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Abstract

The process of meaning composition, wherein001
smaller units like morphemes or words com-002
bine to form the meaning of phrases and sen-003
tences, is essential for human sentence com-004
prehension. Despite extensive neurolinguis-005
tic research into the brain regions involved in006
meaning composition, a computational metric007
to quantify the extent of composition is still008
lacking. Drawing on the key-value memory009
interpretation of transformer feed-forward net-010
work blocks, we introduce the Composition011
Score, a novel model-based metric designed to012
quantify the degree of meaning composition013
during sentence comprehension. Experimental014
findings show that this metric correlates with015
brain clusters associated with word frequency,016
structural processing, and general sensitivity to017
words, suggesting the multifaceted nature of018
meaning composition during human sentence019
comprehension. 1020

1 Introduction021

When encountering words such as "milk" and "pud-022

ding", the human mind effortlessly combines them023

to form a complex concept, such as a milk-flavored024

pudding. This combinatory process is a funda-025

mental aspect of human language comprehension026

and production, enabling us to generate an infi-027

nite array of meanings from a finite set of words.028

Despite extensive neurolinguistic research into the029

localization of meaning composition in the human030

brain (Bemis and Pylkkänen, 2011, 2013; Blanco-031

Elorrieta et al., 2018; Flick and Pylkkänen, 2020; Li032

and Pylkkänen, 2021; Zhang and Pylkkänen, 2015;033

Li et al., 2024), understanding the detailed mech-034

anism of how a complex meaning is constructed035

from its components and how it is processed by036

the human brain has become a challenging prob-037

lem. One of the primary difficulties lies in the ab-038

sence of a suitable computational metric to quantify039

1Our code and data will be released upon acceptance.

Figure 1: Comparing Composition Scores with fMRI data
during naturalistic listening comprehension.

the extent of meaning composition. This absence 040

significantly complicates quantitative analyses of 041

meaning composition in the human brain. 042

Recent advancements in Large Language Mod- 043

els (LLMs) offer promising insights into this prob- 044

lem. By training on large-scale natural language 045

corpora and aligning with human preferences, these 046

computational models achieve unprecedented lev- 047

els of proficiency in understanding and generating 048

natural languages (OpenAI et al., 2023; Anil et al., 049

2023; Touvron et al., 2023). In addition to their 050

high performance, studies have shown that their 051

internal states correlate with human behavioral and 052

neural data (Schrimpf et al., 2021; Caucheteux 053

et al., 2022), suggesting shared principles between 054

their algorithms and the human brain. Given this 055

background, it is natural to inquire whether we can 056

develop a computational metric to quantify mean- 057

ing composition from the internal states of LLMs. 058

Motivated by this inquiry, our study introduces a 059

novel model-based metric, the Composition Score, 060

to evaluate meaning composition in the human 061

brain. Leveraging the key-value memory interpre- 062

tation of the Feed-Forward Network (FFN) mod- 063

ules in the transformer model (Geva et al., 2021, 064

2022), this metric computes the composition of 065

memory-induced vocabulary distributions within 066
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the FFN blocks given an input prefix, thereby re-067

