
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SHORTCIRCUIT: ALPHAZERO-DRIVEN GENERATIVE
CIRCUIT DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

Chip design relies heavily on generating Boolean circuits, such as AND-Inverter
Graphs (AIGs), from functional descriptions like truth tables. This generation
operation is a key process in logic synthesis, a primary chip design stage. While
recent advances in deep learning have aimed to accelerate circuit design, these
efforts have mostly focused on tasks other than synthesis, and traditional heuristic
methods have plateaued by primarily optimizing small 4-inputs cuts. In this paper,
we introduce ShortCircuit, a novel transformer-based architecture that leverages the
structural properties of AIGs and performs efficient space exploration. Unlike prior
approaches that attempt end-to-end generation of logic circuits using deep networks,
ShortCircuit employs a two-phase process combining supervised learning with
reinforcement learning to enhance generalization to unseen truth tables. We also
propose an AlphaZero variant to handle the doubly exponential state space and the
reward sparsity, enabling the discovery of near-optimal designs. To evaluate the
generative performance of our model, we extract 500 8-input truth tables from a set
of 20 real-world circuits. ShortCircuit guarantees the correctness of the produced
AIGs, and outperforms the state-of-the-art logic synthesis tool ABC, by 18.62%
with respect to circuit size, while its greedy rollout is 31× faster.

1 INTRODUCTION

The rapid rise of AI has driven computational demands beyond current hardware capabilities, creating
a major bottleneck. Chip design is key to advancing next-generation computing, but traditional
methods struggle to keep pace, highlighting the need for faster and more innovative approaches. At
its core, a chip is the physical embodiment of a Boolean function, transforming binary inputs into
desired outputs. Creating these embodiments is facilitated by logic synthesis, a crucial step in chip
design that converts functional descriptions into graphs connecting logic gates. The logic synthesis
process must balance power, performance, and area, posing a complex optimization challenge. In
this paper, we investigate the use of Machine Learning (ML) to generate optimized digital circuits
directly from Boolean logic specifications, offering a fresh perspective on the chip design process.

Truth tables fully specify Boolean functions by listing outputs for all input combinations. Conse-
quently, we use truth tables as the input Boolean logic description for our problem. Our method
outputs directed acyclic graphs (DAGs) as AND-Inverter Graphs (AIGs), a standard logic structure in
Electronic Design Automation (EDA) Mishchenko and Brayton (2006); Wolf et al. (2013). AIGs only
use 2-input AND gates and inverted or normal edges, offering a simple, scalable, and widely adopted
representation that makes them an ideal choice for our ML-based circuit generation approach.

Traditional logic optimization methods optimize large AIGs by forming small cuts, finding smaller
equivalent representations, and replacing the original subgraphs. The most effective method,
rewrite, forms 4-input cuts and matches their truth tables to a precomputed database for replace-
ments (Mishchenko et al., 2006). While industrial approaches have explored scaling to 8-input cuts,
the double exponential growth of the truth table space limits the coverage of such databases (Amarú
et al., 2017). Moreover, the structural rigidity of AIGs and the complexity of the problem result
in most cuts failing optimization, limiting the effectiveness of these methods (Tsaras et al., 2025).
Recent works aim to speed up chip design by applying ML across EDA stages (Huang et al., 2021;
Gubbi et al., 2022), including placement (Ward et al., 2012), routing (Alawieh et al., 2020), and logic
synthesis (Tu et al., 2024). Rather than directly tackling the graph generation problem, most ML

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

methods for logic synthesis focus on the optimization of synthesis recipes, which are sequences of
operators acting on a logic graph to modify its structure while preserving the associated Boolean
function. More recently, deep-generative methods emerged aiming to generate logic graphs rather
than operator sequences d’Ascoli et al. (2024); Li et al. (2025); Dong et al. (2023). The generative
approach offers higher potential as it offers more flexibility than working with a fixed set of operators;
however, this approach requires exploring a much larger space, due to the double exponential growth
of the search space with the number of Boolean function inputs.

Such a vast search space renders traditional ML methods ineffective for optimal AIG generation.
However, recent advances have demonstrated that tailored model architectures and exploration-
exploitation-aware training protocols can achieve remarkable performance even in tasks involving
such large spaces. Indeed, the success of methods like AlphaGO Silver et al. (2016), AlphaZero Silver
et al. (2017), AlphaFold Jumper et al. (2021) and even the emergence of large language models Devlin
et al. (2019); Kaplan et al. (2020) relied on the development of custom model architectures capturing
structural properties of board games, proteins, or language. Moreover, the training of these models
either leverages naturally abundant data or employs specific data-augmentation and exploration-
exploitation strategies to improve their performance.

In this paper, we propose ShortCircuit, a new transformer-based architecture structurally adapted for
generating AIGs. Our transformer takes logic nodes represented as truth tables as input, and each
forward pass predicts the next AND node to create in order to realize a target truth table. We further
utilize an AlphaZero policy to navigate the large state space and discover more compact designs. We
make the following contributions: i) we formally define the challenging problem of generating AIGs
from target truth tables, characterized by a doubly exponential state space and a quadratically growing
action space. ii) We introduce ShortCircuit, a novel AIG-aware architecture, enabling effective
exploration of this vast search space that guarantees the correctness of the produced AIG. iii) We
develop a two-stage training scheme combining supervised learning and reinforcement learning to
improve generalization and scalability. Finally, iv) we empirically demonstrate the effectiveness of
ShortCircuit by producing circuits 18.62% smaller compared to the state-of-the-art logic synthesis
tool ABC (Mishchenko et al., 2007), while achieving a 31× speedup in its greedy variant, showcasing
the potential of ML methods to revitalize the field of logic synthesis with a fresh perspective.

We present background and related work in Section 2, followed by the problem formulation in
Section 3. We then describe our model architecture in Section 4 and our tailored training procedure
in Section 5. We finally provide the empirical evaluation of ShortCircuit in Section 6.

2 BACKGROUND

A digital circuit cascades logic gates to realize a Boolean function f : {0, 1}n → {0, 1}m, mapping
n-bit inputs to m-bit outputs. An And-Inverter Graph (AIG) is a Directed Acyclic Graph (DAG) that
is commonly used to represent such functions at the early stage of the chip design process.

2.1 AND-INVERTER GRAPHS

An AIG is composed of three types of nodes: (1) primary inputs, which we also refer to as inputs,
(2) primary outputs, which we call the outputs, and (3) 2-input AND-nodes representing the logic
gate AND. In this work, we focus on the generation of single-output AIGs that represent Boolean
functions of the form f : {0, 1}n → {0, 1} as they play an important role in logic synthesis. Fig. 1
illustrates the structure of an AIG with n = 3 inputs, where {Ik}1≤k≤3 represent input nodes, ∧4,∧5

are AND gates, and O is the output. Edge orientation indicates the direction of the Boolean signal
propagation from one node (called fanin) to another (called fanout). Moreover, the two types of
edges, plain and dashed, in Fig. 1 indicate that the Boolean signal can be inverted when going from a
fanin to a fanout. The primary output is always connected to a single AND node with a direct or an
inverter link. As AIGs only contain AND operations and Boolean inversions, we can map them to
a canonical form (CNF). For instance, the CNF, naturally derived from its topology, of the AIG in
Fig. 1 is O = ¬(¬(I1 ∧ I2)∧ I3), and we can conversely easily go from a CNF to an AIG. Moreover,
applying equivalence-preserving operations to the CNF produces new CNFs that still encode the
same Boolean function. Similarly, topologically distinct AIGs can realize the same function, and
to compare the quality of two AIGs, a primary criterion is to compare their sizes, measured by the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

I1 I2 I3

∧4

∧5

O

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

1
1
1
1
0
0
0
1

0
0
0
1
0
0
0
1

0
0
0
0
1
1
1
0

O Output Node

∧ AND Node

I Input Node

Normal Edge

Negated Edge

Inputs:

Output:

Figure 1: Representation of an AIG, showing the
truth table associated to each node.

