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ABSTRACT

Chip design relies heavily on generating Boolean circuits, such as AND-Inverter
Graphs (AIGs), from functional descriptions like truth tables. This generation
operation is a key process in logic synthesis, a primary chip design stage. While
recent advances in deep learning have aimed to accelerate circuit design, these
efforts have mostly focused on tasks other than synthesis, and traditional heuristic
methods have plateaued by primarily optimizing small 4-inputs cuts. In this paper,
we introduce ShortCircuit, a novel transformer-based architecture that leverages the
structural properties of AIGs and performs efficient space exploration. Unlike prior
approaches that attempt end-to-end generation of logic circuits using deep networks,
ShortCircuit employs a two-phase process combining supervised learning with
reinforcement learning to enhance generalization to unseen truth tables. We also
propose an AlphaZero variant to handle the doubly exponential state space and the
reward sparsity, enabling the discovery of near-optimal designs. To evaluate the
generative performance of our model, we extract 500 8-input truth tables from a set
of 20 real-world circuits. ShortCircuit guarantees the correctness of the produced
AIGs, and outperforms the state-of-the-art logic synthesis tool ABC, by 18.62%
with respect to circuit size, while its greedy rollout is 31 x faster.

1 INTRODUCTION

The rapid rise of Al has driven computational demands beyond current hardware capabilities, creating
a major bottleneck. Chip design is key to advancing next-generation computing, but traditional
methods struggle to keep pace, highlighting the need for faster and more innovative approaches. At
its core, a chip is the physical embodiment of a Boolean function, transforming binary inputs into
desired outputs. Creating these embodiments is facilitated by logic synthesis, a crucial step in chip
design that converts functional descriptions into graphs connecting logic gates. The logic synthesis
process must balance power, performance, and area, posing a complex optimization challenge. In
this paper, we investigate the use of Machine Learning (ML) to generate optimized digital circuits
directly from Boolean logic specifications, offering a fresh perspective on the chip design process.

Truth tables fully specify Boolean functions by listing outputs for all input combinations. Conse-
quently, we use truth tables as the input Boolean logic description for our problem. Our method
outputs directed acyclic graphs (DAGs) as AND-Inverter Graphs (AIGs), a standard logic structure in
Electronic Design Automation (EDA) Mishchenko and Brayton| (2006); Wolf et al.| (2013)). AIGs only
use 2-input AND gates and inverted or normal edges, offering a simple, scalable, and widely adopted
representation that makes them an ideal choice for our ML-based circuit generation approach.

Traditional logic optimization methods optimize large AIGs by forming small cuts, finding smaller
equivalent representations, and replacing the original subgraphs. The most effective method,
rewrite, forms 4-input cuts and matches their truth tables to a precomputed database for replace-
ments (Mishchenko et al.,[2006)). While industrial approaches have explored scaling to 8-input cuts,
the double exponential growth of the truth table space limits the coverage of such databases (Amaru
et al.| |2017). Moreover, the structural rigidity of AIGs and the complexity of the problem result
in most cuts failing optimization, limiting the effectiveness of these methods (Tsaras et al., 2025).
Recent works aim to speed up chip design by applying ML across EDA stages (Huang et al.| 2021}
Gubbi et al.| [2022), including placement (Ward et al.l |2012), routing (Alawieh et al., [2020)), and logic
synthesis (Tu et al.,|2024). Rather than directly tackling the graph generation problem, most ML
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methods for logic synthesis focus on the optimization of synthesis recipes, which are sequences of
operators acting on a logic graph to modify its structure while preserving the associated Boolean
function. More recently, deep-generative methods emerged aiming to generate logic graphs rather
than operator sequences |d’ Ascoli et al.|(2024); [Li et al.| (2025); Dong et al.|(2023). The generative
approach offers higher potential as it offers more flexibility than working with a fixed set of operators;
however, this approach requires exploring a much larger space, due to the double exponential growth
of the search space with the number of Boolean function inputs.

Such a vast search space renders traditional ML methods ineffective for optimal AIG generation.
However, recent advances have demonstrated that tailored model architectures and exploration-
exploitation-aware training protocols can achieve remarkable performance even in tasks involving
such large spaces. Indeed, the success of methods like AlphaGO |Silver et al.|(2016)), AlphaZero |Silver
et al[(2017)), AlphaFold Jumper et al.|(2021)) and even the emergence of large language models Devlin
et al.| (2019); Kaplan et al.| (2020) relied on the development of custom model architectures capturing
structural properties of board games, proteins, or language. Moreover, the training of these models
either leverages naturally abundant data or employs specific data-augmentation and exploration-
exploitation strategies to improve their performance.

In this paper, we propose ShortCircuit, a new transformer-based architecture structurally adapted for
generating AIGs. Our transformer takes logic nodes represented as truth tables as input, and each
forward pass predicts the next AND node to create in order to realize a target truth table. We further
utilize an AlphaZero policy to navigate the large state space and discover more compact designs. We
make the following contributions: i) we formally define the challenging problem of generating AIGs
from target truth tables, characterized by a doubly exponential state space and a quadratically growing
action space. ii) We introduce ShortCircuit, a novel AIG-aware architecture, enabling effective
exploration of this vast search space that guarantees the correctness of the produced AIG. iii) We
develop a two-stage training scheme combining supervised learning and reinforcement learning to
improve generalization and scalability. Finally, iv) we empirically demonstrate the effectiveness of
ShortCircuit by producing circuits 18.62% smaller compared to the state-of-the-art logic synthesis
tool ABC (Mishchenko et al.,[2007), while achieving a 31 x speedup in its greedy variant, showcasing
the potential of ML methods to revitalize the field of logic synthesis with a fresh perspective.

