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a b s t r a c t 

Traditional nonlinear dimensionality reduction methods, such as multiple kernel dimensionality reduc- 

tion and nonlinear spectral regression (SR), are generally regarded as extended versions of linear dis- 

criminant analysis (LDA) in the supervised case. As is well known, LDA has the restrictive assumption 

that the data of each class is of a Gaussian distribution. Thus, the performance of these methods will 

be degraded if such an assumption is not hold. Although some methods based on marginal Fisher anal- 

ysis are proposed to overcome the drawback of LDA, they have to solve the problem of dense metrics 

generalized eigenvalue decomposition, which is very time-consuming. To address these issues, in this pa- 

per, marginal Fisher analysis criterion based on extreme learning machine (ELM) is proposed to improve 

spectral regression and kernel marginal Fisher analysis. It is proved that the proposed marginal Fisher 

analysis is a special case of traditional kernel marginal Fisher analysis. Based on the proposed criterion, 

a novel supervised dimensionality reduction algorithm is presented by virtue of ELM and spectral regres- 

sion. Experimental results on benchmark datasets validate that the proposed algorithm outperforms the 

state-of-the-art nonlinear dimensionality reduction methods in supervised scenarios. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Recently, nonlinear dimensionality reduction is an active re-

earch subject in machine learning and pattern recognition

1–3] . A family of multiple kernel dimensionality reduction meth-

ds, such as MKL-DR [4] , MKL-TR [5] , MKL-SR [6] and MKL-SRTR

7] , has been proposed to automatically construct new kernels us-

ng existing base kernels instead of using only one specific kernel.

ince these methods can be unified under the graph embedding

ramework and be regarded as multiple kernel versions of linear

iscriminant analysis (LDA), which has the assumption that the

istribution of each class is considered to be a unimodal Gaussian.

his property often does not exist in real-world applications and

eparability of the different classes cannot be well characterized

y interclass scatter. 

Marginal Fisher analysis (MFA) effectively overcomes the lim-

tations of the traditional linear discriminant analysis algorithm

ue to data distribution assumptions and available projection
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irections. Kernel marginal Fisher analysis (KMFA), which can be

egarded as an extension of MFA [8] , has been proposed for super-

ised nonlinear dimensionality reduction. KMFA is formulated as

 ratio-trace optimization problem based on marginal Fisher crite-

ion, which not only solves the problem of the restrictive assump-

ion by using an intrinsic graph and another penalty graph, but can

etter characterize the separability of different classes than the in-

erclass variance in linear discriminant analysis (LDA). But, KMFA

as to solve the problem of dense metrics generalized eigenvalue

ecomposition (GEVD), which is very time-consuming. In addition,

t is difficult to specify the optimal parameters of kernel functions

n real applications. Extreme spectral regression (ESR) algorithm

as been presented to reduce human interventions, which incor-

orates ELM into spectral regression to speed up its learning speed

9] . But, this method is still based on graph embedding. In the su-

ervised case, it is equivalent to LDA and has to obey the data dis-

ribution hypothesis. 

To address these issues, we take advantage of MFA, SR and ELM

o construct a novel supervised dimensionality reduction model,

hich not only effectively overcomes the limitations of LDA, but

as fast learning speed. First, Marginal Fisher Criterion based on

xtreme learning machine (ELM) is proposed to speed up kernel

arginal Fisher analysis. It is proved that the improved marginal

http://dx.doi.org/10.1016/j.neucom.2017.05.097
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Table 1 

Notations. 

Notations Descriptions 

R 
d the input d -dimensional Euclidean space 

n the number of total training data points 

c the number of classes that the samples belong to 

X X = [ x 1 , . . . ., x n ] ∈ R d×n is the training data set 

k ( x i , x j ) Kernel function of variables x i and x j 
K Kernel matrix K = { k ( x i , x j ) } ∈ R n ×n 

‖ ‖ norm in the Hilbert space H 

H the hidden-layer output matrix 

β the vector of the output weights between the hidden layer of nodes and the output node 

L L is the graph Laplacian matrix of the intraclass compactness graph W 

L p L p is the Laplacian matrix of the interclass separability graph W 

p 
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Fisher analysis is a special case of kernel marginal Fisher analy-

sis. Second, a novel supervised dimensionality reduction algorithm

is presented by virtue of spectral regression based on this crite-

rion. Finally, experimental results on benchmark datasets validate

that the proposed algorithm outperforms the state-of-the-art su-

pervised dimensionality reduction methods. 

