max(0, x)

x ∨ y max{x, y}
FSA self-attention layer

FFF Feed-forward layer

T (Din, Dout, Dhid,H, L) Transformer neural network class with embedding size
Din, output dimension Dout, hidden dimension hhid,
number of heads H , number of layers L

FF(W,L,Rd → Rd′
) Feed-forward neural network class with width W , depth

L, input dimension d and output dimension d′, activation
function σR

R(W,L,Rd → Rd) Residual feed-forward neural network class with hidden
dimension W , number of layers L, input dimension and
output dimension d, activation function σR

Numbers and Arrays

a A scalar (integer or real)

a A vector

A A matrix

In Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied by context

ei Standard basis vector [0, . . . , 0, 1, 0, . . . , 0] with a 1 at
position i

1n×m All-one matrix with dimensionality n×m
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Sets

R The set of real numbers

RD The set of D-dimensional real vectors

RD
>0 The set of D-dimensional positive real vectors

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

[n] The set of all integers between 1 and n, that is, [n] =
{1, · · · , n}

Indexing

ai Element i of vector a, with indexing starting at 1

a−1 The last element of vector a

Ai,j Element i, j of matrix A

Ai,: Row i of matrix A

Ai:,: From i-th row to the last row of matrix A

A:,i Column i of matrix A

A:,i: from i-th column to the last column of matrix A

Asymptotics

f(n) = O(g(n)) f grows at most as fast as g for sufficiently large n

f(n) = Õ(g(n)) f grows at most as fast as g for sufficiently large n, up to
logarithmic factors

f(n) = Ω(g(n)) f grows at least as fast as g for sufficiently large n

f ≲ g There exists a positive constant c such that f ≤ cg holds

B Additional Related Works

Another line of theoretical study on the expressive capacity of Transformers is to consider the
approximation ability of Transformers, that is, can Transformers approximate functions that belong
to a given function class. The most seminal work by [Yun et al., 2019] provided the first universal
approximation theorem for Transformers, showing that any continuous sequence-to-sequence
functions defined on a compact domain can be approximated by Transformers to any finite precision.
They also extended the results to sparse Transformers [Yun et al., 2020]. Later, Gurevych et al.
[2022] established a constructive method, proving that Transformers can approximate piecewise
polynomials. Jiang and Li [2024] built their results of approximating continuous functions by
shallow Transformers based on the Kolmogorov Representation Theorem. Takakura and Suzuki
[2023] provided both approximation and estimation error with γ-smooth function class under the
assumption that the input is infinite dimensional. Similarly, Havrilla and Liao [2024] assumed that
the input data has a low-dimensional manifold structure and established approximation results for
β-Hölder continuous functions with Transformers. They also gave an explicit form of the scaling
law by utilizing techniques from non-parametric statistics. Kajitsuka and Sato [2023] showed that
Transformers with one single-head self-attention layer are able to be a universal approximator by
exploring the relationship between the Softmax function in self-attention layers and the Boltzmann
operator. Takeshita and Imaizumi [2025] proved that Transformers can efficiently approximate
column-symmetric polynomials with respect to the number of parameters. Recently, Jiao et al.
[2025a] derived the approximation results of Transformers for Hölder class and Sobolev class
under Lp-norm, where p ∈ [0,+∞]. Besides, their another work [Jiao et al., 2025b] showed
that Transformers can overcome the curse of dimensionality based on the Kolmogorov-Arnold
Representation Theorem. Concurrent work Hu et al. [2025] made an effort to avoid the dependence
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on large ReLU feed-forward layers, by proving that self-attention layers alone can approximate
a generalized version of ReLU function and hence subsumes any known approximators based on
ReLU feed-forward neural networks. Similarly, Liu et al. [2025] proved that a single self-attention
layer, preceded by sum-of-linear transformations, is capable of approximating any continuous
function on a compact domain under L∞-norm, highlighting the inherent expressive ability of self-
attention mechanism alone.

C Construction of Prompts

We basically follow the framework introduced in [Nakada et al., 2025] to construct prompts.

Given prompt P ∈ RDin×M , for any X ∈ Rd×N , let Xemb = [P ,Ein(X)]. We have

Xemb = [x1, · · · ,xM︸ ︷︷ ︸
prompt tokens

,xM+1, · · · ,xM+N︸ ︷︷ ︸
data tokens

] ∈ RDin×(N+M),

Where Din ≥ d is the embedding size, M is the length of the prompt and N is the length of the
input sequence. In this work, we set Din = 4d + 8. Each prompt token is divided into two parts:
guidance embedding and positional embedding The exact form of prompt tokens is defined below

xj := ( u⊤
j︸︷︷︸

guidance embedding

, p⊤
j︸︷︷︸

positional embedding

)⊤ =



uj

03d+4

1

S

Swj

Sj


∈ R4d+8 for i ∈ [M ], (C.1)

where uj ∈ Rd is called the guidance embedding, and pj ∈ R3d+8 is the positional encoding,
defined as pj = p(wj , j, S) := (0T

3d+4, 1, S, Swj , Sj)
T . The large enough S > 0 denotes the

scaling factor, which ensures that the positional encoding remains significant relative to guidance
embedding. The constant 1 serves as a bias term, while the zeros in pj function as a temporal
memory to store intermediate variables because of the skip connection. Guidance embeddings aim
to guide the Transformers, which store the task-specific information. The integer wj ∈ N+ works
as an indicator to force Transformers to focus on certain prompt tokens in different autoregressive
generation steps. Given the same scaling factor S in prompt tokens, data tokens xM+1, · · · ,xM+N

are defined as follows

xM+i := (X⊤
:,i,p(0,M + i, S)⊤)⊤ =



X⊤
:,i

03d+4

1

S

0

S · (M + i)


∈ R4d+8 for i ∈ [N ]. (C.2)

D Proofs of Section 3

This section provides all the detailed proofs in Section 3.

D.1 Proof of Lemma 3.1

Lemma 3.1 shows that prompt tuning a Transformer can exactly implement a ReLU feed-forward
neural network, that is, given the same input, the output is the same. Our results are built upon
[Nakada et al., 2025], by extending their results to the case where the width of the target ReLU
feed-forward neural network can be smaller than the input dimension.
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Lemma D.1 (Restatement of Lemma 3.1). Fix any W,d ∈ N+. There exists a Transformer
T ∈ T (Din, Dout, Dhid,H, L) such that for any ReLU feed-forward neural network f ∈
FF(W,L,Rd → Rd′

), where W,L, d, d′ ∈ N+ with d′ ≤ d, and n inputs X(1), · · · ,X(n) ⊂
Rd×N , there exists a prompt P ∈ RDin×M , K1,K2 ∈ N+ such that

T̂P ,K1,K2(X
(i)) = [f(X

(i)
:,1 ), · · · ,f(X

(i)
:,N )] for any i ∈ [n],

where Din = O(W ∨ d), Dout = O(d′), Dhid = O(Din), H = O(1), L = O(1), and M =
O((W ∨ d)L), K1,K2 = O(NL).

Proof of Lemma 3.1. Suppose f has the following form

f = LL ◦ σR ◦LL−1 ◦ · · ·L1 ◦ σR ◦L0(x),

where Lℓ(x) = Wℓx + bℓ with Wℓ ∈ Rdℓ+1×dℓ and bℓ ∈ Rdℓ+1 for ℓ = 0, 1, · · · , L. In the
following, we consider two cases: Case 1: W ≥ d, Case 2: W < d, respectively.

Case 1: W ≥ d Let Ŵℓ for ℓ ∈ [L] ∪ {0} denote a series of matrices that incorporate the bias
terms bℓ into multiplication of matrices with dimension R((W+1)×(W+1)), which are defined as

Ŵℓ =


Wℓ bℓ 0

0 1 0

0 0 0

 ∈ R(W+1)×(W+1) for i ∈ [L] ∪ {0}.

With Ŵℓ in hand, we define a new feed-forward neural network f̂ as

f̂(x) = L̂L ◦ σR ◦ L̂L−1 ◦ · · · L̂1 ◦ σR ◦ L̂0(x),

where L̂ℓ(x) := Ŵℓ(x). It is clear that f ∈ FF(W + 1, L,RW+1 → RW+1). For any X =

[x1, · · · ,xN ] ∈ Rd×N , let X̂ = [x̂1, · · · , x̂N ] ∈ R(W+1)×N , where x̂i =
[
x⊤
i , 1,0

⊤
(W−d)

]
for

i ∈ [N ]. It is direct to verity that

f̂(x̂i)1:d′ = f(xi),

and

f̂(x̂i)1:d′+1 =
[
f(xi)

⊤, 1
]⊤

.