We present background and related work in Section 2} followed by the problem formulation in
Section[3] We then describe our model architecture in Section ] and our tailored training procedure
in Section[5] We finally provide the empirical evaluation of ShortCircuit in Section [6]

2 BACKGROUND

A digital circuit cascades logic gates to realize a Boolean function f : {0,1}™ — {0, 1}™, mapping
n-bit inputs to m-bit outputs. An And-Inverter Graph (AIG) is a Directed Acyclic Graph (DAG) that
is commonly used to represent such functions at the early stage of the chip design process.

2.1 AND-INVERTER GRAPHS

An AIG is composed of three types of nodes: (1) primary inputs, which we also refer to as inputs,
(2) primary outputs, which we call the outputs, and (3) 2-input AND-nodes representing the logic
gate AND. In this work, we focus on the generation of single-output AIGs that represent Boolean
functions of the form f : {0,1}" — {0, 1} as they play an important role in logic synthesis. Fig.
illustrates the structure of an AIG with n = 3 inputs, where { I }1<;<3 represent input nodes, A4, A5
are AND gates, and O is the output. Edge orientation indicates the direction of the Boolean signal
propagation from one node (called fanin) to another (called fanout). Moreover, the two types of
edges, plain and dashed, in Fig. [I]indicate that the Boolean signal can be inverted when going from a
fanin to a fanout. The primary output is always connected to a single AND node with a direct or an
inverter link. As AIGs only contain AND operations and Boolean inversions, we can map them to
a canonical form (CNF). For instance, the CNF, naturally derived from its topology, of the AIG in
Fig.[l}is O = —(=(I1 A Ib) A I3), and we can conversely easily go from a CNF to an AIG. Moreover,
applying equivalence-preserving operations to the CNF produces new CNFs that still encode the
same Boolean function. Similarly, topologically distinct AIGs can realize the same function, and
to compare the quality of two AIGs, a primary criterion is to compare their sizes, measured by the
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Figure 1: Representation of an AIG, showing the Table 1: Truth table of each node appearing in
truth table associated to each node. the AIG from Fig. E]

number of gates they contain (Mishchenko and Brayton, 2006). Smaller AIGs are generally preferred
as they simplify subsequent tasks such as placement and routing, and lead to more efficient circuits.

2.2 TRUTH TABLES

As for any other logical graphs, we can capture the behavior of an AIG by propagating Boolean
values from its primary inputs to its primary outputs and applying the logical operations encountered
on the directed paths. Considering again the exemplar AIG from Fig.[T} if I, = 1, I, = 1, and
I3 = 0, propagating the Boolean signals we can verify that the AIG output at O is 1. By enumerating
all possible input combinations and recording the corresponding output values for each gate, we can
build the AIG’s full truth table, as shown in Tablem Each row corresponds to the values of the AIG
nodes for a specific set of entries (I1, Iz, I3) = (i1,12,43) € {0,1}3 displayed on the left part of
the table. We can extract from this representation a binary vector of size 2" for each AIG node. For
instance, the "truth table" vector representation of node A4is (0001000 1)", and the primary
output oneis (1111000 1) 7. After discussing related works in more detail, we will explain in the
next section how our method leverages this rich vector representation for AIG generation.

2.3 RELATED WORKS

We discuss heuristics for AIG generation and ML methods for logic operator sequence optimization
in Appendix [B] and focus here on the deep learning approaches tailored to logic graph generation.

Learning to Generate One Circuit at a Time A first approach to generate Boolean networks
with deep neural networks consists of substituting the gates and wires of a logic circuit by learnable
nodes and connections to form a neural network (Belcak and Wattenhofer, 2022} |[Zimmer et al., 2023}
Hillier et al [2023). The network parameters are learnt by minimizing the error made by forward
passes compared to the target binary output. On the one hand, this method allows to cope with larger
number of primary inputs as, instead of learning an entire family of logic graphs (e.g., the 8-input
AIGs), it is specialized on one particular target truth table. On the other hand, it requires to train a new
neural network for each target truth table, representing a significant runtime bottleneck. Therefore,
several works inspired by the development of foundational generative models have followed another
direction, consisting in learning the synthesis process itself with a deep neural network.

Learning Circuit Synthesis using Deep Learning While Roy et al.|(2021) use a CNN backbone to
generate prefix circuits by adding or deleting nodes in an N x N grid, [Li et al.| (2024) employ an auto-
regressive diffusion model to generate DAG for high-level synthesis stage , and Dong et al.| (2023)
design a two-level GNN architecture to synthesize analog circuits that work with non-binary signals.
Closer to our work are Boolformer (d’Ascoli et al.,[2024)) and Circuit Transformer (CT) (L1 et al.|
20235)), both tackling digital network synthesis with an auto-regressive transformer-based architecture.
They train their policies via supervised learning by predicting the next element of a logic graph given
a target truth table, and do inference through beam-search or MCTS simulations. Contrary to our
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work, Boolformer and CT use a symbolic representation of the Boolean formula associated to a logic
graph encoded via depth-first search. Therefore, instead of representing already built nodes by their
truth tables and predicting the next node to add to the graph, they tokenize the symbols and let their
model generate the next symbol of the logic formula (a logical operation, an input or an output),
which requires more forward passes than for our method to produce the same AIG. Besides, given a
target truth table 7', Boolformer directly takes as input the boolean representation of 7', as we do,
while CT takes a (non-optimal) AIG realizing T, and generates an improved logic network.

3  PROBLEM DEFINITION

Truth tables encompass the results for all possible input values, but do not provide sufficient structural
information to derive an AIG representing that mapping. Heuristics that generate a Boolean expres-
sion, or an AIG, from a truth table lead to exponentially large solutions needing further refinement.
Consequently, solving this AIG generation problem would significantly impact digital circuit design.

Problem Definition: Given a target truth table T, € {0, 1}2", construct an AIG with the minimum
number of nodes, such that its output node O has a truth table T matching 7.