flecting the degree of meaning composition of each068

word. To assess its validity, we examine the pat-069

terns of Composition Scores using the novel "The070

Little Prince" in English and compare them with071

other control variables such as word frequency and072

syntactic node count based on top-down, bottom-073

up, and left-corner parsing. Additionally, we corre-074

late Composition Scores with an openly available075

fMRI dataset where participants listened to "The076

Little Prince" in the scanner (Li et al., 2022). Our077

findings reveal that:078

• The Composition Score exhibits partial corre-079

lation with word frequency and syntactic node080

counts but reveals more intricate patterns;081

• The Composition Score is associated with a082

broader brain cluster and exhibits a higher083

regression score with the fMRI data compared084

to the control variables;085

• Brain regions associated with the Composi-086

tion Score encompass those underlying word087

frequency, structural processing, and gen-088

eral sensitivity to words, indicating the multi-089

faceted nature of meaning composition.090

2 Related Work091

2.1 Meaning composition in LLMs092

Despite considerable efforts in interpreting trans-093

former models and Large Language Models094

(LLMs), e.g. Hewitt and Manning, 2019; Clark095

et al., 2019; Voita et al., 2023, prior research has096

not extensively focused on meaning composition in097

LLMs. In their groundbreaking work interpreting098

the Feed-Forward Network (FFN) block as key-099

value memory, Geva et al. (2021) noted that the100

block engages in "memory composition" and quan-101

tified the degree of composition by examining the102

overlap between neuronal predictions and block103

predictions. Building on this, Geva et al. (2022)104

and Voita et al. (2023) proposed that the FFN block105

makes predictions by amplifying and suppressing106

concepts in the vocabulary space, akin to compos-107

ing meaning. Inspired by this interpretation, we108

design the Composition Score to link the meaning109

composition in models and the human brain.110

2.2 Meaning composition in the human brain111

The process of meaning composition in the hu-112

man brain has been localized to regions in the left113

temporal lobe. Studies have found that phrases 114

like "red boat" trigger increased activity in the 115

left anterior temporal lobe (LATL) compared to 116

non-compositional word lists (Bemis and Pylkkä- 117

nen, 2011, 2013), indicating LATL’s involvement 118

in conceptual combination. This effect is consis- 119

tent across different word orders and languages 120

(Westerlund et al., 2015), including American Sign 121

Language (Blanco-Elorrieta et al., 2018). 122

Although the LATL remains the most consis- 123

tently implicated locus for composition with the 124

highest replication rates, recent evidence suggests 125

a role for the surrounding temporal cortex as well. 126

Investigations into the functional intricacies of the 127

LATL have unveiled its conceptual, non-syntactic 128

functions (Bemis and Pylkkänen, 2013; Li and 129

Pylkkänen, 2021; Parrish and Pylkkänen, 2022; 130

Zhang and Pylkkänen, 2015). For instance, the 131

LATL can integrate concepts such as "boat red" 132

even without explicit syntactic combination (Be- 133

mis and Pylkkänen, 2013; Parrish and Pylkkänen, 134

2022). Conversely, the posterior temporal cortex 135

exhibits greater sensitivity to syntactic structures 136

(Flick and Pylkkänen, 2020; Hagoort, 2005; Lyu 137

et al., 2019; Matchin et al., 2019; Matchin and 138

Hickok, 2020; Li and Pylkkänen, 2021). As out- 139

lined in Pylkkänen (2019), composition may entail 140

syntactic, logico-semantic, and conceptual subrou- 141

tines, engaging multiple areas across the temporal, 142

parietal, and frontal cortex beyond the LATL (see 143

Pylkkänen, 2019 for a review). 144

2.3 Correlating model predictions with the 145

human brain 146

Previous studies comparing both symbolic models 147

and LLMs to the human brain have revealed some 148

shared principles between the two systems (e.g., 149

Brennan et al., 2016; Caucheteux and King, 2022; 150

Caucheteux et al., 2022; Goldstein et al., 2022; Nel- 151

son et al., 2017; Schrimpf et al., 2021; Toneva et al., 152

2022; Antonello et al., 2023; Gao et al., 2023). For 153

example, Nelson et al. (2017) correlated syntac- 154

tic complexity under different parsing strategies 155

with the intracranial electrophysiological signals 156

and found that the left-corner and bottom-up strate- 157

gies fit the left temporal data better than the most 158

eager top-down strategy; Goldstein et al. (2022) 159

and Caucheteux et al. (2022) both showed that the 160

human brain and the deep learning language mod- 161

els share the computational principles of predicting 162

the next word as they process the same natural nar- 163

rative. Toneva et al. (2022) constructed a compu- 164
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tational representation for "supra-word meaning".165