By applying Lemma E.1 to f̂ , we know that there exists a Transformer T ∈
T (Din, Dout, Dhid,H, L), and prompt P ∈ RDin×M , Ki ∈ N+ such that

T̂P ,Ki,Ki(X) = f̂(x̂i)1:d′ = f(xi)
⊤ for any i ∈ [N ],

or by using different Eout, we have

T̂P ,Ki,Ki
(X) = f̂(x̂i)1:d′+1 =

[
f(xi)

⊤, 1
]⊤

for any i ∈ [N ],

where Ki+1 = Ki + 1. The proof of Case 1 is completed by pointing out that Din = O(W ),
Dout = O(d), Dhid = O(Din), and H = O(1), L = O(1), and M = O((W + 1)(L + 1)),
Ki = O(N(L+ 2)).

Case 2: W < d Similar to Case 1, let Ŵℓ for ℓ ∈ [L] ∪ {0} denote a series of matrices that
incorporate the bias terms bℓ into multiplication of matrices with dimension R((d+1)×(d+1)), which
are defined as

Ŵℓ =


Wℓ bℓ 0

0 1 0

0 0 0

 ∈ R(d+1)×(d+1) for i ∈ [L] ∪ {0}.
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With Ŵℓ in hand, we define a new feed-forward neural network f̂ as

f̂(x) = L̂L ◦ σR ◦ L̂L−1 ◦ · · · L̂1 ◦ σR ◦ L̂0(x),

where L̂ℓ(x) := Ŵℓ(x). It is clear that f ∈ FF(d + 1, L,Rd+1 → Rd+1). For any X =

[x1, · · · ,xN ] ∈ Rd×N , let X̂ = [x̂1, · · · , x̂N ] ∈ R(d+1)×N , where x̂i =
[
x⊤
i , 1

]⊤
for i ∈ [N ]. It

is direct to verify that

f̂(x̂i)1:d′ = f(xi),

and

f̂(x̂i)1:d′+1 =
[
f(xi)

⊤, 1
]⊤

.

By applying Lemma E.1 to f̂ , we know that there exists a Transformer T ∈
T (Din, Dout, Dhid,H, L), and prompt P ∈ RDin×M , Ki ∈ N+ such that

T̂P ,Ki,Ki(X) = f̂(x̂i)1:d′ = f(xi)
⊤ for any i ∈ [N ],

or by using different Eout, we have

T̂P ,Ki,Ki
(X) = f̂(x̂i)1:d′+1 =

[
f(xi)

⊤, 1
]⊤

for any i ∈ [N ],

where Ki+1 = Ki + 1. The proof of Case 2 is completed by pointing out that Din = O(W ),
Dout = O(d), Dhid = O(Din), and H = O(1), L = O(1), and M = O((d + 1)(L + 1)),
Ki = O(N(L+ 2)).

Finally, we have proved that for any feed-forward neural network f ∈ FF(W,L,Rd → Rd′
), there

exists Transformer T (Din, Dout, Dhid,H, L) such that

T̂P ,K1,K2(X) = [f(X:,1), · · · ,f(X:,N )] for any X ∈ [0, 1]d×N ,

where Din = O(W ∨ d), Dout = O(d), Dhid = O(Din), H = O(1), L = O(1), and M =

O((W ∨ d)L), K1,K2 = O(NL). The proof is completed by considering T̂P ,K1,K2(X
(i)) for

i ∈ [n].

D.2 Proof of Proposition 3.1

Proposition D.1 (Restatement of Proposition 3.1). Fix any n, d ∈ N+. There exists a
Transformer T ∈ T (Din, Dout, Dhid,H, L) such that for any sequence of input-output pairs
(x(1), y(1)), · · · , (x(n), y(n)) ∈ Rd × [C] satisfying Assumption 3.1, there exsit a prompt P ∈
RDin×M and K ∈ N+ such that

T̂P ,K,K(x(i)) = y(i) for any i ∈ [n],

where Din = O(d), Dout = O(1), Dhid = O(Din), H = O(1), L = O(1), and M = Õ(
√
n),

K = Õ(
√
n).

Proof of Proposition 3.1. According to Assumption 3.1, we know that x(i) ∈ [0, 1]d with ∥x(i)∥2 ≤
r, and ∥x(i) − x(j)∥2 ≥ δ for some r ≥ 1, 0 < δ ≤ 1. By applying Lemma E.2 to
(x(1), y(1)), · · · , (x(n, y(n)), there exists a feed-forward neural network f ∈ T (W,L,Rd → R)
with W = O(1), L = Õ(

√
n) such that f(x(i)) = y(i). Then, by applying Lemma 3.1 to f , there

exists a Transformer T ∈ T (Din, Dout, Dhid,H, L), and prompt P ∈ RDin×M , Ki ∈ N+ such
that

TP ,Ki,Ki(x
(i)) = y(i) for any i ∈ [n],

where O(Din) = O(d), Dout = O(1), Dhid = O(Din), H = O(1), L = O(1), and M = Õ(
√
n),

Ki = Õ(
√
n).
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D.3 Proof of Corollary 3.1

The proof of Corollary 3.1 is similar to that of Proposition 3.1, where we only need to replace
Lemma E.2 by Lemma E.3.
Corollary D.1 (Restatement of Corollary 3.1). Fix any n, d ∈ N+. There exists a
Transformer T ∈ T (Din, Dout, Dhid,H, L) such that for any sequence of input-output pairs
(x(1), y(1)), · · · , (x(n), y(n)) ∈ Rd × [C] satisfying Assumption 3.1, there exist a prompt P ∈
RDin×M and K ∈ N+ such that

T̂P ,K,K(x(i)) = y(i) for any i ∈ [n],

where Din = O(n), Dout = O(1), Dhid = O(Din), H = O(1), L = O(1), and M = Õ(n),
K = Õ(1).

Proof of Corollary 3.1. According to Assumption 3.1, we know that x(i) ∈ [0, 1]d with ∥x(i)∥2 ≤
r, and ∥x(i) − x(j)∥2 ≥ δ for some r ≥ 1, 0 < δ ≤ 1. By applying Lemma E.3 to
(x(1), y(1)), · · · , (x(n, y(n)), there exists a feed-forward neural network f ∈ T (W,L,Rd → R)
with W = O(n), L = Õ(1) such that f(x(i)) = y(i). Then, by applying Lemma 3.1 to f , there
exists a Transformer T ∈ T (Din, Dout, Dhid,H, L), and prompt P ∈ RDin×M , K ∈ N+ such that

TP ,K,K(x(i)) = y(i) for any i ∈ [n],

where O(Din) = O(n), Dout = O(1), Dhid = O(Din), H = O(1), L = O(1), and M = Õ(n),
K = Õ(1).

D.4 Proof of Theorem 3.1

Theorem D.1 (Restatement of Theorem 3.1). Fix any n, d ∈ N+. There exists a composition of
three Transformers T = T (3) ◦ T (2) ◦ T (1) with T (i) ∈ T (D

(i)
in , D

(i)
out, D

(i)
hid,H, L), such that for

any sequence of input-output pairs (X(1),y(1)), · · · , (X(n),y(n)) ∈ Rd×N × [C]1×N satisfying
Assumption 3.1 and N > 1, there exist prompts P (i) ∈ RD

(i)
in ×M(i)

and K
(i)
1 ,K

(i)
2 ∈ N such that

T̂
(3)

P (3),K
(3)
1 ,K

(3)
2

◦ T̂ (2)

P (2),K
(2)
1 ,K

(2)
2

◦ T̂ (1)

P (1),K
(1)
1 ,K

(1)
2

(X(i)) = y(i) for any i ∈ [n],

where D
(i)
in = O(d), D(i)

out = O(1), D(i)
hid = O(D

(i)
in ), H

(i) = O(1), L(i) = O(1), and M (i) =

Õ(
√
nN), K(i)

1 ,K
(i)
2 = Õ(N ·

√
nN), for i = 1, 2, 3.

