
Model-GLUE: Democratized LLM Scaling for A Large
Model Zoo in the Wild

Xinyu Zhao∗1, Guoheng Sun∗2, Ruisi Cai∗3, Yukun Zhou∗4, Pingzhi Li∗1, Peihao Wang∗3
Bowen Tan5, Yexiao He2, Li Chen6, Yi Liang6, Beidi Chen5, Binhang Yuan4

Hongyi Wang†7, Ang Li†2, Zhangyang Wang†3, Tianlong Chen†1

1UNC CH 2UMD 3UT Austin 4HKUST 5CMU 6Google 7Rutgers University

{xinyu,pingzhi,tianlong}@cs.unc.edu, {ghsun,yexiaohe,angliece}@umd.edu
{ruisi.cai,peihaowang,atlaswang}@utexas.edu

yzhoufw@connect.ust.hk, {btan2,beidic}@andrew.cmu.edu
li.lizliz.chen@gmail.com, yiliang@google.com
biyuan@ust.hk, hongyi.wang.001@rutgers.edu

∗Equal Contribution †Equal Supervision

Abstract
As Large Language Models (LLMs) excel across tasks and specialized domains,
scaling LLMs based on existing models has gained significant attention, which
is challenged by potential performance drop when combining disparate models.
Various techniques have been proposed to aggregate pre-trained LLMs, including
model merging, Mixture-of-Experts, and stacking. Despite their merits, a compre-
hensive comparison and synergistic application of them to a diverse model zoo
is yet to be adequately addressed. In light of this research gap, this paper intro-
duces Model-GLUE, a holistic LLM scaling guideline. First, our work starts with a
benchmarking of existing LLM scaling techniques, especially selective merging,
and variants of mixture. Utilizing the insights from the benchmark results, we
formulate a strategy for the selection and aggregation of a heterogeneous model zoo
characterizing different architectures and initialization. Our methodology involves
clustering mergeable models, selecting a merging strategy, and integrating model
clusters through model-level mixture. Finally, evidenced by our experiments on
a diverse Llama-2-based model zoo, Model-GLUE shows an average performance
enhancement of 5.61%, achieved without additional training. Codes are available
at https://github.com/Model-GLUE/Model-GLUE.

1 Introduction
Large Language Models (LLMs) have demonstrated unparalleled capability in a diverse array of
natural language tasks, encompassing commonsense reasoning, question answering, and specialized
domains such as mathematics and programming [39, 43, 52]. The effectiveness of LLMs is based
on the scaling law, which posits that proportionally increasing model and training data size leads to
enhanced model performance [27]. Nevertheless, the computation overhead and data requirement
surge as LLM continues to scale. With the widespread of open-sourced general or specialized LLMs,
aggregating existing models to construct a more versatile LLM emerges as an economical alternative
to training a larger LLM from scratch [13, 16, 54]. This not only mitigates the computation cost but
also leverages the collective advancements of previous efforts in building LLMs.
Within different methods to combine existing LLMs, a major class is merging [2, 4, 22, 24, 35,
59, 63, 64]. Model merging combines multiple models into a single one of the same size through
weight-space transformation. Wortsman et al. [59] first propose to merge a few fine-tuned models as a
training trick for the flat loss-landscape, and Ilharco et al. [22] extends it to multi-task scenario, both
of which employ the simple averaging. Other works propose more complicated merging methods,

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://github.com/Model-GLUE/Model-GLUE

leveraging weight sparsity [63, 64] and non-uniform coefficient [4, 35]. However, they assume that
all candidate models are “useful” when merging. While this may hold for small-sized designed model
collections, it may not be the case in real-world scenarios given a large and divergent model zoo. How
to ensure the benefits of merging different model zoo sizes and similarities, and exclude “harmful”
candidates, remains underexplored.
Since merging is limited to the same model structures and initial weights, another alternative is
Mixture-of-Experts (MoE) [16]. MoE is a conditional computation architecture that activates only
a subset of model parameters for each specific input example [47]. MoE LLMs have already
demonstrated performance and computational efficiency advantages over their dense counterparts [15,
25, 30, 68]. In particular, we use a broader term “mixture” to denote the aggregation of existing
expert LLMs according to the MoE paradigm, which has been successfully implemented in some
recent practices [50, 54, 55]. However, these implementations neglect the inherent flexibility of MoE
to integrate different expert models, especially those groups that do not work with merging. Also, the
difference and possible synergy between merging and mixing have not been thoroughly investigated.
Based on the above challenges, our primary research question is formulated as:
(Q) Is it feasible to establish a benchmark for selecting and aggregating Large Language Models
(LLMs) from an extensive and varied model zoo based on current state-of-the-art model merging and
mixture, thereby enhancing the overall competence of the final model?

ClusteringModel Zoo in the Wild

××

Searching and Merging

Models after MergingModel Mixture

Router

Output Token

Figure 1: Overview of Model-GLUE, com-
posing of (1) Model Clustering based on ar-
chitecture and weight similarity; (2) Model
Filtering and Searching for merging; (3)
Model Merging within each cluster; (4)
Model Level Mixture of merged models.

To address (Q), we present Model-GLUE, a comprehen-
sive benchmark and set of guidelines for LLM scaling.
Model-GLUE is the first work for LLM scaling encompass-
ing a wide range of model group sizes and variability, with
a principal emphasis on the merging and mixture method-
ologies, and also discussion of model stacking. We first
delve into merging scheduling, analyzing strategies for
identifying potentially detrimental model candidates and
various merging techniques. We then explore a variety
of model mixtures as an alternative to merging, covering
different mixture granularity, routers architecture, routing
input inputs, etc. Building upon the insights from model
merging and mixture, Model-GLUE introduces an efficient
and robust LLM scaling recipe for a diverse set of models.
It starts with model clustering and progressive merging,
and then the mixture of all clusters, thereby integrating similar knowledge from the model zoo while
highlighting the respective strengths of each cluster. Our contributions are outlined as follows:
•We conduct a comprehensive benchmarking analysis of LLM merging strategies, beginning with
identifying each model’s contribution and then followed by filtering out detrimental candidates. Our
findings are validated on a range of LLMs, from a few to over a dozen.
•We assess model mixture for four distinct variants: mixture level, router design, router input, and
hybrid mixture. We have derived several principles for model mixture and discussed its utility as a
solution for scaling models incompatible with merging.
•We introduce a recipe for progressively combining LLM models, Model-GLUE, based on findings
on merging and mixture benchmarks. It first conducts selective merging and then model mixture,
outperforming the best single model on general reasoning, mathematics, and coding tasks.
• Extensive experimental results on Llama-2-based models validate our proposal. For instance,
Model-GLUE achieves an average increase of 5.61% across chatting, mathematics, and coding
benchmarks compared to the best single LLM.

2 Related Works
Model Merging. Merging methods can be divided into zero-shot merging and merge-then-train
approaches. Early zero-shot merging methods are weight averaging and Linear Mode Connectiv-
ity [38, 59]. Later popular methods include Task Arithmetic [22] manipulating task vectors, and
TIES [63] addressing parameter interference through trimming and conflict resolution. DARE [64]
optimizes parameters selectively to enhance merging without extra training. Others focus on geo-
metric properties of weights for merging [49, 24]. Recent Evolutionary Model Merge [4] improves
weight configuration and data token pathways during inference. For the merge-then-train approach,
Fisher merging [35] uses the Fisher information matrix to weigh model parameters to maximize
their joint likelihood. RegMean [26] adapts the linear merging to each linear layer while averaging

2

embeddings and biases. However, both zero-shot and merge-then-train approaches are less effective
for models initialized differently. [2, 23, 53, 62] exploit the permutation symmetry inherent in neural
networks on small to large models. To boost merging efficiency, our focus on merging lies in the
zero-shot merging of models with the same architecture and initialization.
Model Mixture. Mixture-of-Experts (MoE) [47] scales up neural networks by utilizing router
networks to activate different parts of the model for different input tokens. Its integration with Large
Language Models (LLMs) has gained notable recognition for its exceptional generative capabilities
and unparalleled efficiency. Recently, Mixtral [25] demonstrates that the MoE methodology can
achieve the performance of dense LLM counterparts while employing significantly fewer active
parameters. Model mixture combines a collection of dense LLM models, irrespective of their sizes,
into a MoE model. Some studies discover model fusion [54, 55] integrating the outputs of expert
models to exploit the unique insights into the data distribution. Recent initiatives include Branch-
Train-MiX [50], which starts with a seed-dense LLM and then branches out, facilitating the parallel
training of expert models. These trained dense models are subsequently incorporated as experts
within MoE layers, with other parameters being averaged. However, this approach is limited to
dense models that share identical architectures and sizes. Most recently, UltraFuser [13] introduces a
token-level soft gating mechanism that blends model outputs, with a two-stage training strategy.
Model Stacking. Model stacking concatenates two models along the depth dimension. In the era
of LLM, Wu et al. [60] reuses pre-trained LLaMA layers and resets the output projection to zero in
stacking. Kim et al. [28] shows dropping middle layers in stacking yields superior performance. Wang
et al. [57] prove that stacking could help recover model-parameter scaling laws with insufficient data.
Reddi et al. [42] demonstrated that gradual stacking leads to significant improvements in wall-clock
time during the training of few-shot learners. Theoretically, Agarwal et al. [1] proved that model
stacking could be interpreted as Nesterov acceleration in network optimization. However, all the
aforementioned stacking methods involve no more than two kinds of models and primarily focus
on the benefits of training acceleration. In this work, we explore the possibility of stacking two
heterogeneous models to combine their capabilities.
Model Scaling Tools There have been several tools for model mixture and merging, and for scaling
models using existing LLMs. For example, Mergekit is an open-source library designed to facilitate
the application of model merging strategies and the construction of MoE [16]. As a representative of
unified LLM, Beyonder is a set of mixtures of merged and single LLMs for different tasks1. However,
there is still a lack of a comprehensive benchmark of the various mixing and merging techniques and
practical guidance on how to unify groups of LLMs at different levels of similarity.