The paper is structured as follows. In Section 2 , we briefly in-

troduce the related work. The proposed model and algorithm are

introduced in Section 3 . In Section 4 , the experimental results are

presented and validate the effectiveness of the proposed method.

Finally, we give the related conclusions in Section 5 . In order to

avoid confusion, we give a list of the main notations used in this

paper in Table 1 . 

2. Related work 

2.1. Extreme learning machine 

The output function of ELM for generalized SLFNs in the case of

one output node is [10–15] 

f L ( x ) = 

L ∑ 

i =1 

βi h i ( x ) = h ( x ) β, (1)

where β = [ β1 , . . . , βL ] 
T is the vector of the output weights be-

tween the hidden layer of L nodes and the output node, and

h (x ) = [ h 1 (x ) , . . . , h L (x ) ] is the output (row) vector of the hidden

layer with respect to the input x . H is the hidden-layer output ma-

trix denoted by 

H = 

⎡ 

⎢ ⎢ ⎣ 

h ( x 1 ) 
h ( x 2 ) 

. . . 
h ( x n ) 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

h 1 ( x 1 ) . . . h L ( x 1 ) 
h 1 ( x 2 ) . . . h L ( x 2 ) 

. . . 
. . . 

. . . 
h 1 ( x n ) . . . h L ( x n ) 

⎤ 

⎥ ⎥ ⎦ 

. (2)

For completeness, we briefly introduce the multiclass classifiers

of ELM. 

(1) Multiclass classifier with single output: ELM can approximate

any target continuous functions and the output of the ELM classi-

fier h ( x ) β can be as close to the class labels in the corresponding

regions as possible. Thus the classification problem for ELM with a

single-output node can be formulated as [10–15] : 

Minimize : L ELM 

= 

1 

2 

∥∥β
∥∥2 + 

C 

2 

n ∑ 

i =1 

ε 2 i (3)

Subject to : h ( x i ) β = t i − ε i , i = 1 , . . . , n 

For the binary classification case, ELM only has one output node

and the decision function of ELM classifier is 

f ( x ) = h ( x ) 

(
I 

C 
+ H 

T H 

)−1 

H 

T T (4)
here T = 

⎡ 

⎢ ⎢ ⎣ 

t 11 . . . t 1 m 

t 21 . . . t 2 m 

. 

. 

. 
. 
. 
. 

. 

. 

. 

t n 1 . . . t nm 

⎤ 

⎥ ⎥ ⎦ 

. Generally, Eq. (10) is applied to large-

cale data sets or moderate data sets. The decision function applied

o small-scale training samples is 

f ( x ) = h ( x ) H 

T 
(

I 

C 
+ H H 

T 
)−1 

T (5)

(2) Multiclass classifier with multioutputs: If ELM has multioutput

odes, an m -class classifier is corresponding to m output nodes.

f the original class label is l , the expected output vector of the

 output nodes is t i = [ 

l ︷ ︸︸ ︷ 
0 , . . . , 0 , 1 , 0 , . . . , 0 ] T . That is, the l th ele-

ent of t i = [ t i, 1 , . . . , t i,m 

] T is one and the rest of the elements are

ero. The classification problem for ELM with multioutput nodes is

10–15] : 

inimize : L ELM 

= 

1 

2 

∥∥β
∥∥2 + 

C 

2 

n ∑ 

i =1 

‖ 

ε i ‖ 

2 

ubject to : h ( x i ) β = t i 
T − ε i 

T , i = 1 , . . . , n. (6)

here ε i = [ ε i 1 , . . . , ε im 

] T is the training error vector of the m out-

ut nodes with respect to the training sample x i . In this case, the

redicted class label of sample x is 

abel ( x ) = argmax i ∈ { 1 , 2 , ... ,m } { f i ( x ) } . (7)

here f (x ) = [ f 1 (x ) , . . . , f m 

(x ) ] T . 

