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Abstract

Batteries play a critical role for advancing the decarbonization of the transportation
and energy systems. Ensuring their safe and reliable operation is essential for the
effectiveness of battery-powered systems. To support this, the development of
accurate and robust prognostic models for battery state-of-health is key, enabling
autonomous systems to operate effectively in complex and remote settings. The
combination of Neural Networks, Bayesian modelling concepts and ensemble
learning strategies, form a valuable prognostics framework to combine uncertainty
in a robust and accurate manner. Accordingly, this study presents a Bayesian
ensemble learning methodology for predicting the capacity degradation of lithium-
ion batteries. The approach effectively forecasts capacity fade and quantifies the
uncertainty associated with battery design and degradation processes. The pro-
posed methodology employs a stacking ensemble technique, integrating multiple
Bayesian Neural Networks (BNNs) as base learners, which have been trained on
data diversity. Validation was performed using a battery aging dataset from NASA
Ames Prognostics Center of Excellence. Obtained results highlight the enhanced
accuracy and reliability of the proposed probabilistic fusion approach compared
to (i) pseudo-Bayesian model averaging, (ii) pseudo-Bayesian model averaging
with Bayesian bootstrapping, and (iii) a point prediction stacking approach using
distinct BNNs.

1 Introduction

Batteries are crucial for a sustainable, carbon-free economy. The development of accurate battery
Remaining Useful Life (RUL) prediction models is particularly important for reliable energy strate-
gies and cost-effective solutions. The estimation of the state-of-health (SOH) is a key activity for the
design of RUL prognostics models, focusing on capturing aging dynamics and health state (Toughza+
oui et al.| [2022). SOH-based prognostics capture battery ageing and health estimation which are
crucial indicators for addressing the degradation that impacts capacity and increases safety risks like
overheating (Wang et al.,[2022). Thus, precise SOH monitoring and forecasting are imperative for
safe and efficient operation of battery-operated systems (Zhao et al., [2023).

Recent data-driven approaches have focused on modeling the capacity degradation of lithium-ion
(Li-ion) batteries. [Toughzaoui et al.| (2022) developed a Convolutional Neural Network (CNN)-
Long short-term memory (LSTM) architecture, and We1 and Wu| (2023) presented a graph CNN
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complemented by dual attention mechanisms for the estimation of SOH and RUL of batteries. Due to
the variability inherent in the battery manufacturing process, it is essential to quantify this uncertainty
to ensure robust and reliable prognostics predictions /Abdar et al.|(2021)); Nemani et al.| (2023)).

In the broader machine learning context, ensembles of probabilistic models have been utilized to
capture complex uncertainties. |Fan et al. (2017) introduced a Bayesian posterior predictive framework
for weighting ensemble climate models. (Cobb et al.|(2019) present a new machine learning retrieval
method based on an ensemble of BNNSs. In this scenario, the overall output from the ensemble is
treated as a Gaussian mixture model. However, models are equally weighted with no adaptation
to the observed data. [Zhang et al.| (2022) present a Bayesian Mixture Neural Network (BMNN)
for Li-ion battery RUL prediction. However, the absence of a weighted model combination limits
the analysis of individual model contributions. Alternatively,|Bai and Chandra| (2023) described a
Bayesian ensemble framework using gradient boosting and Markov Chain Monte Carlo sampling,
while Dai et al.[(2023) demonstrated a robust Bayesian fusion method within a sequential Monte
Carlo algorithm, enhancing uncertainty quantification in predictions.

In this context, inspired by the promising ability of probabilistic ensemble models to capture model
uncertainty, the main contribution of this research is the development of a probabilistic model fusion
approach for battery SOH predictions. Bayesian convolutional neural networks (BCNNs) are used as
base models for SOH prediction, and the developed fusion approach integrates individual BCNN
probabilistic predictions. The fusion strategy balances between precision and reliability of individual
predictions, adopting an optimal tradeoff between accuracy and uncertainty of predictions through
the proposed stacking approach. The proposed approach has been compared with (i) stacking BCNN
models using mean information, (ii) Pseudo BMA, and (iii) a Pseudo-BMA variant stabilized with
Bayesian bootstrap, called Pseudo-BMA+. Obtained results confirm that the proposed framework
infers accurate, well-calibrated, and reliable probabilistic predictions, which improve predictive
performance and contribute to estimate uncertainty in a robust and reliable manner in complex
data-driven tasks. The proposed approach has been tested and validated with the publicly available
NASA’s battery dataset|Saha and Goebel (2007)).