3 Methodology
3.1 Preliminaries
In this study, we consider a collection of n existing Large Language Models (LLMs), denoted
as {M1, . . . , Mn}, which have been fine-tuned on diverse corpora. Our objective is to outline a
systematic approach towards producing one stronger aggregated model across all knowledge domains.
Specifically, the unified LLM incorporates single LLMs mainly through merging and mixture.

3.2 Model Merging

Linear

SLERP Model Stock

Task Arithmetic

TIES DARE

+

×××

×

Figure 2: Pipeline for model merging, as well as an
overview of merging methods and search strategies.

The concept of Model Merging Model merg-
ing is integrating multiple models into one uni-
fied model in the weight space, compatible with
LLMs of the same initialization [16]. Popular
merging methods can be divided into two types:
❶ Merging entire model weights represented
by Model Soup [59] (Linear), SLERP [49], and
Model Stock [24]; ❷ Task-vector based merging
represented by Task Arithmetic [22], TIES [63],
and DARE [64]. The former method directly
interpolates model weights, while the latter sub-
tracts the pre-trained model from the fine-tuned
model to obtain task vectors and utilizes spar-
sity and consistency of parameters for refined

1https://huggingface.co/mlabonne/Beyonder-4x7B-v3

3

https://huggingface.co/mlabonne/Beyonder-4x7B-v3

merging. The basic Linear interpolation merging is defined as wu =
∑n

i=1 si · wi, where wi and si
are the corresponding model weights and merging coefficient of Mi ∈ {M1, . . . Mn}.
Selective Merging Pipeline Merging can be easily applied to models with the same architecture,
but does not guarantee better results. Therefore, before searching for the merging coefficient, we first
pre-process the models by clustering all the models using cosine similarity and then searching for the
optimal merging coefficient and method within each cluster. Details are explained in Appendix A.5.
Heuristic and Evolutionary Strategies The heuristic strategy is for searching and filtering potential
harmful models for merging. It is based on greedy search, involving three variants: ❶ Heuristic-
Average retain the candidate if there is an improvement on the proxy dataset in each round of
merging. ❷ Heuristic-Coefficient builds upon Heuristic-Average, by combining the previously
merged model with a new candidate using different coefficients in each round. ❸ Heuristic-Similarity
selects the candidate model with the highest or lowest similarity and conducts a coefficient search to
combine it with the previously merged model. Detailed heuristic strategy algorithms can be found
in Appendix A.1 Heuristic strategies perform pairwise merging of models, while many methods
allow for merging multiple models at once. Therefore, we also consider jointly optimizing all model
coefficients using the Evolutionary Strategy.

3.3 Model Mixture

No

YesDecision

Mixture Level

No No No

Model BlockModel FFNModel Block

Identical
Block Structure

Identical
Tokenizer

Identical
Embedding

Identical
Layer NumberYes Yes Yes

FFN Level Mixture

Input Tokens

Embedding

Block

LM Head

N x

Output Tokens

Attention

Expert 1 Expert 2 Expert 3

Router

Σ

Router Design: Linear/MLP
Router Input: Sample/Token

Block Level Mixture

Input Tokens

Embedding

Block

LM Head

N x

Output Tokens

Expert 1 Expert 2 Expert 3

Router

Σ

Router Design: Linear/MLP
Router Input: Sample

Model Level Mixture

Input Tokens

Output Tokens

Expert 1 Expert 2 Expert 3

Router

Router Design: Linear/MLP
Router Input: Sample

Figure 3: The overview and decision flow of three model mixture
levels and their selection philosophy.

The concept of Model Mixture.
Model mixture resembles Mixture-
of-Experts(MoE). It scales a LLM
with multiple pre-trained LLM ex-
perts and further extends beyond tradi-
tional token-dependent Feed-Forward-
Network (FFN) MoE designs [47]. A
mixture model is composed of MoE
modules and the rest shared param-
eters. A MoE module consists of
a router G(·) and n expert networks
{E1, · · · , En}. G(·) takes a router in-
put xG and generate expert assign-
ment for each token input x. Then
MoE outputs a weighted sum of experts’ outputs as MoE(x, xG) =

∑n
i=1 G(xG)i · Ei(x). We experi-

ment with several variations of Model Mixture, classified as follows:
Mixture levels. Traditional Mixture-of-expert models replace the dense FFN layer at each Trans-
former block with an MoE module, which is only compatible with LLMs that share the same
architecture. Besides this ❶ FFN level mixture, we also experiment with two coarse-grained mixtures.
❷ Block level mixture create MoE module by aggregating Transformer blocks with the same index
from each LLM as experts and add a block-wise router. Block level mixture is applicable to models
with different architecture but the same embedding space, layer amounts, and intermediate dimension.
❸ Model level mixture take each LLM as an expert and use a router at mixture model input. Model
level mixture covers any LLM groups not compatible with FFN and block level mixture. In particular,
the model level mixture is similar but not identical to the model ensemble, as the former can be sparse
and focus more on efficiency and exploit single LLM expertise, while the latter produces general
results by averaging or majority voting overall model outputs. Details can be found in Appendix A.3
Router design. The router network of many MoE studies adheres to a ❶ linear router [47]. We
experiment with another more complex ❷ MLP router to examine whether this router design leads
to better performance. It is implemented by two sequential FFN and a ReLU function in between,
inspired by [48, 32]. For the routing method, we employ Top-K selection to all routers, which
activates the K experts corresponding to the K largest softmaxed router output [47, 48].
Router input. We adopt two types of router input for different levels of model mixture: ❶ Token
input for FFN level mixture, where router input is the same as model input; ❷ Sample input for
block and model level mixture, where we calculate the average embedding as the sample input
xG =

∑n
i=1 xn, and route tokens of a sample to the same expert based on sample routing. The

sample routing avoids inconsistency in attention operation.
Hybrid mixture. To explore LLM scaling in between model merging and model mixture, we
propose the hybrid mixture as an intermediate solution. In a hybrid mixture, the bottom few layers of
all single LLMs are merged, and then the rest layers follow any of the mixture level designs.

4

4 Model Merging and Model Mixture for LLMs
4.1 Benchmark Datasets and Configs
Model Zoo. Table 1 provides an overview of the Model Zoo. For benchmarking model merging
and mixture at different sizes of model zoo, we construct 5 groups of Llama-2-based 7B chat LLMs
where the number of models ∈ [2, 4, 8, 12, 16]. In addition, to examine the difference in combining
models from different domains, we introduce Which4 (chat), consisting of four chat models, as a
supplement setting where no single model has a superior advantage in a specific domain.
After comparing the two ways of model scaling, we propose Model-GLUE combining selective
merging and model mixture, which is tested on the largest model family Which16. Which16 is
developed on 12 mergeable Llama-2-based models in Which12, which additionally includes four
highly performant domain-specific models that cannot be merged: three CodeLlama-based models,
two of which are code models and one is a math model, and LLM360/CrystalChat. In particular,
LLM360/CrystalChat use different architecture, initialization, and training data from Llama-2-based
models, while CodeLlama series, initialized from Llama-2, adopt continuous pretraining rather than
fine-tuning as models in Which12.
Table 1: All of the models in our model zoos and their performance. For each model zoo, we denote those
models that belong to it with a colored star ✧: ✧ for Which2, ✧ for Which4 (Chat), ✧ for Which4 (Domain),
✧ for Which8, ✧ for Which12, and ✧ for Which16.

Model Model Zoo ARC WinoGrande MMLU GSM8K MBPP HumanEval Average

migtissera/Synthia-7B-v1.2 [37, 51, 52] ✧✧✧✧✧ 55.03% 73.72% 48.18% 24.03% 17.80% 13.41% 38.70%
neuralmagic/Llama-2-7b-evolcodealpaca [52] ✧✧✧✧ 49.57% 72.45% 41.70% 09.02% 25.60% 31.71% 38.34%
teknium/OpenHermes-7B [52] ✧✧✧✧✧ 56.40% 73.88% 47.84% 09.25% 22.80% 19.51% 38.28%
PygmalionAI/pygmalion-2-7b [52] ✧✧✧✧ 54.10% 75.37% 48.38% 17.29% 19.20% 15.24% 38.26%
meta-llama/Llama-2-7b-chat-hf [52] ✧✧✧✧✧✧ 54.10% 71.27% 47.28% 23.05% 17.00% 13.41% 37.68%
Severus27/BeingWell_llama2_7b [52] ✧✧ 54.95% 72.30% 46.19% 22.29% 13.40% 13.41% 37.09%
meta-math/MetaMath-7B-V1.0 [52, 65] ✧✧✧✧ 47.35% 70.24% 41.58% 59.06% 01.40% 01.22% 36.81%
lmsys/vicuna-7b-v1.5 [66, 52] ✧✧✧✧✧✧ 53.75% 70.56% 49.78% 19.11% 06.00% 19.51% 36.45%
garage-bAInd/Platypus2-7B [21, 29, 52] ✧✧✧ 55.12% 74.03% 49.82% 02.50% 19.00% 14.63% 35.85%
GOAT-AI/GOAT-7B-Community [8, 52] ✧✧ 49.06% 72.22% 49.23% 09.70% 05.40% 09.76% 32.56%
stanford-oval/Llama-2-7b-WikiChat-fused [46, 52] ✧✧ 50.94% 68.59% 39.13% 00.00% 13.80% 04.27% 29.45%
cognitivecomputations/dolphin-llama2-7b [52] ✧✧ 42.66% 65.35% 46.52% 10.69% 00.80% 02.44% 28.08%
meta-math/MetaMath-Llemma-7B [7, 65] ✧ 46.76% 64.33% 46.33% 62.40% 42.00% 31.10% 48.82%
codellama/CodeLlama-7b-Instruct-hf [44] ✧ 43.52% 65.11% 41.83% 17.06% 40.00% 33.70% 40.20%
ise-uiuc/Magicoder-S-CL-7B [58, 44] ✧ 43.77% 63.38% 35.94% 14.33% 50.20% 63.41% 45.17%
LLM360/CrystalChat [34] ✧ 51.54% 70.64% 52.39% 32.45% 38.80% 35.37% 46.87%