.2. Spectral regression algorithm 

The SR algorithm transforms the optimization problem of di-

ensionality reduction into a regression framework, which avoids

igen-decomposition of dense matrices. In addition, it takes advan-

age of regularization terms to improve the performance of dimen-

ionality reduction. Given a training set with l labeled samples x 1 ,

 2 , …, x l and u unlabeled samples x l+1 , x l+2 , …, x l+ u , where the

ample x i ∈ R 

d belongs to one of c classes. The SR algorithm is sum-

arized as follows [16] : 

Step 1: Constructing the weight matrix W using binary weights

r heat kernel weights w ij . 

Step 2: Let D be the n × n diagonal matrix, where D ii =
 l+ u 
j=1 w i j . Find the largest c generalized eigenvectors y 0 , y 1 , …, y c−1 

f the following eigen-problem: 

 y = λDy , (8)

Step 3: Choosing a linear projection y i = f ( x i ) = a 

T x i ,

q. (6) can be rewritten as: 

 W X 

T a = λX D X 

T a . (9)
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Alternatively, if y i = f ( x i ) = 

∑ n 
j=1 α j k ( x i , x j ) , Eq. (6) can be

ewritten as: 

 W K α = λK D K α. (10)

here α = [ α1 , . . . , αn ] 
T . The optimal α’s are the eigenvectors cor-

esponding to the maximum eigenvalue of the eigen-problem ( 10 ).

Step 4: Calculating the transform matrix A , for the lin-

ar projection y i = f ( x i ) = a 

T x i , A = [ a 1 . . . , a c−1 ] εR 

d×c−1 . a k 

( k = 1 , . . . , c − 1 ) is the solution of regularized least square

roblem: 

 k = arg mi n a 

( 

n ∑ 

i =1 

(
a 

T x i − y k i 

)2 + γ ‖ 

a ‖ 

2 

) 

, (11) 

here y k 
i 

is the i th element of y k . For the nonlinear projection y i =
f ( x i ) = 

n ∑ 

j=1 

α j k ( x i , x j ) , Eq. (11) can be transformed into 

i n αk 

n ∑ 

i =1 

(
f ( x i ) − y k i 

)2 + α‖ 

f ‖ 

2 
K , (12) 

here αk ( k = 1 , . . . , c − 1 ) is the solution of the following linear

quations system: 

( K + αI ) αk = y k , (13) 

here K is n ×n gram matrix and K i j = K( x i , x j ) . 

. Marginal Fisher analysis dimensionality reduction via SR 

nd ELM 

.1. Marginal Fisher analysis 

Marginal Fisher analysis (MFA) aims to overcome the limitations

f LDA, which designs new criterion that characterizes the intra-

lass compactness and the inter-class separability. 

Given the input data point ( x i , y i ), where x i ∈ R 

d and y i is the

lass label of x i . Denote X = [ x 1 , . . . ., x n ] ∈ R 

d×n as the training

ata matrix. Constructing the intraclass compactness graph W and

nterclass separability graph W 

p , where 

 i j = 

{
1 , i f i ∈ N 

+ 
k 1 

( j ) or j ∈ N 

+ 
k 1 

( i ) 

0 , else. 
(14) 

Here, N 

+ 
k 1 

(i ) indicates the index set of the k 1 nearest neighbors

f the sample x i in the same class. 

 i j 
p = 

{
1 , i f ( i, j ) ∈ P k 2 ( c i ) or ( i, j ) ∈ P k 2 

(
c j 

)
0 , else. 

(15) 

Here, P k 2 (c) is a set of data pairs that are the k 2 nearest pairs

mong the set {( i, j ), i ∈ π c , j �∈ π c }. 