They modeled composed meaning by regressing166

word embeddings from its context embeddings in167

ELMo (Peters et al., 2018), and found significant168

LATL and LPTL activity correlating with this met-169

ric. Antonello et al. (2023) and Gao et al. (2023)170

examined the scaling law in the correlation between171

model states (e.g. hidden states, attention matrices)172

and human neural and behavioral data.173

3 Methods174

3.1 Composition Scores from LLMs175

The Composition Score proposed in this paper176

quantifies the compositionality of key-value mem-177

ory stored in the FFN blocks of LLMs, building178

upon the key-value memory interpretation of the179

FFN blocks. We begin by formally describing the180

key-value memory hypothesis and subsequently181

introduce the definition of the Composition Score.182

3.1.1 The key-value memory interpretation183

Geva et al. (2021) first proposed the key-value184

memory interpretation of FFN blocks in trans-185

former models. An FFN block (e.g., for trans-186

former layer l) can be expressed as:187

FFl(x) = f(x ·K l⊤) · V l188

where x ∈ Rd is the input vector, K,V ∈ Rdm189

are the two linear layers inside the FFN block, and190

f is the activation function. This formulation can191

be viewed as a generalized expression of a neural192

memory (Sukhbaatar et al., 2015):193

MN(x) = softmax(x ·K⊤) · V194

Consequently, the first linear layer K l corresponds195

to the "keys" matrix in the neural memory, each196

row of which (also referred to as a "neuron") is197

a key vector that triggers activation of a certain198

memory; and V l corresponds to the "values" ma-199

trix, each row of which is a memory entry vl
i that200

can affect the next-token prediction. The activation,201

ml = f(x ·K l⊤), can then be viewed as a vector202

that contains the unnormalized coefficient of each203

memory entry in this FFN block. As a result, the204

output of the FFN block is a weighted mixture of205

memory values.206

Geva et al. (2021, 2022) then translated the207

aforementioned vector-space analysis into human-208

readable representations, where x, the vector repre-209

sentation of a word wj in a sentence, corresponds to210

the input prefix w1, ..., wj . Additionally, the mem- 211

ory value of the i-th neuron vi can be mapped to a 212

vocabulary distribution pl
i by the output embedding 213

matrix E using: 214

pl
i = softmax(vl

i · E) 215

This same mapping can also be applied to the FFN 216

output. In this context, the FFN block receives a 217

sentence prefix, activates its stored memory accord- 218

ingly, and then combines the predicted next-token 219

distribution encoded by each neuron to produce the 220

final prediction. 221

3.1.2 Calculating Composition Score 222

The key idea of the Composition Score is to inter- 223

pret the memory combination process described 224

above as meaning composition, as manifested by 225

the predicted vocabulary distributions. Given the 226

predicted vocabulary distributions pl
1, ...,p

l
dm

of 227

each neuron, and the final predicted distribution pl 228

of the FFN block, we first calculate the Jensen- 229

Shannon distances (the square root of Jensen- 230

Shannon divergence) between them: 231

dist(pl
i,p

l) = D
1
2
JS(p

l
i∥pl) 232

=

[
1

2
DKL(p

l
i∥pl

m) +
1

2
DKL(p

l∥pl
m)

] 1
2

233

where DKL(·∥·) is the Kullback–Leibler diver- 234

gence between two distributions, and pl
m = 1

2(p
l
i+ 235

pl). This quantifies the proximity of the final pre- 236

diction to the individual memory values. If the 237

distances are approximately equal across all the 238

neurons in the block, we interpret the output as 239

highly composed. Conversely, if the distance is 240

close to zero for one or two neurons and signifi- 241

cantly larger for others, we perceive the output as 242

less composed. Hence, we define the Composition 243

Score as: 244

Sl
comp =

min1≤i≤dm dist(pl
i,p

l)

max1≤j≤dm dist(pl
j ,p

l)
245

The score ranges from 0 to 1, with a high score 246

(close to 1) indicating that the largest distance is 247

roughly equivalent to the smallest one, and vice 248

versa. Conceptually, the Composition Score quan- 249

tifies the degree of memory or meaning composi- 250

tionality when predicting the next token, based on 251

the input prefix. Since there is one score from each 252

transformer layer, we incorporate the Composition 253

Scores from all layers for analysis. 254
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3.1.3 Activation-based approximation255