For merging benchmarks, we experiment with a larger model zoo, namely Which4, Which8, and
Which12 with models filtered from Which16. For model mixture with higher computational cost, we
experiment with Which2 and Which4.
Benchmarks We assess all models on three categories of benchmarks: (i) Commonsense reasoning
using ARC [10], WinoGrande [45], and MMLU [20]; (ii) Mathematics ability on GSM8K [11]; (iii)
Coding ability on MBPP [6] and HumanEval [9]. The evaluation scripts are based on lm-eval 2 for
commonsense and mathematical reasoning and bigcode-eval 3 for coding datasets. All benchmarks
are under the MIT License.
4.2 Implementation Details for Merging
Proxy Dataset. Since the performance of merging model is not necessarily positive, we need a
proxy dataset to determine whether to reject a particular round of merging in the Heuristic Strategy,
or to compute the model fitness in the Evolutionary Strategy. (i) For MBPP, we select its validation
set. (ii) For HumanEval, due to the unavailability of a validation set and its smaller size, we select
20% of the JavaScript version of HumanEvalPack [36]. (iii) For other tasks, we chose the small-scale
datasets released by tinybenchmarks [40] under MIT License.
Model Zoo and Clustering. The Merging Bench considers 3 model zoos: Which4, Which8, and
Which16. We first cluster the model zoos based on cosine similarity with a threshold of 0.95. Due to
Which16 contains models that cannot be merged, we choose the mergable family obtained through
clustering which is referred to as Which12.
Details of Heuristic Strategy and Evolutionary Strategy. For Heuristic Strategy, to reduce
the search space, we only evaluated Linear interpolation and the range of coefficient search is
{0.1, 0.2...0.9}. In Heuristic-Similarity, we use the average similarity of all weights as the criterion
for selecting models in each round. For Evolutionary Strategy, we refer to the setting of Evolutionary
Model Merge [4], which utilizes the CMA-ES [19] algorithm implemented by Optuna [3]. In contrast,

2https://github.com/EleutherAI/lm-evaluation-harness
3https://github.com/bigcode-project/bigcode-evaluation-harness

5

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness

Which12
Winogrande

M
M

LU

G
SM

8K

HumanEval

M
BP

P

ARC

Winogrande

M
M

LU

G
SM

8K

HumanEval

M
BP

P

ARC

(a) Different Heuristic Strategy

Which12 Which8 Which4

Heuristic Strategy

Winogrande

M
M

LU

G
SM

8K

HumanEval

M
BP

P

ARC

Which8 Which4 Average Performance

(b) Evolutionary Strategy: Different Merge Methods

Winogrande

M
M

LU

G
SM

8K

HumanEval

M
BP

P

ARC

Winogrande
M

M
LU

G
SM

8K

HumanEval
M

BP
P

ARC

Winogrande

M
M

LU

G
SM

8K

HumanEval

M
BP

P

ARC

Which12 Which8 Which4

Merge Method

Figure 4: (a) Comparison between different Heuristic Strategies on Which12, Which8, Which4. (b) Comparison
of different model merging methods in Evolutionary Strategy.

all parameters are randomly initialized, and the fitness values are defined as the accuracy of the proxy
dataset. The optimization was conducted for 200 trials in all scenarios.
4.3 Model Merging Benchmark Results
We start our discussion by examining the effectiveness of existing approaches in depth. Despite
existing merging methods focus on improving the merging techniques, their effectiveness is usually
validated basedt on small-scale model zoos. For instance, Ilharco et al. [22] primarily focuses on the
linear interpolation between two fine-tuned models, while Akiba et al. [4] explores merging three.
Current model practitioners typically download pre-trained models, fine-tune them on their own
data or with unique techniques for specific downstream tasks, and then upload them back to the
public. This practice results in a large number of open-source models being available, yet they remain
underutilized by current merging methods. To this end, instead of solely discussing the merging
technique, we explore an orthogonal question: Can we scale up the size of model zoo to cover more
models, and design an automatic merging technique to benefit from the inclusion?
Failure Case of Existing Approaches. To begin with, we provide a motivating example to show the
failure case of the existing approach. We consider the three models, Llama-2-Chat [52], Vicuna [67]
and CodeLlama [43], all initialized with the same base model, Llama-2 [52]. We merge Vicuna
and CodeLlama with Llama-2-Chat, respectively, and report the evaluation results in Table 14 in
Appendix B.2. We evaluate 6 representative merging techniques implemented in mergekit [16],
including linear interpolation [59], SLERP [49], Model Stock [24], Task Arithmetic [22], DARE [62],
and TIES [63]. By merging Llama-2-chat and Vicuna, the merged model achieves better performance
compared to any single model, while merging Llama-2-chat and CodeLlama fails to outperform all
single models and may even lead to a significant drop in performance, which is also mentioned by Xu
et al. [62]. The results indicate the potential severe performance drop when including un-mergeable
new model in merging (e.g. CodeLlama). Even if it is obtained from the same pre-trained checkpoint.
Such failure case motivates us to design the strategy to automatically select models for merging, and
exclude the models that are unable to merge.
In the following paragraphs, we explore several solutions tailored for large-scale model merging.
These variations address different resource and speed requirements. The introduction of these methods
is organized around answering the following key questions.
Q1: Does handcrafted rules apply to automated model selection and which one performs best?
A: Yes, by a greedy search approach. In this section, we explore three potential heuristics for
model selection and report the results in Figure 4(a). We include the performance of the “best single
model” (the model participant before merging that achieves the best averaged performance). We
additionally validate the performance of heuristic-based merging technique, which are detailed in
Section 3.2. As indicated by the results, the merging technique based on Heuristic-Coefficient yields

6

consistently superior performance when the model zoo is large. For Which4, Heuristic-Average
achieved better performance, while Heuristic-Coefficient performed poorly. This is primarily because
the domain-specific models in Which4 exhibit similar performances and are indispensable.
Q2: How to utilize Evolutionary Strategy for coefficient optimization in model merging? .
We divide the problem into the following sub-questions: (i) Which merging method is most compatible
with Evolutionary Strategy? (ii) Can finer-grained optimization lead to a better merged model? (iii)
How to efficiently merge in a large model zoo? For (i), A: simpler methods such as Linear and Task
Arithmetic are more competitive. We compared four methods: Linear, Task Arithmetic, DARE,
and TIES. As shown in Figure 4(b), Linear merging consistently achieves great results. However,
when the parameters to be optimized are small, Task Arithmetic performs slightly better than Linear.
Under a fixed computational budget, due to the doubling of parameters to be optimized, DARE and
TIES exhibit slightly lower performance compared to other methods. For (ii), A: Yes, but we need
a larger computational budget. We group adjacent n decoder layers together, where they share
the same coefficients. The group size n ∈ [32, 8, 4, 1]. When n = 8, better results were achieved
compared to n = 32, as shown in Table 17. However, as we further decreased the group size, the
performance slightly declined. This could be attributed to our relatively small budget. For (iii), A:
Use Heuristic Strategy to roughly search for coefficients and then fine-tune the coefficients
using Evolutionary Strategy. As shown in Table 18, the combination of the two strategies resulted
in better results with fewer trials. For implementation details, please refer to Appendix A.2.
4.4 Implementation Details for Mixture

Table 2: Model mixture methods and their
abbreviations used in our study. Methods
applicable for models with distinct architec-
tures are highlighted in gray .

Abbreviation Mix. Level Router Router Input Hybrid

F-L-T FFN Linear Token ✗
Hybrid F-L-T FFN Linear Token ✓

F-L-S FFN Linear Sample ✗
F-M-S FFN MLP Sample ✗
B-L-S Block Linear Sample ✗

B-M-S Block MLP Sample ✗
M-L-S Model Linear Sample ✗

Model Zoo and Router Initialization. In Mixture
Bench, we experiment with Which2 and Which4 model
settings. For router design, we mainly adopt a training-free
linear layer router initialized from the prompt vector, as
previous studies have demonstrated its effectiveness in the
zero-shot MoE model [16]. For specific prompt settings,
we refer to the Beyonder model series 4. For the routing
algorithm, we use Top-1 routing for Which2 and Block
level mixture and Model-level mixture for Which4, and
Top-2 for Which4 FFN level mixture.
Post-mixture training. For MLP router that are ran-
domly initialized, we fine-tune the model by language modeling on the GPT4All dataset [5], only
updating the router. We use the GPT4All [5] dataset for post-mixture router training, which is under
Apache 2.0 License. For all the router training experiments, we apply the batch size of 128, a cosine
learning rate scheduler, the learning rate of 5e− 5, and the epochs of 1.
Mixture Method Abbreviations. To simplify the description, we use abbreviations to denote
different mixture methods, as in Table 2.
4.5 Model Mixture Benchmark Results
In this section, we attempt to answer five main research questions about mixture variants: mixture
level, router design, router input, and hybrid merging. We also explore the mixing of very different
models that cannot be merged as the previous probe in our next Model-GLUE recipe that combines
merging and blending for LLM scaling.

Q1: At which level does the model mixture manifest its utmost effectiveness? .
Table 3: Comparison of different mixture levels. For each task in each model
zoo, we highlight the performance best in each model zoo in bold.