Marginal Fisher Criterion can be expressed as follows: 

 

∗ = argmin 

∑ 

i 

∑ 

i ∈ N + 
k 1 

( j ) or j∈ N + 
k 1 

( i ) 

∥∥y i − y j 
∥∥2 

W i j ∑ 

i 

∑ 

( i, j ) ∈ P k 2 ( c i ) or ( i, j ) ∈ P k 2 ( c j ) 
∥∥y i − y j 

∥∥2 
W i j 

p 

= argmin 

y T ( D − W ) y 

y T ( D 

p − W 

p ) y 
(16) 

here y = [ y 1 , y 2 , . . . , y n ] 
T and y i denotes the low-dimensional

epresentation of original sample x i in high-dimensional space. The

ptimal y ’s in Eq. (16) can be obtained by solving the generalized

igenvalue problem: 

y = λL p y (17) 

here L = D − W and L p = D 

p − W 

p are the Laplacian matrices

f the intraclass compactness graph W and interclass separability

raph W 

p , respectively. 
.2. ELM-based MFA 

If a linear projection y = w 

T x is introduced, Eq. (16) can be

ewritten as: 

 

∗ = arg min 

w 

w 

T X L X 

T w 

w 

T X L p X 

T w 

(18) 

hich is referred to as marginal Fisher analysis (MFA) and can be

ransformed into the following generalized eigenvalue problem: 

 L X 

T w = X L p X 

T w (19) 

Assume that a nonlinear projection y = Kα is used, where α =
 α1 , . . . , αn ] 

T , Eq. (16) can be rewritten as: 

∗ = arg min 

α

αT K LK α

αT K L p Kα
(20) 

hich is referred to as kernel marginal Fisher analysis and can

e further transformed into the following generalized eigenvalue

roblem: 

 LK α = K L p Kα (21) 

We extend the marginal Fisher analysis based on ELM (termed

s EMFA) in the following way: 

First, intraclass compactness is characterized from the intrinsic

raph by the term 

 c = 

∑ 

i 

∑ 

i ∈ N + 
k 1 

( j ) or j∈ N + 
k 1 

( i ) 

∥∥h ( x i ) β − h 

(
x j 

)
β
∥∥ 2 W i j 

= 2 βT H 

T ( D − W ) Hβ, (22) 

here, β = [ β1 , . . . , βL ] 
T ∈ R 

L and D = diag ( D 1 , . . . , D n ) is a diago-

al matrix with the diagonal elements defined as D i = 

n ∑ 

j=1 

w i j . 

Second, interclass separability is characterized by a penalty

raph with the term 

 p = 

∑ 

i 

∑ 

( i, j ) ∈ P k 2 ( c i ) or ( i, j ) ∈ P k 2 ( c j ) 

∥∥h ( x i ) β − h 

(
x j 

)
β
∥∥ 2 W i j 

p 

= 2 βT H 

T ( D 

p − W 

p ) Hβ, (23) 

here D 

p is the diagonal matrix of W 

p . 

Finally, Marginal Fisher Criterion based on ELM can be denoted

s follows: 

∗ = arg min 

β

βT H 

T ( D − W ) Hβ

βT H 

T ( D 

p − W 

p ) Hβ
(24) 

The optimal β’s are the eigenvectors corresponding to the min-

mum eigenvalue of the eigen-problem: 

 

T ( D − W ) Hβ = λH 

T ( D 

p − W 

p ) Hβ. (25) 

In order to avoid eigen-decomposition of dense matrices in

q. (25) , we first present the following theorem: 

heorem 1. Let y be the eigenvector of the eigen-problem in

q. (17) with eigenvalue λ. If y = Hβ, then β is the eigenvector of

he eigen-problem in Eq. (25) with the same eigenvalue λ. If y = w 

T x ,

hen w is the eigenvector of the eigen-problem in Eq. (19) with the

ame eigenvalue λ. If y = Kα, then α is the eigenvector of the eigen-

roblem in Eq. (21) with the same eigenvalue λ. 

roof. At the left side of Eq. (17) , replacing y by H β, we have 

 

T ( D − W ) Hβ = H 

T ( D − W ) y = λH 

T 
(
D 

p − W 

p 
)
y = λH 

T 
(
D 

p − W 

p 
)
Hβ

Thus, β is the eigenvector of the eigen-problem Eq. (25) with

he same eigenvalue λ. If y = w 

T x or y = Kα, the conclusions of

heorem 1 can be proved using the same method. �

According to Theorem 1 , the transformation matrices can be ob-

ained through two steps: 
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Table 2 

The MFA and KMFA algorithms using spectral regression. 

Input: Labeled samples { ( x i , y i ) } n i =1 
, the number of classes c , the number of the nearest k 1 and k 2 , parameters γ . 