2 Methodology

The proposed framework integrates BCNNs with probabilistic ensemble strategies to generate accurate
predictions with robust uncertainty quantification, leveraging Bayesian modeling and ensemble
strategies. The approach is divided into offline and online stages. From battery datasets, the offline
process completes data pre-processing and model training. In the online process, trained models
are stacked according to computed weight and stacking criteria. The outcome is a one-step-ahead
probabilistic capacity estimate. Figure|l|shows the high-level block diagram of the proposed approach.
The approach is generally divided into offline and online phases.
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Figure 1: Block diagram of the proposed approach|Alcibar et al.[(2024)).
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2.1 Offline Phase

During the offline phase, starting from a battery dataset with different run-to-failure trajectories on
the same type of batteries, different base models are designed through a training strategy which seeks
diversity in the training set to develop complementary predictive models.

Ensemble Base Models: BCNNs

BCNN combines feature extraction capabilities of classical CNN models with the uncertainty quan-
tification of Bayesian theory. This fusion enables robust predictions by capturing model uncertainty,
crucial for reliable decision-making in complex scenarios. The proposed architecture is built using
variational layers of TensorFlow Probability in Python|Dillon et al.|(2017). Detailed architecture
is provided in the Appendix

Training for Diversity

Model diversity is crucial for effective ensemble models Nam et al.|(2021). Accordingly, the training
set for each battery model is modified to learn different battery aging properties. Using the leave-one-
out (LOO) strategy, K diverse BCNN models are built from K run-to-failure trajectories, changing
the training set in each iteration (cf. Figure[T). Each model is trained on all batteries except one, held
as a test set. This LOO approach enhances models’ ability to generalize across battery types and
manufacturing conditions. This stage completes the offline training process, which results in a set of
BCNN models, M = {BCNN;, BCNN,,...,BCNNg}.

2.2 Online Phase: Stacking of Predictive Distribution (SPD)

During the online phase, the proposed stacking of predictive distribution strategy is designed and
tested. The proposed approach takes as input individual base models [cf. Eq. (2.1)] and monitored
data up to the prediction instant ¢, which is used to forecast the probability density function (PDF) of
the capacity at ¢ + 1, §ppr(t + 1). The objective of the stacking process is to integrate the predictive
distributions of different base models and propagate all the information end-to-end.

For comparison and benchmarking purposes, we implemented alternative ensemble methods: Pseudo-
Bayesian Model Averaging (Pseudo-BMA) (cf. Appendix[C.I)), an enhanced variant of Pseudo-BMA
stabilized using Bayesian bootstrap, known as Pseudo-BMA+ (cf. Appendix [C.2)) and Stacking Point
Prediction (SPP) (cf. Appendix[C.3).

Stacking using Logarithmic Score

The optimal way to combine a set of Bayesian posterior predictive distributions is by using the
logarithmic score [Yao et al.| (2018). This method maximizes the average log-likelihood of the
observed data, which is a proper scoring rule used to evaluate the accuracy of probabilistic forecasts.
It measures the accuracy of a forecast and penalizes overconfidence and underconfidence in the
predicted probability. The logarithmic score is defined as follows:
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where N denotes the total number of data points and K denotes the total number of base models.
The LOO predictive distribution for each model, i.e. p(y; | y—i, M), is used to compute the model’s
prediction for the data point 7. To avoid overfitting, a regularization term A4 is added.

In the Bayesian framework, stacking extends beyond averaging point predictions by combining
multiple Bayesian posterior predictive distributions. This approach develops a stacking model that
leverages the strengths of various predictive models [cf. Eq. (2.1)], enhancing the overall predictive
accuracy. Stacking predictive distributions enables fusion of uncertainties from various models into a
unified predictive framework. This approach improves forecast accuracy and offers a comprehensive
evaluation of uncertainty associated with forecasts, providing advantages across diverse decision-
making scenarios. The fundamental equation governing this process is defined as follows:

K
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where p(g|y) represents the aggregate probability estimation based on the ensemble model, wy,
denotes the weight assigned to the k-th component within the ensemble, and p(§|y, M) refers to the
probabilistic forecast generated by each base model.