Model ARC WinoGrande MMLU GSM8K MBPP HumanEval Average

Which2

Best Single Model 54.27% 71.51% 47.24% 21.30% 18.00% 13.06% 37.68%

F-L-S 52.82% 70.80% 50.04% 23.12% 19.00% 17.68% 38.91%
B-L-S 52.73% 70.01% 49.90% 19.94% 18.84% 15.85% 37.88%
M-L-S 54.44% 72.38% 50.51% 22.21% 20.00% 20.73% 40.04%

Which4

Best Single Model 55.03% 73.72% 48.33% 24.26% 17.80% 13.41% 38.70%

F-L-S 53.75% 73.88% 47.97% 34.87% 21.80% 23.17% 42.57%
B-L-S 52.65% 74.66% 47.05% 21.15% 20.40% 14.63% 38.42%
M-L-S 49.06% 72.14% 41.81% 60.05% 17.60% 15.24% 42.65%

A: Model level mixture is
consistently better. Our
comparative analysis of the
{FFN, block, model} level
mixture, all employing the
linear router and the sam-
ple routing strategy as pre-
sented in Table 3, consis-
tently demonstrates the su-
periority of the Model level
mixture under Which2 and
Which4 setting. This could
be attributed to the design

4https://huggingface.co/mlabonne/Beyonder-4x7B-v2

7

https://huggingface.co/mlabonne/Beyonder-4x7B-v2

that Model Level Mixture route each sample to one expert model, thereby avoiding the conflicts
between different expert models and maximizing the expertise of the most appropriate experts. Since
the experts are not derived from the same pre-training process, directly merging their inconsistent
representation spaces will affect the performance of the mixture model, with more expert parameters
leading to worse results. This is especially evident for Block-level Mixture, as the routing is performed
at each transformer layer and the representation is fed into different expert blocks in series, causing
confusion when switching between different expert knowledge.
Q2: Does more complex router design brings better results? .

Table 4: Comparison between linear and MLP routers on Which2
setting. We highlight better performance within each pair in bold.

Model ARC WinoGrande MMLU GSM8K MBPP HumanEval Average

F-L-T 53.41% 70.48% 50.74% 23.28% 20.80% 16.46% 39.20%
F-M-T 53.58% 72.06% 50.01% 21.92% 17.40% 17.68% 38.78%

B-L-S 52.73% 70.01% 49.90% 19.94% 18.84% 15.85% 37.88%
B-M-S 51.53% 70.56% 49.41% 19.94% 16.60% 14.02% 37.01%

A: Not necessary, as the linear
router outperforms the MLP router.
From Table 4, the performances of
the linear router without additional
training slightly surpass MLP router
models, i.e., F-L-T over F-M-T, B-
L-S over B-M-S. Specifically, linear
router models are better at math and coding datasets, validating prompt vector is effective in assorting
samples from different domains, which is otherwise too implicit to learn via direct language modeling.
Q3: Does model mixture directly works on unmergeable models? .

Table 5: Comparison of the mixture of a unmergeable model pair (Llama-2-
7b-chat and CrystalChat). We highlight the better performance in bold.

Model ARC WinoGrande MMLU GSM8K MBPP HumanEval Average

Best Single Model 52.05% 69.46% 50.77% 27.22% 39.60% 35.98% 45.85%

M-L-S 50.68% 69.77% 50.08% 27.82% 33.80% 30.48% 43.77%

A: No. We directly ap-
ply the setting of Which2
Model level mixture to
Llama-2-7b-chat and Crys-
talChat, an unmergeable
model pair with different ar-
chitectures and initialization. As shown in Table 5, the performance is slightly behind the best single
model. This may be due to simple prompts and direct mixture, as it fails to coordinate the divergence
between drastically different models. We evaluate more complex prompts for the same model pair
and the mixture model outperforms, see Table 19 for more information.
Q4: Which router input is better, token-level or sample-level? .

Table 6: Comparison of different router input designs. Which4 includes one
group with chatting models (Chat) and another with different domain models
(Domain) . We highlight the best performing mixture methods in bold.

Model ARC WinoGrande MMLU GSM8K MBPP HumanEval Average

Which2

Best Single Model 54.27% 71.51% 47.24% 21.30% 18.00% 13.06% 37.68%

F-L-T 53.41% 70.48% 50.74% 23.28% 20.80% 16.46% 39.20%
F-L-S 52.82% 70.80% 50.04% 23.12% 19.00% 17.68% 38.91%

Which4

Best Single Model 55.03% 73.72% 48.33% 24.26% 17.80% 13.41% 38.70%

Chat F-L-T 55.63% 72.77% 50.28% 23.88% 20.00% 22.56% 40.85%
Chat F-L-S 53.75% 70.96% 49.78% 20.32% 20.40% 20.12% 39.22%

Domain F-L-T 55.72% 74.11% 48.32% 30.17% 22.00% 20.12% 41.74%
Domain F-L-S 53.75% 73.88% 47.97% 34.87% 21.80% 23.17% 42.57%

A: Not quite different. To-
ken input suits a mixture
of the same domain mod-
els. Table 6 shows the per-
formance token-based and
sample-based routing are
pretty close. In particu-
lar, for Which2 and Which4
(Chat) where models are
all trained for general chat-
ting purposes, token rout-
ing outperforms, whereas
sample routing is better for
default Which4 (Domain)
with differently specialized
models. This may result from divergence of model knowledge and representation spaces will cause
conflicts in fine-grained token routing.
Q5: Is it feasible for hybrid mixtures to provide enhancements? .

Table 7: Comparison between F-L-T methods with and without hybrid mixture
technique. We highlight the best performing mixture methods in bold.

Model ARC WinoGrande MMLU GSM8K MBPP HumanEval Average

Which2

Best Single Model 54.27% 71.51% 47.24% 21.30% 18.00% 13.06% 37.68%

F-L-T 53.41% 70.48% 50.74% 23.28% 20.80% 16.46% 39.20%
Hybrid F-L-T 54.44% 71.19% 50.45% 23.96% 21.80% 18.29% 40.02%

Which4

Best Single Model 55.03% 73.72% 48.33% 24.26% 17.80% 13.41% 38.70%

F-L-T 55.72% 74.11% 48.32% 30.17% 22.00% 20.12% 41.74%
Hybrid F-L-T 54.86% 73.80% 48.23% 37.53% 24.30% 23.17% 43.65%

A: Yes. Our experiments on
F-L-T with v.s. without the
hybrid mixture, as detailed
in Table 7, demonstrate
that the hybrid mixture sig-
nificantly improves perfor-
mance on average and si-
multaneously reduces the
memory overhead during in-
ference. This improvement
may be attributed to the

8

higher sensitivity of the initial transformer blocks. Avoiding using MoE for these blocks can yield
performance gains, as suggested by a few previous works as well [12, 41]. Surprisingly, our results
show that the hybrid F-L-T model consistently outperforms the standard F-L-T on math and code
tasks. Our further analysis indicates that this improvement might be because of the conversational
nature of the content in GSM8K, MBPP, and HumanEval datasets, which appears to challenge the
routing mechanisms within the initial transformer blocks, leading to ineffective expert specialization.

5 Superior Recipes to Aggregate LLM Knowledge
5.1 Model Merging v.s. Mixture
Q1: For a mergeable model zoo, how should we choose between merging and mixture? For
limited computational resources and similar models, merging is always a simple and effective method.
For the domain-specific models, mixture can bring greater improvements.

Table 8: Comparison between the best merging approach v.s. the best
mixture approach on Which4 (Domain) and Which4 (Chat).

Model ARC WinoGrande MMLU GSM8K MBPP HumanEval Average

Best Single Model 55.03% 73.72% 48.18% 24.03% 17.80% 13.41% 38.70%

Which4 (Domain)

Merging 54.01% 73.64% 47.39% 43.75% 22.40% 21.95% 43.86%
Mixture 54.86% 74.11% 48.23% 49.81% 18.40% 18.29% 43.95%

Which4 (Chat)

Merging 56.23% 73.72% 50.51% 25.85% 21.00% 21.95% 41.54%
Mixture 53.75% 70.96% 49.80% 19.94% 19.80% 20.73% 39.16%

Detailed results are presented in
Table 8. For Which4 (Domain),
due to the appropriately de-
signed linear routers, model
mixture can fully leverage
various domain-specific models,
thus slightly outperforming
merging. For Which4 (Chat),
we adopt the optimal settings
from Which4 (Domain) and
only change the model zoo. Since individual models do not exhibit superior capabilities in a single
domain, it is challenging to design suitable routers at a low cost. Therefore, mixture performed
significantly worse compared to merging. Furthermore, although combining the homogeneous
models in Which4 (Chat) brings some improvement, we can see that Which4 (Domain) overall
outperforms Which4 (Chat). Therefore, increasing the diversity among the models will make a
greater contribution to the combined model.

5.2 Model-GLUE: selective merging then model mixture for better LLM scaling
Q2: How to combine models with greater differences in an extensive and varied model zoo? ...

In Which16, a larger and more diverse model zoo , some models cannot be merged due to structural
differences and models that would degrade in performance when merged with other models. Therefore,
we first cluster the models based on cosine similarity. Within each mergeable family, we perform
either merging or mixture. We initially employ heuristic strategies of merging and report the best
results (i.e., Full Merging) in Table 9. The Llama-2 family (i.e., Which12) consists of up to 12
models, so directly combining them through the mixture is inefficient. Thus, we only consider models
selected by merging and report the results of F-L-T Mixture. From Table 9, we can observe that
Full Merging outperforms F-L-T Mixture.

Table 9: Comparison between the best single model, Full Merging, Full
Mixture and our Model-GLUE.

Model ARC WinoGrande MMLU GSM8K MBPP HumanEval Average

Best Single Model 46.76% 64.33% 46.33% 62.40% 42.00% 31.10% 48.82%

Full Merging 55.12% 73.64% 50.13% 39.35% 21.80% 21.34% 43.56%
F-L-T Mixture 54.69% 73.32% 48.74% 35.18% 22.60% 21.34% 42.65%

Model-GLUE 51.62% 70.56% 51.85% 53.53% 47.20% 51.83% 54.43%

Therefore, we selected Full
Merging as the representative
model for the Llama-2 family
and combined it with other mod-
els that could not be merged
by model mixture. On average,
the Model-GLUE demonstrates a
5.61% improvement over the Best Single Model. More details are presented in Appendix A.4.