I3 I2 I1 I1 I2 I3 ∧4 ∧5 O
0 0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 0 1
0 1 0 0 1 0 0 0 1
0 1 1 1 1 0 1 0 1
1 0 0 0 0 1 0 1 0
1 0 1 1 0 1 0 1 0
1 1 0 0 1 1 0 1 0
1 1 1 1 1 1 1 0 1.

Table 1: Truth table of each node appearing in
the AIG from Fig. 1

number of gates they contain (Mishchenko and Brayton, 2006). Smaller AIGs are generally preferred
as they simplify subsequent tasks such as placement and routing, and lead to more efficient circuits.

2.2 TRUTH TABLES

As for any other logical graphs, we can capture the behavior of an AIG by propagating Boolean
values from its primary inputs to its primary outputs and applying the logical operations encountered
on the directed paths. Considering again the exemplar AIG from Fig. 1, if I1 = 1, I2 = 1, and
I3 = 0, propagating the Boolean signals we can verify that the AIG output at O is 1. By enumerating
all possible input combinations and recording the corresponding output values for each gate, we can
build the AIG’s full truth table, as shown in Table 1. Each row corresponds to the values of the AIG
nodes for a specific set of entries (I1, I2, I3) = (i1, i2, i3) ∈ {0, 1}3 displayed on the left part of
the table. We can extract from this representation a binary vector of size 2n for each AIG node. For
instance, the "truth table" vector representation of node ∧4 is (0 0 0 1 0 0 0 1)⊤, and the primary
output one is (1 1 1 1 0 0 0 1)⊤. After discussing related works in more detail, we will explain in the
next section how our method leverages this rich vector representation for AIG generation.

2.3 RELATED WORKS

We discuss heuristics for AIG generation and ML methods for logic operator sequence optimization
in Appendix B, and focus here on the deep learning approaches tailored to logic graph generation.

Learning to Generate One Circuit at a Time A first approach to generate Boolean networks
with deep neural networks consists of substituting the gates and wires of a logic circuit by learnable
nodes and connections to form a neural network (Belcak and Wattenhofer, 2022; Zimmer et al., 2023;
Hillier et al., 2023). The network parameters are learnt by minimizing the error made by forward
passes compared to the target binary output. On the one hand, this method allows to cope with larger
number of primary inputs as, instead of learning an entire family of logic graphs (e.g., the 8-input
AIGs), it is specialized on one particular target truth table. On the other hand, it requires to train a new
neural network for each target truth table, representing a significant runtime bottleneck. Therefore,
several works inspired by the development of foundational generative models have followed another
direction, consisting in learning the synthesis process itself with a deep neural network.

Learning Circuit Synthesis using Deep Learning While Roy et al. (2021) use a CNN backbone to
generate prefix circuits by adding or deleting nodes in an N ×N grid, Li et al. (2024) employ an auto-
regressive diffusion model to generate DAG for high-level synthesis stage , and Dong et al. (2023)
design a two-level GNN architecture to synthesize analog circuits that work with non-binary signals.
Closer to our work are Boolformer (d’Ascoli et al., 2024) and Circuit Transformer (CT) (Li et al.,
2025), both tackling digital network synthesis with an auto-regressive transformer-based architecture.
They train their policies via supervised learning by predicting the next element of a logic graph given
a target truth table, and do inference through beam-search or MCTS simulations. Contrary to our

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

work, Boolformer and CT use a symbolic representation of the Boolean formula associated to a logic
graph encoded via depth-first search. Therefore, instead of representing already built nodes by their
truth tables and predicting the next node to add to the graph, they tokenize the symbols and let their
model generate the next symbol of the logic formula (a logical operation, an input or an output),
which requires more forward passes than for our method to produce the same AIG. Besides, given a
target truth table T⋆, Boolformer directly takes as input the boolean representation of T⋆ as we do,
while CT takes a (non-optimal) AIG realizing T⋆ and generates an improved logic network.

3 PROBLEM DEFINITION

Truth tables encompass the results for all possible input values, but do not provide sufficient structural
information to derive an AIG representing that mapping. Heuristics that generate a Boolean expres-
sion, or an AIG, from a truth table lead to exponentially large solutions needing further refinement.
Consequently, solving this AIG generation problem would significantly impact digital circuit design.

Problem Definition: Given a target truth table T⋆ ∈ {0, 1}2n , construct an AIG with the minimum
number of nodes, such that its output node O has a truth table TO matching T⋆.

Note that the size of a truth table associated with an n-input AIG is 2n, thus, the set containing all
truth tables of size 2n has a cardinality of 22

n

, which is on the order of 1077 for the space of truth
tables that an 8-input AIG can represent. Exploring such a large space efficiently requires developing
specific models and training techniques. These must exploit the structural properties of the problem
while managing the exploration-exploitation trade-off inherent in such scenarios.

3.1 STATE REPRESENTATION & NOTATIONS

We formally define an AIG with n inputs as a graph G = (V,E), where V and E represent the node
and edge sets. To capture the dynamic nature of AIG construction, we introduce a temporal parameter,
t, which simultaneously represents the current time step and the number of AND-nodes in the graph,
denoted as Gt = (Vt, Et). This allows us to model the evolution of the AIG over time, with the graph
growing as new AND-nodes are added. We assign a unique integer ID to each node in the graph,
regardless of its type; thus, at time t the node set is Vt = {I1, . . . , In,∧n+1, . . . ,∧n+t}, or with a
node-type agnostic notation, Vt = {v1, . . . , vn+t}. Following this notation, the graph G0 represents
an AIG containing only input nodes, i.e., with V0 = {I1, I2, ..., In}.

In our generative process, we encode the state corresponding to AIG Gt as a 3-tuple st = (Tt, T⋆,At).
Here, Tt = {T1, T2, ..., Tn+t} is the set of truth tables associated with the current nodes, T⋆ is the
target truth table, and At = {an+1, an+2, ..., an+t} is the ordered set of actions performed so far.
Each action generates a new AND-node by connecting two existing nodes in one of four possible
configurations: (vi, vj), (vi,¬vj), (¬vi, vj), and (¬vi,¬vj). Our goal is to perform a series of
N actions, transforming G0 into a terminal AIG GN such that the truth table of the last generated
AND-node, Tn+N , matches or is the negation of the target truth table T⋆. Note that our environment
is stateful, as its history influences future decisions. Furthermore, our environment poses an additional
challenge due to its action space expanding quadratically with each new node we add.

4 MODEL ARCHITECTURE

We propose an iterative approach to AIG construction, where we gradually build the circuit, starting
with G0 and letting our model decide at each step which AND-node to add, aiming at realizing a given
target truth table T⋆. To generate the next gate, the model takes the set of existing nodes as input, and
it outputs a probability distribution over the set of AND-nodes that can be built by combining any
pair of already existing nodes, taking edge types into account. Formally, let |Vt| denote the number
of nodes in the current state of the graph, then the action space is a 4× |Vt| × |Vt| tensor, where each
|Vt| × |Vt| slice corresponds to a connection type. Specifically, the cell (i, j) in a given slice indicates
the probability of connecting node vi with vj , and the slice index ϵ ∈ {1, 2, 3, 4}, corresponds to a
combination of specific edge types: (vi, vj), (¬vi, vj), (vi,¬vj), or (¬vi,¬vj). Therefore, we can
sample a triplet (ϵ, i, j) following the distribution given by this 4 × |Vt| × |Vt| tensor and add the
corresponding node to the graph. The process ends when the truth table of the sampled node matches
either the target one T⋆ or its full negation ¬T⋆, or after reaching a maximum number of steps Nmax.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Node PE Target PE

Transformer Layers
H×

Policy
Module

Value
Module

TanhSoftmax

Action
ProbabilitiesOutputs: State

Value

. . .

Truth Tables of Built Nodes

Inputs:

Target T⋆

Policy Module details

Transformer LayersP× P×

Self-Attention

Self-Attention Logits:

9.
1.2 0.0 9.3 10.8

0.3 −3.6 −17

8.3 2.2

−6.2

Exclude Target
Embedding

Value Module details

Input Sequence:
Node Hidden
Embeddings

Target Sequence:
Target Hidden

Embedding

Transformer LayersS×

Cross-Attention

Linear

State Value Logit

Figure 2: ShortCircuit model takes as inputs a target truth table T⋆ and the truth tables of the already
built nodes. It first appends a type-dependent positional encoding before going through several
transformer layers. Then, the model is split into two heads respectively outputting a probability
distribution over the next possible actions (policy module on the left), and a value reflecting the
quality of the current inputs (value module on the right).