Output: Transformation matrix and embedding results. 

Step 1: Constructing the intraclass compactness graph W and interclass separability graph W 

p . 

Step 2: Calculate Laplacian matrices ( D p − W 

p ) and ( D − W ) . 

Step 3: Find the smallest c generalized eigenvectors y 0 , y 1 , …, y c−1 of the eigen-problem ( 17 ). 

Step 4: For KMFA, find αk ( k = 1 . . . c) by solving the least square problem ( 27 ). For MFA, find w k ( k = 1 . . . c) by solving the least square problem ( 28 ). 

Step 5: Output the transformation matrix 	 = [ α1 , . . . , αc ] for KMFA and 	 = [ w 1 , . . . , w c ] for MFA. 

Step 6: The unseen samples can be embedded into c dimensional subspace by 	T x for MFA and 	T K for KMFA. 

Table 3 

The proposed EMFA algorithm. 

Input: Labeled samples { ( x i , y i ) } n i =1 
, the number of classes c , the number of the nearest k 1 and k 2 , parameters γ and L . 

Output: Transformation matrix 	 = [ β1 , . . . , βc ] and embedding results. 

Step 7: Constructing the intraclass compactness graph W and interclass separability graph W 

p . 

Step 8: Calculate Laplacian matrices ( D p − W 

p ) and ( D − W ) . 

Step 9: Find the smallest c generalized eigenvectors y 0 , y 1 , …, y c−1 of the eigen-problem ( 17 ). 

Step 10: Randomly generate { ( a i , b i ) } L i =1 
from any continuous probability distribution. 

Step 11: Find βk ( k = 1 . . . c) by solving the least square problem ( 26 ). 

Step 12: Output the transformation matrix 	 = [ β1 , . . . , βc ] . 

Step 13: The unseen samples can be embedded into c dimensional subspace by 	T h ( x ), where h (x ) = [ h 1 (x ) , . . . , h L (x ) ] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Description of benchmark datasets. 

Datasets Dimensions # of samples # of classes 

Ionosphere 33 351 2 

Sonar 60 208 2 

USPS 256 30 0 0 10 

Isolet 617 900 3 

MINIST 784 600 3 

Extended Yale B 1024 1900 38 

PIE 1024 10,200 68 

COIL-20 1024 1440 20 
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1. Since ( D 

p − W 

p ) and ( D − W ) are all sparse matrices, it is easy

to solve the eigen-problem in Eq. (17) to get y . Generally, 

2. For EMFA, calculate c vectors β1 , . . . , βc εR 

L . βk ( k = 1 , . . . , c ) is

the solution of regularized least square problem: 

βk = 

∫ 
arg min β

( 

n ∑ 

i =1 

(
h ( x i ) β − y k i 

)2 + γ
∥∥β

∥∥2 

) 

, (26)

where y k 
i 

is the i th element of y k . 

For KMFA, Calculate c vectors α1 , . . . , αc εR 

n . αk ( k = 1 , . . . , c ) is

the solution of regularized least square problem: 

αk = arg mi n α

( 

n ∑ 

i =1 

(
f ( x i ) − y k i 

)2 + γ ‖ 

f ‖ 

2 

) 

, (27)

where f (x ) = 

∑ n 
j=1 α j k ( x , x j ) according to the classical representer

theorem [17] . 

For MFA, calculate c vectors w 1 , . . . , w c εR 

d . w k ( k = 1 , . . . , c ) is

the solution of regularized least square problem: 

w k = arg mi n w 

( 

n ∑ 

i =1 

(
w 

T x i − y k i 

)2 + γ ‖ 

w ‖ 

2 

) 

, (28)

where y k 
i 

is the i th element of y k . 

Theorem 2 demonstrates the relationship between EMFA and

KMFA. 

Theorem 2. Assume H = [ h ( x 1 ) , h ( x 2 ) , . . . , h ( x n ) ] T , where h ( x ) is
1 √ 

L 
( k b 1 ( x , a 1 ) , k b 2 ( x , a 2 ) , . . . , k b L ( x , a L ) ) , { ( a i , b i ) } L i =1 

are randomly

generated from any continuous probability distribution and L is the

number of hidden nodes in ELM. Then EMFA is a special case of KMFA.