Note that the size of a truth table associated with an n-input AIG is 2™, thus, the set containing all
truth tables of size 2" has a cardinality of 22", which is on the order of 1077 for the space of truth
tables that an 8-input AIG can represent. Exploring such a large space efficiently requires developing
specific models and training techniques. These must exploit the structural properties of the problem
while managing the exploration-exploitation trade-off inherent in such scenarios.

3.1 STATE REPRESENTATION & NOTATIONS

We formally define an AIG with n inputs as a graph G = (V, E'), where V and FE represent the node
and edge sets. To capture the dynamic nature of AIG construction, we introduce a temporal parameter,
t, which simultaneously represents the current time step and the number of AND-nodes in the graph,
denoted as G; = (V;, E}). This allows us to model the evolution of the AIG over time, with the graph
growing as new AND-nodes are added. We assign a unique integer ID to each node in the graph,
regardless of its type; thus, at time ¢ the node setis V; = {I1,..., I, Apt1,.. ., Antet}, Or with a
node-type agnostic notation, V; = {v1, ..., v, }. Following this notation, the graph G, represents
an AIG containing only input nodes, i.e., with Vo = {I1, Io, ..., I, }.

In our generative process, we encode the state corresponding to AIG G, as a 3-tuple s; = (T, Ty, Az ).
Here, 7; = {11, T3, ..., T4+ } is the set of truth tables associated with the current nodes, T} is the
target truth table, and A; = {ant1,ani2, ..., anit} is the ordered set of actions performed so far.
Each action generates a new AND-node by connecting two existing nodes in one of four possible
configurations: (v;,v;), (vi, 7;), (—v;,v;), and (—v;, ~w;). Our goal is to perform a series of
N actions, transforming G into a terminal AIG Gy such that the truth table of the last generated
AND-node, T}, + n, matches or is the negation of the target truth table 7. Note that our environment
is stateful, as its history influences future decisions. Furthermore, our environment poses an additional
challenge due to its action space expanding quadratically with each new node we add.

4 MODEL ARCHITECTURE

We propose an iterative approach to AIG construction, where we gradually build the circuit, starting
with Gy and letting our model decide at each step which AND-node to add, aiming at realizing a given
target truth table 7. To generate the next gate, the model takes the set of existing nodes as input, and
it outputs a probability distribution over the set of AND-nodes that can be built by combining any
pair of already existing nodes, taking edge types into account. Formally, let |V;| denote the number
of nodes in the current state of the graph, then the action space is a 4 x |V;| x |V;| tensor, where each
|V:| x | V4| slice corresponds to a connection type. Specifically, the cell (¢, 7) in a given slice indicates
the probability of connecting node v; with v;, and the slice index € € {1,2, 3,4}, corresponds to a
combination of specific edge types: (v;, v;), (—v;, v;), (v, —v;), or (—v;, —w;). Therefore, we can
sample a triplet (e, 4, j) following the distribution given by this 4 x |V;| x |V;| tensor and add the
corresponding node to the graph. The process ends when the truth table of the sampled node matches
either the target one 7T or its full negation —7Y, or after reaching a maximum number of steps Npax.
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Figure 2: ShortCircuit model takes as inputs a target truth table T} and the truth tables of the already
built nodes. It first appends a type-dependent positional encoding before going through several
transformer layers. Then, the model is split into two heads respectively outputting a probability
distribution over the next possible actions (policy module on the left), and a value reflecting the
quality of the current inputs (value module on the right).
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To effectively explore and prune the vast state space, our model [~¢ [ Build vy, from (e, 7, )
comprises a policy and a value module to assess intermediate states 1 v; A v;
and strategically get closer to the desired target. As shownonFig.2l | 2 | v; A U‘j
our architecture consists of a shared core embedding the truth tables | 3 v; A -y
applying position encodings and H transformer encoder layers. Then, | 4 | — o, A

the hidden embeddings are passed as input to the 4 stacked policy
modules and to the value module. The policy modules combined  Table 2: Edges for each e.
with a softmax produce a distribution over next actions, and the value

module ending with tanh predicts an expected reward in [—1, 1].

Positional Encoding (PE) In transformers, positional encodings (PE) help capture the sequential
relations in the inputs. In our setting, the AIG structure is already implicitly reflected in the truth
tables. Furthermore, self-attention should treat every node equally, as any two nodes may be combined
to form a new node. However, to enable the model to distinguish between built nodes and the target
truth table, we introduce two learnable positional encoders, referred to as “Node PE” (see Fig. EI)

Policy Module Transformers are the state-of-the-art architecture to handle sequential data. These
models particularly shine when trained to predict the next token in a sequence by outputting a
fixed-size tensor representing a sampling probability over a token glossary. In our case though, the
set of nodes that we can build grows at each step, as more pairs of nodes can be combined to produce
the next node. Inspired by NLP tasks, for which attention scores among related tokens are high, we
use attention to guide next node generation. Thus, we directly use the final self-attention map of
four parallel policy modules to get the probability to connect any two nodes with specific edge types.
Each policy module has P transformer encoder layers and outputs a final self-attention layer. In
the last self-attention layer, we exclude the entry corresponding to the target node and returns the
self-attention scores based on the existing AIG nodes embeddings. We aggregate the scores from the
four policy modules and mask the ones associated to already built nodes and their negate versions.
We finally apply a softmax to the remaining scores to produce a single probability distribution.