Proof of Theorem 3.1. Our proof basically follows [Kajitsuka and Sato, 2024]. Step 1: For any
X ∈ Rd×N , define function m(x) : Rd → N as counting the number of occurences of x in X , that
is, m(x) = |{k ∈ [N ] : X:,k = x}|. Let mi denote the corresponding m(x) of X(i). Firstly, we
show that for any dataset {(X(i),y(i))}ni=1 satisfying Assumption 3.1, there exists a subset A ⊂ Rd

with |A| ≤ n such that for any i, j ∈ [n], there exists x ∈ A such that

mi(x) ̸= mj(x),

which means that we can only use a set containing less than n elements to differentiate each X(i).
To prove this fact, we can see that the case when n = 1 is obvious. We assume that the case for
n = k is correct, and prove the case where n = k + 1. Let (X(1),y(1)), · · · , (X(k+1),y(k+1)) ⊂
Rd×N × [C]1×N be a sequence of input-output pairs, which satisfy Assumption 3.1. Then, by
applying the assumption about n = k to the first k data points, we know that there exists a subset
A ⊂ Rd with |A| ≤ k such that for any i ̸= j ∈ [n], there exists x ∈ A such that mi(x) ̸= mj(x).
If there exists i ∈ [k] such that for any x ∈ A, the following holds

mi(x) = mk+1(x).

Then, we can find an element x ∈ Rd\A such that mi(x) ̸= mk+1(x) due to the fact that X(i) ̸=
X(j) under any permutations. Subsequently, we define a new set A′ = A∪{x}, which is the desired
set for the case where n = k + 1 and |A′| ≤ k + 1 clearly. The induction is comleted.
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Step 2: Construction of T (1) In this step, we present the construction of T (1). Let S denote the set
introduced in Step 1. Let g : S → [|S|] be an arbitrary bijective function, which maps each token
in S to a unique positive integer less than |S|. For each token x ∈ S, we consider mapping it to an
element in a high-dimension space, in which they are separable. With this motivation in hand, we
define x̂(i) for i ∈ [n] by

x̂(i) :=
∑

1≤k≤N,X
(i)
:,k∈S

e
g(X

(i)
:,k )

,

where e
g(X

(i)
:,k )

∈ {0, 1}|S| is a one-hot vector with 1 in the g(X
(i)
:,k )-th position. According to

Assumption 3.1 and definition of S, for any i ̸= j ∈ [n], we can always either find k, l ∈ [N ] such
that X(i)

:,k ̸= X
(j)
:,l ∈ S or X(i)

:,k = X
(j)
:,l ∈ S but mi(X

(i)
:,k ) ̸= mj(X

(j)
:,l ). As a result, we have the

following fact ∥∥∥x̂(i) − x̂(j)
∥∥∥2
2
≥ 1, (D.1)

holds for any i ̸= j ∈ [n], and the norm of each x̂(i) is upper bounded by∥∥∥x̂(i)
∥∥∥
2
≤

∑
1≤k≤N,X

(i)
:,k∈S

∥∥∥eg(X(i)
:,k )

∥2 ≤ N.

By applying Lemma E.5 to x̂(1), · · · , x̂(n), there exists a unit vector v ∈ R|S| such that

1

n2

√
8

π|S|

∥∥∥x̂(i) − x̂(j)
∥∥∥
2
≤
∣∣∣v⊤(x̂(i) − x̂(j))

∣∣∣ ≤ ∥∥∥x̂(i) − x̂(j)
∥∥∥
2

(D.2)

holds for any i, j ∈ [n]. Let h be the function h : S → Z, x → ⌈n2|S|
√
πvg(x)⌉ and v̂ :=(

⌈n2|S|
√
πv1⌉, · · · , ⌈n2|S|

√
πv|S|⌉

)
∈ N|S|. The motivation of introducing v̂ is to use an integer

vector to approximate n2|S|
√
πv and make it convenient for later techniques based on memorization

of integer labels. It is clear that ∥∥n2|S|
√
πv − v̂

∥∥
2
≤

|S|∑
i=1

1 = |S|. (D.3)

For any X(i), we have ∑
1≤k≤N,X

(i)
:,k∈S

h(X
(i)
:,k ) =

∑
1≤k≤N,X

(i)
:,k∈S

⌈n2|S|
√
πv

g(X
(i)
:,k )

⌉

=
∑

1≤k≤N,X
(i)
:,k∈S

v̂⊤ · e
g(X

(i)
:,k )

= v̂⊤ · x̂(i).

We point out that
∑

1≤k≤N,X
(i)
:,k∈S

h(X
(i)
:,k ) can be viewed as the integrated information of the

sequence X(i).The explanation is as follows. For any i ̸= j ∈ [n], we have∣∣∣∣∣∣∣
∑

1≤k≤N,X
(i)
:,k∈S

h(X
(i)
:,k )−

∑
1≤k≤N,X

(j)
:,k ∈S

h(X
(j)
:,k )

∣∣∣∣∣∣∣ (D.4)

=
∣∣∣v̂⊤ · (x̂(i) − x̂(j))

∣∣∣ (D.5)

≥
∣∣∣n2|S|

√
πv⊤(x̂(i) − x̂(j))

∣∣∣− ∣∣∣(n2|S|
√
πv − v̂)⊤(x̂(i) − x̂(j))

∣∣∣ (D.6)

> 2
√
|S|
∥∥∥x̂(i) − x̂(j)

∥∥∥
2
−
√
|S|
∥∥∥x̂(i) − x̂(j)

∥∥∥
2

(D.7)

=
√

|S|
∥∥∥x̂(i) − x̂(j)

∥∥∥
2

(D.8)

≥
√

|S|, (D.9)
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where the last inequality is derived from Eq.D.1. Besides, the second to last inequality is derived
from Eq.D.3, and the following fact∣∣∣n2|S|

√
πv⊤(x̂(i) − x̂(j))

∣∣∣ = n2|S|
√
π
∣∣∣v⊤(x̂(i) − x̂(j))

∣∣∣
≥ n2|S|

√
π · 1

n2

√
8

π|S|

∥∥∥x̂(i) − x̂(j)
∥∥∥
2

> 2
√
|S|
∥∥∥x̂(i) − x̂(j)

∥∥∥
2
,

where the first inequality is based on Eq.D.2. Up to now, we have constructed a function h such that∑
1≤k≤N,X

(i)
:,k∈S

h(X
(i)
:,k ) are different with each other and the difference between them is large. In

the meantime it is straightforward to verify that |h(x)| ≤ 2n2|S|
√
π, and we can further derive∑

1≤k≤N,X
(i)
:,k∈S

h(X
(i)
:,k ) ≤ 2n4

√
π, (D.10)

where we use the fact |S| ≤ n. With function h in hand, we define a function ϕ : Rd → R such that

ϕ(x) :=

{
h(x) x ∈ S,

0 otherwise.

Notice that the possible number of inputs for the function ϕ is at most nN , and all outputs are less
than or equal to ⌈2n2|S|

√
π⌉ ≤ ⌈2n3

√
π⌉. Then, we consider use a feed-forward neural network

to implement ϕ. By applying Lemma E.2, we know there exists a feed-forward neural network
f1 ∈ FF(W1, L1, R

d → R) such that for any i ∈ [n] and k ∈ [N ]

f1(X
(i)
:,k ) =

{
h(X

(i)
:,k ) X

(i)
:,k ∈ S,

0 otherwise.

If we let C1 = ⌈2n3
√
π⌉, and R1 = 20r(nN)2δ−1

√
πd, we have

W1 = O(1), L1 = O

(√
n log n+

√
n

log n
·max{logR1, logC1}

)
= Õ(

√
n).

In the following, we verify that f1 can represent the information of the input sequences. For any
i, j ∈ [n] with i ̸= j, we have∣∣∣∣∣

N∑
k=1

f1(X
(i)
:,k )−

N∑
k=1

f1(X
(j)
:,k )

∣∣∣∣∣ =
∣∣∣∣∣∣∣

∑
1≤k≤N,X

(i)
:,k∈S

h(X
(i)
:,k )−

∑
1≤k≤N,X

(j)
:,k ∈S

h(X
(j)
:,k )

∣∣∣∣∣∣∣ (D.11)

≥
√

|S| ≥ 1, (D.12)

where the last inequality if from Eq.D.4. Up to now, we have already constructed a feed-forward
neural nework f1, which aims to capture the information of the whole sequence. In the following,
we show that we also can construct a feed-forward neural network f2 that can remain the information
of individual tokens. Let V denote the set that contains all the tokens appearing in the dataset, that
is, V = {X(i)

:,k : i ∈ [n], k ∈ [N ]}. According to Assumption 3.1, we know that there exists
r ≥ 1 and 0 < δ ≤ 1 such that for any xi,xj ∈ V with i ̸= j, we have ∥xi − xj∥2 ≥ δ and
∥xi∥2 ≤ r. Based on this, we apply Lemma E.4 to V and gain a feed-forward neural network
f2 ∈ FF(O(1), O(1),Rd → R) such that

0 ≤ f2(X
(i)
:,k ) ≤ 10r(nN)2δ−1

√
πd,

for any i ∈ [n] and k ∈ [N ], and ∣∣∣f2(X
(i)
:,k )− f2(X

(j)
:,l )
∣∣∣ ≥ 2, (D.13)
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for any i, j ∈ [n] and k, l ∈ [N ] with X
(i)
:,k ̸= X

(j)
:,l . Then, we consider integrate f1 and f2 into

one single feed-forward neural network, which can both capture the information of the sequence but
also that of the tokens. Besides, we also augment the output dimension by one more and pad it by 0,
which is used as a temporary memory. Let F1 : Rd → R3, which takes the input x ∈ Rd and outputs

F1(x) = [f1(x),f2(x), 0]
⊤
.