Because computing the Composition Score is256

highly resource-intensive, we employed an approx-257

imation method to accelerate the computation: in-258

stead of considering all dm neurons in layer l when259

calculating Sl
comp, we only include a fixed num-260

ber d′m of neurons. Specifically, we select neurons261

whose sum of absolute activation values comprises262

the majority of the total values. This approach is263

supported by the sparse activation phenomenon ob-264

served in the FFN neurons in LLMs (Voita et al.,265

2023), where most FFN neurons are either not acti-266

vated or weakly activated during forward compu-267

tation, with only a small fraction being strongly268

activated. It is primarily these latter neurons that269

contribute significantly to the meaning composition270

process in the FFN blocks.271

To select an appropriate value for d′m, we run the272

tested LLMs on the C4 validation corpus (Raffel273

et al., 2019) and gather their numbers of neurons274

(referred to as their majority k’s) with the highest275

absolute activation values, which collectively con-276

tribute to over half of the total absolute activation.277

Subsequently, we set d′m to a value significantly278

larger than the majority k’s of all models under con-279

sideration. The approximated Composition Score280

is then calculated as:281

S′l
comp =

min1≤i≤d′m dist(pl
i,p

l)

max1≤j≤d′m dist(pl
j ,p

l)
282

We find the majority k is 1744.49 for LLaMA2-283

base, and 1754.14 for LLaMA2-chat. Therefore,284

we set d′m to 3000 to cover the majority k’s of both.285

Figure 3 displays the averaged Composition286

Score of each layer of the LLaMA2 models along-287

side a randomly initialized LLaMA2-7B model.288

It can be seen that both the LLaMA2-base and289

LLaMA2-chat models exhibit a similar pattern,290

with the mean Composition Score increasing in291

the first 6 layers and plateauing thereafter. This292

result indicates that, as the layer number goes up,293

the degree of composition becomes higher. This294

is predictable as the input vector x in the higher295

layers is integrated with more contextual informa-296

tion, which makes it harder to find close matches297

in the neural memory. In contrast, the Composition298

Score for the randomly initialized model remains299

constant around 1.300

As there is minimal difference between the re-301

sults obtained from the two LLaMA2 models in302

all subsequent experiments, we present outcomes303

solely from the LLaMA2-chat model in the main 304

text. For results pertaining to the LLaMA2-base 305

model, please consult Appendix B. 306

Figure 2: (a) Density plot of word frequency, node counts
based on the top-down, bottom-up and left-corner node counts.
(b) Correlation matrix among the 4 control variables.

3.2 Control variables 307

In addition to the Composition Score obtained from 308

the LLMs, we incorporated five other control vari- 309

ables: Word rate, word frequency, and syntactic 310

node counts derived from top-down, bottom-up, 311

and left-corner parsing strategies. These variables 312

have demonstrated correlations with notable brain 313

clusters within the language network and provide 314

a baseline for comparison with our Composition 315

Score metric. Figure 2 shows the density and cor- 316

relation matrix between word frequency and node 317

count based on three parsing strategies. 318

Word rate. Word rate is a binary regressor that 319

marks 1 at the offset of each word in the audio- 320

book. It signifies an individual’s overall responsive- 321

ness to words as opposed to other stimuli and has 322

been associated with a widespread left temporal- 323

frontal network within the language regions (Li 324

et al., 2022). 325
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Word frequency. We also included the log-326