Value Module The value module consists of S transformer encoder layers. It assess how favorable
a state is and prevents expanding unpromising states. As the quality of a state not only depends on
the nodes that are present in the graph at that stage, but also on the target truth table that should be
realized, the value module also uses the two learnable type-based positional encoders introduced
above. After performing the embedding, we compute the cross-attention between the graph nodes
and the target truth table, which yields a new vector representation of the target. Finally, we feed this
vector to a linear layer producing a single value, which should reflect the quality of the current state.
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5 TRAINING SHORTCIRCUIT

The sparse nature of the problem makes it practically impossible to discover functionally correct
graphs when exploring the double exponential state space uniformly. This challenge necessitates
a more effective training approach for our ShortCircuit. To address this, we propose a two-stage
training regimen consisting of a supervised pre-training stage to initialize the policy module, followed
by an AlphaZero-style fine-tuning phase to improve the policy module and train the value module.
Although pre-training the policy module provides a good prior to predict the most useful next actions,
simply following it does not guarantee that an AIG matching 7, will be constructed due to the
inherent difficulty of the problem. This limitation highlights the importance of the fine-tuning stage,
which aims to refine the policy module and leverage the value module for improved performance.

5.1 PRE-TRAINING

Inspired from NLP, we pre-train our model on the next-action prediction task using single-output
AIGs. As no large public corpus of (truth table, AIG) pairs exists, we curate our own dataset from
open-source digital circuit collections to pre-train ShortCircuit to regenerate AIGs from their targets.

Data Extraction To generate an AIG dataset with the desired input and output sizes, we utilize
the EPFL benchmarks (Amaru et al.||2015)), which contain a collection of 20 real circuits realizing
arithmetic and control functions. On average, the arithmetic and control circuits have 175 inputs and
137 outputs with 22520 AND-nodes, as detailed on Table E] and E} Since these circuits have more
inputs than the AIGs we aim to generate, we extract subgraphs, or cuts, from them. A cut refers to
a connected subset of nodes in the AIG that divides the graph into two disjoint parts. The root of
a cut is the node to which all directed paths within the cut converge to and a leaf node is a node in
the cut that have at least one fanin outside of the cut. By design, a cut forms a single-output AIG
with a number of inputs corresponding to the number of leaves. We defer to Appendix [C.2]the full
description of the cut extraction method we develop to build a dataset of single-output AIGs.

Data Preparation Since our policy should predict the next action, i.e. the next node to add to
a partial AIG, we need to convert the AIGs we load from our training dataset into a sequence of
ground-truth actions. As different series of actions can lead to the same graph with IV nodes, we first
sort the nodes of the training AIG we load into a topological order {11, ..., I, Apt1,..., AN} (0T
{v1,...,vn} with node-type agnostic notation), where A is connected to the output O. We also
convert the AIG nodes into truth tables, as described in section 2] and use the truth table of O as
the target T,. From the topological sequence of nodes, we build the sequence of actions that our
policy should learn to perform when its goal is to generate T),. As mentioned in section[d] creating
node v = (—)v; A (—)v;, with 1 < ¢ < j < k, corresponds to action a = (€, 4, j), whose first
component € € {1,2, 3,4}, indicates the types of the edges connecting vy, to its parents, as detailed in
Table This procedure leaves us with the sequence of actions A = {a,+1, apnta, ..., an }, starting
with index 7 + 1 since the n primary inputs are given at the beginning of the AIG generation process.

To efficiently generate target action distributions, we aggregate all the actions into a sparse 3-
dimensional tensor A = (A1, Ao, A3, Ay) where each element A, is a N x N matrix representing
the actions with connection type e. The value of the entry (i, j) of A is setto 1 if (e, 4, j) belongs
to A and to zero otherwise. Thus, if all the nodes up to vy are already built, considering each
submatrix A 1.x 1., taking the first k£ rows and k£ columns of A, allows to easily identify which
nodes with connection € we could build next. Taking the submatrices for all values of €, we obtain
the target action distribution by setting the entries corresponding to already performed actions at 0,
and normalizing the resulting tensor. Fig. [3]illustrates this action tensor building procedure.

Data Augmentation The first data augmentation we employ consists of using the same AIG for
both targets T}, and —7. This is valid because we can generate one target or the other by connecting
the final node A x with the output O using a regular or an inverter edge. Our second data augmentation
leverages the fact that any order of truth table rows is valid, provided that the same order is used
for all the nodes. Since our ShortCircuit’s inputs are truth tables, it is desirable for the model to be
invariant to row permutations. Formally, the model should generate the same next-action prediction

whether it receives the truth tables 77, ..., T and T}, where T; = (tEl), A t(»2n)) € {0,1}*", or

3
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Figure 3: We start data pre-processing by sorting the AIG nodes in topological order. Then, we
identify the action types € € {1,2, 3,4} based on the edges. Next, we build the sequence of actions
A and generate the global action tensor A = (A1, A, A3, A4). We highlight the structure of As,
which contains a 1 at entries (1, 2) and (6, 7) for the generation of A5 and Ag (actions as and ag).

when it gets the permuted truth tables o (71), . ..,0(Tn), o(Ty) where o is a permutation in Sg» and
o(T;) = (tgg(l)), e ,tga(Qn))). As structurally encoding this invariance into our policy architecture

would be computationally too expensive, we apply random permutations to the inputs of our model
during the training, which does not impact the other metadata introduced in the previous section.

Pre-Training Flow With the prepared augmented data, we can proceed to train our policy module to
match the ground-truth next-action distributions of our training set. For training loss, we experimented
with KL divergence and cross-entropy, both of which measure the distance between two probability
distributions. In practice, KL divergence loss yielded better results. Besides, the backbone of our
model being a transformer, we implement a custom masking strategy during training. to maintain
causality in the auto-regressive generation process. Since the primary inputs and the target truth table
are available from the start, and as there is no causality for their existence, we allow full attention for
their embeddings, and only apply a causal mask for the rest of the nodes.