ϵ Build vk from (ϵ, i, j)
1 vi ∧ vj
2 ¬ vi ∧ vj
3 vi ∧ ¬ vj
4 ¬ vi ∧ ¬ vj

Table 2: Edges for each ϵ.

To effectively explore and prune the vast state space, our model
comprises a policy and a value module to assess intermediate states
and strategically get closer to the desired target. As shown on Fig. 2,
our architecture consists of a shared core embedding the truth tables
applying position encodings and H transformer encoder layers. Then,
the hidden embeddings are passed as input to the 4 stacked policy
modules and to the value module. The policy modules combined
with a softmax produce a distribution over next actions, and the value
module ending with tanh predicts an expected reward in [−1, 1].

Positional Encoding (PE) In transformers, positional encodings (PE) help capture the sequential
relations in the inputs. In our setting, the AIG structure is already implicitly reflected in the truth
tables. Furthermore, self-attention should treat every node equally, as any two nodes may be combined
to form a new node. However, to enable the model to distinguish between built nodes and the target
truth table, we introduce two learnable positional encoders, referred to as “Node PE” (see Fig. 2).

Policy Module Transformers are the state-of-the-art architecture to handle sequential data. These
models particularly shine when trained to predict the next token in a sequence by outputting a
fixed-size tensor representing a sampling probability over a token glossary. In our case though, the
set of nodes that we can build grows at each step, as more pairs of nodes can be combined to produce
the next node. Inspired by NLP tasks, for which attention scores among related tokens are high, we
use attention to guide next node generation. Thus, we directly use the final self-attention map of
four parallel policy modules to get the probability to connect any two nodes with specific edge types.
Each policy module has P transformer encoder layers and outputs a final self-attention layer. In
the last self-attention layer, we exclude the entry corresponding to the target node and returns the
self-attention scores based on the existing AIG nodes embeddings. We aggregate the scores from the
four policy modules and mask the ones associated to already built nodes and their negate versions.
We finally apply a softmax to the remaining scores to produce a single probability distribution.

Value Module The value module consists of S transformer encoder layers. It assess how favorable
a state is and prevents expanding unpromising states. As the quality of a state not only depends on
the nodes that are present in the graph at that stage, but also on the target truth table that should be
realized, the value module also uses the two learnable type-based positional encoders introduced
above. After performing the embedding, we compute the cross-attention between the graph nodes
and the target truth table, which yields a new vector representation of the target. Finally, we feed this
vector to a linear layer producing a single value, which should reflect the quality of the current state.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 TRAINING SHORTCIRCUIT

The sparse nature of the problem makes it practically impossible to discover functionally correct
graphs when exploring the double exponential state space uniformly. This challenge necessitates
a more effective training approach for our ShortCircuit. To address this, we propose a two-stage
training regimen consisting of a supervised pre-training stage to initialize the policy module, followed
by an AlphaZero-style fine-tuning phase to improve the policy module and train the value module.
Although pre-training the policy module provides a good prior to predict the most useful next actions,
simply following it does not guarantee that an AIG matching T⋆ will be constructed due to the
inherent difficulty of the problem. This limitation highlights the importance of the fine-tuning stage,
which aims to refine the policy module and leverage the value module for improved performance.

5.1 PRE-TRAINING

Inspired from NLP, we pre-train our model on the next-action prediction task using single-output
AIGs. As no large public corpus of (truth table, AIG) pairs exists, we curate our own dataset from
open-source digital circuit collections to pre-train ShortCircuit to regenerate AIGs from their targets.

Data Extraction To generate an AIG dataset with the desired input and output sizes, we utilize
the EPFL benchmarks (Amarú et al., 2015), which contain a collection of 20 real circuits realizing
arithmetic and control functions. On average, the arithmetic and control circuits have 175 inputs and
137 outputs with 22520 AND-nodes, as detailed on Table 4 and 5. Since these circuits have more
inputs than the AIGs we aim to generate, we extract subgraphs, or cuts, from them. A cut refers to
a connected subset of nodes in the AIG that divides the graph into two disjoint parts. The root of
a cut is the node to which all directed paths within the cut converge to and a leaf node is a node in
the cut that have at least one fanin outside of the cut. By design, a cut forms a single-output AIG
with a number of inputs corresponding to the number of leaves. We defer to Appendix C.2 the full
description of the cut extraction method we develop to build a dataset of single-output AIGs.

Data Preparation Since our policy should predict the next action, i.e. the next node to add to
a partial AIG, we need to convert the AIGs we load from our training dataset into a sequence of
ground-truth actions. As different series of actions can lead to the same graph with N nodes, we first
sort the nodes of the training AIG we load into a topological order {I1, . . . , In,∧n+1, . . . ,∧N} (or
{v1, . . . , vN} with node-type agnostic notation), where ∧N is connected to the output O. We also
convert the AIG nodes into truth tables, as described in section 2, and use the truth table of O as
the target T⋆. From the topological sequence of nodes, we build the sequence of actions that our
policy should learn to perform when its goal is to generate T⋆. As mentioned in section 4, creating
node vk = (¬)vi ∧ (¬)vj , with 1 ≤ i < j < k, corresponds to action ak = (ϵ, i, j), whose first
component ϵ ∈ {1, 2, 3, 4}, indicates the types of the edges connecting vk to its parents, as detailed in
Table 2. This procedure leaves us with the sequence of actions A = {an+1, an+2, ..., aN}, starting
with index n+ 1 since the n primary inputs are given at the beginning of the AIG generation process.

To efficiently generate target action distributions, we aggregate all the actions into a sparse 3-
dimensional tensor A = (A1,A2,A3,A4) where each element Aϵ is a N ×N matrix representing
the actions with connection type ϵ. The value of the entry (i, j) of Aϵ is set to 1 if (ϵ, i, j) belongs
to A and to zero otherwise. Thus, if all the nodes up to vk are already built, considering each
submatrix Aϵ,1:k,1:k taking the first k rows and k columns of Aϵ allows to easily identify which
nodes with connection ϵ we could build next. Taking the submatrices for all values of ϵ, we obtain
the target action distribution by setting the entries corresponding to already performed actions at 0,
and normalizing the resulting tensor. Fig. 3 illustrates this action tensor building procedure.

Data Augmentation The first data augmentation we employ consists of using the same AIG for
both targets T⋆ and ¬T⋆. This is valid because we can generate one target or the other by connecting
the final node ∧N with the output O using a regular or an inverter edge. Our second data augmentation
leverages the fact that any order of truth table rows is valid, provided that the same order is used
for all the nodes. Since our ShortCircuit’s inputs are truth tables, it is desirable for the model to be
invariant to row permutations. Formally, the model should generate the same next-action prediction
whether it receives the truth tables T1, . . . , TN and T⋆, where Ti = (t

(1)
i , . . . , t

(2n)
i) ∈ {0, 1}2n , or

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

O

I1 I2 I3 I4

∧5 ∧7

∧6

∧8

O

Node ordering

Edge type marking

A = { a5 = (3, 1, 2), a6 = (1, 3, 5), a7 = (2, 3, 4), a8 = (3, 6, 7) }

A = (A1,A2,A3,A4) 

1 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0 0

1

I1 I2 I3 I4 ∧5 ∧6 ∧7



I1

I2

I3

I4

∧5

∧6

∧7

Submatrix: A3,1:2,1:2

Figure 3: We start data pre-processing by sorting the AIG nodes in topological order. Then, we
identify the action types ϵ ∈ {1, 2, 3, 4} based on the edges. Next, we build the sequence of actions
A and generate the global action tensor A = (A1,A2,A3,A4). We highlight the structure of A3,
which contains a 1 at entries (1, 2) and (6, 7) for the generation of ∧5 and ∧8 (actions a5 and a8).

when it gets the permuted truth tables σ(T1), . . . , σ(TN), σ(T⋆) where σ is a permutation in S2n and
σ(Ti) =

(
t
(σ(1))
i , . . . , t

(σ(2n))
i

)
. As structurally encoding this invariance into our policy architecture

would be computationally too expensive, we apply random permutations to the inputs of our model
during the training, which does not impact the other metadata introduced in the previous section.