Proof. For KMFA, α can be obtained by the following equation: 

αT = ( K + γ I ) 
−1 y T (29)

If K = H H 

T , where H = [ h ( x 1 ) , h ( x 2 ) , . . . , h ( x n ) ] 
T and h (x ) =

1 √ 

L 
( k b 1 ( x , a 1 ) , k b 2 ( x , a 2 ) , . . . , k b L ( x , a L )) , the embedding function of

KMFA can be derived as follows: 

f ∗( x ) T = K ( K + γ I ) 
−1 y = h ( x ) H 

T 
(
H H 

T + γ I 
)−1 

y = h ( x ) β, 

which is exactly the embedding function of EMFA. This completes

the proof of Theorem 2 . �

The proposed algorithms are described in Tables 2 and

3 , respectively. In the supervised case, constructing the graph
aplacian matrix takes O( n log n ) time by using the cover

ree structure. For EMFA, the computational complexity of the

egularized least squares problem is O(min{ n, L } 3 ). Thus, the to-

al computational complexity of EMFA is O( min { n, L } 3 + n log n ) .

orrespondingly, the total computational complexity of MFA and

MFA is O( min { n, d } 3 + n log n ) and O( n 3 + n log n ) , respectively. 

. Experiments 

We carry out all algorithms on UCI datasets (Sonar, Ionosphere

nd Isolet), face recognition datasets (Extended Yale, PIE), dig-

ts recognition datasets (USPS and MNIST) and object recognition

atasets (COIL-20). The basic information of datasets is shown in

able 4 . For all datasets, we first normalize the values of elements

o the range [0, 1]. All the experiments have been performed in

ATLAB R2013a running in a 3.10 GHZ Intel Core ۛi5-2400 with 8-

B RAM. 

In this experiment, for fair comparison, we mainly compared

he proposed methods with the following approaches based on

pectral regression: ESR [9] , MKL-SR [6] and MKL-SRTR [7] in su-

ervised settings. The maximum number of iterations for all multi-

le kernel methods is initialized as 10 and 10 RBF base kernels are

sed and their σ values are set as 0.10, 0.20, 0.40, 0.80, 1.60, 3.20,

.40, 12.80, 25.60 and 51.20 respectively. For MKL-SR and MKL-

RTR, the affinity matrix W = [ w i j ] is defined as 

 i j = 

{
1 / n y i , i f y i = y j , 
0 , otherwise. 

(30)

For MKL-SR and MKL-SRTR, another affinity matrix W 

′ = [ w 

′ 
i j 

] ,

here w 

′ 
i j 

= 1 /N. The final reduced dimension is c for all methods.
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Table 5 

Classification accuracy of different DR methods. 

Datasets MKL-SR ESR MKL-SRTR KMFA EMFA 

Ionosphere 89.53 ± 3.67 91.56 ± 0.86 93.16 ± 0.72 93.64 ± 1.47 95.84 ± 1.56 

Sonar 80.37 ± 4.35 84.89 ± 4.13 86.75 ± 2.57 86.43 ± 3.21 87.65 ± 2.39 

USPS 90.68 ± 0.77 93.86 ± 0.43 94.31 ± 0.51 95.26 ± 0.93 96.69 ± 0.45 

Isolet 95.78 ± 0.22 96.90 ± 0.11 97.61 ± 0.12 96.92 ± 0.35 97.25 ± 0.22 

MNIST 93.25 ± 0.62 93.71 ± 0.82 93.87 ± 0.75 94.57 ± 1.12 95.35 ± 0.95 

COIL-20 93.26 ± 0.89 94.63 ± 0.35 95.70 ± 0.26 96.48 ± 0.26 97.47 ± 0.15 

Table 6 

Recognition accuracy rates on PIE (mean ± std-dev%). 