2.3 Forecasting

Online forecasting computes one-step ahead predictions. To forecast battery capacity at instant ¢ + 1,
previous data until instant ¢ is used, plus an uncertainty factor expressed as noise. This data includes
voltage V' (t) and temperature 7'(¢) at instant ¢, as well as a Gaussian noise term e distributed as
N(0,0 = 1), which introduces variability in the data’s progression over time. The one-step ahead
capacity distribution prediction is thus defined as :

gppr(t+1) = f(X(t)) (3)

where f(.) denotes the designed ensemble model, and §ppr(t + 1) is the distribution of the capacity
estimate at ¢ + 1.

3 Results

To evaluate the proposed approach, different ensemble strategies are compared to evaluate their
strengths and identify the most suitable approach. Table [I] presents a comparative analysis in terms of
accuracy and probabilistic metrics.

A notable observation from the results in Table [T]is the variance between the proposed ensemble
approach (cf. Figure|[I) and the benchmarking ensemble models (cf. Appendix[C) in specific scenarios.
For batteries #5, #6 and #7, the proposed approach exhibited superior outcomes, particularly in
probabilistic metrics such as Negative Log-Likelihood (NLL) (cf. Appendix [D.2)) and Continuous
Rank Probability Score (CRPS) (cf. Appendix [D.I). This suggests that the method produces not
only accurate point estimates but also well-calibrated probability distributions. This is particularly
valuable for battery health prognostics, where understanding prediction uncertainty is crucial for
informed decision-making.

Table 1: Comparison of different ensemble strategies for different batteries used as test.
Pseudo-BMA Pseudo-BMA+ SPP SPD

NLL(}) CRPS() NLL(}) CRPS(]) NLL(]) CRPS(l) NLL({) CRPS(})

B0005 -2.141 0.014  -2.158 0.013 -1.667 0.025 -2.163  0.012
B0006 -1.973 0.018 -1.965 0.018 -1.709 0.024 -2.008  0.016
B0007 -2.172  0.013 -2.181 0.013 -1.986  0.015 -2.191 0.012
B0018 -1.493 0.031 -1.553 0.029 -1.799  0.019  -1.593  0.0286

Figure [2] displays a visual comparative analysis corresponding to the data presented in Table [T}
showcasing the different ensemble methods used for forecasting the capacity degradation of battery
#5. The pseudo-BMA method displays a relatively narrow credible interval, though its accuracy is
not very precise, especially at the beginning. The pseudo-BMA+ method shows similar uncertainty
quantification to pseudo-BMA, with slightly improved accuracy. In contrast, the stacking of point
predictions method yields the least favorable results in both accuracy and uncertainty quantification.
Notably, the stacking of predictive distributions method provides the most comprehensive results,
combining high accuracy with narrow credible intervals.

These observations highlight that although pseudo-BMA and pseudo-BMA+ present good results, the
stacking of predictive distributions is generally superior due to its connection with the logarithmic
score. This approach avoids potential issues such as identification problems arising from the lack of
strict propriety associated with the energy score, and eliminates the need for additional smoothness
assumptions required by other proper local scoring rules (Gneiting and Raftery}, 2007).
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Figure 2: Battery capacity degradation forecasting results.

4 Discussion

The proposed research work demonstrates that the stacking of predictive distributions based on a
Bayesian framework improves the accuracy and robustness of predictions compared with pseudo-
BMA, pseudo-BMA+ and point prediction stacking approach. However, before drawing definitive
conclusions about the application of the proposed solution in real-world applications,

Robustness

Credible intervals indicate the uncertainty associated with the data and the model (see Figure [2)).
Enhancing robustness involves reducing these intervals by minimizing uncertainty. This can be
achieved by increasing observations to refine model uncertainty and using priors, such as maximum
entropy or weakly informative priors, to tighten credible intervals.

