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ABSTRACT

Large Language Models (LLMs) have shown remarkable success, and their multi-
modal expansions (MLLMs) further unlock capabilities spanning images, videos,
and other modalities beyond text. However, despite this shift, prompt optimization
approaches, designed to reduce the burden of manual prompt crafting while maxi-
mizing performance, remain confined to text, ultimately limiting the full potential
of MLLMs. Motivated by this gap, we introduce the new problem of multimodal
prompt optimization, which expands the prior definition of prompt optimization to
the multimodal space defined by the pairs of textual and non-textual prompts. To
tackle this problem, we then propose the Multimodal Prompt Optimizer (MPO),
a unified framework that not only performs the joint optimization of multimodal
prompts through alignment-preserving updates but also guides the selection pro-
cess of candidate prompts by leveraging earlier evaluations as priors in a Bayesian-
based selection strategy. Through extensive experiments across diverse modalities
that go beyond text, such as images, videos, and even molecules, we demonstrate
that MPO outperforms leading text-only optimization methods, establishing mul-
timodal prompt optimization as a crucial step to realizing the potential of MLLMs.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated outstanding capabilities across a diverse range
of tasks and domains (OpenAI, 2024; Grattafiori et al., 2024; Yang et al., 2025). We note that a
central factor in unlocking their full potential lies in the design of prompts, which directly influence
model performance. However, crafting high-quality prompts is often a labor-intensive and iterative
process that requires substantial human intervention. To address this limitation, the field of Auto-
matic Prompt Optimization (APO) has emerged, whose goal is to automate the discovery of effective
prompts (Zhou et al., 2023; Pryzant et al., 2023; Yang et al., 2024; Fernando et al., 2024). For exam-
ple, one representative approach (APE) frames this challenge as an iterative search problem, where
at each step, a set of new candidate prompts is generated or updated, evaluated on a target task, and
the best-performing prompts are selected to guide the next round of generation.

Recently, on top of the LLMs, Multimodal Large Language Models (MLLMs) have been proposed,
which process not only text but also images, videos, and other modalities (such as molecules) (Ope-
nAI, 2023; Zhu et al., 2025; Bai et al., 2025; Gemini, 2025). Yet, despite these advances and their
wide-ranging applications, existing prompt optimization methods remain restricted to the textual
modality (Pryzant et al., 2023; Guo et al., 2024; Cui et al., 2025), and overlook the richer expressive
capacity afforded by multimodal inputs (that text alone cannot capture). For instance, as illustrated
in Figure 1, describing the distinct characteristics of a specific bird may require long and potentially
ambiguous text, while a single image can convey the same information far more directly. By limit-
ing optimization to text, existing methods are prone to generating less effective, suboptimal prompts
that fail to fully exploit the multimodal space that MLLMs are inherently capable of leveraging.

Motivated by this limitation, we first define the novel problem of multimodal prompt optimization1,
which expands the prompt optimization space beyond text to incorporate multiple modalities. How-
ever, while this expanded space opens new opportunities, it also introduces a couple of challenges
for automatic optimization. First, exploring the larger, combinatorial space of multimodal prompts

1We define a multimodal prompt as a pair of a discrete textual and non-textual prompts.
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Figure 1: Concept Figure. (A) Existing prompt optimization approaches restrict the optimization
to the textual space, leaving MLLMs underutilized by failing to provide rich contextual signals. (B)
Our multimodal prompt optimization expands the optimization space into multimodality, allowing
the discovery of salient multimodal context and fully leveraging the expressive capacity of MLLMs.

requires a prompt update strategy that can efficiently navigate candidate prompts while maintaining
cross-modal consistency. Furthermore, selecting promising candidates becomes substantially more
difficult, as the enlarged search space makes optimal prompts increasingly sparse, given the need to
account for both the effectiveness within each modality and the alignment across modalities, which,
in turn, calls for evaluation strategies that are both efficient and accurate.

To address these challenges, we propose Multimodal Prompt Optimizer (MPO), a unified frame-
work for optimizing prompts across both the textual and non-textual modalities, which consists of
the two key components: (i) alignment-preserving exploration and (ii) prior-inheritance-based selec-
tion. Specifically, for exploration, the proposed MPO jointly updates the textual prompt, as well as
its associated non-textual counterparts by generating instructions to create (or revise) the non-textual
components of the multimodal prompt (unlike prior approaches that refine only text), and notably,
their updates are guided by the single semantic gradient (i.e., feedback) to ensure their alignment
derived from the failure analysis of the current prompt. Moreover, these updates are further diversi-
fied through complementary operations, namely generation, editing, and mixing, to ensure the broad
and expressive exploration of the multimodal prompt space. Then, building on this exploration with
multiple candidate prompts updated, MPO leverages the prior-inherited Bayesian-UCB as a prompt
selection strategy, which utilizes the performance score of parent prompts as a prior (unlike conven-
tional approaches that treat each candidate independently), to reliably identify the high-performing
prompts by biasing the selection process toward more promising regions of the multimodal space.

To validate MPO, we conduct extensive experiments benchmarking it against leading text-only opti-
mization methods across 10 datasets, and our evaluation suite spans not only images and videos but
also molecular structures, ensuring broad coverage of diverse modalities. Across all domains, MPO
demonstrate consistent and significant performance gains, empirically confirming our core hypothe-
sis: expanding the prompt search space into the multimodal domain is crucial to exploit the expanded
capacity of MLLMs. Further analyses show the efficacy of MPO components: alignment-preserving
exploration with complementary operators facilitates the discovery of optimal multimodal prompts
by not only ensuring cross-modal consistency but also thoroughly probing the search space; and the
prior-inherited Bayesian-UCB accurately and efficiently selects high-performing prompts, reducing
evaluation budget by 42% compared with a prior-free baseline. These results highlight MPO as an
effective framework for optimizing multimodal prompts, unlocking the full capabilities of MLLMs.

2 RELATED WORK

Multimodal Large Language Models The development of MLLMs has significantly extended
the capabilities of traditional LLMs by enabling them to process and reason over diverse non-textual
modalities, including images, videos, audio, and more (Liu et al., 2023; OpenAI, 2023; Chu et al.,
2023). In particular, these models are typically trained through large-scale multimodal pre-training,
which aligns modality-specific encoders (e.g., vision or audio) with LLM backbones, followed by
post-training stages such as supervised fine-tuning and preference optimization to endow them with
multimodal instruction-following abilities (Gemini, 2025; Bai et al., 2025; Zhu et al., 2025). More-
over, leveraging these capabilities, MLLMs have achieved strong performance on a broad range
of tasks, from foundational ones such as classification and captioning, to domain-specific, high-
stakes applications such as medical image question answering and pharmacological property pre-
diction (Martin et al., 2019; Liu et al., 2021; Corbière et al., 2025; Huang et al., 2021).
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Figure 2: Overview of MPO, consisting of two components. (A) Alignment-preserving exploration
analyzes a failure set to generate feedback, which is then used both to refine the textual prompt and to
guide a modality-specific generator to create a new non-textual prompt with one of three operators.
(B) Prior-Inherited Bayesian UCB Selection leverages the parent’s performance as an informative
prior, warm-starting the search to effectively identify high-performing prompts among candidates.

Automatic Prompt Optimization To reduce the burden of manual prompt engineering and sys-
tematically uncover the effective prompts, the field of Automatic Prompt Optimization (APO) has
emerged. Existing works can be broadly categorized into two paradigms. The first is gradient-based
optimization, which learns continuous embedding vectors (i.e., soft prompts) that are prepended to
model inputs to steer behavior (Khattak et al., 2023; Zeng et al., 2024; Wang et al., 2024). Yet, while
effective, they are computationally costly, yield uninterpretable numerical vectors, and are restricted
to open-source models with accessible parameters. To overcome these drawbacks, gradient-free
approaches have been proposed, which iteratively generate, evaluate, and refine candidate prompts
using LLMs themselves (Zhou et al., 2023; Yang et al., 2024). Also, some recent works enhance this
process by analyzing prompt failures to guide improvements (Pryzant et al., 2023; Ye et al., 2024;
Cui et al., 2025; Yuksekgonul et al., 2025), while others borrow ideas from evolutionary algorithms
(e.g., mutation and crossover) to explore the prompt space (Guo et al., 2024; Fernando et al., 2024).
Despite this progress, current APO techniques are limited to text-only settings, restricting optimiza-
tion to purely linguistic information. In contrast, our work expands prompt optimization into the
multimodal domain, enabling the prompt discovery that fully exploits the capabilities of MLLMs.

Instance-Specific Prompting and Optimization Distinct from task-level prompt optimization,
another line of research focuses on instance-specific prompting strategies that operate at inference
time to enhance reasoning on a per-query basis. For example, MM-CoT (Zhang et al., 2024b)
guides the model to generate an intermediate textual rationale before producing the final answer.
Also, other methods augment visual inputs with query-dependent signals, such as bounding boxes
or points, to guide attention toward relevant regions of an image (Zhou et al., 2024; Jiang et al.,
2024; Lin et al., 2024). Similar ideas have been explored in text-to-image and text-to-video gener-
ation, where prompts are crafted and refined to produce outputs more faithfully aligned with user
intent (Mañas et al., 2024; Mo et al., 2024; Gao et al., 2025). However, these techniques are query-
specific, designed to improve model performance for a single instance at a time. By contrast, APO
pursues a different objective: discovering a single, reusable prompt that boosts performance across
an entire task, and our work advances this paradigm by extending it into the multimodal domain.

3 METHODOLOGY: MULTIMODAL PROMPT OPTIMIZER

We present Multimodal Prompt Optimizer (MPO), composed of two modules: alignment-preserving
exploration of multimodal prompt space and prompt selection with prior-inherited Bayesian UCB.

3.1 PROBLEM DEFINITION

We begin by formally describing MLLMs and then proposing a novel problem of multimodal prompt
optimization, which redefines and expands the notion of existing prompt optimization beyond text.