Train size MKL-SR MKL-SRTR ESR KMFA EMFA 

5 × 68 69.1 ± 1.5 73.8 ± 1.6 74.7 ± 0.9 75.6 ± 1.5 77.1 ± 1.2 

10 × 68 86.4 ± 0.8 87.3 ± 1.7 88.4 ± 0.6 88.9 ± 1.1 90.7 ± 0.8 

20 × 68 90.3 ± 0.7 91.2 ± 0.8 93.5 ± 0.4 94.3 ± 0.8 94.9 ± 0.9 

30 × 68 92.2 ± 0.7 93.4 ± 0.8 95.8 ± 0.4 96.0 ± 0.9 96.3 ± 0.7 

40 × 68 94.9 ± 0.8 96.2 ± 0.7 96.7 ± 0.3 97.2 ± 0.6 97.9 ± 0.6 

Table 7 

Recognition accuracy rates on Extended Yale B (mean ± std-dev%). 

Train size MKL-SR MKL-SRTR ESR KMFA EMFA 

10 × 38 72.6 ± 1.5 74.2 ± 1.5 74.9 ± 1.4 77.3 ± 1.8 78.8 ± 1.5 

15 × 38 84.8 ± 0.7 86.7 ± 0.6 88.1 ± 0.7 88.7 ± 0.6 90.2 ± 0.4 

20 × 38 91.5 ± 0.7 93.9 ± 0.4 95.2 ± 0.4 95.8 ± 0.6 96.5 ± 0.3 

25 × 38 93.9 ± 0.5 94.6 ± 0.3 96.8 ± 0.3 96.6 ± 0.4 97.8 ± 0.2 
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In each experiment, we select randomly samples to form

raining and testing sets with ratio 1:1. All experiments have

een repeated 30 times, and Table 5 summarizes the mean

lassification accuracies and the standard deviations of different al-

orithms. To evaluate the performance of these algorithms, we per-
Table 8 

Computation time of different classification methods on PIE(s). 

Train size ESR MFA 

Training time Testing time Training time Testing tim

5 × 68 0.43 0.27 0.26 0.27 

10 × 68 0.66 0.25 0.31 0.26 

20 × 68 1.23 0.24 0.36 0.25 

30 × 68 1.36 0.22 0.43 0.23 

40 × 68 1.44 0.21 0.51 0.21 

Fig. 1. Face recognition accuracies of EMFA, KMFA and MFA on PIE and E
ormed the ELM classification algorithm in each learned subspace.

or ESR and EMFA, the dimension of the subspace is c , where c

s the number of categories, and the regularization parameter γ
as tuned by a 10-fold cross-validation on the training data over

he range of {10 −3 , 10 −2 , …, 10 3 }. Specifically, the Gaussian func-

ion was selected and the number of hidden nodes L was tuned

y a 10-fold cross-validation over the range of {100, 150, 200, …,

0 0 0}. For EMFA, k 1 and k 2 are set as 10. 

As can be seen from Table 5 , EMFA evidently outperforms ESR,

KL-SR, MKL-SRTR and KMFA in most datasets, which achieves

ve best recognition rates among six datasets. This is due to the

act that EMFA utilizes the penalty graph to characterize the in-

erclass marginal point adjacency relationship. Without prior in-

ormation on data distributions, the interclass margin can better

haracterize the separability of different classes than the interclass

ariances in other algorithms. For KMFA, it is difficult to specify the

ptimal parameters of kernel functions, which generally results in

ocally optimal solutions. It demonstrates that EMFA makes good

se of SR, MFA and ELM to achieve the outstanding discriminant

nalysis power and yields the best nonlinear low-dimensional rep-

esentations. 

For each individual of PIE, l ( = 5, 10, 20, 30, 40) images are

andomly selected for training and the rest are used for test-

ng. The classification accuracy rates of each method on PIE are

hown in Table 6 . For each given l , the results are averaged over

0 random splits and report the mean as well as the standard

eviation. As can be seen from Table 6 , MKL-SR and MKL-SRTR

annot achieve the satisfactory results, which is due to the fact

hat these methods have to utilize iterative optimization methods

o obtain local optima. In addition, ESR, MKL-SR and MKL-SRTR

ave the assumption that the distribution of each class is con-

idered to be a unimodal Gaussian and separability of the differ-

nt classes cannot be well characterized by interclass scatter. Thus,
KMFA EMFA 

e Training time Testing time Training time Testing time 

0.57 0.28 0.45 0.26 

0.92 0.26 0.83 0.24 

1.63 0.27 1.55 0.23 

2.54 0.23 1.76 0.22 

3.26 0.22 2.03 0.21 

xtended Yale B. (a) Results on PIE; (b) results on Extended Yale B. 
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Fig. 2. Comparison of two-dimensional embedded results obtained by different algorithms on the first 9 classes of PIE. (a) Projection of training data with supervised 

MKL-SR; (b) projection of training data with supervised ESR; (c) projection of training data with supervised MKL-SRTR; (d) projection of training data with supervised EMFA. 
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they cannot solve the over-fitting problem in the small sample size

case. 