Scalability

To analyze larger fleets of batteries, clustering similar batteries or using hierarchical modeling with
a global model and specific group models would be more efficient than leave-one-out methods,
enabling better data diversity and scalable adaptations.

5 Conclusion

This work presented a novel probabilistic fusion approach for battery state-of-health prognostics,
combining BCNNs with Bayesian ensemble stacking techniques. The proposed stacking of predictive
distributions method demonstrated superior performance on the NASA battery dataset, particularly in
terms of probabilistic metrics. Results showed improved accuracy and well-calibrated uncertainty
estimates compared to alternative probabilistic fusion methods, highlighting the potential of this
approach for robust battery health monitoring.

The main contribution lies in the effective integration of model diversity and uncertainty quantification,
enabling more reliable decision-making in battery management systems. However, the generalization
to diverse battery types and operational conditions requires further investigation. Despite this
limitation, the proposed method represents a significant progress in probabilistic battery prognostics,
with potential applications in other health monitoring domains.
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A Bayesian Convolutional Neural Networks (BCNN)

BCNN models are a Bayesian extension of the classical Convolutional Neural Network (CNN)
models to include uncertainty associated with parameter estimation. This requires modification of the
classical backpropagation algorithm through Bayesian techniques. The incorporation of uncertainty
into the model is achieved by treating weights as random variables and applying Variational Inference
to approximate posterior distributions. This results in a more robust model that predicts the complete
probability density function (PDF).

BCNN models have been selected to improve the robustness and accuracy of model prediction with
respect to classical CNN models. To this end, BCNNs make use of probabilistic distributions to model
parameters and the uncertainty related to their training process, and prior distributions to incorporate
previous knowledge, generate uncertainty estimations and mitigate over-fitting Blundell et al.| (2015)).
In contrast, the classical learning models, e.g. non-Bayesian CNN models, focus on maximum
likelihood estimation (MLE) and they overlook prior and posterior distributions. This leads to
increasing error and decreasing model robustness in high uncertainty contexts, e.g. out-of-distribution
data or manufacturing drifts.

The architecture of the BCNN models is shown in Figure [3|and it is defined as follows:

ININED
U
NN O
Sensors | N AN
NMNAH A —_ Q \N @
=L NN AN A
o Ao P AN A A A \N ‘@
s M AL WA AN A : ;C) <
o => [ =D A A = - /4
o

= AN A Q 7. 5@ f
AR AAA A ’

INAEN AR
NI AN AN O
Input Convolution 1D Adaptive Avg. Dense Distribution
Reparameterization Pooling Layer Reparameterization Lambda

Figure 3: Schematic of the Bayesian convolution neural network.

* Input data: the input data for the BCNN is structured in a tensor format. The rows represent
data samples of discharge cycles, and columns that correspond to features, such as the
voltage and temperature over time. Notably, the input does not include the current discharge
as it remains constant in this scenario.

* Convolutional 1D Reparametrization: this layer creates a convolution kernel that is applied
to the input data. During the forward pass, kernel and bias parameters are drawn from a
Gaussian distribution. It uses the reparameterization estimator to approximate distributions
through Monte Carlo trials, integrating over the kernel and bias.

* Global Average Pooling 1D: this layer performs average pooling specifically for temporal
data. It reduces the spatial dimensions of the input data to a single value per channel by
calculating the average over the temporal dimension.

* Flatten: this layer reshapes input data into a one dimensional array, enabling compatibility
between Bayesian convolutional layers and Bayesian dense layers.

* Dense Reparameterization: this layer implements a reparameterization estimator for
Bayesian variational inference. It implements a stochastic forward pass via sampling
from the kernel and bias distributions. This approach improves the robustness of the model,
allowing uncertainty estimation in parameter values and supporting probabilistic modeling
in deep learning.

* Distribution Lambda: this layer is responsible for producing the final results given the inputs
and the learned weights from the previous layers. The output layer consists of two neurons
representing the mean, § and variance, 62, in order to quantify the expected value and
its associated uncertainty. To ensure a positive variance, the neuron is activated using an
exponential function.