6 Discussion with Other LLM Aggregation Techniques
Thus far, we mainly focus on two LLM aggregation techniques: model merging and mixture. In this
section, we discuss other potential techniques that could help scaling existing LLMs.
Model Stacking. Research has demonstrated that stacking a model itself can accelerate training
convergence as opposed to training a model of double the size from scratch [17, 18, 56, 60, 28]. This
concept can be extended naturally to stack multiple models as one larger model. Our experimental
results indicate that model stacking with lightweight fine-tuning can yield superior performance
compared to various merging and mixture models. For instance, stacking 7B Llama-2-chat and
Vicuna can achieve ≥ 55% on the MMLU benchmark. When compared to model mixture, model

9

stacking offers less flexibility in terms of model choices. Although the resulting architecture is
more standardized than MoE, increasing the model depth through stacking also results in higher
latency than mixture models where subnetworks infer in parallel. Additionally, model stacking does
not simplify the design space, such as determining whether, which, and how many layers should
be dropped when stacking two heterogeneous models. We conducted a preliminary investigation
employing model stacking techniques to address two primary research questions: (1) Can model
stacking effectively combine the capabilities of two distinct models and surpass the performance of
self-stacking a single model? (2) What is the impact of layer dropping on stacking performance?

Specifically, we examine the relationship between the number of dropped layers (K) and the resulting
downstream task accuracy. To this end, we selected 7B Llama-2-Chat and Vicuna as the base models
and fine-tuned the stacked models for 10 billion tokens. The obtained results are presented in Table
10. In the initial two rows, we report the performance of the two base models, revealing that Llama
and Vicuna exhibit advantages on different datasets. In the subsequent two rows, we observe that
stacking dissimilar models generally outperforms self-stacked models, and the weaknesses of one
model can be compensated for by another stronger one. Moving forward, we explored the effects of
varying the number of dropped layers. Our findings indicate that even when dumping half of each
model (K = 16), the stacked 7B models can still significantly enhance performance across tasks.

Table 10: Comparison of different model stacking configurations.

Model ARC WinoGrande MMLU Hellaswag TruthfulQA
Llama-2-chat 54.10% 71.27% 47.28% 78.71% 45.32%
Vicuna 53.75% 70.56% 49.78% 77.19% 50.36%
Llama / Llama (K = 8) 53.92% 69.14% 52.76% 73.74% 46.36%
Llama / Vicuna (K = 8) 56.14% 70.80% 55.20% 73.67% 46.84%
Llama / Vicuna (K = 12) 55.42% 69.45% 53.55% 73.62% 45.59%
Llama / Vicuna (K = 16) 54.35% 69.69% 52.52% 73.75% 45.92%
Llama / Vicuna (K = 20) 39.59% 61.33% 44.93% 62.10% 42.90%
Llama / Vicuna (K = 24) 28.15% 52.88% 25.51% 43.07% 39.10%

Model Communication. Model communication [61, 31, 33] is a framework that enables the
development of LLM applications through the use of multiple conversable agents that collaborate to
complete tasks. This approach allows developers to design complex LLM application workflows as
multi-agent conversations, where agents with various roles and capabilities, driven by LLMs, tools,
or human inputs, interact with each other. Unlike model merging, mixture, and stacking techniques,
LLM communication is orthogonal to the primary focus of this paper because it does not modify the
model weights; instead, it leverages the in-context learning and conversational capabilities of LLMs
to coordinate agents. An empirical comparison with this class of methods is beyond the scope of this
study and will be explored in future research.

7 Limitations
For LLM scaling studies, while empirical evidence suggests that increasing model size, data volume,
and computational complexity leads to better performance, there is little theoretical clarity on
the exact mechanisms behind these improvements. Second, although scaling laws suggest that
performance continues to improve as models get larger, recent evidence indicates that scaling may
lead to diminishing returns beyond a certain point. In addition, our work focuses on benchmarking
results, while the reasons why model merging improves performance could be further enhanced by
post hoc analysis, such as examining parameter distribution and similarity during model operations.

8 Conclusion
In this paper, we explore the scaling LLM based on a model zoo of pre-trained LLMs within the real
world. We first benchmark state-of-the-art LLM merging, mixture, and model stacking. Based on
previous findings, we then propose a novel LLM scaling framework, Model-GLUE. Specifically, we
scale up the model zoo closely examine the existing model merging techniques, and conclude the
selective merging techniques based on heuristics and learnable algorithms. Further, we investigate
variants of Mixture-of-Experts for combining LLMs and suggest it can serve as an alternative
to merging failure cases. Finally, we integrate selective merging strategies with model mixture
techniques, presenting this as a comprehensive solution for scaling a diverse array of LLM collections.
Future works will include model stacking and communication to our Model-GLUE framework.

10

References
[1] Naman Agarwal, Pranjal Awasthi, Satyen Kale, and Eric Zhao. Stacking as accelerated gradient

descent. arXiv preprint arXiv:2403.04978, 2024.

[2] Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. arXiv preprint arXiv:2209.04836, 2022.

[3] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pages 2623–2631,
2019.

[4] Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
model merging recipes, 2024.

[5] Yuvanesh Anand, Zach Nussbaum, Brandon Duderstadt, Benjamin M. Schmidt, Adam Treat,
and Andriy Mulyar. Gpt4all-j: An apache-2 licensed assistant-style chatbot, 2023.

[6] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program
synthesis with large language models. ArXiv, abs/2108.07732, 2021.

[7] Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer,
Albert Q Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language
model for mathematics. arXiv preprint arXiv:2310.10631, 2023.

[8] Aibek Bekbayev, Sungbae Chun, Yerzat Dulat, and James Yamazaki. The poison of alignment,
2023.

[9] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan, Harrison
Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott
Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, David W. Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William H. Guss, Alex Nichol, Igor
Babuschkin, Suchir Balaji, Shantanu Jain, Andrew Carr, Jan Leike, Joshua Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew M. Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. Evaluating large language models trained on code. ArXiv, abs/2107.03374,
2021.

[10] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. ArXiv, abs/1803.05457, 2018.

[11] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. ArXiv, abs/2110.14168, 2021.

[12] Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li,
Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong
Ruan, Zhifang Sui, and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specialization
in mixture-of-experts language models, 2024.

[13] Ning Ding, Yulin Chen, Ganqu Cui, Xingtai Lv, Weilin Zhao, Ruobing Xie, Bowen Zhou,
Zhiyuan Liu, and Maosong Sun. Mastering text, code and math simultaneously via fusing
highly specialized language models, 2024.

[14] Jesse Dodge, Taylor Prewitt, Rémi Tachet des Combes, Erika Odmark, Roy Schwartz, Emma
Strubell, Alexandra Sasha Luccioni, Noah A. Smith, Nicole DeCario, and Will Buchanan. Mea-
suring the carbon intensity of ai in cloud instances. Proceedings of the 2022 ACM Conference
on Fairness, Accountability, and Transparency, 2022.

11

[15] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. J. Mach. Learn. Res., 23:120:1–120:39,
2022.

[16] Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vlad Karpukhin,
Brian Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging
large language models. arXiv preprint arXiv:2403.13257, 2024.

[17] Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient training
of bert by progressively stacking. In International conference on machine learning, pages
2337–2346. PMLR, 2019.

[18] Xiaotao Gu, Liyuan Liu, Hongkun Yu, Jing Li, Chen Chen, and Jiawei Han. On the transformer
growth for progressive bert training. arXiv preprint arXiv:2010.12562, 2020.

[19] Nikolaus Hansen. The cma evolution strategy: a comparing review. Towards a new evolutionary
computation: Advances in the estimation of distribution algorithms, pages 75–102, 2006.

[20] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Xiaodong
Song, and Jacob Steinhardt. Measuring massive multitask language understanding. ArXiv,
abs/2009.03300, 2020.

[21] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=nZeVKeeFYf9.

[22] Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic, 2023.

[23] Moritz Imfeld, Jacopo Graldi, Marco Giordano, Thomas Hofmann, Sotiris Anagnostidis, and
Sidak Pal Singh. Transformer fusion with optimal transport. arXiv preprint arXiv:2310.05719,
2023.

[24] Dong-Hwan Jang, Sangdoo Yun, and Dongyoon Han. Model stock: All we need is just a few
fine-tuned models, 2024.

[25] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier,
Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak,
Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mixtral of experts, 2024.

[26] Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models, 2023.

[27] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeff Wu, and Dario Amodei. Scaling laws for neural language models.
ArXiv, abs/2001.08361, 2020.

[28] Dahyun Kim, Chanjun Park, Sanghoon Kim, Wonsung Lee, Wonho Song, Yunsu Kim, Hyeon-
woo Kim, Yungi Kim, Hyeonju Lee, Jihoo Kim, et al. Solar 10.7 b: Scaling large language
models with simple yet effective depth up-scaling. arXiv preprint arXiv:2312.15166, 2023.

[29] Ariel N. Lee, Cole J. Hunter, and Nataniel Ruiz. Platypus: Quick, cheap, and powerful
refinement of llms. 2023.

[30] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam M. Shazeer, and Z. Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. ArXiv, abs/2006.16668, 2020.

[31] Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel:
Communicative agents for" mind" exploration of large language model society. Advances in
Neural Information Processing Systems, 36, 2024.

12

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

[32] Hanxue Liang, Zhiwen Fan, Rishov Sarkar, Ziyu Jiang, Tianlong Chen, Kai Zou, Yu Cheng,
Cong Hao, and Zhangyang Wang. M3vit: Mixture-of-experts vision transformer for efficient
multi-task learning with model-accelerator co-design. ArXiv, abs/2210.14793, 2022.

[33] Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang,
Zhaopeng Tu, and Shuming Shi. Encouraging divergent thinking in large language models
through multi-agent debate. arXiv preprint arXiv:2305.19118, 2023.