Pre-Training Flow With the prepared augmented data, we can proceed to train our policy module to
match the ground-truth next-action distributions of our training set. For training loss, we experimented
with KL divergence and cross-entropy, both of which measure the distance between two probability
distributions. In practice, KL divergence loss yielded better results. Besides, the backbone of our
model being a transformer, we implement a custom masking strategy during training. to maintain
causality in the auto-regressive generation process. Since the primary inputs and the target truth table
are available from the start, and as there is no causality for their existence, we allow full attention for
their embeddings, and only apply a causal mask for the rest of the nodes.

5.2 FINE-TUNING

Fine-tuning aims to align the value and policy module to operate effectively together. Unlike the
policy module, we cannot properly initialize the value module during pre-training as the generated
dataset only contains successful examples, which would mislead the value module to consider that
all states are “good”. Skipping pre-training, though, would lead to a random exploration of the vast
search space of truth tables, which would likely result in encountering only “bad” states, preventing
the model from learning what a “good” state is. Therefore, the most viable option to train our value
module is through experience, by performing searches with a pre-trained policy module. We utilize
AlphaZero (see Appendix D) as the orchestration framework to refine the policy and value modules.

Fine-Tuning Flow Generating trajectories for millions of truth tables is computationally challeng-
ing. Thus, to best exploit our resources, our fine-tuning regimen consists of data collection and model
training processes. These data collectors generate trajectories and add their findings to a fixed length
replay buffer. Under the hood, the data collectors store the metadata, including truth tables and discov-
ered reward Q(s), of the MCTS root node for each step in the trajectory in the replay buffer. Successful
trajectories receive a reward of 1, while failed ones receive −min (hd(TN , T⋆), hd(TN ,¬T⋆)), where
hd is the normalized Hamming distance and TN is the last generated truth table. The trainer process
randomly samples data from the replay buffer and uses the truth tables as input for the model. Since
the value module aims to predict the Q-value of a state, the goal is to minimize the mean squared
error (MSE) between the predicted value and the retrieved Q(s). The target distribution for the
policy module is the normalized number of visitations N(s,a)/

∑
a N(s,a). Similar to pre-training, we

minimize the KL-divergence between the policy module output and the target probability distribution.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

6 EXPERIMENTAL EVALUATION

We introduce the implementation details such as model and search hyperparameters, datasets and
baseline methods in section 6.1 and 6.2, and we compare the effectiveness of ShortCircuit against
several baselines in 6.3. Finally, section 6.4 presents a study on the impact of number of simulations.
We provide further details and discussion about the implementation, training, and scalability of our
method in Appendices C, D, and E.

6.1 EXPERIMENTAL SETUP

We train and evaluate ShortCircuit with 51.6 million parameters on 8-input truth tables randomly
extracted from the EPFL benchmark, as we describe in section 5.1. We specifically choose to test on
these circuits, since they correspond to real-world Boolean functions that have more practical interest
than uniformly random truth-tables. In total, we extract 1.8 million AIGs with an average number of
AND-nodes of 10.08, as we detail in Appendix E.

6.2 BASELINES

We derive each truth table in our test set from the primary output of an extracted cut. Since those cuts
are AIGs realizing those truth tables, we use them as a baseline, denoted as Cut. Additionally, we
compare ShortCircuit against the state-of-the-art open-source logic synthesis tool ABC. This library
applies a series of Boolean algebra transformations to generate an AIG from a truth table. Moreover,
we leverage a popular logic optimization flow, resyn2, that applies multiple operators to optimize
the AIGs by ABC and denote it as ABC+resyn2. Finally, we compare ShortCircuit against the
Boolformer. This learned method produces an optimized Boolean expression given a truth table, and
we convert this expression into an AIG without introducing any logic redundancy.

6.3 GENERATION QUALITY & RUNTIME EXPERIMENTS

We evaluate ShortCircuit against our baselines on 500 truth tables associated with randomly sampled
AIGs from the EPFL benchmarks. We allow ShortCircuit to attempt to generate a circuit with up to
30 AND-nodes. ShortCircuit performs 8 MCTS simulations and generates up to 20 AND-nodes in
each simulation, before performing an action. The success rate of ShortCircuit on this test set is 98%.

8

9

10

11

12

9.44

Algorithm

#
A

N
D

-n
od

es

Cut
ABC

ABC+resyn2
ShortCircuit

(a) ShortCircuit vs. traditional methods

8

9

10

8.88

Algorithm

#
A

N
D

-n
od

es

Boolformer
Cut

ABC
ABC+resyn2

ShortCircuit

(b) ShortCircuit vs. traditional and learned methods

Figure 4: Average number of AND-nodes for the successfully generated AIGs across several baselines.

Fig. 4a compares the average size of the successfully generated circuits compared to Cut, ABC, and
ABC+resyn2. ShortCircuit directly generates compact AIGs with 9.44 AND-nodes on average.
These AIGs are significantly smaller than the ones from Cut and ABC, respectively achieving a size
reduction of 5.77% and 18.62%, and marginally smaller AIGs than ABC+resyn2 by 0.26%.

Fig. 4b compares the AIG sizes against the same baselines but also against Boolformer. Boolformer
successfully generated 85% of the given truth tables, so we report results only on the truth tables
successfully generated by both learned methods. ShortCircuit still maintains its good performance
on this test subset while Boolformer produces less compact AIGs and frequently fails to synthesize
complex circuits requiring more AND nodes. ShortCircuit’s AIGs are 13.14% smaller.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The runtime of ShortCircuit for a single rollout with 30 steps is 0.01s. Due to limitations in our
MCTS implementation, the runtime for 8 simulations per step is 1.8s, but an optimized version would
be comparable by performing batched simulations. When we compare the greedy rollout against
ABC and ABC+resyn2, which have a runtime of 0.31s and 0.32s, ShortCircuit achieves a respective
speedup of 31× and 32×. Finally, Boolformer’s runtime is 0.78s, making ShortCircuit 78× faster.

6.4 IMPACT OF NUMBER OF SIMULATIONS

To better understand the role of MCTS simulations in the performance of ShortCircuit, we investigate
their impact on the success rate, the circuit size, and the execution time on the same test set of 500
truth tables as in section 6.3. Fig. 5 illustrates how the success rate evolves as the number of MCTS
simulations increases from 1 to 256. For clarity, we append an integer i next to our method’s name
(ShortCircuit[i]) to indicate the number of simulations we perform.

When using only 1 simulation, ShortCircuit[1] performs a greedy search, where the policy selects
the most likely action, a = argmaxa∈A P (s, a; θ). This strategy yields a lower success rate of
92.2% albeit still good, but benefits from a very short generation time of 0.01s. On the other end,
ShortCircuit[256] achieves a significantly higher success rate of 98.6%, albeit with a much longer
running time of 106s. Increasing the number of simulations enables the model to explore a larger –
but still limited – portion of the solution space, resulting in higher success rates and the discovery
of more compact graphs. Fig. 6 highlights this trade-off by revealing a Pareto front, suggesting that
we can adjust the number of MCTS simulations to achieve the desired balance between success rate,
design quality, and running time. Moreover, Fig. 6 confirms that, with more engineering efforts,
the runtime for different numbers of simulations would be much closer to ShortCircuit[1], since the
runtime scales sublinearly with respect to the number of simulations as already visited states do not
need to be recomputed and are retrieved from cache.

20 21 22 23 24 25 26 27 28
90

92

94

96

98

100

MCTS Simulations

Su
cc

es
s(
%
)

Figure 5: ShortCircuit’s success rate vs. number
of MCTS simulations per action.

10−2 10−1 100 101 102

9.4

9.6

1

2
4 8 16 32 64 128

256

Average runtime per generation (s)

#
A

N
D

-n
od

es

Figure 6: Average #AND-nodes per AIG vs. gen-
eration time for ShortCircuit with varying MCTS
simulations marked on top of each data point.