Since we know that

f1 ∈ FF(O(1), Õ(
√
n),Rd → R),

f2 ∈ FF(O(1), O(1),Rd → R),

which means that F1 ∈ FF(O(1), Õ(
√
n),Rd → R3). We assume that d ≥ 3. By applying Lemma

3.1 to F1, we know that there exists a Transformer T (1)
1 ∈ T (D

(1)
in , D

(1)
out, D

(1)
hid,H

(1), L(1)), and
prompt P (1) ∈ RD

(1)
in ×M(1)

, K(1)
1 ,K

(1)
2 ∈ N+ such that

T̂
(1)

P (1),K
(1)
1 ,K

(1)
2

(X(i)) =

(
F1(X

(i)
:,1 )

⊤ F1(X
(i)
:,2 )

⊤ · · · F1(X
(i)
:,N )⊤

1 1 · · · 1

)

for any i ∈ [n]. We have D
(1)
in = O(d), D(1)

out = O(1), D(1)
hid = O(D

(1)
in ), H(1) = O(1), L(1) =

O(1), and M (1) = Õ(
√
n), K(1)

1 ,K
(1)
2 = Õ(N ·

√
n). The construction of T1 is completed.

Step 3: Construction of T (2) In this step, we aim to construct Transformer T (2) to integrate the
information of whole the sequence. T (2) consists of one self-attention layer and one feed-forward
layer, that is, T (2) = FFF ◦FSA. Define

WQ = WK =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 ,

and

WV =


0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

 .

As for the weight matrices in FFF , we let

W1 = W2 = 0,

which means that FFF is just an identity mapping with skip connection. Given any X =
X1,1 X1,2 · · · X1,N

X2,1 X2,2 · · · X2,N

...
... · · · 0

1 1 · · · 1

 ∈ R4×N with the the 3-th element of each column being zero, and
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the 4-th element being 1. We know that the output of T (2) given input X is

T (2)(X) = FFF ◦FSA(X)

= FSA(X)

= X +


0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

X


1 1 · · · 1

1 1 · · · 1
...

...
...

...

1 1 · · · 1



= X +


0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0






∑

k∈[N ] X1,k∑
k∈[N ] X2,k

0

n

 · · ·


∑

k∈[N ] X1,k∑
k∈[N ] X2,k

0

n





= X +


0 0 · · · 0

0 0 · · · 0∑
k∈[N ] X1,k

∑
k∈[N ] X1,k · · ·

∑
k∈[N ] X1,k

0 0 · · · 0



=


X1,1 X1,2 · · · X1,N

X2,1 X2,2 · · · X2,N∑
k∈[N ] X1,k

∑
k∈[N ] X1,k · · ·

∑
k∈[N ] X1,k

1 1 · · · 1


In particular, let s(i)k denote the k-th column of the output of T (2) given input T̂ (1)

P (1),K
(1)
1 ,K

(1)
2

(X(i)),

which can be calculated as

s
(i)
k :=


f1(X

(i)
:,k )

f2(X
(i)
:,k )∑

k∈[N ] f1(X
(i)
:,k )

1

 .

We claim that s(i)k can help us to differentiate different tokens or the same tokens in different contexts.
For any i, j ∈ [n], and k, l ∈ [N ], if X(i)

:,k ̸= X
(j)
:,l , according to Eq.(D.13), we know that∣∣∣f2(X

(i)
:,k )− f2(X

(j)
:,l )
∣∣∣ ≥ 2.

Besides, for any i ∈ [n], and k ̸= l ∈ [N ], if X(i)
:,k = X

(i)
:,l , we immediatetly have s

(i)
k = s

(i)
l . On

the other hand, for any i ≠ j ∈ [n], according to assumption 3.1, we have X(i) ̸= X(j) under any
permutation. Then, Eq.(D.11) implies∣∣∣∣∣

n∑
k=1

f1(X
(i)
:,k )−

n∑
k=1

f1(X
(i)
:,k )

∣∣∣∣∣ ≥ 1.

Thus, by incoporating the above three cases, the difference between any two arbitrary columns of
the output of T (2) has the following form

∥∥∥s(i)k − s
(j)
l

∥∥∥
2
=


≥ 2 X

(i)
:,k ̸= X

(j)
:,l ,

0 i = j, X
(i)
:,k = X

(j)
:,l ,

≥ 1 i ̸= j, X
(i)
:,k = X

(j)
:,l ,
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where we use the basic fact

∥∥∥s(i):,k − s
(j)
:,l

∥∥∥
2
=

∥∥∥∥∥∥∥∥∥∥∥


f1(X

(i)
:,k )

f2(X
(i)
:,k )∑

t∈[N ] f1(X
(i)
:,t )

1

−


f1(X

(j)
:,l )

f2(X
(j)
:,l )∑

t∈[N ] f1(X
(i)
:,t )

1



∥∥∥∥∥∥∥∥∥∥∥
2

≥ min

∣∣∣f2(X
(i)
:,k )− f2(X

(j)
:,l )
∣∣∣ ,
∣∣∣∣∣∣
∑
t∈[N ]

f1(X
(i)
:,t )−

∑
t∈[N ]

f(X
(j)
:,t )

∣∣∣∣∣∣
 .

As for the upper bound of the norm of s(i)k , we can compute it as

∣∣∣ s(i):,n

∥∥∥
2
=

∥∥∥∥∥∥∥∥∥∥∥


f1(X

(i)
:,k )

f2(X
(i)
:,k )∑

t∈[N ] f1(X
(i)
:,t )

1



∥∥∥∥∥∥∥∥∥∥∥
2

≤
∣∣∣f1(X

(i)
:,k )
∣∣∣+ ∣∣∣f2(X

(i)
:,k )
∣∣∣+
∣∣∣∣∣∣
∑
t∈[N ]

f2(X
(i)
:,t )

∣∣∣∣∣∣
≤ ⌈2n3

√
π⌉+ 10r(nN)2δ−1

√
πd+ n · ⌈2n3

√
π⌉+ 1

≤ 21rn4N2δ−1
√
πd.

It we let P (2) ∈ RD
(2)
in ×M(2)

, where M (2) = 0, and K
(2)
1 = K

(2)
2 = 0 we have

T̂
(2)

P (2),K
(2)
1 ,K

(2)
2

◦ T̂ (3)

P (1),K
(1)
1 ,K

(1)
2

(X(i)):,k = s
(i)
k for any i ∈ [n],

which completes the construction of T (2).

Step 3: Construction of T (3) In this step, we construct T (3) to map each s
(i)
k to its

corresponding label y(i)
:,k . Let R3 = 20 · 21rn4N2δ−1

√
πd · (nN)2 · 1 ·

√
πd. By applying Lemma

E.2 to input-output pairs (s
(i)
k ,y

(i)
:,k) for i ∈ [n] and k ∈ [N ], there exists a feed-forward neural

network f3 : R4 → R with width W3 = O(1), and depth L3 =

O(
√

nN log(nN) +

√
nN

log nN
·max{logR3, logC}) = Õ(

√
nN),

such that

f3(s
(i)
k ) = y

(i)
:,k for any i ∈ [n], k ∈ [N ].

Then, we apply Lemma 3.1 to f3 and gain a Transformer T (3) ∈ T (D
(3)
in , D

(3)
out, D

(3)
hid,H

(3), L(3)),
and prompt P (3) ∈ RD

(3)
in ×M(3)

, K(3)
1 ,K

(3)
2 ∈ N+ such that

T̂
(3)

P (3),K
(3)
1 ,K

(3)
2

([
s
(i)
:,1 , · · · , s

(i)
:,N

])
= y(i),

for any i ∈ [n], where D
(3)
in = O(1), D

(3)
out = O(1), D

(3)
hid = O(D

(3)
in ),H(3) = O(1), L(3) = O(1),

and M (3) = Õ(
√
nN), K(3)

1 ,K
(3)
2 = Õ(N ·

√
nN).