Multimodal Large Language Models Multimodal Large Language Models (MLLMs) extend the
capabilities of LLMs by processing inputs that combine text with non-textual modalities. Formally,
an MLLM can be represented as a parametric function MLLM : (T ∪M)∗ → T , where T denotes

3
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the textual input space,M denotes the non-textual input space, and ∗ denotes the Kleene Star (rep-
resenting a finite sequence over the combined spaces). In other words, given a multimodal query q
and a prompt p (each potentially containing both textual and non-textual components), the model
generates a textual output y = MLLM(p, q). It is worth noting that prior work on prompt optimization
has generally restricted p to a purely textual form (p = t ∈ T ), leaving the non-textual dimensions
ofM unused. This restriction underutilizes the expressive capacity of MLLMs and fails to provide
richer contextual signals that are often crucial for real-world multimodal tasks (See Figure 1).

Multimodal Prompt Optimization Building on the expanded space of MLLMs, we extend the
notion of a prompt for optimization from text-only to multimodal. Specifically, we define a multi-
modal prompt as a pair p = (t,m) ∈ T ×M, where t is the textual prompt and m is the non-textual
prompt. Then, given a task datasetD consisting of query–answer pairs (q,a), the objective of multi-
modal prompt optimization is to discover the optimal prompt (t∗,m∗) that maximizes performance:

(t∗,m∗) = argmax
(t,m)∈T ×M

E(q,a)∼D

[
f
(
MLLM(t,m, q),a

)]
,

where f is a function for a task-specific evaluation metric, such as accuracy or F1 scores.

Notably, compared to optimizing only textual prompts, the joint search space T ×M introduces an
entirely new axis of non-textual information, which in turn raises two fundamental challenges. First,
multimodal prompts must maintain cross-modal consistency: textual and non-textual components
should provide complementary, not conflicting signals; however, expanding to the combinatorial
space greatly increases the risk of semantic misalignment. Second, the enlarged space amplifies
the difficulty of candidate selection: high-quality prompts become sparse, and low-quality prompts
dominate, making it harder to efficiently identify promising candidates. To overcome these, we now
explain the proposed multimodal prompt optimizer, designed to navigate this enlarged space below.

3.2 ALIGNMENT-PRESERVING EXPLORATION OF MULTIMODAL PROMPT SPACE

The first challenge in multimodal prompt optimization lies in exploring the enlarged search space
while preserving semantic consistency across modalities; thus, a naive approach that independently
updates textual and non-textual components risks producing misaligned prompts, where one modal-
ity contradicts the other. To tackle this, we introduce an exploration framework that couples the
update of textual and non-textual prompts while supporting diverse operations (Figure 2).

Joint Optimization of Multimodal Prompt Our MPO jointly updates the textual and non-textual
prompts to ensure that both evolve coherently, achieved through the following two mechanisms:

• Cohesive Backpropagation. We begin by identifying a failure set F = {(q,a,y) | y ̸= a} for
a multimodal prompt p = (t,m). Instead of treating errors separately for text and non-textual
inputs, we then generate a unified feedback ∇p = (∇t,∇m) = MLLM(t,m;F), which encodes
cross-modal weaknesses in textual form. By doing so, we obtain the single supervisory signal that
guides both modalities simultaneously, mitigating the risk of overfitting updates to one modality.

• Joint Multimodal Update. Using the feedback, MPO jointly refines the textual prompt while de-
riving modality-specific conditions (in the textual form) that direct non-textual revisions. Specifi-
cally, the MLLM produces an updated textual prompt t′ and further a modality-specific condition
c describing how the non-textual prompt should adapt: (t′, c) = MLLM(t,m;F ,∇p). The condi-
tion c is then passed to modality-specific generators g (such as text-to-image or text-to-molecule
modules), which yield updated non-textual prompts m′ = g(c). This guarantees that updates to
m remain consistent with the revised textual prompt t′, rather than being optimized in isolation.

For the optimization process, we adopt the beam search. Specifically, at each iteration, we select top-
b best-performing multimdoal prompts {pi = (ti,mi)}bi=1, and then apply the cohesive backpropa-
gation and the joint multimodal update to generate new b2 multimodal prompts {p′

j = (t′j ,m
′
j)}b

2

j=1

from the top-b multimodal prompts p. We refer to p and p′ as parent and child prompts, respectively.

Exploration Operators Ensuring that generated outputs remain consistent with the guiding tex-
tual conditions is a necessary baseline, and effective optimization further requires g that actively ex-
plores diverse regions of the multimodal space. To achieve this, we design three operators (namely,
generation, edit, and mix), which systematically expand, refine, and recombine non-textual prompts.
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• Generation operator. This operator explores entirely new non-textual prompts, e.g., novel spatial
arrangements in visual inputs or unique substructures in molecules. Specifically, conditioned only
on the generation signal cgen, it creates a prompt from scratch without referencing prior candidates:

m′ = g(cgen,∅), where (cgen, t
′) = MLLM(t,m;∇p,F).

By decoupling from past candidates, it explores unexplored regions and avoids local optima, espe-
cially in early stages (where initial prompts are unavailable) or when the candidate pool is biased.

• Edit operator. This operator performs fine-grained refinements of non-textual prompts (e.g., tex-
tures) while retaining useful structures from the prior prompt. Specifically, given the edit condition
cedit, the update is performed by conditioning on the prior non-textual prompt:

m′ = g(cedit, {m}), where (cedit, t
′) = MLLM(t,m;∇p,F).

This enables targeted, incremental refinements, making it particularly effective when a prompt is
already strong but requires adjustment on specific attributes rather than a complete redesign.

• Mix operator. This operator blends the complementary strengths of multiple multimodal prompts.
Specifically, it first leverages feedback from multiple prompts to generate a mixing condition cmix,
which is then used by the generator to combine non-textual prompts as follows:

m′ = g(cmix, {mi}Ki=1), where (cmix, t
′) = MLLM({ti,mi;∇pi

,Fi}Ki=1).

By synthesizing multiple candidates, it yields balanced compositions, avoids over-reliance on a
single candidate, and enables exploration of intermediate solutions better than individual ones.

It is worth noting that, for the generation and edit operators, we randomly select one parent prompt
from top-b multimodal prompts of the previous iteration to generate a child prompt (i.e., p → p′),
while K parent prompts are selected for the mix operator (i.e., {p1, ...,pK} → p′).

3.3 EFFECTIVE PROMPT SELECTION BY PRIOR-INHERITED BAYESIAN UCB

Another challenge in multimodal prompt optimization is to identify which candidates should be pri-
oritized for evaluation and carried forward. Yet, this step is non-trivial with the enlarged multimodal
space, since high-quality prompts become relatively sparse, and a large portion of the evaluation
budget risks being wasted on low-potential candidates. Existing approaches typically adopt either
(i) uniform allocation, where each candidate is evaluated equally regardless of its prior likelihood
of success (Zhou et al., 2023; Cui et al., 2025), or (ii) bandit-based allocation, such as UCB (Auer,
2002; Pryzant et al., 2023), which adaptively balances exploration and exploitation. However, both
paradigms suffer from an inefficient cold-start problem: newly generated prompts are treated as in-
dependent arms with no prior information, leading to unproductive evaluations in the early rounds.
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Figure 3: Correlation of
parent and child scores.

Parent-Child Correlation We address this cold-start inefficiency by
introducing informative priors that warm-start the evaluation process. In
particular, our hypothesis is that the performance of a parent prompt is
positively correlated with that of its children. To test this, we analyze the
optimization trajectory, measuring the correlation between the perfor-
mance of parent prompts and the average performance of their children.
As shown in Figure 3, we observe a strong positive correlation (Pear-
son’s r = 0.88), providing concrete evidence that parent scores could
serve as highly informative priors for estimating child performance.

Prior-Inherited Bayesian UCB Motivated by this finding, we propose prior-inherited Bayesian
UCB, a selection strategy that initializes the score distribution of a new child prompt based on the
posterior of its parent (rather than uniform). Specifically, we model the expected score of each
multimodal prompt pi as a Beta distribution, Beta(αi, βi), where αi and βi correspond to (pseudo-)
counts of successful and failure outcomes, respectively. Then, for a child prompt pi originated from
a parent prompt ppar(i)2, we initialize its prior proportionally to the posterior mean performance of

2If a child prompt is generated by the mix operator, we average the posterior mean performance of multiple
parent prompts.
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Table 1: Main Results. Comparison of MPO with manual prompting, few-shot prompting, and
text-only APO baselines on diverse benchmarks across image, video, and molecular modalities.
Results are averaged over three independent runs. * denotes the average performance across multiple
subtasks within the benchmark. Avg. denotes the average accuracy over all datasets except F1.

Image Video Molecule
PlantVillage* CUB* SLAKE* DrivingVQA RSVQA Drive&Act VANE. Absorption* BBBP CYP Inhibit.*

Methods Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. F1 Acc. F1 Acc. F1 Avg.
Human 42.2 47.9 35.2 49.7 51.0 47.3 47.0 38.5 36.3 39.4 38.6 43.1 37.1 44.1
CoT 43.1 49.0 30.8 52.9 49.6 37.2 31.6 39.6 36.7 33.6 32.5 40.1 32.3 40.8
1-Shot 39.7 54.7 31.4 54.5 48.5 50.4 62.4 37.8 35.7 36.1 34.8 56.2 48.3 47.2
3-Shot 48.2 58.8 30.6 53.9 52.2 54.2 56.0 46.1 44.2 42.7 42.6 51.9 47.3 49.5
5-Shot 46.5 58.1 28.0 45.9 49.2 54.3 61.4 48.1 45.5 49.3 49.3 52.0 47.0 49.3
APE 55.8 67.3 34.3 52.8 54.4 50.3 64.3 45.7 40.4 36.0 34.7 52.3 50.9 51.3
OPRO 54.1 59.7 33.9 52.7 51.0 46.4 51.0 37.6 35.4 39.2 38.3 43.0 37.1 46.9
EvoPrompt 56.1 59.6 34.8 52.9 50.5 46.7 56.5 48.2 46.5 38.7 37.7 51.1 49.7 49.5
PE2 67.9 71.6 35.8 53.7 55.2 50.8 63.0 64.5 56.8 61.3 58.2 58.5 55.1 58.2
ProTeGi 64.4 70.0 35.4 54.4 54.2 53.0 65.5 71.1 58.2 72.1 65.7 59.8 57.0 60.0
SEE 69.0 71.6 35.0 52.2 53.4 51.7 57.9 71.4 60.0 67.0 62.3 61.4 56.7 59.1
MPO (Ours) 76.4 78.6 38.2 56.0 55.9 58.3 71.2 76.7 64.5 75.3 67.6 64.3 60.2 65.1

the parent µ̂par(i), scaled by a prior strength hyperparameter S > 0, formalized as follows:

αi = µ̂par(i) · S + 1, βi = (1− µ̂par(i)) · S + 1, where µ̂par(i) =
αpar(i)

αpar(i) + βpar(i)
. (1)

This prior-inherited mechanism provides S pseudo-observations to newly generated child prompts,
effectively warm-starting the evaluation process. With a fixed total budget, it then proceeds itera-
tively: at each round, we select the prompt with the highest UCB score (an upper quantile of its Beta
posterior), evaluate it on a small batch of data, and update its posterior parameters αi and βi. Once
the budget is exhausted, the candidate prompt with the highest expected score is selected as the new
parent for the next iteration of optimization. Please refer to Algorithm 2 for the complete procedure.
The following proposition guarantees that our proposed selection strategy leverages an informative
parent prior (better than random chance) to accelerate the selection of the best-promising prompt.