transformed unigram frequency of each word,327

estimated using the Google ngrams Version328

2012070129 2 and the SUBTLEX corpora for Chi-329

nese (Cai and Brysbaert, 2010). Prior research on330

frequency effects has identified activity in the mid-331

dle temporal lobe (e.g., Embick et al., 2001; Simon332

et al., 2012).333

Node counts. Node count refers to the number of334

parsing steps between consecutive words accord-335

ing to a parsing strategy. This concept is associated336

with certain aspects of Yngve’s (1960) Depth hy-337

pothesis (see also Frazier, 1985). Different parsing338

strategies yield varied predictions regarding the339

processing effort required for a given word. A340

top-down parser begins with a mother node and es-341

tablishes phrase structures before validating them342

against the input string. Conversely, a bottom-up343

parser initiates with the first terminal word and344

verifies all evidence before applying a phrase struc-345

ture rule. A left-corner parser combines elements346

of both top-down and bottom-up approaches, im-347

plementing a grammatical rule upon encountering348

the very first symbol on the right-hand side of the349

rule (Hale, 2014). We computed CFG-based node350

counts for the text stimuli using these three parsing351

strategies.352

Prior research has shown significant left tempo-353

ral and frontal activity for the left-corner and the354

bottom-up parsing strategies (Nelson et al., 2017),355

supporting bottom-up and/or left-corner parsing as356

tentative models of how human subjects process357

sentence structures.358

3.3 Aligning Composition Scores and control359

variables with fMRI data360

First-level regression. The Composition Score361

for each word, derived from each of the 32 hidden362

layers of the LLaMA2 models, was initially con-363

volved with the canonical hemodynamic response364

function (HRF). Subsequently, two ridge regres-365

sions were conducted for each subject using the 32366

Composition Scores from the two LLMs to predict367

the fMRI timecourses from each vertex within a368

left-lateralized language mask. The language mask369

(see the pink region in Figure 7) covered regions370

including the whole left temporal lobe, the left371

inferior frontal gyrus (LIFG; defined as the com-372

bination of BAs 44 and 45), the left ventromedial373

2http://storage.googleapis.com/books/ngrams/
books/datasetsv2.html

prefrontal cortex (LvmPFC; defined as BA11), the 374

left angular gyrus (LAG; defined as BA39) and the 375

left supramarginal gyrus (LSMA; defined as BA 376

40). The left AG and vmPFC have also been im- 377

plicated in previous literature on conceptual com- 378

bination (Bemis and Pylkkänen, 2011; Price et al., 379

2015) and the LIFG and the LMTG have been sug- 380

gested to underlie syntactic combination (Flick and 381

Pylkkänen, 2020; Hagoort, 2005; Lyu et al., 2019; 382

Matchin et al., 2019; Matchin and Hickok, 2020). 383

The optimal penalty term α of the ridge regressions 384

was determined by automatic cross-validation. 385

Similarly, the five control variables, time-aligned 386

to the offset of each word, were first convolved with 387

the HRF and then regressed against each subject’s 388

fMRI timecourse of each vertex within the lan- 389

guage mask using ordinary linear regression (OLS). 390

The regression scores R2 for the Composition 391

Scores and the control variables, obtained for each 392

subject, were normalized by the noise ceiling, i.e., 393

the Inter-Subject Correlation (ISC; Hasson et al., 394

2004) of the regression scores R2
ISC . The R2

ISC 395

was computed as the mean regression score of all 396

subjects, where the regressor is the mean fMRI 397

signal of all subjects. The normalized regression 398

scores were calculated as R̄2 = R2/R2
ISC. Figure 399

1 illustrates our model-brain comparison methods 400

with an example sentence. 401

Statistical significance testing. At the group 402

level, the β values for the control variables and the 403

Composition Score at each layer of the two LLMs, 404

averaged over subjects, underwent a one-sample 405

one-tailed t-test with a cluster-based permutation 406

test (Maris and Oostenveld, 2007) involving 10,000 407

permutations. Clusters were formed from statistics 408

corresponding to a p-value less than 0.05, and only 409

clusters spanning a minimum of 20 vertices were 410

included in the analysis. These analyses were con- 411

ducted using the Python packages MNE (v1.0.3) 412

and Eelbrain (v0.39.8). 413

4 Experiment settings 414

4.1 Text stimuli 415

The text of the audiobook "The Little Prince" in 416

English comprises 15,376 words and 1,499 sen- 417

tences. The mean sentence length is 10.20, with a 418

standard deviation of 6.94. Since the text is derived 419

from an audiobook, the sentences lack punctuation. 420

Consequently, we input the text data sentence by 421

sentence into the LLMs to mitigate ambiguity. 422
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Figure 3: The average Composition Score of each layer of the LLaMA2 models and a randomly initialized model.