Step 4: Put every thing together Based on our analysis above, we have proved that There exist
T = T (3) ◦ T (2) ◦ T (1) with

T (1) ∈ T (O(d), O(1), O(d), O(1), O(1)),

T (2) ∈ T (O(1), O(1), O(1), O(1), O(1)),

T (3) ∈ T (O(1), O(1), O(1), O(1), O(1)),
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and

P (1) ∈ RO(d)×Õ(
√
n),

P (2) ∈ RO(1)×O(1),

P (3) ∈ RO(1)×Õ(
√
nN),

and

K
(1)
1 ,K

(1)
2 = Õ(N ·

√
n),

K
(2)
1 ,K

(2)
2 = O(1),

K
(3)
1 ,K

(3)
2 = Õ(N ·

√
nN)

such that

T̂
(3)

P (3),K
(3)
1 ,K

(3)
2

◦ T̂ (2)

P (2),K
(2)
1 ,K

(2)
2

◦ T̂ (1)

P (1),K
(1)
1 ,K

(1)
2

(X(i)) = y(i) for any i ∈ [n],

which completes the proof of Theorem 3.1.

D.5 The Limitation of a Single ReLU Self-attention Layer

In Theorem 3.1, the activation function used in each self-attention layer is ReLU. Although ReLU-
based Transformers are not commonly utilized in practice, empirical studies [Shen et al., 2023,
Wortsman et al., 2023] have demonstrated that, with appropriate normalization techniques, they can
achieve competitive performance across a range of tasks. The Softmax function converts pairwise
dot products into strictly positive attention weights, enabling each token to attend to all others in
the absence of explicit masking. However, for theoretical analysis, it is often necessary to restrict
attention to specific tokens. To achieve such deterministic token interactions, existing studies
typically replace Softmax with Hardmax function or constrain it to perform column averaging
operation. In contrast, since ReLU function zeroes out all negative inputs, it provides a more explicit
mechanism to control token interactions (see details in [Nakada et al., 2025]). Nevertheless, this does
not imply that ReLU-based self-attention is theoretically more expressive than its Softmax-based
counterpart.

In this following, we study the limitation of a single layer ReLU self-attention to distinguish the same
token in different contexts. Specifically, we want to know for any sequential inputs X(1),X(2) ∈
Rd×N with X

(1)
:,k = X

(j)
:,l for some k, l ∈ [N ], and X(1) ̸= X(2) under any column permutation,

whether we can find a ReLU self-attention layer FSA such that

FSA(X
(1)):,k ̸= FSA(X

(2)):,l.

According to Theorem 2 in [Kajitsuka and Sato, 2023], a single Softmax self-attention layer is able
to achieve this property. However, in the following, we construct a counterexample to show there
exist X(1) ̸= X(2) with X

(1)
:,2 = X

(2)
:,2 such that any single ReLU self-attention layer can not

differentiate the second token in X(1) and X(2).

Fix any d ∈ N+. Let X(1) = (α1v, α2v, α3v) ∈ Rd×3 and X(2) = (α4v, α2v, α5v), with v ∈ Rd

and α1, α2, α3, α4, α5 ∈ R>0. Let σR denote the ReLU function and FSA be an arbitrary single
self-attention layer with H heads, which has the following form,

FSA(X) := X +

H∑
i=1

W
(i)
V XσR

[
(W

(i)
K X)T (W

(i)
Q X)

]
∈ RDin×N .
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Through direct verification and according to the definition of ReLU function, the second column of
the outputs of FSA given input X(1) and X(2) are

FSA(X
(1)):,2 = X

(1)
:,2 +

H∑
i=1

(
α2α

2
1σR⟨W (i)

Q v,W
(i)
K v⟩W (i)

V v + α2α
2
3σR(⟨W (i)

Q v,W
(i)
K v⟩)W (i)

V v

+ α3
2σR(⟨W (i)

Q v,W
(i)
K v⟩)W (i)

V v

)
=

H∑
i=1

(
α2(α

2
1 + α2

2 + α2
3)

)
σR(⟨W (i)

Q v,W
(i)
K v⟩)W (i)

V v,

FSA(X
(2)):,2 = X

(2)
:,2 +

H∑
h=1

(
α2α

2
4σR(⟨W (i)

Q v,W
(i)
K v⟩)W (i)

V v + α2α
2
5σR(⟨W (i)

Q v,W
(i)
K v⟩)W (i)

V v

+ α3
2σR(⟨W (i)

Q v,W
(i)
K v⟩)W (i)

V v

)
=

H∑
h=1

(
α2(α

2
4 + α2

2 + α2
5)

)
σR(⟨W (i)

Q v,W
(i)
K v⟩)W (i)

V v.

If α2
1 + α2

3 = α2
4 + α2

5, we always have FSA(X
(1)):,2 = FSA(X

(2)):,2, even if (α1, α2, α3) ̸=
(α4, α2, α5).

E Supporting Lemmas

Lemma E.1 (Theorem C.2 in [Nakada et al., 2025]). For any L layer ReLU feed-forward neural
network f , which has the following form

f(x) = LL ◦ σR ◦LL−1 ◦ · · ·L1 ◦ σR ◦L0(x) for any x ∈ Rd,

where Lℓ(x) := Wℓx with Wℓ ∈ Rd×d. There exists a Transformer T ∈ T (Din, Dout, Dhid,H, L)
with all the parameters only depend on d, and Din = O(d), Dout = O(d), Dhid = O(Din),
H = O(1), L = O(1) satisfying: for any n data points {xi}ni=1 ⊂ [0, 1]d, there exists a prompt
P ∈ RDin×M such that

T̂P,Ki,Ki = f(xi),

where Ki = n · (L+ 1) + i for i ∈ [n], and M = O(
∑L

ℓ=0 rank(Wℓ)) ≤ O(d · (L+ 1)).

Lemma E.2 (Lemma C.1, [Kajitsuka and Sato, 2024]). Let n,m, d, c ∈ N+ with n ≤ m, and r ≥ 1,
0 < δ ≤ 1. Let y(1), · · · , y(n) ∈ [C] be a set of n labels, and x(1), · · · ,x(m) ∈ Rd be a set of
m inputs such that x(i) ∈ [0, 1]d with ∥x(i)∥2 ≤ r for any i ∈ [m], and ∥x(i) − x(j)∥2 ≥ δ for
any i, j ∈ [m] with i ≠ j. Denote R := 20rm2δ−1

√
πd. Then, there exists a feed-forward neural

network f : Rd → R with width W = O(1), depth L =

O

(√
n log n+

√
n

log n
·max{log(R), log(C)}

)
,

such that f(x(i)) = y(i) for every i ∈ [n], and f(x(i)) = 0 for any i ∈ [m]\[n].
Lemma E.3. Let n,m, d, C ∈ N+ with n ≤ m, and r ≥ 1, 0 < δ ≤ 1. Let y(1), · · · , y(n) be a set
of n labels and x(1), · · · ,x(m) ∈ Rd be a set of m inputs such that x(i) ∈ [0, 1]d with ∥x(i)∥2 ≤ r

for any i ∈ [m], and ∥x(i)−x(j)∥2 ≥ δ for any i, j ∈ [m] with i ̸= j. Denote R := 20rm2δ−1
√
πd.

Then, there exsits a feed-forward neural network f : Rd → R with width W = O(n), depth L =

O(max{logR, logC}),

such that f(x(i)) = y(i) for every i ∈ [n], and f(x(i)) = 0 for every i ∈ [m]\[n].
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Proof of Lemma E.3. In Lemma E.2, we notice that the width of the feed-forward neural network
is a constant, while the depth depends on the number of data points to be memorized. This result
can be transformed into the one where the width depends on the number of data points while depth
is constant up to logarithmic factors. Firstly, by applying Lemma E.4 to {x(i)}ni=1, there exists a
feed-forward neural network f with width and depth both O(1) such that the inputs are mapped
to R while approximately remains their original distance. Let x(i) ∈ R denote f(x(i)). Next, let
B ∈ [⌊

√
n⌋] \{1} be an arbitrary integer. We divide data points x(1), · · · , x(n) into n

B2 subsets, each
of which has a size of B2. We denote these subsets as I1, · · · , I n

B2
. We apply Lemma E.2 to these

subsets respectively to get n
B2 feed-forward neural networks f1, · · · ,f n

B2
, each of which satisfies

fi(x
(j)) =

{
y(j) x(j) ∈ Ii,

0 Otherwise.

Let F denote the concatenation of f1 ◦ f , · · · ,f N
B2

◦ f , which takes input x(i) and outputs

F (x(i)) =


f1(x

(i))
...

f n
B2

(x(i))

 .