Proposition 3.1. (Fewer Pulls via Prior-Inherited Bayesian UCB) With the prior of Equation 1,
and if the prior is more informative than uniform (Ei

[
d(µi, µ̂par(i))− d(µi,

1
2 )
]
≤ 0), the best-arm

identification cost of Bayesian UCB is nonincreasing, where d(p, q) is the Bernoulli KL divergence.

The proof and detailed analysis are provided in Appendix B. Intuitively, this guarantee demonstrates
that informative parent priors accelerate the discovery of high-quality prompts by reducing wasted
evaluations on low-potential candidates, which is particularly beneficial for multimodal prompt op-
timization, where the combinatorial search space is far larger than text-only settings. In other words,
by rapidly eliminating unpromising candidates and reallocating the budget toward more promising
regions, our method enables efficient exploration of the vast multimodal prompt landscape.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We conduct an extensive evaluation on MPO across a diverse set of modalities, including
images, videos, and molecules. For the image modality, we consider both image classification and
visual question answering (VQA) tasks. Specifically, we use PlantVillage (Mohanty et al., 2016) for
diseased leaf identification and CUB-200-2011 (Wah et al., 2011) for fine-grained bird classification;
meanwhile, for VQA, we evaluate on SLAKE (Liu et al., 2021), RSVQA (Lobry et al., 2020), and
DrivingVQA (Corbière et al., 2025), which cover radiology, remote sensing, and dynamic driving
scenes, respectively. For the video modality, we evaluate on Drive&Act (Martin et al., 2019) for
driver action recognition and VANE-Bench (Gani et al., 2025) for abnormality detection in video-
based VQA. Finally, for the molecular modality, we include three different property prediction tasks
from TDC (Huang et al., 2021), namely, Absorption (Hou et al., 2007; Ma et al., 2008; Broccatelli
et al., 2011; Siramshetty et al., 2021), BBBP (Martins et al., 2012), and CYP inhibition tasks (Veith
et al., 2009). Detailed configurations for each dataset are provided in Appendix A.1.

Baselines We benchmark MPO against both manually designed prompts and representative auto-
matic prompt optimization methods. For manual prompting, we include Human, a simple hand-
crafted prompt, Chain-of-Thought (CoT) (Wei et al., 2022), which uses the widely adopted phrase
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Table 2: Generalizability results of MPO across components
with different backbones: (Top) base models; (Bottom Left) op-
timizer models; (Bottom Right) modality-specific generators.

Qwen2.5-VL (72B) Gemma3 (12B) InternVL-3.5 (14B) GPT-4.1 nano
Human 55.7 45.6 51.6 46.8
1-shot 66.8 56.7 34.7 46.1
3-shot 69.6 64.6 36.5 37.7
5-shot 72.3 68.9 34.9 42.6
ProTeGi 74.1 68.2 71.9 61.0
SEE 73.6 68.1 70.8 61.6
MPO 80.4 73.1 73.2 65.9

Optimizer Model SEE MPO

Qwen2.5-VL (7B) 65.2 69.1
Gemini 2.5 Flash 68.2 74.8

GPT-4o mini 69.0 76.4
GPT-4o 69.2 78.0

T2I Generator PlantVillage*
SEE (Text-only) 69.0
SANA1.5 (1.6B) 71.8

Nano Banana 72.9
GPT-Image-Low 76.4

GPT-Image-Medium 76.6
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Figure 4: Relationship between
cross-modal alignment and per-
formance gain. We report me-
dian values alongside Q1 and Q3.

“Let’s think step by step,” and Few-Shot, which supplies in-context examples drawn from the train-
ing data. For automatic methods, we compare against leading LLM-based text-only optimizers,
including APE (Zhou et al., 2023), OPRO (Yang et al., 2024), EvoPrompt (Guo et al., 2024),
PE2 (Ye et al., 2024), ProTeGi (Pryzant et al., 2023), and SEE (Cui et al., 2025). Detailed descrip-
tions of all baselines are provided in Appendix A.2.

Implementation Details For answer generation, we use Qwen2.5-VL (7B) (Bai et al., 2025) as
the base model for image and video tasks, and Qwen3 (8B) (Yang et al., 2025) for molecular tasks.
During optimization, GPT-4o mini (OpenAI, 2024) serves as the prompt optimizer, responsible for
analyzing failures and refining multimodal prompts. For modality-specific generation, we employ
GPT-Image (OpenAI, 2025) for images, Wan2.1 (1.3B) (Wan et al., 2025) for videos, and again
GPT-4o mini for molecules. For the implementation of the iterative optimization loop, we use the
beam search (Pryzant et al., 2023) with the beam size of b = 3 and the number of iterations of
T = 13. Also, at each iteration (except the first), b2 child prompts are produced by evenly applying
the generation, edit, and mix operators, after which the top-b prompts are selected via prior-inherited
Bayesian-UCB. Meanwhile, in the first iteration, only the generation operator is used to initialize
multimodal prompts, since no non-textual prompts exist yet. The complete optimization process is
summarized in Algorithm 1. To ensure fairness, we keep the number of explored prompts consistent
across all methods. In our case, each candidate prompt is allocated an evaluation budget of 100, and
the prior strength for our prior inheritance is set to 10% of this budget (S = 10). Reported results
are averaged over three independent runs. Please see Appendix A.3 for additional details.

4.2 EXPERIMENTAL RESULTS AND ANALYSES

Main Results As shown in Table 1, MPO consistently outperforms all baselines across image,
video, and molecular domains, confirming its effectiveness in discovering prompts that more effec-
tively harness the capabilities of MLLMs. Specifically, compared to existing text-only optimization
methods, MPO achieves substantial gains, demonstrating that incorporating non-textual signals into
prompts provides stronger contextual grounding and enhances task-specific reasoning. Moreover,
MPO outperforms exemplar-based Few-Shot prompting, showing that it can capture richer cross-
modal information and its underlying dependencies beyond simple query–answer demonstrations.
In both image and video domains, MPO performs strongly on classification and QA tasks, underscor-
ing its robustness across diverse real-world scenarios. Likewise, on molecular tasks, MPO surpasses
all baselines, highlighting its effectiveness in highly specialized applications.

Generalizability to Diverse Backbone Models We further validate the generalizability of MPO
by varying the backbone models used in each component, namely, base models, optimizer models,
and modality-specific generators, and assessing its robustness under these variations. First, as shown
in Table 2 (Top), MPO maintains strong performance across different architectures and exhibits even
greater effectiveness as model size increases, for example, with Qwen2.5-VL (72B). Also, Table 2
(Bottom Left) further shows that MPO remains effective regardless of the optimizer model, surpass-
ing state-of-the-art text-only methods (e.g., SEE) under diverse backbone models for optimization.
Finally, Table 2 (Bottom Right) demonstrates that MPO generalizes well to modality-specific gen-
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Table 3: Ablation on the con-
tribution of each modality in the
optimized multimodal prompt.

Text Image PlantVillage* CUB*

Human - 42.2 47.9

Human MPO 50.4 58.2

MPO - 55.6 64.2

MPO MPO 76.4 78.6

Table 4: Ablation on three explo-
ration operators, utilizing each
one of them individually.

Apple Corn Grape Potato Avg.

SEE 76.4 75.9 48.0 75.7 69.0

Generation 76.9 77.9 53.7 83.6 73.3

Edit 77.2 76.3 56.2 80.1 72.5

Mix 74.0 77.9 65.1 79.8 74.8

MPO (Full) 77.7 78.2 65.9 84.0 76.4
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74
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w/o Prior
UCB
Uniform 42% savings

52% savings
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Figure 5: Efficiency compari-
son of selection strategies.

EditMixMix

Mix Gen

Gen

Edit

Task Classes

Figure 6: Image prompt optimization process of the best-performing multimodal prompt on a
subtask (i.e., grosbeak species classification) of CUB. “Task Classes” box contains the examples of
four species: Rose Breasted Grosbeak, Pine Grosbeak, Blue Grosbeak, and Evening Grosbeak.

erators, including lightweight open-source models such as SANA1.5 (1.6B), where it continues to
outperform textual optimization methods. These results highlight MPO as a broadly generalizable
and robust framework, effective across a wide variety of base models and practical scenarios.