Figure 4: Correlation matrix among the 32 layers of LLaMA2-
chat.

4.2 fMRI data423

We use the fMRI recordings of the English sub-424

set of “The Little Prince” dataset (Li et al., 2022),425

a publicly available dataset containing the fMRI426

recordings of 49 English subjects (30 females,427

mean age=21.3 years, SD=3.6) listening to the428

audiobook "The Little Prince" in English for 94429

minutes in total. The preprocessed volumetric data430

were projected onto a "fsaverage5" template sur-431

face (Fischl, 2012). The fMRI signals are z-scored432

across the time dimension for each participant, sur-433

face voxel and session independently.434

4.3 Model435

We use the widely-used open-source LLM,436

LLaMA2 (Touvron et al., 2023) in all our ex-437

periments. LLaMA2 comprises two versions:438

LLaMA2-base (pretrained on about 2.0T tokens439

in multiple languages) and LLaMA2-chat (the440

LLaMA2-base model fine-tuned with instructions441

in English), and we test both of the versions. To442

manage computational resources (see Appendix A),443

we employ the 7B-sized models.444

4.4 Token-word alignment 445

To compare the LLM-based Composition Score of 446

each subword token with the word frequency and 447

syntactic node counts, we employ the following 448

procedure for token-word alignment: Given a sen- 449

tence with L words as w1, .., wL, when inputting 450

the prefix w1, ..., wk (up to the last subword token 451

of wk if it is split by the LLaMA2 tokenizer), the 452

model state is aligned with the control variables 453

of wk, as well as the human fMRI recording corre- 454

sponding to the offset of wk (taking into account 455

the delay and duration of BOLD signals). This 456

alignment ensures that we compare the model state 457

and the control variables given the same contextual 458

input. 459

5 Results 460

5.1 Patterns of Composition Scores 461

Layerwise correlation. Given that the Compo- 462

sition Scores across different model layers ex- 463

hibit different distributions, we hypothesize that 464

they contain unique information regarding meaning 465

composition. To validate this assumption, we com- 466

pute the Pearson’s r among the layerwise scores. 467

The results are depicted in Figure 4 and Figure 8 468

(in Appendix B). It can be seen that in both the base 469

and chat models, the layers form small correlated 470

clusters, but the overall correlation among all lay- 471

ers is not high, with the highest absolute correlation 472

coefficient reaching around 0.59. 473

Prefixes with high and low Composition Scores. 474

To gain deeper insights into how the model assigns 475

high and low Composition Scores under various 476

input prefixes, we analyze prefixes with the highest 477

and lowest Composition Scores in each layer. Table 478

1 presents examples of such prefixes with high and 479

low Composition Scores across lower, middle, and 480

higher layers. 481
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Figure 5: The regression scores R2 between the Composition Scores from LLaMA2-chat and the control variables.