There is only one entry of F (x(i)) not zero and equals to y(i). It is clear that f ∈
FF(O(1), O(1),Rd → R), and fi ∈ FF(O(1), O(max{logR, logC}),R → R) for any i ∈ [ n

B2 ].
Then, we know that

F ∈ FF(O(n), O(max{logR, logC}),Rd → R),

which completes the proof by letting f = F .

Lemma E.4 (Lemma A.2, [Vardi et al., 2021]). Let n ∈ N+, and r ≥ 1, 0 < δ ≤ 1. Let
x(1), · · · ,x(n) ∈ Rd be n inputs such that x(i) ∈ [0, 1]d with ∥x(i)∥2 ≤ r for any i ∈ [m], and
∥x(i) − x(j)∥2 ≥ δ for any i, j ∈ [m] with i ̸= j. Then, there exists a feed-forward neural network
f ∈ FF(O(1), O(1),Rd → R), such that 0 ≤ f(x(i)) ≤ 10rn2δ−1

√
πd for every i ∈ [N ] and∣∣f(x(i))− f(x(j))

∣∣ ≥ 2 for every i, j ∈ [n] with i ̸= j.

Lemma E.5 ([Park et al., 2021]). Let d ∈ N+. Then, for any finite subset S ⊂ Rd, there exists a
unit vector v ∈ Rd such that

1

|S|2

√
8

πd
∥x− x′∥2 ≤

∣∣v⊤(x− x′)
∣∣ ≤ ∥x− x′∥2

holds for any x,x′ ∈ S.

F Prompt Tuning Transformers to Exactly Implement Residual
Feed-Forward Neural Networks

Residual feed-forward neural network was proposed by [He et al., 2016], which is widely used
existing works [Yun et al., 2019] as a substitute of non-residual feed-forward neural networks. We
define the class of residual neural networks as

R(W,L,Rd → Rd) :=

{
f : f = FL ◦ FL−1 ◦ · · · ◦ F1(x),x ∈ Rd

}
.

There are three parameters to describe a residual neural network. d is the input dimension and the
output dimension. Fi(x) := x + W 2

i σR(W
1
i x + b1i ) + b2i , where W 1

i ∈ RW×d, b1i ∈ RW and
W 2

i ∈ Rd×W , b2i ∈ Rd. σR represents the element-wise ReLU function. W is called the width of R
and L is called the depth. We provide a lemma that shows any residual feed-forward neural network
can be realized by a non-residual one.
Lemma F.1. For any residual neural network g ∈ R(W,L,Rd → Rd) with some d,W,L ∈ N+,
then g ∈ FF(W + 2d, L,Rd → Rd).
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Proof. Our proof basically follows [Jiao et al., 2025a]. Given any residual neural network g ∈
R(W,L,Rd → Rd), which can be written as g(x) = FL ◦ · · · ◦ F1(x). Firstly, without loss of
generality, we show that ReLU feed-forward neural networks can implement F1. We define

W1 =


W 1

1

Id×d

−Id×d

 ∈ R(W+2d)×d, b1 =


b11

0

0

 ∈ RW+2d,

W2 =
(
W 2

1 Id×d −Id×d

)
∈ Rd×(W+2d), b2 = b21 ∈ Rd.

It is straightforward to verify that

W2σR(W1x+ b1) + b2 = W2


σR(W

1
1 x+ b1)

σR(x)

σR(−x)

+ b2

= W 2
1 (σR(W

1
1 x+ b11)) + σR(x)− σR(−x) + b2

= x+W 2
1 σR(W

1
1 x+ b11) + b21 = F1(x).

where we use the fact that σR(x)−σR(−x) = x. Let f1 denote W2(σR(W1(x))+b1)+b2, which
is a non-residual feed-forward neural network with width W +2d and depth 1. Similarly, we define
fi in the same manner which implements Fi, respectively. In the last, By composing {fi}i∈[L], we
have a feed-forward neural network f = fL ◦ fL−1 ◦ · · · ◦ f1, and the width of which is W + 2d,
while the depth is L, that is, f ∈ FF(W + 2d, L,Rd → Rd). The proof is completed by pointing
out that f(x) = g(x) for any x ∈ Rd.

We present the extension of Lemma 3.1, where the feed-forward neural network is replaced by a
residual one.
Lemma F.2. Fix any W,d ∈ N+. There exsits a Transformer T ∈ T (Din, Dout, Dhid,H, L)
such that for any residual ReLU feed-forward neural network g ∈ R(W,L,Rd → Rd) for some
W,L, d ∈ N+, and n inputs X(1), · · · ,X(n) ⊂ Rd×N . There exits a prompt P ∈ RDin×M ,
K1,K2 ∈ N+ such that

T̂P ,K1,K2
(X) = [g(X

(i)
:,1 ), · · · , g(X

(i)
:,N )] for any i ∈ [n],

where Din = O(W + 2d), Dout = O(1), Dhid = O(Din), H = O(1), L = O(1), and M =
O((W + d)L), K1,K2 = O(NL).

Proof. According to Proposition F.1, there exists a feed-forward ReLU neural network f ∈
FF(W + 2d, L,Rd → Rd) such that f(x) = g(x) for any x ∈ Rd. This proof is completed
by applying Lemma 3.1 to f .

G Data Memorization with Real Labels

In Section 3, we focus on integer labels, which can be regarded as a classification problem. It is
easy to extend our results to real labels by adopting methods in existing literature. As proposed
in [Vardi et al., 2021], when the output range is bounded, we can partition the output range into
ϵ-length intervals, each interval can be treated as a class. Then we reduce the problem to a data
memorization with O( 1ϵ ) classes. However, this method can only achieve ϵ-error instead of zero
loss. Although [Hu et al., 2024] show that there exists a trade-off between the width and depth of
neural networks, their results are established on ϵ-error. In this section, we first show that it is easy
to build a ReLU neural network with width n and depth 1, which maps input vectors to real labels.
Our proof is modified from [Jiao et al., 2025a], where we use a ReLU neural network instead of a
residual neural network.
Lemma G.1. Given any d, n ∈ N+. Let (x(1), y(1)), · · · , (x(n), y(n)) ⊂ Rd × [0, 1] be the input-
label pairs with ∥x(i) − x(j)∥2 ≥ δ for every i ̸= j ∈ [n] and ∥x(i)∥2 ≤ r for every i ∈ [n]. Then,
there exists a feed-forward neural network f ∈ FF(O(n), O(1),Rd → R) such that f(x(i)) = y(i)

for any i ∈ [n].
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Proof. According to Lemma E.5, there exists v ∈ Rd such that v⊤x(i) are distinct. Let K > 0 be
determined later. We define

W
(1)
i = K


1

1

1

v⊤, b
(1)
i =


−Kv⊤x(i) − 1

−Kv⊤x(i)

−Kv⊤x(i) + 1

 , ,W
(2)
i = y(i)(1,−2, 1), b

(2)
i = 0.

where W
(1)
i ∈ R3×d, b(1)i ∈ R3, W (2)

i ∈ R1×3, and b
(2)
i ∈ R.

It is straightforward to verify that

W
(2)
i σR(W

(1)
i x+ b

(1)
i ) + b

(2)
i

= y(i)

(
σR(Kv⊤(x− x(i))− 1)− 2σR(Kv⊤(x− x(i))) + σR(Kv⊤(x− x(i)) + 1)

)
= y(i)Ii(x),

where Ii(x) satisfies Ii(x
(i)) = 1 and Ii(x) = 0 if |v⊤(x − x(i))| ≥ 1/K. We choose K >

2
mini ̸=j |v⊤(x(j)−x(i))| . Define

W (1) =


W

(1)
1

...

W
(1)
n

 , b(1) =


b
(1)
1

...

b
(1)
n

 , W (2) = (W
(2)
1 , · · · ,W (2)

n ), b(2) = 0,

where W (1) ∈ R3n×d, b(1) ∈ R3n, W (2) ∈ R1×3n, b(2) ∈ R. Let

f(x) = W (2)σR(W
(1)x+ b(1)) + b(2)

=

n∑
i=1

y(i)Ii(x).