B Dataset description

The effectiveness of the proposed method has been tested using a battery dataset from the NASA
Ames Prognostics Center of Excellence (Saha and Goebel, 2007).

A subset of available battery data has been selected, focusing on batteries #5, #6, #7 and #18. Each
battery is operated under various conditions including charging, discharging, and impedance analysis.
Throughout the charge and discharge cycles, temperature, current, and voltage were meticulously
recorded. During charging, a constant current mode at 1.5 A was maintained until the voltage reached
4.2V, followed by a switch to constant voltage mode until the current dropped to 20 mA. Discharge
cycles involved a constant load mode at 2 A until the voltage levels reached 2.7 V, 2.5V, 2.2 V and
2.5V for batteries #5, #6, #7 and #18, respectively. The experiment ended once the battery capacity

decreased by 30%. These batteries had a maximum capacity of 2Ah with an end-of-life capacity set
at 1.4Ah.

Figures [#(a)] f(b)| and [(c)] show the evolution of voltage, current (constant), and temperature
measurements with the increment of discharge cycles for the battery #5.

—— 40 cycles 00071 —— 40 cycles

-+ 60 cycles o254 | -==- 60 cycles

—— 80 cycles | —— 80 cycles
++ 100 cycles 0504 100 cycles
120 cycles 120 cycles

— 40 cycles
--- 60 cycles

75— 80cycles /\
-+ 100 cycles .

120 cycles

Voltage (V)
Current (A)
Loy
Temperature (C)

215

[T U

o 500 1000 1500 2000 2500 3000 o 500 1000 1500 2000 2500 3000 o 500 1000 1500 2000 2500 3000
Time (s) Time (s) Time (s)

(a) Voltage variation (b) Current variation (c) Temperature variation

Figure 4: Feature variations due to an increasing number of discharge cycles in battery #5.

Figure 5] shows variations in capacity degradation rates for identical batteries. This is an indicator of
uncertainty inherent in the manufacturing process, which affects SOH estimates.
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Figure 5: Capacity degradation data of Li-ion batteries.



C Benchmarking

To compare the proposed stacking approach with alternative strategies, additional ensemble methods
were implemented. These include pseudo-BMA, Pseudo-BMA+, and stacking of point predictions
using the energy score as a scoring rule.

C.1 Pseudo Bayesian Model Averaging

Pseudo Bayesian Model Averaging (Pseudo-BMA) is an approach that broadens the range of models
under consideration by deriving model weights from estimated out-of-sample predictive performance.
Pseudo-BMA supports the identification of the generalization error in each model and accounts for
uncertainty across possible models by assessing performance on new or future data.

Yao et al.[(2018) introduced Pseudo-BMA, which estimates model weights by renormalizing the
expected log pointwise predictive densities (ELPD) of each candidate model. ELPD estimates the
expected predictive performance of a model k£ on new data, ¢, and is typically approximated using
cross-validation techniques, such as leave-one-out (LOO) cross-validation, ELP D,,. Yao et al.
(2018) recommend using Pareto-smoothed importance sampling (PSIS) estimates of LOO cross-
validation (PSIS-LOOQ) (Vehtari et al.| 2017) to approximate ELPD,,,. This can be represented
mathematically as:

N
ELPDy,, = Zlogp(yi | y—i, M)
i=1
N
= ZIOg/p(yi | O, My )p(Or | M, y—i) dby
i=1
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"
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In this equation, p(y;|y—;) represents the LOO predictive density of the i-th data point, given data
excluding that point. p(y; |0}, My) is the predictive density of the i-th data point from the s-th sample
of the posterior distribution of parameters 65, and model M},. To approximate the LOO predictive
density, a corrective importance sampling weight (r;k) is applied to the vector of log predictive
densities, estimated robustly using PSIS (Vehtari et al.| 2017).