7 CONCLUSION

In this paper, we introduced ShortCircuit, a novel transformer-based architecture for generating
AIGs from a target truth table. Our approach combines a structurally aware transformer model with
an AlphaZero-inspired policy variant, enabling efficient navigation through the doubly exponential
state space associated with truth tables. In our experiments, we demonstrated the effectiveness of
ShortCircuit in producing high-quality AIGs that are significantly smaller than those generated by
one of the state-of-the-art logic synthesis tools ABC and the trained Boolformer. Specifically, our
method achieved a relative size reduction of 18.62%, and 15.13% respectively.

This work contributes to the expanding field of ML applications in chip design, showcasing the
potential of deep learning to revitalize the field with new perspectives. We demonstrated that it
is possible to generate high-quality AIGs from truth tables, paving the way for future research in
this area. Future work will focus on extending ShortCircuit to handle AIGs with multiple outputs,
integrating our approach with existing logic synthesis tools, and exploring its application in industrial
settings. Finally, our goal is to enable the creation of efficient, scalable, and innovative computing
systems, and we believe that ShortCircuit is an important step towards realizing this vision.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Alan Mishchenko and Robert K. Brayton. Scalable logic synthesis using a simple circuit structure.
2006. URL https://api.semanticscholar.org/CorpusID:8597391.

Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free verilog synthesis suite. 2013. URL
https://api.semanticscholar.org/CorpusID:202611483.

Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. Dag-aware aig rewriting a fresh look at
combinational logic synthesis. In Proceedings of the 43rd Annual Design Automation Conference,
DAC ’06, page 532–535, New York, NY, USA, 2006. Association for Computing Machinery.
ISBN 1595933816. doi: 10.1145/1146909.1147048. URL https://doi.org/10.1145/
1146909.1147048.

Luca Amarú, Patrick Vuillod, Jiong Luo, and Janet Olson. Logic optimization and synthesis: Trends
and directions in industry. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017, pages 1303–1305, 2017. doi: 10.23919/DATE.2017.7927194.

Dimitrios Tsaras, Xing Li, Lei Chen, Zhiyao Xie, and Mingxuan Yuan. Elf: Efficient logic synthesis
by pruning redundancy in refactoring. In Proceedings of the 62nd ACM/IEEE Design Automation
Conference (DAC), San Francisco, CA, USA, 2025.

Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang Shen, Juejian Wu,
Yuanfan Xu, Hengrui Zhang, Kai Zhong, Xuefei Ning, Yuzhe Ma, Haoyu Yang, Bei Yu, Huazhong
Yang, and Yu Wang. Machine learning for electronic design automation: A survey. ACM Trans.
Design Autom. Electr. Syst., 26:40:1–40:46, 2021. URL https://api.semanticscholar.
org/CorpusID:231839647.

Kevin Immanuel Gubbi, Sayed Aresh Beheshti-Shirazi, Tyler Sheaves, Soheil Salehi, Sai Manoj
PD, Setareh Rafatirad, Avesta Sasan, and Houman Homayoun. Survey of machine learning for
electronic design automation. In Proceedings of the Great Lakes Symposium on VLSI 2022,
GLSVLSI ’22, page 513–518, New York, NY, USA, 2022. Association for Computing Machinery.
ISBN 9781450393225. doi: 10.1145/3526241.3530834. URL https://doi.org/10.1145/
3526241.3530834.

Samuel I. Ward, Myung-Chul Kim, Natarajan Viswanathan, Zhuo Li, Charles J. Alpert, Earl E.
Swartzlander, and David Z. Pan. Keep it straight: teaching placement how to better handle
designs with datapaths. In ACM International Symposium on Physical Design, 2012. URL
https://api.semanticscholar.org/CorpusID:8570378.

Mohamed Baker Alawieh, Wuxi Li, Yibo Lin, Love Singhal, Mahesh A. Iyer, and David Z. Pan. High-
definition routing congestion prediction for large-scale fpgas. In 2020 25th Asia and South Pacific
Design Automation Conference (ASP-DAC), pages 26–31, 2020. doi: 10.1109/ASP-DAC47756.
2020.9045178.

Kaihui Tu, Xifan Tang, Cunxi Yu, Lana Josipović, and Zhufei Chu. Logic Synthesis, pages 135–
164. Springer Nature Singapore, Singapore, 2024. ISBN 978-981-99-7755-0. doi: 10.1007/
978-981-99-7755-0_9. URL https://doi.org/10.1007/978-981-99-7755-0_9.

Stéphane d’Ascoli, Samy Bengio, Joshua M. Susskind, and Emmanuel Abbe. Boolformer: Symbolic
regression of logic functions with transformers, 2024. URL https://openreview.net/
forum?id=wmzFZ9lJrD.

Xihan Li, Xing Li, Lei Chen, Xing Zhang, Mingxuan Yuan, and Jun Wang. Circuit transformer:
A transformer that preserves logical equivalence. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
kpnW12Lm9p.

Zehao Dong, Weidong Cao, Muhan Zhang, Dacheng Tao, Yixin Chen, and Xuan Zhang. Cktgnn:
Circuit graph neural network for electronic design automation. arXiv preprint arXiv:2308.16406,
2023.

10

https://api.semanticscholar.org/CorpusID:8597391
https://api.semanticscholar.org/CorpusID:202611483
https://doi.org/10.1145/1146909.1147048
https://doi.org/10.1145/1146909.1147048
https://api.semanticscholar.org/CorpusID:231839647
https://api.semanticscholar.org/CorpusID:231839647
https://doi.org/10.1145/3526241.3530834
https://doi.org/10.1145/3526241.3530834
https://api.semanticscholar.org/CorpusID:8570378
https://doi.org/10.1007/978-981-99-7755-0_9
https://openreview.net/forum?id=wmzFZ9lJrD
https://openreview.net/forum?id=wmzFZ9lJrD
https://openreview.net/forum?id=kpnW12Lm9p
https://openreview.net/forum?id=kpnW12Lm9p

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of go with deep neural networks and tree search. Nat., 529(7587):484–489, 2016. doi:
10.1038/NATURE16961. URL https://doi.org/10.1038/nature16961.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap,
Karen Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. CoRR, abs/1712.01815, 2017. URL http://arxiv.org/
abs/1712.01815.

John M. Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon A A Kohl, Andy Ballard, Andrew Cowie, Bernardino Romera-Paredes,
Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen
Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian
Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli,
and Demis Hassabis. Highly accurate protein structure prediction with alphafold. Nature, 596:583
– 589, 2021. URL https://api.semanticscholar.org/CorpusID:235959867.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In North American Chapter of the Associa-
tion for Computational Linguistics, 2019. URL https://api.semanticscholar.org/
CorpusID:52967399.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeff Wu, and Dario Amodei. Scaling laws for neural language models.
ArXiv, abs/2001.08361, 2020. URL https://api.semanticscholar.org/CorpusID:
210861095.

Alan Mishchenko et al. Abc: A system for sequential synthesis and verification. URL http://www.
eecs. berkeley. edu/alanmi/abc, 17, 2007.

Peter Belcak and Roger Wattenhofer. Neural combinatorial logic circuit synthesis from input-
output examples. CoRR, abs/2210.16606, 2022. doi: 10.48550/ARXIV.2210.16606. URL
https://doi.org/10.48550/arXiv.2210.16606.

Matthieu Zimmer, Xuening Feng, Claire Glanois, Zhaohui JIANG, Jianyi Zhang, Paul Weng, Dong
Li, Jianye HAO, and Wulong Liu. Differentiable logic machines. Transactions on Machine
Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?
id=mXfkKtu5JA.

Adam Hillier, Ngân (NV) Vũ, Daniel J. Mankowitz, Daniele Calandriello, Edouard Leurent,
Georges Rotival, Ivan Lobov, Kshiteej Mahajan, Marco Gelmi, and Natasha Antropova. Learn-
ing to design efficient logic circuits, 2023. URL https://cassyni.com/events/
S2LPTWZeMh9TGcLJe5jpqK. NANDA Workshop 2023.