The proof is completed by verifying that f(x(i)) = y(i) and f ∈ FF(O(n), O(1),Rd → R).

Next, we present the trade-off between the width and depth of the feed-froward neural networks that
are constructed to memorize datasets with real labels. In [Yun et al., 2019], their results rely on
piecewise linear functions which yield approximation error by ReLU function and [Hu et al., 2024]
also face the same problem. Our following result is novel since it does not cause any extra error and
exactly achieves the zero loss.

Lemma G.2. Given any d, n ∈ Z+. Let (x(1), y(1)), · · · , (x(n), y(n)) ⊂ Rd × [0, 1] be the input-
label pairs with ∥x(i) − x(j)∥ ≥ δ for every i ̸= j ∈ [n] and ∥x(i)∥ ≤ r for every i ∈ [n]. Then,
there exists a feed-forward neural network f ∈ FF(O(1), O(n),Rd → R) such that f(x(i)) = y(i)

for any i ∈ [n].

Proof of Lemma G.2. According to Lemma E.4, there exists a feed-forward neural network F :
Rd → R with width O(1) and depth O(1) such that |F (x(i)) − F (x(j))| ≥ 2 and F (x(i)) ≥ 0 for
any i ̸= j ∈ [n]. Let x(i) denote the output of F given input x(i). Let fi(x) := x+W

(i)
2 σR(W

(i)
1 x+

b
(i)
1 ) + b

(i)
2 , where

W
(i)
1 =


1

1

1

 , b
(i)
1 =


−x(i) − 1

−x(i)

−x(i) + 1

 , W
(i)
2 = (y(i) − x(i) − 4)(1,−2, 1), b

(i)
2 = 0,
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and W
(i)
1 ∈ R3×1, b(i)1 ∈ R3, W (i)

2 ∈ R1×3, b(i)2 ∈ R. It is direct to verify that

fi(x) = x+W
(i)
2 σR(W

(i)
1 x+ b

(i)
1 ) + b

(i)
2

= x+ (y(i) − x(i) − 4)

(
σR(x− x(i) − 1)− 2σR(x− x(i)) + σR(x− x(i) + 1)

)
=

{
y(i) − 4 if x = x(i),

x if |x− x(i)| ≥ 1.

Define fn+1(x) = x+0σR(0 ·x+0)+4. Let f̂ = fn+1◦fn◦fn−1◦· · ·◦f1 ∈ R(3, n+1,R → R).
Since y(i) ∈ [0, 1], we can verify that

f̂(x(i)) = y(i) for any i ∈ [n].

By applying Lemma F.1 to f̂ , there exists a feed-forward neural network f ′ ∈ FF(5, n+1,R → R)
such that f ′(x(i)) = y(i) for any i ∈ [n]. Let f denote the composition of f ′ and F . It is clear that
f ∈ FF(O(1), O(n)),Rd → R, which completes the proof.

Note that in order to obtain the similar trade-off between prompt length and the number of
intermediate steps in Section 3, we need to prove that there exists a ReLU neural network with
depth Õ(

√
n) that can memorize n data points with real labels. However, we only derive a weaker

version with O(n) depth, which is still an open problem for future research. We provide similar
Theorems of prompt tuning Transformers for data memorization with real labels without proof since
the proofs are basically the same as that of Theorem 3.1.

Theorem G.1. Fix any d ∈ N+. There exists a composition of three Transformers T = T (3) ◦
T (2) ◦T (1) with T (i) ∈ T (D

(i)
in , D

(i)
out, D

(i)
hid,H

(i), L(i)), such that for any sequence of input-output
pairs (X(1),y(1)), · · · , (X(n),y(n)) ∈ Rd×N × [C]1×N satisfying Assumption 3.1 and N > 1,
there exist prompts P (i) ∈ RD

(i)
in ×M(i)

and K
(i)
1 ,K

(i)
2 ∈ N such that

T̂
(3)

P (3),K
(3)
1 ,K

(3)
2

◦ T̂ (2)

P (2),K
(2)
1 ,K

(2)
2

◦ T̂ (1)

P (1),K
(1)
1 ,K

(1)
2

(X(i)) = y(i) for any i ∈ [n],

where D
(i)
in = O(d), D(i)

out = O(1), D(i)
hid = O(Din), H(i) = O(1), L(i) = O(1), and M (i) =

O(n), K(i)
1 ,K

(i)
2 = O(N · n), for i = 1, 2, 3.

Theorem G.2. Fix any d, n ∈ N+. There exists a composition of three Transformers T = T (3) ◦
T (2) ◦T (1) with T (i) ∈ T (D

(i)
in , D

(i)
out, D

(i)
hid,H

(i), L(i)), such that for any sequence of input-output
pairs (X(1),y(1)), · · · , (X(n),y(n)) ∈ Rd×N × [C]1×N satisfying Assumption 3.1 and N > 1,
there exist prompts P (i) ∈ RD

(i)
in ×M(i)

and K
(i)
1 ,K

(i)
2 ∈ N such that

T̂
(3)

P (3),K
(3)
1 ,K

(3)
2

◦ T̂ (2)

P (2),K
(2)
1 ,K

(2)
2

◦ T̂ (1)

P (1),K
(1)
1 ,K

(1)
2

(X(i)) = y(i) for any i ∈ [n],

where D
(i)
in = O(n ∨ d), D(i)

out = O(1), D(i)
hid = O(Din), H(i) = O(1), L(i) = O(1), and

M (i) = O(n), K(i)
1 ,K

(i)
2 = O(N), for i = 1, 2, 3.

H Low-Rank Bias of Prompt Tuning

Deep neural networks, despite their enormous parameter counts, often display an implicit preference
for learning functions of low effective complexity. One notable manifestation of this phenomenon
is the low-rank biasthe empirical tendency of neural networks to produce representations, weight
matrices, or inputoutput mappings that are approximately low-rank, even in the absence of explicit
rank constraints. This bias reflects a form of structural simplicity that naturally arises from standard
optimization and regularization procedures such as stochastic gradient descent, weight decay, and
early stopping [Gunasekar et al., 2018, Huh et al., 2021].

In the case of linear models, theoretical analyses have shown that gradient descent implicitly
minimizes the nuclear norm, thereby converging to low-rank solutions. This phenomenon extends
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to deep nonlinear networks, where empirical studies reveal that the singular value spectra of trained
weight matrices and activation covariances decay rapidlysuggesting that most of the representational
variance is captured by a small number of dominant modes. Similar low-rank patterns also emerge
in self-attention mechanisms, where effective attention maps are often confined to low-dimensional
subspaces.

From a theoretical perspective, the low-rank bias can be viewed as a form of implicit regularization,
whereby the dynamics of stochastic gradient descent favor smoother and more compressive
mappings. This implicit regularization provides a partial explanation for the strong generalization
ability of overparameterized neural networks: low-rank solutions reduce model complexity and
improve robustness to input perturbations. However, this same bias can also limit expressivitytasks
requiring high-rank or highly entangled feature interactions may be more difficult to capture under
such constraints.

An equally important factor lies in the geometry of the data distribution itself. Real-world
data—such as images, language, audio, and other structured signals—typically lie on or near a
low-dimensional manifold embedded within a high-dimensional ambient space. This manifold
hypothesis implies that, although input representations are high-dimensional, the intrinsic degrees of
freedom governing them are much smaller. Neural networks trained via gradient-based optimization
may thus naturally adapt to this underlying manifold structure, leading to the emergence of low-rank
patterns in their learned parameters and representations.

In the following, we prove that under certain assumption, prompt tuning does can capture the low-
rank structure in the dataset, which leads to a reduction in prompt length. The prompt length does
not depend on the number of data points to be memorzied, while mainly determined by the number
of classes.

Theorem H.1. Fix any n, d ∈ N+. There exists a Transformer T ∈ T (Din, Dout, Dhid,H, L)
such that for any sequence of input-output pairs (x(1), y(1)), · · · , (x(n), y(n)) ∈ Rd× [C] satisfying
Assumption 3.1, and we assume that y(1), · · · , y(n) have at most m different values with n = m · k.
Without loss of generality, we denote the m different values as v(1), · · · , v(m). Define the set Y(i) :=
{x(j) : y(j) = v(i)}, which contains all the inputs whose labels are the same. We assume that for
any i ∈ [m], there exsits a vector z(i) ∈ Rd such that for any x ∈ Y(i), we have x = c · z(i) for
some distinct c ∈ R>0. Then, there exist a prompt P ∈ RDin×M and K ∈ N+ such that

T̂P ,K,K(x(i)) = y(i) for any i ∈ [n],

where Din = O(n), Dout = O(1), Dhid = O(Din), H = O(1), L = O(1), and M = O(m),
K = O(1).