For the Extended Yale B face data set, we selected 50 images

for each class. A random subset with l ( = 10, 15, 20, 25) images

per individual was first taken to form the training set and the rest

of the data set was used to be the testing set. The experiments are

repeated over 30 random splits. Table 7 reports the mean classifi-

cation accuracy rates of each method as well as the standard devi-

ation. From Table 7 , we can observe that the proposed EMFA algo-

rithm achieves all best results for each l , which shows that EMFA

effectively combines MFA with SR to overcome the limitations of

LDA. 

We further report the training and testing time of ELM based

on ESR and the proposed method in Table 8 , where the training

time includes the computational time of the dimension reduction

for the testing data and the training time of the ELM algorithm.

As can be seen from Table 8 , ESR and EMFA, based on ELM, have

close time cost. Since EMFA is a special case of KMFA, its learning

speed is faster than that of KMFA. MFA runs much faster than other
lgorithms due to its linearity. Overall, compared with other algo-

ithms, the proposed algorithm can achieve better performance at

uch faster learning speed, which is consistent with the theoreti-

al analysis. 

Finally, we carry out MFA, KMFA and EMFA, which are all

ased on spectral regression, and compare face recognition ac-

uracies of the proposed algorithms on PIE and Extended Yale

. Similar to the experimental settings in [8] , the Gaussian Ker-

el exp { −‖ x − y ‖ 2 / δ2 } is used and parameter δ is set as δ =
 

( n −10 ) / 2 . 5 δ0 , where δ0 is the standard derivation of the training

ata set. The best results are reported using different kernel pa-

ameters. The average recognition results of each method vs. the

umber of training data are shown in Fig. 1 . As can be seen in

ig. 1 , EMFA and KMFA significantly have better clustering per-

ormance than MFA on these two face datasets. The performance

f EMFA is best among these algorithms. This is due to the fact

hat EMFA and KMFA are all nonlinear dimensionality reduction

ethods based on spectral regression, which aim to learn nonlin-

ar projections from high-dimensional spaces to low-dimensional
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nes. Correspondingly, MFA is actually a kind of linear dimension-

lity reduction methods based on spectral regression, which is not

pplicable to nonlinear face datasets. Although EMFA is a special

ase of KMFA, it does not need to learn kernel parameters and

andomly generates parameters of activation functions between in-

ut layers and hidden layers without human interventions. In con-

rast, KMFA has to empirically choose different kernel parameters

o obtain satisfactory performance. But, it is hard to find a way to

pecify the optimal kernel parameter. Consequently, EMFA is the

ost cost-efficient algorithm among these supervised dimension-

lity reduction methods. 

To visualize the supervised dimensionality reduction results, we

elected training data from the first 9 classes of PIE and projected

hem into a two-dimensional subspace to generate a graphical rep-

esentation, shown in Fig. 2 . From Fig. 2 , we can observe that the

mbedded results obtained by EMFA are separated from each other

ore clearly than other algorithms. The embedded data obtained

y EMFA has the best separability, which further validates that the

erformance of EMFA is much better than that of other algorithms

n the supervised case. 

. Conclusion 

In this paper, we extend the Marginal Fisher Criterion based

n ELM. Combined with SR and the proposed extended Marginal

isher Criterion, a family of dimensionality reduction algorithms,

re proposed for supervised nonlinear dimensionality reduction.

y virtue of SR, we solve the out-of-sample extension problem.

y means of ELM, our method not only introduces the nonlinear

mbedding functions, but also improves the efficiency of KMFA.

urthermore, it is more general for Fisher discriminant analysis.

xperimental results on benchmark datasets validate the promis-

ng performance of the proposed method. 
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