The resulting vector of ELPD values across models can be transformed into a set of weights using the
softmax function:
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exp (ELPDpsis—loo )
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C.2 Pseudo Bayesian Model Averaging with Boostraping (Pseudo-BMA +)

An advanced approach to computing uncertainties related to LOO estimation involves using the
Bayesian bootstrap (BB) method, as described by [Vehtari and Lampinen| (2002). The Bayesian
bootstrap, introduced by Rubin|(1981), offers a straightforward non-parametric approximation to any
probability distribution. In this method, given samples (z1, ..., z,) from a random variable Z, it is
assumed that the posterior probabilities for all observed z; follow a Dirichlet(1, ..., 1) distribution.
Unobserved values of Z are assigned zero posterior probabilities. Each BB replication generates a
set of posterior probabilities «;.,, for all observed z;.,,, which can be represented as:

aq., ~ Dirichlet(1,...,1), P(Z = za) = «;. (6)
——

n

10



This leads to one BB replication of any statistic ¢(Z) of interest:

o(Z|o) = Zalqﬁ 2;). (7

The distribution over all replicated é(Z |a) (generated by repeated sampling of «) produces an
estimation for ¢(Z).

——k
Given that the distribution of ELPD,,, ; is often highly skewed, BB is likely to perform better than a
Gaussian approximation. In our model weighting approach, we define:

K
zf =ELPD,,;, i={l,...,n} ®)
We then sample vectors (a1 p, . . ., 0 p)b=1,..., 5 from the Dirichlet(1, ..., 1) distribution and com-
——
pute the weighted means:

n
= izt )

i=1

A Bayesian bootstrap sample of wj, with size B is then calculated as:

;Xp(nif)ik . b= {1’_
> k=1 exp(nzy)

Finally, the adjusted weight of the model &k, which we term the Pseudo-BMA+ weight, is computed
as follows:

Wg,p = ..,B}7 (10)

1 B
=5 Wkb (11)
b=1

C.3 Stacking of Point Prediction

An effective method for determining the weight of each model in the stacking process is by minimizing
the leave-one-out mean squared error with a Lo regularization term, A, . The purpose of this term is
to penalize large weights to preventing overfitting and balance individual model contributions. The
weights are obtained through the following optimization problem:

n K 2 K
W = arg rrii}nz (yl — Z wkfl(gl) (wz)) + Areg Z w? (12)
i=1 =1 =1

where f K (xl) represents the predicted value of the k-th model, when the i-th observation is left
out of the training set. The regularization parameter, A4, controls the strength of the applied

K
regularization. To ensure a feasible solution, the weights are restricted to wy, > 0 and > wy = 1.
k=1
Accordingly, the stacking of point prediction approach is defined as follows:
K
§=">_ iy fr(x|0k) (13)
k=1

where g represents the prediction of the ensemble for the test battery capacity, wy, denotes the weight
assigned to the k-th battery base model, and fi(x|6y) is the prediction made by the corresponding
base model (BCNNjy).
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D Performance Assessment Metrics

The accuracy of the regression is measured by mean squared error (MSE), while negative log
likelihood (NLL) assesses model performance by quantifying prediction probabilities. Finally, The
correctness of probability predictions is assessed through the continuous ranked probability score
(CRPS).

D.1 Continuous Ranked Probability Score (CRPS)

CRPS can be formally expressed as a quadratic measure of discrepancy between the predicted
Cumulative Distribution Function (CDF), F'(-), and the observed empirical CDF for a given scalar
observation y (Zamo and Naveau, 2018)):

CRPS(F,y) = / (F(z) - Iz > y))2da, (14)

where I(x > y;) is the indicator function, which models the empirical CDF.

To obtain a single score value from Eq. (I4), a weighted average is calculated for each individual
observation of the test set (Gneiting et al., 2005)):

N
1
PS = — PS(F;,vy; 1
CRPS N;GR S(Fy, ;) (15)

where N denotes the total number of predictions.

D.2 Negative Log Likelihood (NLL)

NLL metric assesses probabilistic models by using the likelihood concept, which indicates how likely
the observed data is given model parameters (Bosman and Thierens|, [2000). Likelihood (£) is the
product of each observation’s probability density function (PDF), expressed mathematically as

N

Lo X) =] fxil6) (16)

=1

where 6 denotes model parameters and X includes NV data points. NLL is preferred for optimization
since minimizing NLL is equivalent to maximizing the log-likelihood, facilitating the discovery of
model parameters that best explain the observed data, represented by

—log L(0 | X) = = log f(x; | 0) (17)
=1
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