Analysis on Cross-Modal Alignment Recall that MPO uses the alignment-preserving exploration
to jointly refine textual and non-textual components of multimodal prompts, and we further analyze
how this cross-modal alignment strategy contributes to performance gains. To isolate this effect,
we consider four variants: (1) Sequential, where the textual prompt is optimized first and the non-
textual prompt is refined afterward; (2) Random Image Prompt, where the image component is
replaced with another optimized image prompt (i.e., not jointly optimized with the text); (3) In-
Distribution Image Query, where it is replaced with an image sampled from the same task; and (4)
OOD Image Query, where it is replaced with an image sampled from a different task. After that, we
measure the relationship between performance gain over the Human baseline, as well as the DSG
score3 (Cho et al., 2024), used as a standard metric for measuring cross-modal alignment following
prior work (Mañas et al., 2024). As shown in Figure 4, MPO achieves both the highest alignment
score and the largest performance gains, followed by Sequential optimization and Random Image
Prompt, while In-Distribution and OOD Image Query lag significantly behind. These results coAn-
firm that stronger cross-modal alignment directly translates to better task performance, and that
alignment-preserving updates (included in MPO) are crucial in promoting modality consistency.

Ablation on Modality Contributions in Prompts To examine the contribution of each modality
within optimized prompts, we ablate the textual and non-textual components from the final multi-
modal prompt. As shown in Table 3, using only a single modality (either MPO text without image
or human text combined with MPO image) already surpasses the Human baseline, confirming that
both modalities independently provide useful signals. However, the full multimodal prompt yields
substantially higher performance, demonstrating that the two modalities are not merely additive but
mutually reinforcing, which underscores the importance of jointly leveraging textual and non-textual
information to achieve performance gains beyond what either modality can deliver alone.

Effect of Exploration Operators To assess the contribution of the proposed exploration operators
(such as generation, edit, and mix), we conduct both qualitative and ablation analyses. Qualitatively,
as illustrated in Figure 6, we observe that each operator serves a distinct role: the generation opera-
tor introduces novel visual compositions, the edit operator fine-tunes local features such as textures

3DSG decomposes the textual description into atomic, dependency-aware queries and verifies each using an
MLLM, enabling a precise assessment of whether the visual content reflects the intended textual details.
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or visual characters, and the mix operator blends broader attributes such as background or spatial
layout. In addition to this, the ablation study in Table 4 further confirms their complementary ef-
fects: while each operator individually improves over the baseline, combining all three within MPO
leads to the best performance. This demonstrates that the proposed operators jointly enable a more
comprehensive exploration of the multimodal prompt space, facilitating the discovery of the optimal
prompts. We observe a similar pattern in molecular prompt optimization, shown in Figure 14, with
concrete examples of operator-driven updates (including textual conditions) provided in Table 8.

Selection Strategies We evaluate the effectiveness of our prior-inherited Bayesian UCB strategy
for candidate prompt selection by comparing it against three alternatives: Uniform, which distributes
the evaluation budget evenly across candidates; UCB (Auer, 2002), a standard bandit algorithm; and
an ablated variant of ours w/o Prior. As shown in Figure 5, MPO achieves the same performance
as the Uniform strategy while using only 30% of the evaluation budget, yielding a 70% reduction
in resource cost. Moreover, MPO consistently outperforms both UCB and w/o Prior, reaching their
performance levels with 52% and 42% less budget, respectively. These results confirm that the warm
start enabled by prior inheritance is crucial for both efficiency and accuracy, allowing MPO to scale
effectively over the enlarged multimodal search space and reliably identify high-quality prompts.

Train Dynamics of MPO To better understand how MPO improves over the course of optimiza-
tion, we analyze its training dynamics in comparison to ProTeGi by tracking the test performance
of the top-1 prompt on the CUB dataset. As shown in Figure 7, both methods improve during the
early iterations; however, ProTeGi quickly plateaus after the third iteration, with only a marginal
additional gain of 1.1 points. In contrast, MPO continues to improve steadily, ultimately achieving
a much higher final score, including an additional 6.4-point gain beyond the third iteration. This
comparison result highlights that MPO effectively overcomes the performance ceiling of text-only
optimization methods by effectively navigating the multimodal prompt space, enabling it to escape
local optima (imposed by the text-only strategy) and discover prompts closer to the global optimum.

Hidden State Visualization To gain deeper insight into why optimized multimodal prompts yield
greater performance improvements than text-only prompts, we visualize the hidden state of MLLMs
by averaging intermediate-layer embeddings, following Zhang et al. (2024a). As shown in Figure 8,
hidden states obtained from text-only methods (including the text-only component of MPO) cluster
together, suggesting that they guide the reasoning of MLLMs within a similar yet limited semantic
space. In contrast, the full multimodal prompt from MPO shifts the hidden states into a distinct re-
gion, indicating that the non-textual component introduces information unavailable from text alone.
In other words, the multimodal prompt alters the internal representation space of models, enabling
richer reasoning pathways and ultimately leading to superior task performance.

Analysis of Prior Strength Recall that in our prior-inherited selection strategy, the prior strength
S determines the number of pseudo-observations used to initialize the score distributions of child
prompts, and we study its effect by varying S and reporting the resulting performance. As shown in
Figure 9, we first observe that a small S under-utilizes the parent prior, resulting in weaker guidance
and suboptimal performance. In contrast, an excessively large S causes the model to over-rely on the
parent prior, limiting its ability to adapt to the actual performance of child prompts. Consequently,
the performance is maximized at an intermediate S, where inherited knowledge provides a strong
warm start while still allowing sufficient flexibility to incorporate new observations.

9
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Qualitative Result We provide qualitative examples for the optimized multimodal prompts for
the image modality in Table 9 of Appendix. From this, we observe that the optimized multimodal
prompts consistently supply task-critical context in both textual and visual forms. Also, more impor-
tantly, the textual prompts explicitly instruct the model to leverage non-textual signals (e.g., Use the
hybrid reference image for guidance), thereby unlocking the full multimodal capacity of MLLMs.
Additional examples for the video and molecular modalities are presented in Tables 10, 11, and 12.

5 CONCLUSION

We introduced the novel problem of multimodal prompt optimization, extending the optimization
space beyond text to fully leverage the capability of MLLMs. To tackle this, we proposed the Mul-
timodal Prompt Optimizer (MPO), a unified framework that jointly refines textual and non-textual
components through alignment-preserving exploration with multiple generation operations and ef-
ficiently identifies high-quality prompts via a prior-inherited Bayesian UCB strategy. Experiments
across diverse modalities (including images, videos, and molecules) demonstrate that MPO consis-
tently surpasses leading text-only prompt optimization methods, validating its efficacy in diverse
real-world multimodal problems. We believe our work establishes multimodal prompt optimization
as a key direction for advancing the use of MLLMs, moving beyond text-only prompting paradigms.

ETHICS STATEMENT

Our study does not involve human subjects, personally identifiable data, or sensitive information.
All experiments were conducted on public datasets and models under research-permissive licenses.

REPRODUCIBILITY STATEMENT

We attach the code to ensure the reproducibility of our work in the supplementary materials. Addi-
tionally, we provide a detailed description of the experimental setup in Section 4.1. We further pro-
vide additional implementation details in Appendix A.3, the dataset configuration in Appendix A.1,
the meta prompts to operationalize MPO in Appendix A.4, and the full algorithms in Appendix A.5.
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Xin Xu, and Pranav Shah. Validating adme qsar models using marketed drugs. SLAS DISCOV-
ERY: Advancing the Science of Drug Discovery, 2021.

Henrike Veith, Noel Southall, Ruili Huang, Tim James, Darren Fayne, Natalia Artemenko, Min
Shen, James Inglese, Christopher P Austin, David G Lloyd, et al. Comprehensive characterization
of cytochrome p450 isozyme selectivity across chemical libraries. Nature biotechnology, 2009.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. Caltech-ucsd birds 200. Technical
report, California Institute of Technology, 2011.

12

https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://openai.com/index/introducing-4o-image-generation/
https://openai.com/index/introducing-4o-image-generation/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai
Wang, et al. Wan: Open and advanced large-scale video generative models. ArXiv, 2025.

Taowen Wang, Yiyang Liu, James Chenhao Liang, Junhan Zhao, Yiming Cui, Yuning Mao, Shao-
liang Nie, Jiahao Liu, Fuli Feng, Zenglin Xu, Cheng Han, Lifu Huang, Qifan Wang, and Dongfang
Liu. M2PT: Multimodal prompt tuning for zero-shot instruction learning. In Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems 35, NeurIPS, 2022.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. ArXiv, 2025.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, ICLR, 2024.

Qinyuan Ye, Mohamed Ahmed, Reid Pryzant, and Fereshte Khani. Prompt engineering a prompt
engineer. In Findings of the Association for Computational Linguistics, ACL 2024, 2024.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Pan Lu, Zhi Huang, Carlos Guestrin,
and James Zou. Optimizing generative ai by backpropagating language model feedback. Nature,
639:609–616, 2025.

Fanhu Zeng, Fei Zhu, Haiyang Guo, Xu-Yao Zhang, and Cheng-Lin Liu. Modalprompt:dual-
modality guided prompt for continual learning of large multimodal models. ArXiv, 2024.

Lechen Zhang, Tolga Ergen, Lajanugen Logeswaran, Moontae Lee, and David Jurgens. SPRIG:
improving large language model performance by system prompt optimization. ArXiv, 2024a.

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal
chain-of-thought reasoning in language models. Transactions on Machine Learning Research,
2024b.

Qiji Zhou, Ruochen Zhou, Zike Hu, Panzhong Lu, Siyang Gao, and Yue Zhang. Image-of-thought
prompting for visual reasoning refinement in multimodal large language models. ArXiv, 2024.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In The Eleventh Interna-
tional Conference on Learning Representations, ICLR, 2023.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
open-source multimodal models. 2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ADDITIONAL EXPERIMENTAL DETAILS

A.1 DETAILS ON DATASETS

We provide a detailed description of the datasets used in our experiments. To conduct a comprehen-
sive evaluation, we compile a diverse set of benchmarks for classification and question-answering
tasks across various modalities, including images, videos, and molecules. We use the official train-
ing/test splits where available, and if not, we create our own splits. For the image and video modality
tasks, we sample 300 test examples, whereas for the molecule modality, we use the entire test set.