The lower layers exhibit clearer patterns. For482

example, in Layer 1, prefixes ending with common483

function words such as prepositions and conjunc-484

tions (e.g., "of", "by" etc.) tend to receive low485

Composition Scores, while those ending with the486

determiner "the" receive high Composition Scores.487

However, in Layer 3, these patterns appear to re-488

verse, with some less common words like "boa489

constrictor" receiving high scores. In the higher490

layers, the patterns become less clear. One poten-491

tial trend is that prefixes ending with specific words492

such as "able" tend to receive low scores.493

We hypothesize that the varying patterns of Com-494

position Scores across different layers may be at-495

tributed to the residual connection structure and496

the nature of model training. Due to the presence497

of residual connections, neural memories across498

different layers are somewhat parallel (Voita et al.,499

2023). As a result, a prefix may match the key-500

value memory in some layers but not in others,501

leading to distinct scores across layers. Moreover,502

in the language modeling task, the model must op-503

timize its neural memory storage to better fit the504

training corpus. Consequently, both frequent and505

infrequent prefixes may be memorized, resulting in506

intricate memory composition patterns.507

Composition Score vs. control variables. To in-508

vestigate whether the Composition Scores contain509

information regarding word frequency or syntac-510

tic structure, we conduct regressions of the Com-511

position Score for each word against their word512

frequency and the node counts based on the three513

parsing strategies. Figure 5 illustrates the regres-514

sion scores R2.515

The R2 scores reveal that the bottom and top516

layers exhibit higher R2 scores with the control517

variables, particularly the log frequency and the518

node count from top-down parsing. However, the519

overall R2 scores across layers are not notably high,520

suggesting the presence of additional information521

in the Composition Scores beyond word frequency 522

and syntactic information. 523

5.2 fMRI results for the control variables 524

5.2.1 Regression scores 525

The normalized regression scores of the control 526

variables on the fMRI data are shown in Table 527

2. Among the control variables, wordrate shows 528

the highest maximum and mean R2 scores over 529

the significant brain clusters. Log-transformed 530

word frequency and the node count based on left- 531

corner parsing also show relatively higher regres- 532

sion scores. 533

5.2.2 Significant brain clusters 534

Word rate. Consistent with prior research (e.g., 535

Li et al., 2022), we find a widespread left temporal- 536

frontal network in the LIFG, the left anterior supe- 537

rior temporal gyrus (LaSTG) and the left posterior 538

middle temporal gyrus (LpMTG) for wordrate (N 539

vertices=948, t=2.99, p<0.0001), indicating a gen- 540

eral sensitivity to words. 541

Word frequency. The log word frequency is as- 542

sociated with a cluster in the LSTG (N vertices=73, 543

t=-2.33, p=0.02), suggesting that lower word fre- 544

quency induces higher LSTG activity. 545

Node counts. We find a significant cluster in the 546

LaSTG (N vertices = 217, t = -2.54, p = 0.0001) 547

associated with the node counts based on the left- 548

corner parsing strategy. No significant clusters are 549

identified for the node counts based on top-down or 550

bottom-up parsing. These results further corrobo- 551

rate prior findings (Nelson et al., 2017) suggesting 552

that left-corner parsing may align more closely with 553

human processing of hierarchical sentence struc- 554

tures. See Figure 6 for the significant brain clusters 555

for wordrate, log-transformed word frequency and 556

node counts based on left-corner parsing. 557
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Layer Prefixes with low Composition Scores Prefixes with high Composition Scores

1 I was discouraged by the failure of → my
the second time was eleven years ago by → an

thus I abandoned at the → age
after grooming oneself in the → morning

3 then he added so you also come from the → sky
little drinking water left that I had to fear the → worst

I then drew the inside of the boa → con(strictor)
I am beginning to → understand

16 it would suffice to be able → to
he should be able → for

I have seen them from close → up
who are you asked → the

32 it would suffice to be able → to
on what planet have I come down on asked → the

I would like to see → a
I was very worried because → my

Table 1: Example prefixes with low and high Composition Scores in different layers of the LLaMA2-base model. The token
after the right arrow (→) is the next token to predict in the text corpus.

Figure 6: Significant brain clusters for the word rate, word
frequency, and left corner parsing steps.

Regressor Max Mean
score-base .1774 .0603
score-chat .1361 .0462
word rate .0697 .0229
bottom-up .0005 .0002
top-down .0037 .0011
left-corner .0064 .0018

log freq .0067 .0020

Table 2: Normalized regression scores R2 on the fMRI data
by the Composition Score and the control variables.