5.2 FINE-TUNING

Fine-tuning aims to align the value and policy module to operate effectively together. Unlike the
policy module, we cannot properly initialize the value module during pre-training as the generated
dataset only contains successful examples, which would mislead the value module to consider that
all states are “good”. Skipping pre-training, though, would lead to a random exploration of the vast
search space of truth tables, which would likely result in encountering only “bad” states, preventing
the model from learning what a “good” state is. Therefore, the most viable option to train our value
module is through experience, by performing searches with a pre-trained policy module. We utilize
AlphaZero (see Appendix [D) as the orchestration framework to refine the policy and value modules.

Fine-Tuning Flow Generating trajectories for millions of truth tables is computationally challeng-
ing. Thus, to best exploit our resources, our fine-tuning regimen consists of data collection and model
training processes. These data collectors generate trajectories and add their findings to a fixed length
replay buffer. Under the hood, the data collectors store the metadata, including truth tables and discov-
ered reward Q(s), of the MCTS root node for each step in the trajectory in the replay buffer. Successful
trajectories receive a reward of 1, while failed ones receive — min (hq(Tn, Tx), ha(Tn, —T%)), where
hg is the normalized Hamming distance and 7y is the last generated truth table. The trainer process
randomly samples data from the replay buffer and uses the truth tables as input for the model. Since
the value module aims to predict the Q-value of a state, the goal is to minimize the mean squared
error (MSE) between the predicted value and the retrieved ()(s). The target distribution for the
policy module is the normalized number of visitations N(s,a)/>> N(s,a). Similar to pre-training, we
minimize the KL-divergence between the policy module output and the target probability distribution.
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6 EXPERIMENTAL EVALUATION

We introduce the implementation details such as model and search hyperparameters, datasets and
baseline methods in section [6.1]and[6.2] and we compare the effectiveness of ShortCircuit against
several baselines in[6.3] Finally, section|6.4]presents a study on the impact of number of simulations.
We provide further details and discussion about the implementation, training, and scalability of our
method in Appendices[C| [D] and [E]

6.1 EXPERIMENTAL SETUP

We train and evaluate ShortCircuit with 51.6 million parameters on 8-input truth tables randomly
extracted from the EPFL benchmark, as we describe in section[5.1} We specifically choose to test on
these circuits, since they correspond to real-world Boolean functions that have more practical interest
than uniformly random truth-tables. In total, we extract 1.8 million AIGs with an average number of
AND-nodes of 10.08, as we detail in Appendix [E]

6.2 BASELINES

We derive each truth table in our test set from the primary output of an extracted cut. Since those cuts
are AIGs realizing those truth tables, we use them as a baseline, denoted as Cut. Additionally, we
compare ShortCircuit against the state-of-the-art open-source logic synthesis tool ABC. This library
applies a series of Boolean algebra transformations to generate an AIG from a truth table. Moreover,
we leverage a popular logic optimization flow, resyn2, that applies multiple operators to optimize
the AIGs by ABC and denote it as ABC+resyn?2. Finally, we compare ShortCircuit against the
Boolformer. This learned method produces an optimized Boolean expression given a truth table, and
we convert this expression into an AIG without introducing any logic redundancy.

6.3 GENERATION QUALITY & RUNTIME EXPERIMENTS

We evaluate ShortCircuit against our baselines on 500 truth tables associated with randomly sampled
AIGs from the EPFL benchmarks. We allow ShortCircuit to attempt to generate a circuit with up to
30 AND-nodes. ShortCircuit performs 8 MCTS simulations and generates up to 20 AND-nodes in
each simulation, before performing an action. The success rate of ShortCircuit on this test set is 98%.
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Figure 4: Average number of AND-nodes for the successfully generated AIGs across several baselines.

Fig.[Aal compares the average size of the successfully generated circuits compared to Cut, ABC, and
ABC+resyn2. ShortCircuit directly generates compact AIGs with 9.44 AND-nodes on average.
These AIGs are significantly smaller than the ones from Cut and ABC, respectively achieving a size
reduction of 5.77% and 18.62%, and marginally smaller AIGs than ABC+resyn2 by 0.26%.

Fig.[Ab]compares the AIG sizes against the same baselines but also against Boolformer. Boolformer
successfully generated 85% of the given truth tables, so we report results only on the truth tables
successfully generated by both learned methods. ShortCircuit still maintains its good performance
on this test subset while Boolformer produces less compact AIGs and frequently fails to synthesize
complex circuits requiring more AND nodes. ShortCircuit’s AIGs are 13.14% smaller.
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The runtime of ShortCircuit for a single rollout with 30 steps is 0.01s. Due to limitations in our
MCTS implementation, the runtime for 8 simulations per step is 1.8s, but an optimized version would
be comparable by performing batched simulations. When we compare the greedy rollout against
ABC and ABC+resyn?2, which have a runtime of 0.31s and 0.32s, ShortCircuit achieves a respective
speedup of 31 x and 32x. Finally, Boolformer’s runtime is 0.78s, making ShortCircuit 78 x faster.

6.4 IMPACT OF NUMBER OF SIMULATIONS

To better understand the role of MCTS simulations in the performance of ShortCircuit, we investigate
their impact on the success rate, the circuit size, and the execution time on the same test set of 500
truth tables as in section [6.3] Fig.[]illustrates how the success rate evolves as the number of MCTS
simulations increases from 1 to 256. For clarity, we append an integer ¢ next to our method’s name
(ShortCircuit[¢]) to indicate the number of simulations we perform.

When using only 1 simulation, ShortCircuit[1] performs a greedy search, where the policy selects
the most likely action, a = argmax,c 4 P(s,a;6). This strategy yields a lower success rate of
92.2% albeit still good, but benefits from a very short generation time of 0.01s. On the other end,
ShortCircuit[256] achieves a significantly higher success rate of 98.6%, albeit with a much longer
running time of 106s. Increasing the number of simulations enables the model to explore a larger —
but still limited — portion of the solution space, resulting in higher success rates and the discovery
of more compact graphs. Fig. [6| highlights this trade-off by revealing a Pareto front, suggesting that
we can adjust the number of MCTS simulations to achieve the desired balance between success rate,
design quality, and running time. Moreover, Fig. [6] confirms that, with more engineering efforts,
the runtime for different numbers of simulations would be much closer to ShortCircuit[1], since the
runtime scales sublinearly with respect to the number of simulations as already visited states do not
need to be recomputed and are retrieved from cache.