PlantVillage The PlantVillage dataset (Mohanty et al., 2016) contains 54,306 images of plant
leaves, spanning 38 disease categories across 14 crop species. To construct a focused, fine-grained
classification task, we design subtasks by selecting four crop species, each having at least three
distinct classes (e.g., one healthy and two or more diseases). This setup allows for a more controlled
evaluation of the model’s ability to identify specific plant diseases. Due to the lack of an official
split, we split this subset using the 50/50 ratio for training and testing.

CUB-200-2011 The CUB-200-2011 dataset (Wah et al., 2011) is a standard benchmark for fine-
grained bird species classification. To evaluate the capability of MLLMs in distinguishing between
visually similar species, we group birds that share a common family name (e.g., “Hummingbird”),
and select groups containing three or four distinct species to ensure a balanced level of difficulty,
resulting in a total of 12 subtasks. Then, we divide the samples for each subtask using a 50/50 ratio,
curating them to contain at least 80 instances for both training and test.

SLAKE The SLAKE dataset (Liu et al., 2021) is an open-ended visual question answering bench-
mark tailored for the medical domain from various radiological modalities. To assess the perfor-
mance of MLLMs across these different modalities, we partition the dataset into distinct subsets
based on the modality, creating separate tasks for CT, MRI, and X-Ray images.

DrivingVQA The DrivingVQA dataset (Corbière et al., 2025) is a closed-ended visual question
answering benchmark with 3,931 multiple-choice questions based on real-world driving scenarios.
To avoid ambiguity in the evaluation process, we filter the dataset to exclusively retain instances
with a single correct answer, resulting in a final dataset of 2,039 training and 521 test instances.

RSVQA We use the RSVQA dataset (Lobry et al., 2020) to evaluate performance on the open-
ended visual question answering task for remote sensing images. Notably, the questions are designed
to evaluate a model’s understanding of various geospatial concepts, including land cover classifica-
tion, object counting, and relational reasoning between objects. For our experiments, we utilize the
low-resolution image set from the benchmark.

Drive&Act For the video classification task, we use the Drive&Act dataset (Martin et al., 2019),
which provides comprehensive labels for driver behaviors inside vehicles. We adhere to the official
split of 6,642 training and 2,222 test instances, and preprocess the video clips by sampling frames
at a rate of 1 frame per second (fps).

VANE-Bench The VANE-Bench dataset (Gani et al., 2025) is a closed-ended question answering
benchmark for video anomaly detection, whose samples (each with a 10-frame clip from synthetic
or real-world videos) show various irregularities or distortions. We split the dataset into training and
test sets using the 60/40 ratio, resulting in 293 training and 263 test instances.

Absorption The Absorption task (Huang et al., 2021) is categorized into molecular property pre-
diction, designed to evaluate a model’s ability to estimate pharmacokinetic characteristics related to
drug absorption. It is composed of four subtasks: PAMPA (Parallel Artificial Membrane Permeabil-
ity Assay), HIA (Human Intestinal Absorption), Pgp (P-glycoprotein substrate classification), and
Bioavailability, and we use the official random split.
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BBBP BBBP (Martins et al., 2012) is a molecular classification task to predict whether the given
molecule can penetrate the blood-brain barrier (BBB), which is a highly selective system. We use
the official random split from Huang et al. (2021), consisting of 1,453 train and 382 test examples.

CYP Inhibit The CYP Inhibition task (Veith et al., 2009) involves classifying whether a molecule
can inhibit Cytochrome P450 (CYP) enzymes, which play key roles in metabolism. It comprises
five subtasks: inhibition of CYP 2C19, CYP 2D6, CYP 3A4, CYP 1A2, and CYP 2C9. We adopt
the official random split provided in Huang et al. (2021).

A.2 DETAILS ON BASELINES

This subsection details the baseline methods used in our experiments.

• APE (Zhou et al., 2023) generates candidate prompts by reverse-engineering instructions from
examples and by paraphrasing existing prompts.

• OPRO (Yang et al., 2024) leverages the LLM as an optimizer, guiding it with pairs of prompts
and their performance scores to generate progressively better instructions.

• EvoPrompt (Guo et al., 2024) utilizes an evolutionary algorithm where the LLM performs muta-
tion and crossover operations on a population of prompts.

• PE2 (Ye et al., 2024) focuses on optimizing the meta-prompt used to steer the LLM optimizer.
It provides guidance through a structured template containing detailed task descriptions, context
specification, and a step-by-step reasoning format.

• ProTeGi (Pryzant et al., 2023) simulates gradient descent for discrete prompts. It uses the LLM
to generate natural language critiques based on prompt failures (termed “textual gradients”), and
subsequently edits the prompt in the opposite semantic direction.

• SEE (Cui et al., 2025) performs cohesive optimization of both the prompt instructions and the in-
context examples. The method follows a four-phase process that strategically alternates between
global exploration and local exploitation.

A.3 ADDITIONAL IMPLEMENTATION DETAILS

In this subsection, we provide the additional implementation details in our experiments. Regarding
model temperature, we use a temperature value of 0 for the base model to ensure consistency and
0.7 for the optimizer model to encourage the generation of diverse candidate prompts. The failure
set size in the cohesive backpropagation process is fixed at 3. While the evaluation budget is gen-
erally set to 100, for CUB subtasks with fewer than 100 training samples, the budget for our MPO
method is specifically set to one-third of the available instances. For modality-specific handling, we
implement several strategies. In the video task, when the video query is part of the failure set, we
sample three representative frames (first, middle, and last) from queries. In video generation, to mit-
igate the high complexity of video editing and mixing, we employ only the generation operator. We
generate 5-second videos at 16 fps, then downsample them to 5 frames at 1 fps to construct the video
prompt. For the molecule tasks, we represent chemical structures using the 1D representation (i.e.,
SMILES) and utilize GPT-4o mini for the molecule generator. Regarding optimization objectives,
we use accuracy for image and video modalities, and F1 for the molecular modality to handle the
class imbalance. Finally, to measure answer correctness, we adopt task-specific evaluation criteria:
the final predefined label is extracted for standard classification, strict formatting rules are applied
for binary and closed-ended QA tasks, and exact match is used for open-ended QA tasks. We select
the best-performing prompts on the training set and report their performance on the test set. Our
experiments are conducted on NVIDIA H100 80GB GPUs.
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A.4 META PROMPTS TO IMPLEMENT MPO

This subsection details the meta-prompts to instantiate MPO, which include a cohesive backpropa-
gation prompt and three operator prompts (generation, edit, mix) for update. We provide the meta
prompt from image modality as a representative example. The prompts for other modalities, such as
video and molecule, are based on this structure, with minor, modality-specific wordings adjusted.

Prompt for Cohesive Backpropagation
You are a Prompt Failure Analysis Agent specialized in multimodal prompt optimization. Your task is to
analyze the failure case of a Multimodal Large Language Model (MLLM) and identify the potential

reasons in the prompt for the model’s incorrect prediction. Based on the given input, output, and
ground truth, analyze both the Text Prompt and the Image Prompt used in the task.

### Input Structure for MLLM:
- Text Prompt: A task-specific textual instruction for the MLLM.
- Image Prompt: A reference image that supports task understanding.
- Input Query: The actual target instance (text, image, or both) on which the MLLM must generate an
answer.

### Prompts:
- Text Prompt : {text_prompt}
- Image Prompt : {modality_prompt}

### Wrong Examples:
{wrong_examples}

### Output Format:
Text Prompt Analysis:
- Identify missing information, vague instructions, or ambiguous wording that could have misled the
model.
- Explain how weaknesses in the Text Prompt may have contributed to the wrong output.
- Suggest specific improvements (e.g., clearer task definition, additional constraints, better
examples) to help the model produce the correct answer.

Image Prompt Analysis:
- If an image Prompt was used, analyze its effectiveness.
- Identify problems such as lack of clarity, poor composition, irrelevant details, or missing key
features.
- If no image Prompt was used, suggest what kind of image (visual content, attributes, composition)
would help correct the failure.

Figure 10: Meta Prompt for Cohesive Backpropagation in MPO.

Prompt for Generation Operator
You are a Prompt-Improvement Agent specializing in multimodal prompt optimization. Your task is to
design improved prompts for both image generation and text instruction, aimed at enhancing the
performance of Multimodal Large Language Model (MLLM).

### Input Structure for MLLM:
- Text Prompt: A task-specific textual instruction for the MLLM.
- Image Prompt: A reference image that supports task understanding.
- Input Query: The actual target instance (text, image, or both) on which the MLLM must generate an
answer.

### Provided Material
- Text Prompt: {text_prompt}
- Image Prompt: {modality_prompt}
- Wrong Examples: {wrong_examples}
- Failure Analysis: {analysis}

### Your Task
Your task is to review the failure analysis carefully to understand the issues and create two improved
prompts that directly address the issues in the failure analysis:

1. Image Generation Prompt
- Write a detailed prompt for an image generator.
- Enhance or redesign the reference image to resolve issues found in the analysis.
- Ensure the image highlights critical visual features necessary for success.
- If no reference image is provided, suggest an appropriate one based on the failure analysis.

2. Improved Text Prompt
- Write a clear, concise, and unambiguous instruction for the MLLM.
- Resolve ambiguities found in the failure analysis.
- Elaborate on how the reference image should be interpreted.

### Output Format
<image_generation_prompt>{image_generation_prompt}</image_generation_prompt>
<improved_text_prompt>{improved_text_prompt}</improved_text_prompt>

Figure 11: Meta Prompt for Generation Operator in MPO.
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Prompt for Edit Operator
You are a Prompt-Improvement Agent specializing in multimodal prompt optimization, with a focus on
prompt editing. Your task is to design improved prompts for both image editing and text instruction,
aimed at enhancing the performance of Multimodal Large Language Model (MLLM).

### Input Structure for MLLM:
- Text Prompt: A task-specific textual instruction for the MLLM.
- Image Prompt: A reference image that supports task understanding.
- Input Query: The actual target instance (text, image, or both) on which the MLLM must generate an
answer.