Rajarshi Roy, Jonathan Raiman, Neel Kant, Ilyas Elkin, Robert Kirby, Michael Siu, Stuart Oberman,
Saad Godil, and Bryan Catanzaro. Prefixrl: Optimization of parallel prefix circuits using deep
reinforcement learning. In 2021 58th ACM/IEEE Design Automation Conference (DAC), pages
853–858, 2021. doi: 10.1109/DAC18074.2021.9586094.

Mufei Li, Viraj Shitole, Eli Chien, Changhai Man, Zhaodong Wang, Srinivas, Ying Zhang, Tushar
Krishna, and Pan Li. LayerDAG: A layerwise autoregressive diffusion model of directed acyclic
graphs for system. In Machine Learning for Computer Architecture and Systems 2024, 2024. URL
https://openreview.net/forum?id=IsarrieeQA.

Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. The epfl combinational
benchmark suite. In Proceedings of the 24th International Workshop on Logic & Synthesis (IWLS),
number CONF, 2015.

11

https://doi.org/10.1038/nature16961
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://api.semanticscholar.org/CorpusID:235959867
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:210861095
https://api.semanticscholar.org/CorpusID:210861095
https://doi.org/10.48550/arXiv.2210.16606
https://openreview.net/forum?id=mXfkKtu5JA
https://openreview.net/forum?id=mXfkKtu5JA
https://cassyni.com/events/S2LPTWZeMh9TGcLJe5jpqK
https://cassyni.com/events/S2LPTWZeMh9TGcLJe5jpqK
https://openreview.net/forum?id=IsarrieeQA

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Maurice Karnaugh. The map method for synthesis of combinational logic circuits. Transactions
of the American Institute of Electrical Engineers, Part I: Communication and Electronics, 72:
593–599, 1953. URL https://api.semanticscholar.org/CorpusID:51636736.

W. V. Quine. The problem of simplifying truth functions. The American Mathematical Monthly, 59
(8):521–531, 1952. ISSN 00029890, 19300972. URL http://www.jstor.org/stable/
2308219.

W. V. Quine. A way to simplify truth functions. The American Mathematical Monthly, 62(9):627–631,
1955. ISSN 00029890, 19300972. URL http://www.jstor.org/stable/2307285.

E. J. McCluskey Jr. Minimization of boolean functions. Bell System Technical
Journal, 35(6):1417–1444, 1956. doi: https://doi.org/10.1002/j.1538-7305.1956.tb03835.
x. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.
1956.tb03835.x.

R.L. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued minimization for pla optimization.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 6(5):727–750,
1987. doi: 10.1109/TCAD.1987.1270318.

Alan Mishchenko, Robert Brayton, Stephen Jang, and Victor Kravets. Delay optimization using sop
balancing. In 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 375–382, 2011. doi: 10.1109/ICCAD.2011.6105357.

John A. Darringer, William H. Joyner, C. Leonard Berman, and Louise Trevillyan. Logic synthesis
through local transformations. IBM Journal of Research and Development, 25(4):272–280, 1981.
doi: 10.1147/rd.254.0272.

Heinz Riener, Eleonora Testa, Winston Haaswijk, Alan Mishchenko, Luca Amarù, Giovanni De
Micheli, and Mathias Soeken. Scalable generic logic synthesis: One approach to rule them all. In
2019 56th ACM/IEEE Design Automation Conference (DAC), pages 1–6, 2019.

Antoine Grosnit, Cedric Malherbe, Rasul Tutunov, Xingchen Wan, Jun Wang, and Haitham Bou
Ammar. Boils: Bayesian optimisation for logic synthesis. In 2022 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 1193–1196. IEEE, 2022.

Chang Feng, Wenlong Lyu, Zhitang Chen, Junjie Ye, Min jie Yuan, and Jianye Hao. Batch sequential
black-box optimization with embedding alignment cells for logic synthesis. 2022 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), pages 1–9, 2022. URL https:
//api.semanticscholar.org/CorpusID:254927570.

Abdelrahman Hosny, Soheil Hashemi, Mohamed Shalan, and Sherief Reda. DRiLLS: Deep Reinforce-
ment Learning for Logic Synthesis. 2020 25th Asia and South Pacific Design Automation Confer-
ence (ASP-DAC), pages 581–586, September 2020. doi: 10.1109/ASP-DAC47756.2020.9045559.

Guanglei Zhou and Jason H. Anderson. Area-driven fpga logic synthesis using reinforcement learning.
In 2023 28th Asia and South Pacific Design Automation Conference (ASP-DAC), pages 159–165,
2023.

Yu Qian, Xuegong Zhou, Hao Zhou, and Lingli Wang. An efficient reinforcement learning based
framework for exploring logic synthesis. ACM Trans. Des. Autom. Electron. Syst., 29(2), jan 2024.
ISSN 1084-4309. doi: 10.1145/3632174. URL https://doi.org/10.1145/3632174.

Winston Haaswijk, Edo Collins, Benoit Seguin, Mathias Soeken, Frédéric Kaplan, Sabine Süsstrunk,
and Giovanni De Micheli. Deep learning for logic optimization algorithms. In 2018 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 1–4, 2018. doi: 10.1109/ISCAS.
2018.8351885.

Yasasvi V. Peruvemba, Shubham Rai, Kapil Ahuja, and Akash Kumar. Rl-guided runtime-constrained
heuristic exploration for logic synthesis. In 2021 IEEE/ACM International Conference On Com-
puter Aided Design (ICCAD), page 1–9. IEEE Press, 2021. doi: 10.1109/ICCAD51958.2021.
9643530. URL https://doi.org/10.1109/ICCAD51958.2021.9643530.

12

https://api.semanticscholar.org/CorpusID:51636736
http://www.jstor.org/stable/2308219
http://www.jstor.org/stable/2308219
http://www.jstor.org/stable/2307285
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1956.tb03835.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1956.tb03835.x
https://api.semanticscholar.org/CorpusID:254927570
https://api.semanticscholar.org/CorpusID:254927570
https://doi.org/10.1145/3632174
https://doi.org/10.1109/ICCAD51958.2021.9643530

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Keren Zhu, Mingjie Liu, Hao Chen, Zheng Zhao, and David Z. Pan. Exploring logic optimizations
with reinforcement learning and graph convolutional network. In 2020 ACM/IEEE 2nd Workshop
on Machine Learning for CAD (MLCAD), pages 145–150, 2020. doi: 10.1145/3380446.3430622.

Animesh Basak Chowdhury, Benjamin Tan, Ryan Carey, Tushit Jain, Ramesh Karri, and Siddharth
Garg. Bulls-eye: Active few-shot learning guided logic synthesis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 42(8):2580–2590, 2023. doi: 10.1109/TCAD.
2022.3226668.

Cunxi Yu, Houping Xiao, and Giovanni De Micheli. Developing synthesis flows without human
knowledge. In Proceedings of the 55th Annual Design Automation Conference, DAC ’18, New
York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450357005. doi:
10.1145/3195970.3196026. URL https://doi.org/10.1145/3195970.3196026.

Cunxi Yu and Wang Zhou. Decision making in synthesis cross technologies using lstms and transfer
learning. In 2020 ACM/IEEE 2nd Workshop on Machine Learning for CAD (MLCAD), pages
55–60, 2020. doi: 10.1145/3380446.3430638.

Nan Wu, Jiwon Lee, Yuan Xie, and Cong Hao. Lostin: Logic optimization via spatio-temporal
information with hybrid graph models. In 2022 IEEE 33rd International Conference on
Application-specific Systems, Architectures and Processors (ASAP), pages 11–18, 2022. doi:
10.1109/ASAP54787.2022.00013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. PyTorch: an imperative style, high-performance deep learning
library. Curran Associates Inc., Red Hook, NY, USA, 2019.

Albert Bou, Matteo Bettini, Sebastian Dittert, Vikash Kumar, Shagun Sodhani, Xiaomeng Yang,
Gianni De Fabritiis, and Vincent Moens. Torchrl: A data-driven decision-making library for
pytorch, 2023.

Meta Llama team. Introducing meta llama 3: The most capable openly available llm to date. Meta AI
Blog, 2024. URL https://ai.meta.com/blog/meta-llama-3/.