[34] Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao,
Junbo Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yonghao
Zhuang, Guowei He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqiang Shen,
Xuguang Ren, Roberto Iriondo, Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, Tim
Baldwin, and Eric P. Xing. Llm360: Towards fully transparent open-source llms, 2023.

[35] Michael Matena and Colin Raffel. Merging models with fisher-weighted averaging, 2022.

[36] Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. Octopack: Instruction
tuning code large language models. arXiv preprint arXiv:2308.07124, 2023.

[37] Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4, 2023.

[38] Vaishnavh Nagarajan and J. Zico Kolter. Uniform convergence may be unable to explain
generalization in deep learning, 2021.

[39] OpenAI. GPT-4 technical report. volume abs/2303.08774, 2023.

[40] Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail
Yurochkin. tinybenchmarks: evaluating llms with fewer examples. ArXiv, abs/2402.14992,
2024.

[41] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi,
Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-
experts inference and training to power next-generation ai scale, 2022.

[42] Sashank J Reddi, Sobhan Miryoosefi, Stefani Karp, Shankar Krishnan, Satyen Kale, Seungyeon
Kim, and Sanjiv Kumar. Efficient training of language models using few-shot learning. In
International Conference on Machine Learning, pages 14553–14568. PMLR, 2023.

[43] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, I. Evtimov, Joanna Bitton,
Manish P Bhatt, Cristian Cantón Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre D’efossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. Code llama: Open foundation models for code. ArXiv, abs/2308.12950,
2023.

[44] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov,
Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan
Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas
Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for
code, 2024.

[45] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. An adversarial
winograd schema challenge at scale. 2019.

[46] Sina Semnani, Violet Yao, Heidi Zhang, and Monica Lam. WikiChat: Stopping the hallucination
of large language model chatbots by few-shot grounding on Wikipedia. In Houda Bouamor,
Juan Pino, and Kalika Bali, editors, Findings of the Association for Computational Linguistics:
EMNLP 2023, pages 2387–2413, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.157. URL https://aclanthology.org/
2023.findings-emnlp.157.

13

https://aclanthology.org/2023.findings-emnlp.157
https://aclanthology.org/2023.findings-emnlp.157

[47] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer, 2017.

[48] Yikang Shen, Zheyu Zhang, Tianyou Cao, Shawn Tan, Zhenfang Chen, and Chuang Gan.
Moduleformer: Learning modular large language models from uncurated data. ArXiv,
abs/2306.04640, 2023.

[49] Ken Shoemake. Animating rotation with quaternion curves. In Proceedings of the 12th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’85, page 245–254,
New York, NY, USA, 1985. Association for Computing Machinery. ISBN 0897911660.

[50] Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste Rozière,
Jacob Kahn, Daniel Li, Wen tau Yih, Jason Weston, and Xian Li. Branch-train-mix: Mixing
expert llms into a mixture-of-experts llm, 2024.

[51] Migel Tissera. Synthia-70b-v1.2b: Synthetic intelligent agent. https://huggingface.co/
migtissera/Synthia-13B, 2023.

[52] Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas
Blecher, Cristian Cantón Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony S.
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel M. Kloumann, A. V. Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert
Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat
models. ArXiv, abs/2307.09288, 2023.

[53] Neha Verma and Maha Elbayad. Merging text transformer models from different initializations.
arXiv preprint arXiv:2403.00986, 2024.

[54] Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, and Shuming Shi. Knowl-
edge fusion of large language models. In The Twelfth International Conference on Learning
Representations, 2024.

[55] Hongyi Wang, Felipe Maia Polo, Yuekai Sun, Souvik Kundu, Eric Xing, and Mikhail Yurochkin.
Fusing models with complementary expertise, 2023.

[56] Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Karlinsky,
Rogerio Feris, David Daniel Cox, Zhangyang Wang, and Yoon Kim. Learning to grow pretrained
models for efficient transformer training. arXiv preprint arXiv:2303.00980, 2023.

[57] Peihao Wang, Rameswar Panda, and Zhangyang Wang. Data efficient neural scaling law via
model reusing. In International Conference on Machine Learning, pages 36193–36204. PMLR,
2023.

[58] Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source
code is all you need, 2023.

[59] Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-
Lopes, Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and
Ludwig Schmidt. Model soups: averaging weights of multiple fine-tuned models improves
accuracy without increasing inference time, 2022.

[60] Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao Wang, Ye Feng, Ping Luo, and Ying
Shan. Llama pro: Progressive llama with block expansion. arXiv preprint arXiv:2401.02415,
2024.

14

https://huggingface.co/migtissera/Synthia-13B
https://huggingface.co/migtissera/Synthia-13B

[61] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

[62] Zhengqi Xu, Ke Yuan, Huiqiong Wang, Yong Wang, Mingli Song, and Jie Song. Training-free
pretrained model merging. arXiv preprint arXiv:2403.01753, 2024.

[63] Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models, 2023.

[64] Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch, 2024.

[65] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. arXiv preprint arXiv:2309.12284, 2023.

[66] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

[67] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

[68] Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam M.
Shazeer, and William Fedus. Designing effective sparse expert models. 2022 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 1044–1044,
2022.

15

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] Our abstract and introduction in Section 1 accurately
reflect the paper’s contributions and scope?.

(b) Did you describe the limitations of your work? [Yes] In Section 6 and 8 we discuss
two other LLM scaling methods for future work and present some preliminary results.
In Appendix 8 we discuss its limitations.

(c) Did you discuss any potential negative societal impacts of your work? [NA] Our work
focuses on foundational research and is not directly related to societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We have read and follow the ethics review guidelines.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [NA] Our work does

not include theoretical results.
(b) Did you include complete proofs of all theoretical results? [NA] Our work does not

include theoretical results.
3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] We have
provided our code, data (the way to get them), and instructions needed for reproducing
in a GitHub repository.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We have provided all the training details in our Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [NA] Our main results do not contain randomness, and running
multiple times with different random seeds leads to the same results.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We have provided the computing
resources we used in our Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We have cited them.

(b) Did you mention the license of the assets? [Yes] We have mentioned the license of all
the datasets we used in Appendix 8.

(c) Did you include any new assets either in the supplemental material or as a URL? [NA]
We do not release any new assets.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [NA] We only use public available data in this work.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [NA] The data we are using/curating does not contain
any of these.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [NA] We did not use any crowdsourcing or conduct research with human
subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [NA] We did not use any crowdsourcing or
conduct research with human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [NA] We did not use any crowdsourcing or conduct
research with human subjects.

16

Appendix

A Implementation Details
A.1 Detailed Algorithms of Heuristic Strategy of Model Merging
Heuristic (Average). We present the implementation details in Algorithm 1. The algorithm takes a
mergable model family as input and generate a merged model as output. For each candidate model in
input model family, we compute the accuracy of the temporary merged model, generated by the union
of this candidate model and the previously selected model, on the proxy dataset, and the candidate
that brings no harm to the accuracy will be selected for the final merged model. Each weight of the
merged model is generated by averaging the corresponding weights of all the selected models.

Algorithm 1 Heuristic (Average)
Input: A mergable family {w1, ..., wn} (sorted in decreasing order of Acc(wi)).
Output: merged_model

1: models_to_merge← {w1}
2: merged_model← w1

3: for i = 2 to n do
4: if ProxyAcc(AvgMerge(models_to_merge ∪{wi})) ≥ ProxyAcc(merged_model)) then
5: models_to_merge← models_to_merge ∪{wi}
6: merged_model = AvgMerge(models_to_merge)
7: end if
8: end for
9: return merged_model

Heuristic (Coefficient). We present the implementation details in Algorithm 2. Heuristic (Co-
efficient) builds upon Heuristic (Average) by combining the previously merged model with a new
candidate using different coefficients in each round. To reduce the search space, we set the range of
coefficient as 0.1, 0.2...0.9.

Algorithm 2 Heuristic (Coefficient)
Input: A mergable family {w1, ..., wn} (sorted in decreasing order of Acc(wi)), a list of coefficients
{0.1, 0.2..., 0.9} to be searched when merging.

Output: merged_model
1: coefficients← {0.1, 0.2..., 0.9}
2: merged_model← w1

3: for i = 2 to n do
4: best_acc, best_c← ProxyAcc(merged_model), 1.0
5: for c in coefficients do
6: if ProxyAcc(Merge(c, merged_model, wi)) ≥ best_acc then
7: best_acc, best_c← ProxyAcc(Merge(c, merged_model, wi)) , c
8: end if
9: end for

10: merged_model←Merge(best_c, merged_model, wi)
11: end for
12: return merged_model

Heuristic (Similarity). We present the implementation details in Algorithm 3. We use the average
similarity of all weights as the criterion for selecting models in each round. This algorithm selects the
candidate model with the highest or lowest similarity and conducts a conefficient search to combine
it with the previously merged model.

17

Algorithm 3 Heuristic (Similarity)
Input: A mergable family {w1, ..., wn} (sorted in decreasing order of Acc(wi)), a list of coefficients
{0.1, 0.2..., 0.9} to be searched when merging.

Output: merged_model
1: merged_model← w1

2: remaining_models← {w2, ..., wn}
3: for i = 2 to n do
4: best_acc, best_c← ProxyAcc(merged_model), 1.0
5: candidate_model← GetModelBySimilarity(merged_model, remaining_models)
6: for c in coefficients do
7: if ProxyAcc(Merge(c, merged_model, candidate_model)) ≥ best_acc then
8: best_acc, best_c← ProxyAcc(Merge(c, merged_model, candidate_model)) , c
9: end if

10: end for
11: merged_model←Merge(best_c, merged_model, candidate_model)
12: remaining_models←remaining_models \{candidate_model}
13: end for
14: return merged_model

A.2 Detailed about Evolutionary Strategy of Model Merging
For the experiments of Q2 - (i) in Section 4.3, we constrain all parameter values to be within the
range of [0, 1]. TIES and DARE require to optimize 2 ∗ k parameters, while other methods require to
optimize k parameters, where k represents the number of models included in the model zoo.