100 T e B

R RS .|
< '8 9.6 7 i
S o6) | 2 9.
2 2 4 gl
S o4l
a ™ < X %% 3% 128
921 #* 941 X x256
90 o3 o3 ol 5 56 o7 o 10‘*2 16*1 16“ 161 162
20 21 22 23 2«1 25 2(; 27 28
# MCTS Simulations Average runtime per generation (s)

Figure 5: ShortCircuit’s success rate vs. number Figure 6: Average #AND-nodes per AIG vs. gen-
of MCTS simulations per action. eration time for ShortCircuit with varying MCTS
simulations marked on top of each data point.

7 CONCLUSION

In this paper, we introduced ShortCircuit, a novel transformer-based architecture for generating
AIGs from a target truth table. Our approach combines a structurally aware transformer model with
an AlphaZero-inspired policy variant, enabling efficient navigation through the doubly exponential
state space associated with truth tables. In our experiments, we demonstrated the effectiveness of
ShortCircuit in producing high-quality AIGs that are significantly smaller than those generated by
one of the state-of-the-art logic synthesis tools ABC and the trained Boolformer. Specifically, our
method achieved a relative size reduction of 18.62%, and 15.13% respectively.

This work contributes to the expanding field of ML applications in chip design, showcasing the
potential of deep learning to revitalize the field with new perspectives. We demonstrated that it
is possible to generate high-quality AIGs from truth tables, paving the way for future research in
this area. Future work will focus on extending ShortCircuit to handle AIGs with multiple outputs,
integrating our approach with existing logic synthesis tools, and exploring its application in industrial
settings. Finally, our goal is to enable the creation of efficient, scalable, and innovative computing
systems, and we believe that ShortCircuit is an important step towards realizing this vision.
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A  NOTATIONS

Table 3] contains a condensed summary of the notation introduced throughout the paper.

Symbol | Meaning
Number of inputs in the AIG
Input node j in the AIG
Output node for the AIG
AND-node ¢ for the AIG
Target truth table
State
Action
Set of truth tables in the AIG
Set of actions
Current number of nodes in the AIG
Max number of nodes allowed in the AIG
ShortCircuit generates
Building type of an AND-node with respect
to its two fanins (Table
A Sparse 3-dimensional tensor accumulating
all the target actions
Sk Set of permutations of {1..k}
o(+) Random row permutation function
Q(s,a) | Discovered Q-value for a state s and action a
Q(s,a;0) | Predicted expected Q-value for a state s and
action a
P(s,a;0) | Predicted action probability distribution
N(s,a) | Visit count of action a and state s
b,c Parameter balancing exploration and ex-
ploitation in PUCT

Zrs » 3208

=
3

[0}

Table 3: List of symbols and notations used in the paper.

B ADDITIONAL RELATED WORKS

B.1 HEURISTICS FOR AIG GENERATION AND OPTIMIZATION

As the inference of CNFs using exact SAT solvers often lead to exponentially large expressions,
various heuristics such as Karnaugh maps (Karnaugh, |1953)), or Quine-McCluskey methods (Quine)}
195251955} McCluskey Jr.,[1956)), and algorithms (Rudell and Sangiovanni-Vincentelli, [1987) have
been designed to obtain more compact expressions or circuits. Further efforts accompanying the
rise in chip demand led to the development of widely used logic synthesis libraries that implement
equivalence-preserving Boolean network operators. The open-source library ABC (Mishchenko et al.|
2007)) notably comprises dozens of logic graph operators aiming at reducing a network size or depth
(Mishchenko et al.,|2011; Mishchenko and Brayton| 2006)). Interestingly, some important operators
such as resub or rewrite (Darringer et al.,|1981}; Mishchenko et al. [2006) acts on the subject
graph through a series of local modifications involving small single-output AIGs. Besides, applying a
single operator on a logic network is suboptimal compared to applying several operators sequentially,
though finding the best sequence is also a hard problem (Riener et al., 2019).

B.2 MACHINE LEARNING FOR LOGIC SYNTHESIS

Many ML approaches have been explored to tackle the operator flow optimization progress. Some
stateless optimization methods, such as Bayesian optimization (Grosnit et al., 2022} Feng et al., [2022),
search for the best flow without considering the subject graph specificities. Alternatively, state-based
methods formulate the operator sequence optimization as a Reinforcement learning problem, and
train policies on selected features of the logic network. While some works use high-level statistics of
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the subject graph (e.g., its number of nodes) (Hosny et al.l 2020; Zhou and Anderson, 2023} |Qian
et al.} 2024), others rely on tailored graph convolutional networks (GCN) to extract richer features at
the cost of a longer training time (Haaswijk et al.| 2018} |Peruvemba et al.| 2021} |Zhu et al., [2020;
Basak Chowdhury et al.,[2023)). Similarly, standard deep network architectures, such as CNNs (Yu
et al.,|2018)), LSTMs (Yu and Zhou, [2020), or GCNs (Wu et al.,[2022) have been trained to predict
the quality of a logic synthesis flow in a supervised way. Contrary to these works, we target AIG
generation itself and not operator optimization.

C DATA COLLECTION

C.1 EPFL BENCHMARKS

Tables[4] and 3] contain detailed information about the arithmetic and random control circuits in the
EPFL benchmarks (Amart et al., 2015), respectively. The circuits have been mapped from behavioral
descriptions into logic gates and are intentionally suboptimal for scientific purposes. Arithmetic
circuits, as their name hints, are combinatorial AIGs representing an arithmetic operation such as
square root, logarithm, etc., while the set of random control circuits consists of controller circuits.