### Provided Material
- Text Prompt: {text_prompt}
- Image Prompt: {modality_prompt}
- Wrong Examples: {wrong_examples}
- Failure Analysis: {analysis}

### Your Task
Your task is to review the failure analysis carefully to understand the issues and create two improved
prompts that directly address the issues in the failure analysis:

1. Image Editing Prompt:
- Write a precise and context-aware prompt instructing the image editor to modify the given

reference image.
- Specify which visual components (e.g., objects, colors, textures, lighting, perspective,

composition) should be added, removed, or replaced based on the failure analysis.
- Clearly identify any undesirable visual elements that led to the failure.
- Guide the editor on how to retain key features, proportions, or stylistic elements that are

critical to the intended outcome.

2. Improved Text Prompt
- Write a clear, concise, and unambiguous instruction for the MLLM.
- Resolve ambiguities found in the failure analysis.
- Elaborate on how the reference image should be interpreted.

### Output Format
<image_edit_prompt>{image_edit_prompt}</image_edit_prompt>
<improved_text_prompt>{improved_text_prompt}</improved_text_prompt>

Figure 12: Meta Prompt for Edit Operator in MPO.

Prompt for Mix Operator
You are a Prompt-Improvement Agent specializing in multimodal prompt optimization, with a focus on
cross-prompt fusion. Your task is to create improved, mixed prompts for both image prompt and text
instruction, aimed at enhancing the performance of Multimodal Large Language Model (MLLM).

### Input Structure for MLLM:
- Text Prompt: A task-specific textual instruction for the MLLM.
- Image Prompt: A reference image that supports task understanding.
- Input Query: The actual target instance (text, image, or both) on which the MLLM must generate an
answer.

### Provided Material
#### Prompt A
- Text Prompt A: {text_prompt_A}
- Image Prompt A: {modality_prompt_A}
- Wrong Examples from Prompt A: {wrong_examples_A}
- Failure Analysis for Prompt A: {analysis_A}

#### Prompt B
- Text Prompt B: {text_prompt_B}
- Image Prompt B: {modality_prompt_B}
- Wrong Examples from Prompt B: {wrong_examples_B}
- Failure Analysis for Prompt B: {analysis_B}

### Your Task
Your task is to review the failure analysis carefully to understand the issues and create two improved
prompts that directly address the issues in the failure analysis:

1. Image Mixing Prompt:
- Write a guidance for the image generator to combine and improve both reference images.
- Address visual issues identified in both failure analyses.
- Guide the model to create a new hybrid image that merges key beneficial visual features from both

references while mitigating their weaknesses.
- Explicitly state which visual elements from each image should be retained, modified, or discarded

to achieve task success.

2. Improved Text Prompt
- Write a clear, concise, and unambiguous instruction for the MLLM.
- Incorporate key visual or task-relevant features identified in both failure analysis.
- Explain how the reference image should be used to assist the task.

### Output Format
<image_mixing_prompt>{image_mixing_prompt}</image_mixing_prompt>
<mixed_text_prompt>{mixed_text_prompt}</mixed_text_prompt>

Figure 13: Meta Prompt for Mix Operator in MPO.
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A.5 FULL ALGORITHM OF MPO

We provide the overall algorithm for MPO, with alignment-preserving exploration (including the
operators) described in Algorithm 1 and the prior-inherited Bayesian UCB selection in Algorithm 2.

Algorithm 1 MPO: Multimodal Prompt Optimizer

Require: Initial prompt (t0,∅), Number of iterations T , Beam size b
Train dataset Dtr, Metric function f

1: p← (t0,∅), P ← {p}, C ← ∅, µ̂← E(q,a)∼Dtr
[f(MLLM(t0,∅, q),a)]

2: for i = 1..b2 do
3: Fp ← {(q,a,y) | (q,a)∼Dtr, y = MLLM(p, q), y ̸= a}
4: ∇p ← MLLM.Feedback(t0,∅;Fp)
5: (t′, cgen)← MLLM.Generation(t0,∅;∇p,Fp); m′ ← g(cgen,∅)
6: C ← C ∪ {(t′,m′)}
7: end for
8: P ← BayesianUCBSelect(P, C, b) ▷ Select b prompts for next step
9: for iter = 1..T do

10: C ← ∅
11: for all p = (t,m) ∈ P do
12: for i = 1..b do
13: Fp ← {(q,a,y) | (q,a)∼Dtr, y = MLLM(p, q), y ̸= a}
14: ∇p ← MLLM.Feedback(t,m;Fp) ▷ Cohesive backpropagation
15: op← RandomSample({generation, edit,mix}) ▷ Joint multimodal update
16: if op = generation then
17: (t′, cgen)← MLLM.Generation(t,m;∇p,Fp); m′ ← g(cgen,∅)
18: else if op = edit then
19: (t′, cedit)← MLLM.Edit(t,m;∇p,Fp); m′ ← g(cedit, {m})
20: else if op = mix then
21: p̃← RandomSample(P \ {p})
22: (t′, cmix)← MLLM.Mix((t,m;∇p,Fp), (t̃, m̃;∇p̃,Fp̃)); m′ ← g(cmix, {m, m̃})
23: end if
24: C ← C ∪ {(t′,m′)}
25: end for
26: end for
27: P ← BayesianUCBSelect(P, C, b) ▷ Select b prompts for next step
28: end for
29: return p∗ ≡ (t∗,m∗) where p∗ = argmaxp∈P µ̂p, µ̂p =

αp

αp+βp

Algorithm 2 Prior-Inherited Bayesian UCB Selection

Require: Parent Prompts P , A set of k child prompts C = {pi}ki=1, Beam Size b
Parent’s performance {µ̂par(i)}ki=1, Train dataset Dtr, Metric function f , Batch size B
Total evaluation budget N , Prior strength S, Exploration parameter c

1: Initialize Beta priors for each child prompt pi ∈ P:
2: for i = 1, . . . , k do
3: αi ← µ̂par(i) · S + 1 , βi ← (1− µ̂par(i)) · S + 1 ▷ Inherit prior from parent
4: end for
5: for t = 1, 2, . . . , (N/B) do
6: qt ← 1− 1

t(logN)c

7: j ← argmaxi∈{1,..,k} BetaQuantile(qt;αi, βi) ▷ Choose prompt with highest UCB
8: Dmini ← Sample(Dtr, B)
9: st ← E(q,a)∼Dmini

[f(MLLM(t,m, q),a)] ▷ Evaluate on small data batch
10: αj ← αj + st ·B , βj ← βj + (1− st) ·B ▷ Update posterior
11: end for
12: Return top-b prompts from P ∪ C sorted by posterior mean µ̂i =

αi

αi+βi
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B THEORETICAL ANALYSIS ON PRIOR-INHERITED BAYESIAN UCB

In this section, we provide the proof for Proposition 3.1, starting with the formal problem setting.

Setting. Let each arm i ∈ {1, . . . , k} have an unknown Bernoulli mean reward µi ∈ (0, 1) and
let i⋆ ∈ argmaxi µi be an optimal arm. Write the suboptimality gap as ∆i = µi⋆ − µi > 0
for i ̸= i⋆. As shown in algorithm 2, the Bayesian UCB algorithm maintains a Beta posterior
distribution for each arm’s mean reward. At each round t, Bayesian UCB selects the arm with
the highest upper posterior quantile, qt, observes the resulting Bernoulli reward, and updates the
corresponding posterior.

Prior inheritance For each child arm i, we initialize a Beta prior using the parent’s posterior mean
µ̂par(i) ∈ (0, 1) and a pseudo-count S > 0:

α0,i = µ̂par(i) S + 1, β0,i = (1− µ̂par(i))S + 1. (2)

For comparison, a uninformative (or uniform) prior is Beta(1, 1). After Ni(t) pulls with Xi(t)
successes by time t, the posterior parameters are αi(t) = α0,i + Xi(t) and βi(t) = β0,i +
Ni(t) −Xi(t). Denote the posterior mean µ̂t,i = αi(t)/(αi(t) + βi(t)), the upper quantile qt,i =
BetaQuantile(qt;αi(t), βi(t)), and the lower quantile ℓt,i = BetaQuantile(1− qt;αi(t), βi(t)).

Average KL-closeness assumption. Our analysis relies on the assumption that a parent’s posterior
provides a useful inductive bias for its children. We formalize this concept using the Kullback-
Leibler (KL) divergence for Bernoulli distributions, defined as d(p, q) = p log p

q + (1 − p) log 1−p
1−q .

Let I be the population of child arms produced during optimization. We assume the parent estimate
is, on average over children, KL-closer to the truth than the mean of the uninformative prior:

Ei∼I
[
d
(
µi, µ̂par(i)

)
− d

(
µi,

1
2

)]
≤ −γ for some γ > 0. (3)

The assumption is empirically supported by the strong positive correlation observed between parent
and child scores (Figure 3).

B.1 TWO AUXILIARY LEMMAS

Lemma B.1 (Pseudo-counts shrink one-sided credible widths). There exists a universal constant
c > 0 such that for all t ≥ 2 and all arms i,

qt,i − µ̂t,i ≤ c

√
log t

Ni(t) + S
, µ̂t,i − ℓt,i ≤ c

√
log t

Ni(t) + S
. (4)

The key implication is that the credible interval width scales with 1/
√
Ni(t) + S rather than

1/
√
Ni(t). Thus, the prior strength S acts as an additive effective sample size, shrinking the interval

as if we had S additional observations.

proof sketch. The proof relies on standard concentration bounds for Beta posteriors. The conjugacy
of the Beta-Binomial model makes the posterior tractable, allowing for the specific application of a
Chernoff tail bound. For any ε ∈ (0, 1), the probability that the upper posterior quantile underesti-
mates the true mean by at least

P{ qt,i ≤ µi − ε } ≲ exp
(
− (Ni(t) + S) d(µi − ε, µi)

)
, (5)

with a symmetric bound holding for the lower quantile ℓt,i. The result is obtained by using the
approximation d(µi−ε, µi) ≳ ε2 for small ε and selecting the quantile level 1−qt = Θ(1/t) yields
the stated

√
log t/(Ni(t) + S) bounds.