For the experiments of Q2 - (ii) in Section 4.3, we choose the Linear method for experimentation,
and we constrain all parameter values to be within the range of [0, 1]. For finer-grained merging, we
group adjacent n decoder layers together, where they share the same coefficient. For the remaining
parameters, we make them share the same coefficient. Hence, the number of parameters that need to
be fine-tuned is given by: k ∗ (num_hidden_layers

n + 1), where k represents the number of models and
n represents the size of groups. For the case of n = 32, we utilized the previous results, thus the
number of parameters to be optimized is k.

For the experiments of Q2 - (iii) in Section 4.3, we control the variation of coefficients obtained
through heuristic strategy to not exceed 0.1, and when it is negative, we set it to 0. We also only
evaluate the Linear method.

A.3 Detailed Algorithms of Model Mixture
Model Level Mixture. We present the implementation details in Algorithm 4. The mixed model
consists of a router, which determines the expert to execute inference, and all the input models as
experts. All the weights of input model’s components, including embedding layers (embd_layer),
decoder layers (layers) and language model head (lm_head), will be integrated into the mixed model.

Algorithm 4 Model Level Mixture
Input: A model family {w1, ..., wn}
Output: mixed_model

1: mixed_model.router← GenerateRouter({w1, ..., wn})
2: for i = 1 to n do
3: mixed_model.experti← wi

4: end for
5: return mixed_model

Block Level Mixture. We present the implementation details in Algorithm 5. Different from
model-level mixture, block-level mixture utilizes the embd_layer and lm_head of an additional model
within a model family to handle input and output. Meanwhile, the transformer blocks of other models
within the model family act as experts, connected by a router.

FFN Level Mixture. We present the implementation details in Algorithm 6. FFN level mixture
is similar to block level with only difference on inner-block component sharing. Each layer of the

18

Algorithm 5 Block Level Mixture
Input: A model family {w1, ..., wn} with identical layer amount, one of the family as base_model
Output: mixed_model

1: mixed_model.embd_layer← base_model.embd_layer
2: mixed_model.lm_head← base_model.lm _head
3: for i = 0 to Len(base_model.layers) do
4: mixed_model.layeri.router← GenerateRouter({w1, ..., wn})
5: for j = 1 to n do
6: mixed_model.layeri.expertj ← wj .layeri
7: end for
8: end for
9: return mixed_model

mixed model will take the attention weights of the base model and build an MoE structure based on
the FFNs in corresponding layers of all the input models.

Algorithm 6 FFN Level Mixture
Input: A model family {w1, ..., wn} with identical layer amount, one of the family as base_model.
Output: mixed_model,

1: mixed_model.embd_layer← base_model.embd_layer
2: mixed_model.lm_head← base_model.lm_head
3: for i = 0 to Len(base_model.layers) do
4: mixed_model.layeri.router← GenerateRouter({w1, ..., wn})
5: mixed_model.layeri.attention← base_model.layeri.attention
6: mixed_model.layeri.norm← base_model.layeri.norm
7: for j = 1 to n do
8: mixed_model.layeri.expertj ← wj .layeri.FFN
9: end for

10: end for
11: return mixed_model

Hybrid Mixture We present the implementation details in Algorithm 7. The hybrid mixture
combines both merging and mixture methods. Specifically, the first k layers of the mixed model
are obtained by merging multiple models, while the rest of the layers use an FFN-level mixture
architecture.

Algorithm 7 Hybrid Mixture
Input: A model family {w1, ..., wn} with identical layer amount, one of the family as base_model,

k layers for merging and the rest layers for mixture.
Output: mixed_model

1: mixed_model.embd_layer← base_model.embd_layer
2: mixed_model.lm_head← base_model.lm_head
3: for i = 0 to k do
4: mixed_model.layeri←Merge({w1, ..., wn}, i)
5: end for
6: for i = k + 1 to Len(base_model.layers) do
7: mixed_model.layeri.router← GenerateRouter({w1, ..., wn})
8: mixed_model.layeri.attention← base_model.layeri.attention
9: mixed_model.layeri.norm← base_model.layeri.norm

10: for j = 1 to n do
11: mixed_model.layeri.expertj .FFN ← wj .layeri.FFN
12: end for
13: end for
14: return mixed_model

19

Table 11: Performance of merged models with different similarity. Sim. stands for cosine similarity.

Parent Model 1 Parent Model 2 ARC MMLU WinoGrande GSM8K HumanEval MBPP Avg. Sim.

Llama-2-7b-hf deepseek-coder-6.7b-base 27.73% 24.38% 49.64% 0.00% 0.00% 0.00% 16.96% 0%
Llama-2-7b-hf CodeLlama-7b-hf 41.04% 31.68% 66.85% 5.76% 10.98% 21.40% 29.62% 52.55%

CodeLlama-7b-Python-hf CodeLlama-7b-hf 40.61% 37.17% 65.35% 6.67% 21.95% 25.60% 32.89% 60.34%
MetaMath-Llemma-7B CodeLlama-7b-hf 46.16% 42.86% 64.64% 27.07% 34.76% 37.40% 42.15% 88.70%

CodeLlama-7b-Instruct-hf CodeLlama-7b-hf 43.86% 41.39% 68.59% 16.07% 33.54% 40.80% 40.71% 99.94%

A.4 Details of Model-Glue
The models selected by the heuristic strategy include: migtissera/Synthia-7B-v1.2,
neuralmagic/Llama-2-7b-evolcodealpaca, teknium/OpenHermes-7B, meta-llama/Llama-2-7b-chat-hf,
meta-math/MetaMath-7B-V1.0, lmsys/vicuna-7b-v1.5. Since merging ise-uiuc/Magicoder-S-CL-7B
and codellama/CodeLlama-7b-Instruct-hf does not lead to improvement in the Codellama’s
mergeable family, we select ise-uiuc/Magicoder-S-CL-7B as the representative model.

The final models used for Model-level Mixture are: LLM360/CrystalChat, ise-uiuc/Magicoder-S-CL-
7B, meta-math/MetaMath-Llemma-7B and the representative model of the Llama-2 family obtained
through the Heuristic (Coefficient). Please refer to our repository for specific configurations.

A.5 Details of clustering in selective merging pipeline
Motivation for using cosine similarity as a model selection criterion Previous merging study [64]
finds that merging performance is consistent with parameter similarity. We inherit it by using
cosine similarity as a representative method to measure whether a model can be merged. From
our preliminary result, cosine similarity works effectively. Empirically, when the cosine similarity
between models exceeds 0.95, merging them can yield positive benefits. In Table 14, we present
examples of successful and unsuccessful merging. For example, the cosine similarity between
the weights of Llama-2-chat and Vicuna is 0.9982, resulting in the merged model significantly
outperforming its parent models. On the other hand, the cosine similarity between the weights of
Llama-2-chat and CodeLlama is 0.5351, indicating that the merged model is inferior to CodeLlama.
Moreover, using cosine similarity to measure the merging benefit is simple and efficient. For these
reasons, we stick with cosine similarity for selective merging pipelines.
Criteria for Determining the Number of Clusters. We cluster models with cosine similarity
greater than 0.95 into a mergeable family, ensuring that within this mergeable family, the pairwise
similarities between models are greater than 0.95. The number of clusters is automatically determined
during the process, after which we execute our merge strategy within each cluster. For Which16
model zoo in our paper, we clustered 16 models and finally obtained five mergeable families: ❶
12 models fine-tuned based on llama-2, ❷ ise-uiuc/Magicoder-S-CL-7B, ❸ codellama/CodeLlama-
7b-Instruct-hf, ❹ meta-math/MetaMath-Llemma-7B, ❺ LLM360/CrystalChat. Since the remaining
clusters contain only one model each, we only report the results of different merging strategies
performed within Family ❶.
Impact of clustering threshold We computed the cosine similarity between 12 LLMs all fine-tuned
from Llama-2. These models are considered to be well mergeable, having the same architecture
and initialization. Since their similarities range from 0.9680 to 0.9999, 0.95 could be a lower bound
for model clustering. To show the impact of different clustering thresholds, we have examined
the performance of merged models with drastically different similarity: Llama-2,deepseek-coder,
CodeLlama, and MetaMath-Llema. We use linear interpolation to merge two models and present
the benchmarking results in Table 11. The performance of the individual models is shown in
Table 12. If the merged model outperforms its parent models on average accuracy, we consider it a
successful merge. From Table 11, we see that successful merging only occurs between Codellama
and Codellama-instruct whose weights reach 0.99 similarity and have the same initialization. To
include more mergeable models, we finally choose 0.95 as the threshold for clustering.

A.6 Energy Consumption
Existing literature is mainly concerned with carbon emissions during LLM pre-training [14, 52].
However, the training costs associated with the approaches evaluated in our benchmark are minimal.
Specifically, the only training expenditure in our study pertains to the B-M-S router training, as
described in Section 4.4. This process requires about 80 GPU hours, resulting in 13.55kg CO2

20

Table 12: Performance of parent models.

Model ARC MMLU WinoGrande GSM8K HumanEval MBPP Avg.

Llama-2-7b-hf 53.92% 45.83% 74.11% 13.72% 10.98% 18.00% 36.09%
deepseek-coder-6.7b-base 36.86% 36.36% 57.30% 19.03% 45.12% 54.80% 41.58%

CodeLlama-7b-hf 41.89% 39.05% 65.98% 11.83% 32.32% 37.20% 38.05%
CodeLlama-7b-Python-hf 40.70% 35.62% 64.56% 13.12% 38.41% 41.20% 38.94%

MetaMath-Llemma-7B 46.67% 46.29% 64.33% 62.24% 32.32% 42.00% 48.97%
CodeLlama-7b-Instruct-hf 43.00% 41.69% 65.90% 18.12% 33.70% 40.00% 40.40%

Table 13: Comparison between the best single model, Merging, Full Mixture and our Model-GLUE with
Mistral model zoo. We highlight the better performance in bold.