[ Circuit Name | # Inputs | # Outputs | # AND-nodes | Levels |

Adder 256 129 1020 255
Barrel Shifter 135 128 3336 12

Divisor 128 128 44762 4470

Hypotenuse 256 128 214335 24801
Log2 32 32 32060 444
Max 512 130 2865 287
Multiplier 128 128 27062 274
Sine 24 25 5416 225

Square-root 128 64 24618 5058
Square 64 128 18484 250

[ Average: | 166 | 102 [ 37396 [ 3608 ]

Table 4: Arithmetic circuits in the EPFL benchmark suite and their statistics

[ Circuit Name | #Inputs | #Outputs | # AND-nodes | Levels |
Round-Robin Arbiter 256 129 11839 87
Alu Control Unit 7 26 174 10
Coding-Cavlc 19 11 693 16

Decoder 8 128 304 3

i2c Controller 147 142 1342 20
Int to Float Converter 11 7 260 16
Memory Controller 1204 1231 46836 114
Priority Encoder 128 8 978 250
Lookahead XY Router 60 30 257 54
Voter 1001 1 13758 70

[ Average: [ 284 ] 171 [ 7644 [ 64 ]

Table 5: Random/Control circuits in the EPFL benchmark suite and their statistics

C.2 CUT EXTRACTION

To extract a cut with a target number of inputs n from a circuit and a given node, we set the node as
the root node and initialize the leaf set with the two parents of the root node. To extract a cut from a
given node with a target number of inputs n, we designate the given node as the root and of the cut
and its two parents as the initial leaf set. To extract a cut with n inputs from a circuit at a given node,
we set the node as the root and initialize the leaf set with its two parents. Then, we iteratively remove
a random node from the leaf set and add its parents to the leaf set while maintaining the leaf property.
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This process continues until the leaf set contains n nodes. Finally, we create an AIG from the visited
nodes within the cut, where we mark the leaf set as the inputs and the root node as the output. We
provide the outline of the procedure in Algorithm 1]

Algorithm 1 Cut Extraction

Require: Root node: r, number of cut inputs: n
. leaf_set = {left_parent(r), right_parent(r)}
node_set = {r}
while size(leaf set) <n do
node = leaf_set.random_pop()
node_set.insert(node)
leaf_set.insert(left_parent(node)) & leaf_set.insert(right_parent(node))
Ensure leaf property in leaf_set
: Construct AIG from leaf_set and node_set

A A o e

We can modify this algorithm to extract additional cuts per node by repeating the process until
we find a cut with n — 1 leaf nodes. For this cut, instead of randomly expanding a leaf node, we
create n — 1 copies of the cut and expand each leaf node individually, storing the resulting cuts.
In practice, we actually employ Algorithm [2]to extract AIGs from the EPFL circuits. Although
Algorithm[I]conveys the core idea of AIG extraction, the following algorithm is more effective from
an engineering standpoint, as it allows for extracting more cuts from the same node.

Algorithm 2 Multi-Cut Extraction

Require: Root node: r, Number of cut inputs: n
1: leaf_set = {left_parent(r), right_parent(r)}
2: node_set = {r}
3: while size(leaf_set) <n — 1 do
node = leaf_set.random_pop()
Cut_Expansion(node, leaf_set, node_set)
: for leaf in leaf set do
copy_leaf_set = leaf_set.copy() & copy_node_set = node_set.copy()
copy_leaf_set.delete(leaf)
Cut_Expansion(leaf, copy_leaf_set, copy_node_set)
Construct AIG from copy_leaf_set and copy_node_set

YR IAIUNhH
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Algorithm 3 Cut Expansion

Require: Node to expand: node, Current leaf nodes: leaf_set, Current nodes in cut: node_set
1: node_set.insert(node)
2: leaf_set.insert(left_parent(node)) & leaf_set.insert(right_parent(node))
3. preserve_leaf property(leaf_set, node_set)

Algorithm 4 Preserve Leaf Property

Require: Current leaf nodes: leaf_set, Current nodes in cut: node_set
1: for leaf in leaf set do
2:  if left_parent(leaf) in leaf_set then
leaf_set.delete(leaf) & node_set.insert(leaf)
leaf_set.insert(right_parent(node))
else if right_parent(leaf) in leaf_set then
leaf_set.delete(leaf) & node_set.insert(leaf)
leaf_set.insert(left_parent(node))

A A

The revised algorithm takes two inputs: n, the desired number of input nodes, and the root node. It
initializes the leaf set by adding the parents of the root node. It then iteratively removes a random
node from the leaf set and expands it using Algorithm 3] This process continues until the cut contains
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n — 1 leaf nodes, at which point we create n — 1 copies of the current cut state and expand each leaf
node to generate n unique cuts. For brevity, we omitted the details of ensuring the leaf property after
node expansion in the main text, which is addressed in Algorithm[4] This algorithm ensures that no
node in the leaf set has a parent also in this set, which would violate the leaf property. If a parent is
already in the leaf set, we can remove the node from the set and add the other parent that is not yet in

the leaf set.

D ADDITIONAL METHODOLOGY DETAILS

ShortCircuit Generation Example The visual representation of the model is depicted in Fig.
and the edge type indices are shown in Table 2] In the beginning, the graph contains only the input
nodes, as shown below. The input for the model will be all the truth tables. Specifically, that includes
the truth tables of the inputs 77, 75, 75 and the target truth table 7.