13

https://doi.org/10.1145/3195970.3196026
https://ai.meta.com/blog/meta-llama-3/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A NOTATIONS

Table 3 contains a condensed summary of the notation introduced throughout the paper.

Symbol Meaning
n Number of inputs in the AIG
Ij Input node j in the AIG
O Output node for the AIG
∧i AND-node i for the AIG
T⋆ Target truth table
s State
a Action
T Set of truth tables in the AIG
A Set of actions
N Current number of nodes in the AIG

Nmax Max number of nodes allowed in the AIG
ShortCircuit generates

ϵ Building type of an AND-node with respect
to its two fanins (Table 2)

A Sparse 3-dimensional tensor accumulating
all the target actions

Sk Set of permutations of {1..k}
σ(·) Random row permutation function

Q(s, a) Discovered Q-value for a state s and action a
Q(s, a; θ) Predicted expected Q-value for a state s and

action a
P (s, a; θ) Predicted action probability distribution
N(s, a) Visit count of action a and state s
b, c Parameter balancing exploration and ex-

ploitation in PUCT

Table 3: List of symbols and notations used in the paper.

B ADDITIONAL RELATED WORKS

B.1 HEURISTICS FOR AIG GENERATION AND OPTIMIZATION

As the inference of CNFs using exact SAT solvers often lead to exponentially large expressions,
various heuristics such as Karnaugh maps (Karnaugh, 1953), or Quine-McCluskey methods (Quine,
1952; 1955; McCluskey Jr., 1956)), and algorithms (Rudell and Sangiovanni-Vincentelli, 1987) have
been designed to obtain more compact expressions or circuits. Further efforts accompanying the
rise in chip demand led to the development of widely used logic synthesis libraries that implement
equivalence-preserving Boolean network operators. The open-source library ABC (Mishchenko et al.,
2007)) notably comprises dozens of logic graph operators aiming at reducing a network size or depth
(Mishchenko et al., 2011; Mishchenko and Brayton, 2006). Interestingly, some important operators
such as resub or rewrite (Darringer et al., 1981; Mishchenko et al., 2006) acts on the subject
graph through a series of local modifications involving small single-output AIGs. Besides, applying a
single operator on a logic network is suboptimal compared to applying several operators sequentially,
though finding the best sequence is also a hard problem (Riener et al., 2019).

B.2 MACHINE LEARNING FOR LOGIC SYNTHESIS

Many ML approaches have been explored to tackle the operator flow optimization progress. Some
stateless optimization methods, such as Bayesian optimization (Grosnit et al., 2022; Feng et al., 2022),
search for the best flow without considering the subject graph specificities. Alternatively, state-based
methods formulate the operator sequence optimization as a Reinforcement learning problem, and
train policies on selected features of the logic network. While some works use high-level statistics of

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

the subject graph (e.g., its number of nodes) (Hosny et al., 2020; Zhou and Anderson, 2023; Qian
et al., 2024), others rely on tailored graph convolutional networks (GCN) to extract richer features at
the cost of a longer training time (Haaswijk et al., 2018; Peruvemba et al., 2021; Zhu et al., 2020;
Basak Chowdhury et al., 2023). Similarly, standard deep network architectures, such as CNNs (Yu
et al., 2018), LSTMs (Yu and Zhou, 2020), or GCNs (Wu et al., 2022) have been trained to predict
the quality of a logic synthesis flow in a supervised way. Contrary to these works, we target AIG
generation itself and not operator optimization.

C DATA COLLECTION

C.1 EPFL BENCHMARKS

Tables 4 and 5, contain detailed information about the arithmetic and random control circuits in the
EPFL benchmarks (Amarú et al., 2015), respectively. The circuits have been mapped from behavioral
descriptions into logic gates and are intentionally suboptimal for scientific purposes. Arithmetic
circuits, as their name hints, are combinatorial AIGs representing an arithmetic operation such as
square root, logarithm, etc., while the set of random control circuits consists of controller circuits.

Circuit Name # Inputs # Outputs # AND-nodes Levels
Adder 256 129 1020 255

Barrel Shifter 135 128 3336 12
Divisor 128 128 44762 4470

Hypotenuse 256 128 214335 24801
Log2 32 32 32060 444
Max 512 130 2865 287

Multiplier 128 128 27062 274
Sine 24 25 5416 225

Square-root 128 64 24618 5058
Square 64 128 18484 250

Average: 166 102 37396 3608

Table 4: Arithmetic circuits in the EPFL benchmark suite and their statistics

Circuit Name # Inputs # Outputs # AND-nodes Levels
Round-Robin Arbiter 256 129 11839 87

Alu Control Unit 7 26 174 10
Coding-Cavlc 19 11 693 16

Decoder 8 128 304 3
i2c Controller 147 142 1342 20

Int to Float Converter 11 7 260 16
Memory Controller 1204 1231 46836 114

Priority Encoder 128 8 978 250
Lookahead XY Router 60 30 257 54

Voter 1001 1 13758 70
Average: 284 171 7644 64

Table 5: Random/Control circuits in the EPFL benchmark suite and their statistics

C.2 CUT EXTRACTION

To extract a cut with a target number of inputs n from a circuit and a given node, we set the node as
the root node and initialize the leaf set with the two parents of the root node. To extract a cut from a
given node with a target number of inputs n, we designate the given node as the root and of the cut
and its two parents as the initial leaf set. To extract a cut with n inputs from a circuit at a given node,
we set the node as the root and initialize the leaf set with its two parents. Then, we iteratively remove
a random node from the leaf set and add its parents to the leaf set while maintaining the leaf property.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

This process continues until the leaf set contains n nodes. Finally, we create an AIG from the visited
nodes within the cut, where we mark the leaf set as the inputs and the root node as the output. We
provide the outline of the procedure in Algorithm 1.

Algorithm 1 Cut Extraction
Require: Root node: r, number of cut inputs: n

1: leaf_set = {left_parent(r), right_parent(r)}
2: node_set = {r}
3: while size(leaf_set) < n do
4: node = leaf_set.random_pop()
5: node_set.insert(node)
6: leaf_set.insert(left_parent(node)) & leaf_set.insert(right_parent(node))
7: Ensure leaf property in leaf_set
8: Construct AIG from leaf_set and node_set

We can modify this algorithm to extract additional cuts per node by repeating the process until
we find a cut with n − 1 leaf nodes. For this cut, instead of randomly expanding a leaf node, we
create n − 1 copies of the cut and expand each leaf node individually, storing the resulting cuts.
In practice, we actually employ Algorithm 2 to extract AIGs from the EPFL circuits. Although
Algorithm 1 conveys the core idea of AIG extraction, the following algorithm is more effective from
an engineering standpoint, as it allows for extracting more cuts from the same node.

Algorithm 2 Multi-Cut Extraction
Require: Root node: r, Number of cut inputs: n

1: leaf_set = {left_parent(r), right_parent(r)}
2: node_set = {r}
3: while size(leaf_set) < n− 1 do
4: node = leaf_set.random_pop()
5: Cut_Expansion(node, leaf_set, node_set)
6: for leaf in leaf_set do
7: copy_leaf_set = leaf_set.copy() & copy_node_set = node_set.copy()
8: copy_leaf_set.delete(leaf)
9: Cut_Expansion(leaf, copy_leaf_set, copy_node_set)

10: Construct AIG from copy_leaf_set and copy_node_set

Algorithm 3 Cut Expansion
Require: Node to expand: node, Current leaf nodes: leaf_set, Current nodes in cut: node_set

1: node_set.insert(node)
2: leaf_set.insert(left_parent(node)) & leaf_set.insert(right_parent(node))
3: preserve_leaf_property(leaf_set, node_set)

Algorithm 4 Preserve Leaf Property
Require: Current leaf nodes: leaf_set, Current nodes in cut: node_set

1: for leaf in leaf_set do
2: if left_parent(leaf) in leaf_set then
3: leaf_set.delete(leaf) & node_set.insert(leaf)
4: leaf_set.insert(right_parent(node))
5: else if right_parent(leaf) in leaf_set then
6: leaf_set.delete(leaf) & node_set.insert(leaf)
7: leaf_set.insert(left_parent(node))

The revised algorithm takes two inputs: n, the desired number of input nodes, and the root node. It
initializes the leaf set by adding the parents of the root node. It then iteratively removes a random
node from the leaf set and expands it using Algorithm 3. This process continues until the cut contains

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

n− 1 leaf nodes, at which point we create n− 1 copies of the current cut state and expand each leaf
node to generate n unique cuts. For brevity, we omitted the details of ensuring the leaf property after
node expansion in the main text, which is addressed in Algorithm 4. This algorithm ensures that no
node in the leaf set has a parent also in this set, which would violate the leaf property. If a parent is
already in the leaf set, we can remove the node from the set and add the other parent that is not yet in
the leaf set.