Model ARC WinoGrande MMLU GSM8K MBPP HumanEval Average

Best Single Model 67.24% 79.01% 61.77% 63.15% 35.98% 39.00% 57.69%
DARE 64.33% 78.37% 63.27% 63.31% 39.02% 44.60% 58.82%
TIES 63.74% 77.90% 60.90% 49.13% 34.76% 39.40% 54.30%
F-L-S 64.85% 79.72% 63.42% 64.82% 42.00% 42.07% 59.48%

Model-GLUE 65.02% 78.85% 64.39% 65.50% 44.60% 42.68% 60.18%

emissions based on a 400W power consumption. In contrast, LLaMA-2-7B pre-training results in
31.22t CO2, which is over 2000 times more than ours.

B Additional Results
B.1 Experiment on Mistral model family
We choose the Llama2-based model family for the main experiments because there are more diverse
variances built on different datasets and training recipes. There are many domain-specific models
based on Llama-2, such as those for code, mathematics, healthcare, finance, law, and mental health.
Importantly, a series of models have undergone continuous pre-training based on Llama-2, and a
considerable portion of models trained from scratch have drawn inspiration from the architecture of
Llama-2. While these models share the same architecture as Llama-2, their weights exhibit significant
differences. Thus, we can thoroughly examine the effect of merging, mixture and Model-GLUE on
different settings. To further evaluate our proposal on the Mistral model family, we have established
a Mistral-based Which8 model zoo and replicated the experiments outlined in Section 5.2. From the
result in Table 13 it can be seen that Mode-GLUE consistently outperform.

B.2 Model Merging
We present the specific results of Figure 4 in Table 15 and Table 16 and other results of Section 4.3 in
Table 14, Table 17 and Table 18.

B.3 Model Mixture
For Model Level Mixture, we use more fine-grained prompts to construct the router, and report the
results in Table 19.

21

Table 14: Failure case of existing merging approaches when expanding the model zoo.

Merging Method ARC WinoGrande MMLU GSM8K MBPP HumanEval Average

Single Model

Llama-2-chat 54.10% 71.27% 47.28% 23.05% 17.00% 13.41% 37.68%
Vicuna 53.75% 70.56% 49.78% 19.11% 6.00% 19.51% 36.45%

CodeLlama 43.52% 65.11% 41.83% 17.06% 40.00% 33.70% 40.20%

Merge Llama-2-chat and Vicuna

Linear 54.27% 72.30% 50.72% 24.49% 20.80% 20.12% 40.45%
Model Stock 54.61% 74.43% 47.44% 16.07% 22.40% 14.02% 38.16%

SLERP 55.29% 72.45% 50.51% 24.87% 21.80% 20.12% 40.84%
Task Arithmetic 54.27% 71.67% 49.95% 26.31% 21.40% 17.07% 40.11%

DARE 54.35% 72.14% 50.38% 26.61% 21.00% 17.68% 40.36%
TIES 52.65% 69.93% 49.84% 24.34% 17.60% 19.51% 38.98%

Merge Llama-2-chat and CodeLlama

Linear 45.05% 67.09% 39.03% 16.76% 36.60% 23.17% 37.95%
Model Stock 50.34% 71.27% 41.06% 10.01% 15.40% 7.93% 32.67%

SLERP 52.05% 71.43% 46.41% 18.95% 20.80% 18.90% 38.09%
Task Arithmetic 44.97% 68.03% 38.83% 7.05% 10.60% 12.20% 30.28%

DARE 38.91% 65.98% 31.90% 3.34% 15.00% 9.76% 27.48%
TIES 21.67% 49.88% 25.25% 0.00% 0.00% 0.00% 16.13%

Table 15: Comparison between different Heuristic Strategies.

Heuristic Strategy ARC WinoGrande MMLU GSM8K MBPP HumanEval Average

Best Single Model 55.03% 73.72% 48.18% 24.03% 17.80% 13.41% 38.70%

Which12

Average 54.86% 73.48% 49.42% 32.98% 23.60% 21.34% 42.61%
Coefficient 55.12% 73.64% 50.13% 39.35% 21.80% 21.34% 43.56%
Similarity↑ 56.48% 73.32% 52.56% 37.91% 17.80% 20.12% 43.03%
Similarity↓ 55.80% 71.74% 52.39% 47.99% 16.40% 15.85% 43.36%

Which8

Average 55.38% 74.11% 48.65% 34.42% 25.20% 23.17% 43.49%
Coefficient 55.12% 73.64% 50.13% 39.35% 21.80% 21.34% 43.56%
Similarity↑ 54.95% 73.64% 49.00% 43.75% 19.80% 11.59% 42.12%
Similarity↓ 54.78% 72.30% 49.06% 47.23% 21.20% 15.85% 43.40%

Which4

Average 54.86% 73.16% 47.91% 37.00% 24.00% 21.34% 43.05%
Coefficient 55.12% 74.03% 48.18% 41.93% 19.40% 14.63% 42.22%
Similarity↑ 54.52% 73.24% 47.81% 41.77% 21.20% 20.73% 43.21%
Similarity↓ 53.92% 73.56% 47.81% 48.45% 18.20% 10.98% 42.15%

Table 16: Comparison between different merging methods.

Merging Method ARC WinoGrande MMLU GSM8K MBPP HumanEval Average

Which12

Linear 56.48% 73.56% 51.79% 36.01% 23.60% 20.12% 43.59%
Task Arithmetic 51.54% 69.14% 51.07% 54.66% 1.80% 13.41% 40.27%

DARE 51.19% 70.09% 51.03% 53.53% 6.80% 12.80% 40.91%
TIES 53.75% 70.64% 52.77% 49.36% 17.20% 2.44% 41.03%

Which8

Linear 55.12% 73.64% 49.59% 40.64% 22.40% 18.90% 43.38%
Task Arithmetic 52.65% 70.64% 48.11% 51.18% 19.80% 21.95% 44.05%

DARE 52.56% 71.19% 49.00% 53.37% 14.80% 20.12% 43.51%
TIES 50.26% 71.27% 48.58% 47.69% 18.40% 0.61% 39.47%

Which4

Linear 53.50% 73.01% 47.32% 45.79% 20.20% 15.85% 42.61%
Task Arithmetic 52.73% 72.30% 46.81% 51.86% 18.20% 18.29% 43.36%

DARE 51.45% 71.67% 45.61% 51.55% 16.60% 20.12% 42.83%
TIES 50.51% 71.98% 46.62% 49.43% 16.40% 1.22% 39.36%

22

Table 17: The impact of different group sizes on Evolutionary Strategy.

Group Size ARC WinoGrande MMLU GSM8K MBPP HumanEval Average

Which12

1 56.14% 73.32% 51.50% 32.45% 24.00% 20.12% 42.92%
4 56.31% 73.72% 52.04% 33.43% 24.00% 18.90% 43.07%
8 56.83% 74.43% 53.01% 38.13% 21.20% 19.51% 43.85%
32 56.48% 73.56% 51.79% 36.01% 23.60% 20.12% 43.59%

Which8

1 55.12% 74.11% 49.96% 31.69% 25.20% 19.51% 42.60%
4 56.06% 74.66% 50.04% 33.59% 24.20% 21.95% 43.42%
8 55.29% 73.88% 49.20% 40.56% 24.60% 18.90% 43.74%
32 55.12% 73.64% 49.59% 40.64% 22.40% 18.90% 43.38%

Which4

1 54.61% 73.32% 47.63% 41.62% 23.60% 15.85% 42.77%
4 52.90% 73.32% 46.99% 43.06% 24.00% 20.73% 43.50%
8 54.01% 73.64% 47.39% 43.75% 22.40% 21.95% 43.86%
32 53.50% 73.01% 47.32% 45.79% 20.20% 15.85% 42.61%

Table 18: More efficient merging strategy.

Strategy ARC WinoGrande MMLU GSM8K MBPP HumanEval Average Round

Which12

Evo (Vanilla) 56.48% 73.56% 51.79% 36.01% 23.60% 20.12% 43.59% 200
Evo (Heuristic) 55.29% 72.85% 49.96% 40.56% 22.80% 18.29% 43.29% 127

Which8

Evo (Vanilla) 55.12% 73.64% 49.59% 40.64% 22.40% 18.90% 43.38% 200
Evo (Heuristic) 54.69% 72.93% 49.68% 45.19% 21.00% 19.51% 43.83% 71

Which4

Evo (Vanilla) 53.50% 73.01% 47.32% 45.79% 20.20% 15.85% 42.61% 200
Evo (Heuristic) 54.52% 73.56% 47.74% 40.71% 23.20% 21.95% 43.61% 69

Table 19: Better prompt vector for the mixture of Llama-2-7b-chat and CrystalChat. We highlight the better
performance in bold.

Model ARC WinoGrande MMLU GSM8K MBPP HumanEval Average

Best Single Model 52.05% 69.46% 50.77% 27.22% 39.60% 35.98% 45.85%

M-L-S 51.88% 70.88% 52.44% 32.52% 39.40% 31.10% 46.37%

23

	Introduction
	Related Works
	Methodology
	Preliminaries
	Model Merging
	Model Mixture

	Model Merging and Model Mixture for LLMs
	Benchmark Datasets and Configs
	Implementation Details for Merging
	Model Merging Benchmark Results
	Implementation Details for Mixture
	Model Mixture Benchmark Results

	Superior Recipes to Aggregate LLM Knowledge
	Model Merging v.s. Mixture
	Model-GLUE: selective merging then model mixture for better LLM scaling

	Discussion with Other LLM Aggregation Techniques
	Limitations
	Conclusion
	Implementation Details
	Detailed Algorithms of Heuristic Strategy of Model Merging
	Detailed about Evolutionary Strategy of Model Merging
	Detailed Algorithms of Model Mixture
	Details of Model-Glue
	Details of clustering in selective merging pipeline
	Energy Consumption

	Additional Results
	Experiment on Mistral model family
	Model Merging
	Model Mixture