Proof of Theorem H.1. According to our assumption, we know that the whole dataset
(x(1), y(1)), · · · , (x(n), y(n)) can be divided into m subsets. in each of which, labels are the same.
Without loss of generality, we assume that all the x(i) are listed in order in terms of their labels and
we let x(i) = c(i)z(i). According to Lemma E.5, there exists v ∈ Rd such that v⊤x(i) are distinct.
Let K > 0 be determined later. We define

W
(1)
i = K


1

1

1

v⊤, b
(1)
i =


−Kv⊤x(i) − c(i)

−Kv⊤x(i)

−Kv⊤x(i) + c(i)

 , ,W
(2)
i =

1

c(i)
y(i)(1,−2, 1), b

(2)
i = 0.

where W
(1)
i ∈ R3×d, b(1)i ∈ R3, W (2)

i ∈ R1×3, and b
(2)
i ∈ R.

It is straightforward to verify that

W
(2)
i σR(W

(1)
i x+ b

(1)
i ) + b

(2)
i

=
1

c(i)
y(i)

(
σR(Kv⊤(x− x(i))− c(i))− 2σR(Kv⊤(x− x(i))) + σR(Kv⊤(x− x(i)) + c(i))

)
=

1

c(i)
y(i)Ii(x),
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where Ii(x) satisfies Ii(x
(i)) = c(i) and Ii(x) = 0 if |v⊤(x − x(i))| ≥ |c(i)|/K. Let c =

max{|c(1)|, · · · , |c(n)|}. We choose K > 2c
mini ̸=j |v⊤(x(j)−x(i))| . Define

W (1) =


W

(1)
1

...

W
(1)
n

 , b(1) =


b
(1)
1

...

b
(1)
n

 , W (2) = (W
(2)
1 , · · · ,W (2)

n ), b(2) = 0,

where W (1) ∈ R3n×d, b(1) ∈ R3n, W (2) ∈ R1×3n, b(2) ∈ R. Let
f(x) = W (2)σR(W

(1)x+ b(1)) + b(2)

=

n∑
i=1

1

c(i)
y(i)Ii(x).

It is direct to verify that f(x(i)) = y(i) and f ∈ FF(O(n), O(1),Rd → R) by using the fact

σR(−c(i)) + σR(c
(i)) = c(i),

|v⊤(x− x(i))| ≥ min
i ̸=j

|v⊤(x(j) − x(i))| ≥ |c(i)|
2c

·min
i ̸=j

|v⊤(x(j) − x(i))| = |c(i)|
K

.

As for the ranks, we point out that

rank([W (1), b(1)]) ≤ 3m,

rank([W (2), b(2)]) = 1.

According to Lemma E.1 and Lemma 3.1, there exsits a Transformer T ∈
T (Din, Dout, Dhid,H, L), prompt P ∈ RDin×M , and K ∈ N+ such that

T̂P ,K,K(x(i)) = y(i),

where Din = O(n), Dout = O(1), Dhid = O(Din), H = O(1), L = O(1), and M = O(m),
K = O(1). The proof is completed.

I Experimental Details

I.1 Setup Details

All the experiments are conducted on one NVIDIA T4 GPU. Our code is based on standard PyTorch
modules.

Figure 1 We randomly sample 1000 samples from SST-2 dataset [Socher et al., 2013], which are
truncated to a length of 8. The length of the prompts prepended to the inputs is also 8. Number of
training epochs is 1000, leanring rate is 0.005. Optimizer is AdamW [Loshchilov and Hutter, 2017].
We use the Roberta-base (12 heads and 12 layers) implementation of Hugginface [Wolf et al., 2019].
We plot the average attention patterns over all the training samples of heads in the 10-th layer.

Table 1 We randomly sample 1600, 2500, and 3600 data points from IMDb dataset [Maas et al.,
2011] and the corresponding prompt length is set to be 40, 50, and 60, which is roughly the square
root of the dataset size. Number of training epochs is 100, learning rate is 0.001. Optimizer is
AdamW. We use a two-layer hand-crafted Transformer architecture, in which the activation function
in each self-attention layer can be ReLU or Softmax, number of heads is 8 and hidden dimension is
4 times the embedding size 512.

Table 2 We randomly sample 2000 input sequential data X(i) ∈ R16×8 from distribution
N(−1, 4). Then, we initialize a ReLU feed-forward neural network with 8 layers and width 32
following three strategies: default initialization strategy in PyTorch, replacing [W , b] in each layer
by a rank-1 matrix, and initializing low-rank [W , b] together with a rank-1 embedding layer. To
achieve a low-rank structure, we use the fact that rank(AB) ≤ min{rank(A), rank(B)}. Number
of training epochs is 100, learning rate is 0.001. Optimizer is AdamW. The backbone is a one-layer
one-head Transformer with ReLU activation, embedding size 128, hidden dimension 4 ·128. Prompt
length is set to be 10, 20, 30 and 40.
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Table 3 We randomly sample 1600 data points from IMDb dataset the set the prompt length to
be 40. The backbone is a two-layer ReLU Transformer with random word embeddings. Number of
training epochs is 100, learning rate is 0.001. Optimizer is AdamW. To initialize low-norm FFN, we
utilize the SVD of W and modify its spetral norm. To initialize low-rank WV , WK , WQ, we set
them to be a multiplication of two low-rank matrices.

I.2 Additional Experimental Results

In this section, we present some additional experimental results.

Figure 2: Attention patterns from head 1 to head 6 of random ReLU, Softmax Transformer averaged
over 100 samples from IMDb dataset, using word embeddings from T5-small. The input sequence
length is 16 where the first 8 tokens are prompt tokens and the remaining 8 are data tokens. The first
row displays attention patterns of random Softmax Transformer, and the second row corresponds to
the ReLU Transformer. Due to the normalization effect in Softmax function, the attention weights
on data tokens in the random Softmax transformer are diluted by the presence of prompt tokens.
In contrast, the random ReLU Transformer can assign significantly larger attention weights to data
tokens.

Figure 3: Attention patterns from head 1 to head 6 of random ReLU, Softmax Transformer averaged
over 100 samples from IMDb dataset, using random word embeddings. The input sequence length
is 16 where the first 8 tokens are prompt tokens and the remaining 8 are data tokens. The first row
displays attention patterns of random Softmax Transformer, and the second row corresponds to the
ReLU Transformer. Both Softmax and ReLU Transformer tend to assign equal attention weights to
prompt tokens and data tokens.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not
remove the checklist: The papers not including the checklist will be desk rejected. The checklist
should follow the references and follow the (optional) supplemental material. The checklist does
NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (12 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] "
provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper
Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and/or introduction should clearly state the claims made,
including the contributions made in the paper
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: They are mentioned separatly in the conlusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The
authors should reflect on how these assumptions might be violated in practice and
what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the
approach. For example, a facial recognition algorithm may perform poorly when
image resolution is low or images are taken in low lighting. Or a speech-to-text system
might not be used reliably to provide closed captions for online lectures because it fails
to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency
play an important role in developing norms that preserve the integrity of the
community. Reviewers will be specifically instructed to not penalize honesty
concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All detailed proof and assumptions are provided.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any

theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be
complemented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the experimental details to reproduce the results are mentioned in the
Appendix.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may
depend on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to
reproduce the model (e.g., with an open-source dataset or instructions for how
to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
Answer: [Yes]
Justification: We only use public datasets in this paper. The code will be publically
available upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?

Answer: [Yes]

Justification: We have mentioned all the training details and evaluation settings in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?

Answer: [NA]

Justification: All of our experiments are all for proof-of-concept. We only focus on whether
the experimental results are consistent with our mathematical theory.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the
hypothesis of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [NA]

Justification: Our experiments are not computationally demanding and our paper is not an
experimental study.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All code of ethics are followed.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of this work since this paper is mainly theoretical.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact
specific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible
mitigation strategies (e.g., gated release of models, providing defenses in addition
to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system
learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example by
requiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the
documentation provided alongside the assets?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the
paper include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection,
curation, or other labor should be paid at least the minimum wage in the country
of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or
equivalent) may be required for any human subjects research. If you obtained IRB
approval, you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs have not been used for constructing the core, important, original
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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