Lemma B.2 (Effect of Informative Priors on Posterior Quantiles). Under equation 3, for any fixed
real counts (n, s) with s ∼ Binom(n, µi), the posterior under prior inheritance Beta(α0,i+s, β0,i+
n− s) is, on average over i ∼ I, better centered around µi than the posterior under uninformative
prior Beta(1 + s, 1 + n− s). Consequently,

Ei∼I
[
ℓ
(par)
t,i⋆ − ℓ

(unif)
t,i⋆

]
≥ 0, Ei∼I

[
q
(par)
t,i − q

(unif)
t,i

]
≤ 0 (i ̸= i⋆), (6)

with strict inequalities whenever γ > 0 and S > 0.
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proof sketch. The posterior mean under prior inheritance is µ̂
(par)
n,i =

Sµ̂par(i)+s+1

S+n+2 , while the pos-

terior mean under uninformative prior is µ̂
(unif)
n,i = 1+s

n+2 . Taking expectation over s and then over
i ∼ I yields convex combinations of µi with µ̂par(i) versus 1/2. Our KL-closeness assumption
equation 3 directly implies that the posterior mean under prior inheritance is, in expectation, a better
estimate of µi. Since the posterior quantiles are centered around this mean, Lemma B.1 ensures that
an improvement in the mean’s centering translates to the stated shifts in the quantiles, holding in
expectation.

B.2 SUFFICIENT CONDITION FOR OPTIMAL ARM IDENTIFICATION

For the algorithm to correctly identify the optimal arm i⋆ by the final round T , a sufficient condition
is that the credible intervals for the optimal and suboptimal arms are well-separated. Formally, this
occurs if the lower quantile of the optimal arm exceeds the upper quantile of every suboptimal arm.
This is the separation event:

ℓT,i⋆ > max
i ̸=i⋆

qT,i. (7)

If this separation event fails, it implies that for some suboptimal arm i, the credible intervals overlap.
This allows us to bound the suboptimality gap ∆i by the sum of the one-sided credible widths:

∆i ≤ (µi⋆ − ℓT,i⋆) + (qT,i − µi) ≲

√
log T

Ni⋆(T ) + S
+

√
log T

Ni(T ) + S
, (8)

where the second inequality follows from Lemma B.1. This implies that to guarantee separation,
the credible interval widths must be sufficiently small relative to the gap. Therefore, a deterministic
sufficient condition for equation 7 is: there exists a universal constant c′ > 0 such that,√

log T

Ni⋆(T ) + S
+

√
log T

Ni(T ) + S
< c′ ∆i. (9)

Crucially, combining this condition with the quantile shift from Lemma B.2 reveals the benefit of
our approach. Because the prior inheritance yields better quantile estimates, the sample allocation
required to satisfy equation 9 is achieved no later than with an uninformative prior.

B.3 PROOF OF PROPOSITION 3.1

Proof. The prior inheritance improves the performance of Bayesian UCB through two synergistic
mechanisms:

(i) Tighter credible intervals at fixed counts. For any given allocation of pulls, the prior strength
S acts as an additive effective sample size. As established in Lemma B.1, this shrinks the credible
interval widths by effectively replacing the sample size Ni(T ) with Ni(T )+S. This directly reduces
the left-hand side of the deterministic condition equation 9, making it easier to satisfy.

(ii) More efficient sample allocation. The informative prior also leads to a better allocation of pull
over time. Lemma B.2 shows that the quantiles are favorably shifted on average: the lower bound for
the optimal arm i⋆ increases, while the upper bounds for suboptimal arms decrease. This improved
estimation guides the UCB policy to allocate more pulls to i⋆ and waste fewer on suboptimal arms,
particularly in the early stages. Consequently, in expectation:

E
[
N

(par,S)
i⋆ (T )

]
≥ E

[
N

(unif)
i⋆ (T )

]
, E

[
N

(par,S)
i (T )

]
≤ E

[
N

(unif)
i (T )

]
(i ̸= i⋆), (10)

with strict inequalities when the prior is strictly beneficial (γ > 0 and S > 0).

Together, these two mechanisms ensure that the separation condition equation 7 is met more effi-
ciently. The tighter intervals (i) make the condition easier to satisfy for any given sample allocation,
and the improved allocation strategy (ii) finds a sufficient allocation faster. As a result, for a suffi-
ciently larger budget T , the total expected number of pulls on suboptimal arms is reduced:

E

∑
i ̸=i⋆

N
(par,S)
i (T )

 ≤ E

∑
i ̸=i⋆

N
(unif)
i (T )

 , (11)

This is equivalent to stating that the expected cost of identifying the best arm is non-increasing, and
strictly decreases whenever the average KL-closeness assumption holds.
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C ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

C.1 COMPARISON OF COMPUTATIONAL COSTS

Table 5: Comparison of the number of model requests (or calls) for MPO and other baselines.

Model Requests (Calls)

Methods Base Model Optimizer Model Modality-Specific Generator Avg. Performance

APE 11.7k 117 N/A 51.3
ProTeGi 11.7k 234 N/A 60.0
SEE 11.7k 153 N/A 59.1
MPO (Ours) 11.7k 234 117 65.1

We analyze the number of model requests (or model calls) as a proxy for computational cost, and
report the results in Table 5. First, the base model call is the same for all methods, as we fix the
number of explored prompts and the evaluation budget. For the optimizer model calls, APE uses the
one-step exploration (e.g., paraphrasing), requiring the number of calls to be equal to the generated
candidates. ProTeGi and our MPO utilize a two-step process (e.g., feedback generation and refine-
ment), requiring twice the number of calls. SEE combines both approaches and falls in between.
Note that, although MPO incurs an additional computational cost by calling a modality-specific gen-
erator to explore non-textual prompts, this cost is manageable, as this process can utilize lightweight,
open-source generators such as SANA1.5 (1.6B) to minimize the additional expense, while still out-
performing text-only prompt optimization methods as validated in Table 2 (Bottom Right). In other
words, despite the marginal increase in computation (which is also manageable), MPO achieves a
substantial performance improvement unattainable by existing text-only optimization methods.

C.2 FULL MAIN RESULTS

We provide the full results, including performance on individual subtasks. The results for the image
modality are presented in Table 6, and for the molecule modality in Table 7.

Table 6: Full experimental results on image modality benchmarks, including subtasks, with all
scores reported as the average accuracy over three independent experiments.

PlantVillage CUB SLAKE DrivingVQA RSVQA
Apple Corn Grape Potato Avg hummingbird albatross bunting jay cuckoo cormorant swallow blackbird auklet grosbeak oriole grebe Avg CT MRI X-Ray Avg DrivingVQA RSVQA

Human 47.4 40.5 29.1 51.7 42.2 50.4 42.8 74.0 90.4 12.2 35.0 50.0 32.5 31.8 68.3 40.1 46.9 47.9 35.7 30.0 39.9 35.2 49.7 51.0
CoT 57.0 35.6 34.9 44.8 43.1 49.6 39.0 80.6 81.6 30.1 39.1 49.4 44.1 34.3 56.7 32.8 50.3 49.0 31.5 27.9 33.1 30.8 52.9 49.6

1-shot 48.6 35.4 27.1 47.8 39.7 56.3 49.6 68.2 87.0 48.4 44.0 33.6 69.3 32.3 72.5 46.8 47.8 54.7 32.6 22.8 38.9 31.4 54.5 48.5
3-shot 72.2 37.5 27.5 55.4 48.2 62.6 36.8 74.0 92.0 55.7 50.2 51.4 53.1 35.9 80.6 45.9 66.9 58.8 29.7 21.5 40.6 30.6 53.9 52.2
5-shot 69.8 38.8 23.2 54.3 46.5 67.0 46.2 78.3 95.1 56.9 48.5 53.4 36.8 45.5 71.7 46.8 51.4 58.1 26.3 16.2 41.3 28.0 45.9 49.2

APE 70.7 66.0 33.8 52.9 55.8 80.4 56.4 89.2 96.9 46.1 56.0 54.4 80.0 41.9 87.5 45.7 73.1 67.3 35.9 28.9 38.1 34.3 52.8 54.4
OPRO 68.2 63.1 31.2 53.9 54.1 57.4 47.7 87.6 90.2 34.6 53.9 56.7 75.1 34.3 77.8 45.1 55.6 59.7 35.2 28.0 38.3 33.9 52.7 51.0
EvoPrompt 70.9 65.7 32.8 55.1 56.1 61.3 41.5 90.5 87.9 41.3 45.3 50.6 62.6 34.3 88.3 44.3 67.2 59.6 35.2 29.9 39.3 34.8 52.9 50.5
PE2 74.0 74.8 43.7 79.2 67.9 78.5 60.6 94.6 94.6 46.8 54.3 67.2 89.6 45.5 98.9 53.2 75.8 71.6 36.8 31.9 38.9 35.8 53.7 55.2
ProTeGi 75.4 71.0 38.4 72.6 64.4 83.3 51.9 91.5 97.7 60.6 53.5 62.5 81.4 42.4 98.6 48.5 68.6 70.0 36.2 33.2 36.9 35.4 54.4 54.2
SEE 76.4 75.9 48.0 75.7 69.0 78.9 56.8 93.4 95.0 61.0 60.5 64.7 86.7 47.0 98.1 48.2 69.2 71.6 36.3 31.8 36.9 35.0 52.2 53.4

MPO 77.7 78.2 65.9 84.0 76.4 82.2 61.4 94.6 97.3 68.3 58.4 71.1 85.5 73.7 98.6 68.4 84.2 78.6 36.1 37.5 41.0 38.2 56.0 55.9

Table 7: Full experimental results on molecule modality benchmarks, including subtasks, with all
scores reported as the average accuracy over three independent experiments.