5.3 fMRI results for the Composition Scores558

5.3.1 Regression scores559

The normalized regression scores with the Compo-560

sition Score exceed those with the control variables561

in both maximum and mean values. This indicates562

that the Composition Score provides a better fit563

to the human neural data compared to the control564

variables (refer to Figure 2).565

5.3.2 Significant brain clusters566

The Composition Scores derived from LLaMA2-567

chat exhibit a significant association with a cluster568

in the LIFG and the LaSTG (N vertices = 517, t569

= 3.52, p < 0.0001). These regions overlap with570

significant clusters for word rate, word frequency,571

and left-corner node count (refer to Figure 6), in-572

dicating the multifaceted nature of meaning com-573

position during human sentence comprehension.574

Notably, the significant model layers include the575

middle layers 8-13 and the higher layers 21-25,576

suggesting that meaning composition in the human577

Figure 7: Significant brain clusters for Composition Scores
and the significant layers from LLaMA2-chat. The light pink
regions in the brain indicate the language mask. The orange
and red lines depict the normalized β value for each layer
of the two models. The grey lines depict the normalized β
value for each layer of the random models. The shaded region
indicates the significant layers. *** indicates p <0.001.

brain cannot solely be attributed to word frequency 578

or memorization of specific words (for patterns of 579

Composition Scores across layers, see Section 5.1). 580

6 Conclusion 581

In this paper, we introduce a novel model-based 582

metric, the Composition Score, designed to quan- 583

tify sentence-level meaning composition, and ex- 584

amine its correlation with human neural activity. 585

We identify several brain clusters significantly 586

correlated with the Composition Score, including 587

those associated with word frequency, syntactic 588

structure, and general sensitivity to words. This 589

suggests a multifaceted nature of meaning compo- 590

sition during human sentence comprehension. 591
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Limitations592

One key limitation of this study is that we have yet593

to fully comprehend the patterns of high and low594

Composition Scores for different sentences across595

different layers. We hypothesize that these patterns596

are related to the optimized memory efficiency of597

the LLMs, which may resemble memory mecha-598

nisms in the human brain.599

Another limitation is that we solely employ the600

LLaMA2-7B models for the analysis, which may601

not guarantee the generalizability of our findings602

to other LLMs. However, given that the architec-603

ture of the FFN block remains largely consistent604

across LLMs, our method can be adapted to other605

models with minor modifications to the code. Ad-606

ditionally, our study solely focuses on English text607

stimuli, leaving the potential for further exploration608

in multilingual experiments.609
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A Computational Resource962

All experiments are performed on platforms with963

20 Intel Xeon Gold 6248 CPUs, 236 GB ROM,964

and 4 Nvidia Tesla v100 32 GB GPUs. Calculating965

the Computation Scores requires around 1 GPU966

hour for each model, and each regression requires967

around 2 hours on the platform for each human968

subject.969

B Results of LLaMA2-Base970

Figure 8 in Appendix B displays Pearson’s r among971

the layerwise Composition Score from LLaMA2-972

base. Similar to LLaMA2-chat, the layers form973

small correlated clusters and do not exhibit high974

overall correlation. Figure 10 illustrates the regres-975

sion scores between the layerwise Composition976

Score from LLaMA2-base and the control vari-977

ables. The results mirror those of LLaMA2-chat.978

Figure 9 in Appendix B depicts the significant brain979

clusters correlated with the layerwise Composition980

Scores from LLaMA2-base. Similar to LLaMA2-981

chat, there are two separated layer clusters in the982

Figure 8: Correlation matrix among the 32 layers of LLaMA2-
base.

Figure 9: Significant brain clusters for Composition Scores
and the significant layers from LLaMA2-base. The orange and
red lines depict the normalized β value for each layer of the
two models. The grey lines depict the normalized β value for
each layer of the random models. The shaded region indicates
the significant layers. *** indicates p <0.001.

first and second half of the model layers respec- 983

tively, and the brain clusters closely resemble those 984

of LLaMA2-chat. 985
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Figure 10: The regression scores R2 between the Composition Score from LLaMA2-base and the control variables.
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