D ADDITIONAL METHODOLOGY DETAILS

ShortCircuit Generation Example The visual representation of the model is depicted in Fig. 2,
and the edge type indices are shown in Table 2. In the beginning, the graph contains only the input
nodes, as shown below. The input for the model will be all the truth tables. Specifically, that includes
the truth tables of the inputs T1, T2, T3 and the target truth table T⋆.

I1 I2 I3

T⋆

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

1
1
1
1
0
0
0
1

Inputs:

Output:

ShortCircuit produces action logits, where taking the arg max results into the action (1, 1, 2). The
indices of the action that we have to generate the AND node ∧4 by connecting (I1, I2). Given that
we know the truth tables of the parents of ∧4, we can calculate its truth table. Since the truth table of
∧4 does not match T⋆ or ¬T⋆, we need to continue the generation. The model will receive again as
input all the current truth tables, which now includes the one associated with ∧4.

I1 I2 I3

∧4

T⋆

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

1
1
1
1
0
0
0
1

0
0
0
1
0
0
0
1

Inputs:

Output:

This time, the proposed action from ShortCircuit is (3, 3, 4) which generates the new AND gate ∧5

by connecting (I3,¬∧4). The new truth table associated with ∧5 matches with ¬T⋆. Meaning we do
not need to generate any more nodes.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

I1 I2 I3

∧4

∧5

T⋆

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

1
1
1
1
0
0
0
1

0
0
0
1
0
0
0
1

0
0
0
0
1
1
1
0

Inputs:

Output:

Thus, the last step is to connect ∧5 with a negated edge to the output and finish the generation.

I1 I2 I3

∧4

∧5

T⋆

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

1
1
1
1
0
0
0
1

0
0
0
1
0
0
0
1

0
0
0
0
1
1
1
0

Inputs:

Output:

Scalability & Multiple-Outputs The architecture of ShortCircuit can technically support any size
of truth tables. The input truth table size is fixed but user-defined and can be set to any 2n size where
n is the number of variables. The model down-projects these truth tables to a fixed embedding size
in continuous space, which improves computational efficiency. In our current implementation, we
project truth tables with 256 bits to float embeddings of size 256.

Our model architecture also supports multiple output nodes. Users can include several target truth
tables as input to ShortCircuit, with the model injecting the relevant positional embeddings for each.
A simpler alternative approach for handling multiple outputs is sequential generation: first generate
an AIG for the initial target truth table, then replace it with the second target table and continue
generation. This process can be repeated until all target truth tables are satisfied.

AlphaZero AlphaZero has demonstrated remarkable success in board games with enormous
state spaces, such as chess (1044) and Go (10170). Since truth tables features similar state space
problem, we adapt AlphaZero’s effective search and pruning capabilities to navigate AIG generation.
By combining a policy module to propose actions and a value module to evaluate state viability,
AlphaZero strikes a balance between exploitation and exploration. We adapt and modify the selection
strategy, predictor upper confidence bound applied to trees (PUCT) used by AlphaZero, as follows:

PUCT(s, a) = Q(s, a) + b Q(s, a; θ) + c P (s, a; θ)

√∑
a N(s, a)

N(s, a) + 1

where, Q(s, a) represents the propagated discounted discovered reward, while Q(s, a; θ) represents
the predicted expected Q-value, P (s, a; θ) is the policy module’s probability distribution, N(s, a)
tracks state visitations, and b and c are parameters balancing exploration and exploitation. Computing
Q(st, a; θ) for every action is too expensive, so we initialize Q(st, a) = Q(st, a; θ) = 0, perform
the action that maximizes PUCT(st, a), and only compute the value of the state Q(st+1) once we
visit it. The term Q(s, a) + bQ(s, a; θ) represents the exploitation in PUCT, as if during search
our method discovers a "good" state or a terminal state, we exploit it and focus the search locally
to discover more compact designs. The term P (s, a; θ) suggests actions to perform, but the term√∑

a N(s,a)/(N(s,a)+1) promotes exploration.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

AlphaZero stores intermediate results and metadata, such as Q(s, a), Q(s, a; θ), P (s, a; θ), and
N(s, a), in the nodes visited during MCTS. These nodes are associated with states and form a tree,
where edges indicate the actions performed to reach each node-state pair. When simulation starts,
we mark the initial state as the root node, compute the action distribution, and inject Dirichlet noise.
During simulation, AlphaZero follows PUCT to choose actions and continues until meeting one of the
three following stopping conditions: encountering a state s that is not expanded, reaching a maximum
number of steps, or arriving at a terminal state. If the state is not expanded, we need to compute
Q(s; θ) and P (s, a; θ) for that state and we back-propagate Q(s; θ) to the previous MCTS nodes, and
increment N(s, a). Once we complete the given number of simulations, AlphaZero applies the most
visited action, argmaxa∈A N(s, a). In our case, we rather follow the observed discounted reward
argmaxa∈A Q(s, a) as we find the visitation count signal too noisy given our simulation budget.

E TRAINING PARAMETERS AND IMPLEMENTATION

Implementation Details We implement ShortCircuit with PyTorch (Paszke et al., 2019) and
TorchRL (Bou et al., 2023). Our model architecture is as depicted on Fig. 2 and uses transformer
blocks following Llama 3 (Meta Llama team, 2024) structure. The input truth tables have a size of 256
since they are dependent on 8-inputs and are projected into embeddings of size 256 in the continue
space. The input embedding size for our transformer decoder layers is 256 since they receive those
hidden states as input. We use are H = 4 and P = S = 3 transformer blocks for the different parts
with 16 heads and an intermediate embedding size of 4096, summing to 51.6 million parameters.

Model Details During pre-training, We use a cosine annealing with warm restarts learning rate
scheduler with a starting learning rate of 1× 10−3 and a batch size of 1024 for 250 epochs. From
the extracted data, we extract 500 truth tables for testing, the remaining data is split into 90% for
training, 10% for validation. The entire dataset contains about 1.8 million (AIG, truth table) pairs.
During training we apply a random permutation to the rows of the truth tables with probability and a
negation transform to the target with probability 50%. We pre-train ShortCircuit with a batch size of
1024 for 250 epochs, and finetune the model until it converges. Finally, to speed-up pre-training, we
use a distributed dataloader yielding batches of sequences of same length to avoid applying padding
and consequently unnecessary computations. During fine-tuning we use a batch size of 128, a replay
buffer with capacity of 1M and sync the parameters every 500 training steps.

Baseline Details The specific sequence of commands we use in ABC to generate AIGs from truth
tables in ABC are

• ABC:
read_truth -x [truth table]; collapse; sop; strash; write
[outfile].

• ABC+resyn2:
read_truth -x [truth table]; collapse; sop; strash; resyn2;
write [outfile].

Specifically, resyn2 consists of the following commands b; rw; rf; b; rw; rwz; b;
rfz; rwz; b.

19

	Introduction
	Background
	AND-Inverter Graphs
	Truth Tables
	Related works

	Problem Definition
	State Representation & Notations

	Model Architecture
	Training ShortCircuit
	Pre-Training
	Fine-Tuning

	Experimental Evaluation
	Experimental Setup
	Baselines
	Generation Quality & Runtime Experiments
	Impact of Number of Simulations

	Conclusion
	Notations
	Additional Related Works
	Heuristics for AIG Generation and Optimization
	Machine Learning for Logic Synthesis

	Data collection
	EPFL benchmarks
	Cut extraction

	Additional Methodology Details
	Training Parameters and Implementation