)

Output:

[= [ef = -

w0} Ko} Ko

[-[= === d]

[[==le -H

[[e ~fe J= <]

ShortCircuit produces action logits, where taking the arg max results into the action (1,1, 2). The
indices of the action that we have to generate the AND node A4 by connecting (I3, I). Given that
we know the truth tables of the parents of A4, we can calculate its truth table. Since the truth table of
A4 does not match T, or =7}, we need to continue the generation. The model will receive again as
input all the current truth tables, which now includes the one associated with A4.
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This time, the proposed action from ShortCircuit is (3, 3,4) which generates the new AND gate Aj
by connecting (I3, —7/A4). The new truth table associated with A5 matches with —T. Meaning we do

not need to generate any more nodes.
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Output:

S S I e

\IiEEEHE

O
EEEFEEE
e
&
EEEEEEAE

©

Inputs:

H=d= =4

Thus, the last step is to connect A5 with a negated edge to the output and finish the generation.
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Scalability & Multiple-Outputs The architecture of ShortCircuit can technically support any size
of truth tables. The input truth table size is fixed but user-defined and can be set to any 2" size where
n is the number of variables. The model down-projects these truth tables to a fixed embedding size
in continuous space, which improves computational efficiency. In our current implementation, we
project truth tables with 256 bits to float embeddings of size 256.

Our model architecture also supports multiple output nodes. Users can include several target truth
tables as input to ShortCircuit, with the model injecting the relevant positional embeddings for each.
A simpler alternative approach for handling multiple outputs is sequential generation: first generate
an AIG for the initial target truth table, then replace it with the second target table and continue
generation. This process can be repeated until all target truth tables are satisfied.

AlphaZero AlphaZero has demonstrated remarkable success in board games with enormous
state spaces, such as chess (10**) and Go (10'7°). Since truth tables features similar state space
problem, we adapt AlphaZero’s effective search and pruning capabilities to navigate AIG generation.
By combining a policy module to propose actions and a value module to evaluate state viability,
AlphaZero strikes a balance between exploitation and exploration. We adapt and modify the selection
strategy, predictor upper confidence bound applied to trees (PUCT) used by AlphaZero, as follows:

2.4 N(s,0)
N(s,a)+1

where, (s, a) represents the propagated discounted discovered reward, while Q(s, a; 8) represents
the predicted expected Q-value, P(s, a;6) is the policy module’s probability distribution, N (s, a)
tracks state visitations, and b and c are parameters balancing exploration and exploitation. Computing
Q(s¢,a; 0) for every action is too expensive, so we initialize Q(s¢,a) = Q(s¢,a;6) = 0, perform
the action that maximizes PUCT(s;, a), and only compute the value of the state ()(s;41) once we
visit it. The term Q(s,a) + bQ(s, a; 0) represents the exploitation in PUCT, as if during search
our method discovers a "good" state or a terminal state, we exploit it and focus the search locally
to discover more compact designs. The term P(s, a; #) suggests actions to perform, but the term

V24 N(5,0)/(N(s,a)+1) promotes exploration.

PUCT(s,a) = Q(s,a) + b Q(s,a;0) + ¢ P(s,a;0)
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AlphaZero stores intermediate results and metadata, such as Q(s,a), Q(s,a;0), P(s,a;0), and
N(s,a), in the nodes visited during MCTS. These nodes are associated with states and form a tree,
where edges indicate the actions performed to reach each node-state pair. When simulation starts,
we mark the initial state as the root node, compute the action distribution, and inject Dirichlet noise.
During simulation, AlphaZero follows PUCT to choose actions and continues until meeting one of the
three following stopping conditions: encountering a state s that is not expanded, reaching a maximum
number of steps, or arriving at a terminal state. If the state is not expanded, we need to compute
Q(s;0) and P(s, a;0) for that state and we back-propagate Q(s; 0) to the previous MCTS nodes, and
increment N (s, a). Once we complete the given number of simulations, AlphaZero applies the most
visited action, argmax,c 4 N(s,a). In our case, we rather follow the observed discounted reward
argmax,c 4 Q(s, a) as we find the visitation count signal too noisy given our simulation budget.

E TRAINING PARAMETERS AND IMPLEMENTATION

Implementation Details We implement ShortCircuit with PyTorch (Paszke et al.l [2019) and
TorchRL (Bou et al [2023). Our model architecture is as depicted on Fig. E] and uses transformer
blocks following Llama 3 (Meta Llama team| |2024) structure. The input truth tables have a size of 256
since they are dependent on 8-inputs and are projected into embeddings of size 256 in the continue
space. The input embedding size for our transformer decoder layers is 256 since they receive those
hidden states as input. We use are H = 4 and P = S = 3 transformer blocks for the different parts
with 16 heads and an intermediate embedding size of 4096, summing to 51.6 million parameters.

Model Details During pre-training, We use a cosine annealing with warm restarts learning rate
scheduler with a starting learning rate of 1 x 10~3 and a batch size of 1024 for 250 epochs. From
the extracted data, we extract 500 truth tables for testing, the remaining data is split into 90% for
training, 10% for validation. The entire dataset contains about 1.8 million (AIG, truth table) pairs.
During training we apply a random permutation to the rows of the truth tables with probability and a
negation transform to the target with probability 50%. We pre-train ShortCircuit with a batch size of
1024 for 250 epochs, and finetune the model until it converges. Finally, to speed-up pre-training, we
use a distributed dataloader yielding batches of sequences of same length to avoid applying padding
and consequently unnecessary computations. During fine-tuning we use a batch size of 128, a replay
buffer with capacity of 1M and sync the parameters every 500 training steps.

Baseline Details The specific sequence of commands we use in ABC to generate AIGs from truth
tables in ABC are

e ABC:

read_truth -x [truth table]; collapse; sop; strash; write
[outfile].

* ABC+resyn2:

read_truth -x [truth table]; collapse; sop; strash; resyn2;
write [outfile].

Specifically, resyn2 consists of the following commands b; rw; rf; b; rw; rwz; b;
rfz; rwz; b.
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