Absorption BBBP CYP Inhibition
PAMPA HIA Pgp Bioavail. Avg BBBP CYP 2C19 CYP 2D6 CYP 3A4 CYP 1A2 CYP 2C9 Avg

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Human 18.2 16.8 41.1 40.7 55.6 49.4 39.1 38.2 38.5 36.3 39.4 38.6 52.6 46.2 25.8 25.1 43.6 33.5 52.9 43.7 40.5 37.1 43.1 37.1
CoT 30.2 31.1 40.2 40.8 51.3 36.1 36.7 38.9 39.6 36.7 33.6 32.5 48.7 39.1 22.8 21.5 42.8 32.7 50.0 38.7 36.2 29.5 40.1 32.3

1-shot 16.0 14.0 40.2 39.7 58.6 55.4 36.2 33.6 37.8 35.7 36.1 34.8 56.8 50.9 61.4 37.6 54.9 52.5 56.3 50.4 51.8 50.4 56.2 48.3
3-shot 23.3 22.7 56.9 52.7 58.2 56.0 46.1 45.6 46.1 44.2 42.7 42.6 53.1 48.1 48.5 40.0 47.1 40.3 60.4 58.6 50.7 49.2 51.9 47.3
5-shot 23.3 23.1 66.7 59.2 58.8 56.3 43.8 43.5 48.1 45.5 49.3 49.3 55.7 53.1 44.2 38.3 48.3 42.8 55.3 48.3 56.4 52.7 52.0 47.0

APE 17.7 16.2 73.6 55.2 52.4 51.7 39.1 38.6 45.7 40.4 36.0 34.7 54.3 53.6 49.4 44.7 49.3 49.1 56.2 56.2 52.3 50.9 52.3 50.9
OPRO 18.0 16.6 40.2 39.9 56.3 50.0 35.9 34.9 37.6 35.4 39.2 38.3 52.6 46.3 25.7 25.0 43.5 33.4 52.9 43.7 40.5 37.1 43.0 37.1
EvoPrompt 36.4 35.8 55.8 51.8 52.4 50.6 48.4 47.6 48.2 46.5 38.7 37.7 52.8 52.1 46.3 42.8 48.8 46.9 57.7 57.2 49.8 49.4 51.1 49.7
PE2 52.7 45.9 82.5 65.8 63.1 62.0 59.6 53.3 64.5 56.8 61.3 58.2 57.6 57.4 57.9 46.1 58.0 56.7 60.6 60.3 58.6 55.1 58.5 55.1
ProTeGi 74.8 54.1 84.5 64.4 59.9 59.5 65.1 54.8 71.1 58.2 72.1 65.7 58.8 58.3 57.6 48.6 60.3 57.2 61.7 61.5 60.4 59.3 59.8 57.0
SEE 68.8 52.5 85.1 69.7 65.4 65.1 66.4 52.6 71.4 60.0 67.0 62.3 56.4 56.4 70.7 51.1 57.7 57.7 62.1 61.7 59.8 56.8 61.4 56.7

MPO 78.6 56.1 89.1 76.3 71.0 70.6 68.2 55.1 76.7 64.5 75.3 67.6 60.2 59.2 67.6 51.9 64.2 63.5 64.1 63.6 65.4 62.5 64.3 60.2
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C.3 QUALITATIVE RESULTS

In this section, we present an additional comprehensive qualitative analysis of MPO.

Additional Analysis in MPO Figure 14 illustrates the optimization process in the molecular do-
main, and Table 8 shows examples of textual conditions for the modality-specific generator and the
resulting image prompts.

Examples of Optimized Multimodal Prompts The optimized multimodal prompts from MPO
are presented for the image (Table 9), video (Table 10), and molecular domains (Tables 11 and 12).

Comparison with Text-only Optimization Baseline We compare the optimized prompts and re-
sponses of MPO with those of a leading text-only optimization baseline (SEE) to investigate the un-
derlying reasons for the effectiveness of using multimodal prompts. As shown in Tables 13 and 15,
text-only methods must encode all necessary visual cues solely through language, often resulting in
verbose descriptions and overly generic instructions (e.g., “Pay attention to specific visual markers
such as bill shape, color, and the feather crest on the Crested Auklet. . . ”). This reliance on vague tex-
tual features can lead to coarse reasoning and eventual misclassification by the model (e.g., wrongly
identifying the bird as a “Rhinoceros Auklet” based on an imprecise assessment of “robust body”
and “horn-like projection”). In contrast, as shown in Tables 14 and 16, MPO establishes a synergistic
interaction between modalities. It augments a concise textual instruction with a direct visual refer-
ence, eliminating linguistic ambiguity and instructing the model to ground its reasoning in concrete
visual evidence (e.g., “compare the size and shape of the bill with those in the reference image”).
This multimodal grounding shifts the model’s focus, leading to more specific and visually-supported
reasoning (e.g., “The bill is relatively short and thick, with a slight curve at the tip. This matches
the description of the ‘crested auklet’ in the reference image...”). In addition to this, importantly,
on examples from the Auklet subtask where SEE’s optimized prompt fails, MPO’s multimodal ap-
proach successfully fixes 66.6% of the misclassifications, demonstrating that multimodal cues can
effectively resolve errors that are inherently difficult for text-only optimization.

EditGen

Gen

Edit

Mix

Mix

Figure 14: The optimization process for the best multimodal prompt on the BBBP task. Inherited
substructures from the parent molecule are marked with the same colored circles.

D USE OF LARGE LANGUAGE MODELS (LLMS)

We use large language models merely as a writing assistant. Its role is confined to improving gram-
mar and paraphrasing sentences for clarity, and all the core ideas regarding problem definition, MPO
framework, experimental design, and interpretation of results are entirely our own.
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Gen

Parent  Image Prompt Child  Image Prompt

cgen: Textual Condition for Generation Operator
Create a detailed reference image showcasing various species of grosbeaks, ensuring each bird is clearly labeled with its common name
and distinctive features. Highlight key visual characteristics such as:

- Beak shape (e.g., wide, pointed)
- Color patterns (e.g., primary colors, unique markings)
- Body size (e.g., small, medium, large)

Use arrows or circles to emphasize these features, especially where they differ from other species. The composition should be organized
in a grid format for easy comparison, with a neutral background to avoid distractions from the birds themselves.

Edit

Parent  Image Prompt Child  Image Prompt

cedit: Textual Condition for Edit Operator
Enhance the reference image of grosbeaks by implementing the following modifications to improve clarity and usability for classifica-
tion tasks:
1. Increase Resolution and Clarity: Use a higher-resolution image to ensure that all details of the birds are crisp and easily identifiable.
2. Labeling: Clearly label each grosbeak species with bold, legible text. Ensure that the labels are positioned close to the respective
birds and distinguishable from the background.
3. Consistent Postures: Arrange the birds in similar postures and angles to facilitate direct visual comparisons. Consider a uniform
side view to best showcase the beak shapes and body sizes.
4. Highlight Distinctive Features: Add visual cues such as arrows or circles that point to unique characteristics (e.g., beak shape,
wing colors, and markings). Include brief descriptions of these features near the labels.
5. Simplify Background: Remove any distracting elements from the background, opting for a neutral color that allows the birds to
stand out more prominently.
6. Maintain Proportions: Ensure that the proportions of the birds remain accurate and consistent with their actual sizes to aid in the
visual comparison.
These changes aim to create a more effective reference image that enhances the classification of grosbeaks by making distinguishing
features more accessible.

Mix

Parent  Image Prompt B Child  Image PromptParent  Image Prompt A

cmix: Textual Condition for Mix Operator
Create a new reference image that combines the best visual elements from both provided grosbeak images. Retain the clear anatomical
labeling from Reference Image B, ensuring each grosbeak species is distinctly identified. Highlight key features such as color patterns
and beak shapes using arrows and concise annotations.
From Reference Image A, incorporate the variety of grosbeak species but arrange them in a less cluttered format, allowing for a clearer
comparison of unique characteristics. Focus on using high-resolution images that showcase the birds in similar poses and angles. Ensure
that the primary color, distinctive markings, and beak shapes are clearly visible and easily comparable to aid in accurate classification.
Discard any elements that create visual confusion or do not add value to the identification process.

Table 8: Operation examples for the image prompt update, including parent image prompts, resulting
child image prompts, and the textual condition c to the modality-specific generator, i.e., GPT-Image.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

PlantVillage: Plant Leaf Images
Analyze the provided grape leaf image and classify it into one of the following categories: [‘Healthy’,
‘Leaf Blight’, ‘Black Rot’, ‘Esca’]. Use the hybrid reference image for guidance, focusing on the
following critical visual features:
1. Healthy: Look for a vibrant, uniform green color and a smooth texture without blemishes.
2. Leaf Blight: Identify distinct yellowing edges along with well-defined small dark spots that are
clearly visible.
3. Black Rot: Check for sharply defined, dark, sunken lesions that are prominent on the leaf surface,
often accompanied by slight shriveling.
4. Esca: Look for distinct irregular brown patches, significant necrosis, and curling of the leaf edges.
In cases where symptoms overlap, prioritize the most severe characteristics. For example, if both dark
spots and sunken lesions are present, classify based on the prominence of the lesions. Ensure that you
assess each feature carefully, referencing the hybrid image to visualize these distinctions accurately.

CUB: Bird Images
Classify the bird in the target image by comparing it with the hybrid reference image of grosbeaks.
Follow these refined steps for accurate classification.
1. Identify the Grosbeak Group: Refer to the hybrid image that displays the Rose Breasted Grosbeak,
Pine Grosbeak, Blue Grosbeak, and Evening Grosbeak. Familiarize yourself with the specific traits of
each species, including color patterns and markings.
2. Analyze Visual Features: Focus on these critical features of the target bird:

– Dominant Color and Markings: Note the primary color and any distinctive patterns, such as
throat colors or wing designs.

– Beak Characteristics: Compare the shape and size of the beak with those in the reference image,
as these can vary significantly among species.

– Body Size Comparison: Assess the body size of the target bird relative to the reference birds,
ensuring accurate size comparisons.
3. Feature Prioritization:

– Prioritize color patterns first, as they are often the most telling feature.
– If colors are similar, evaluate beak shape and size next.
– Finally, consider body size. If the target bird does not closely match any reference species, provide

the name of the closest match or indicate ‘unknown’, based on the following criteria:
– Closeness is determined by the degree of similarity across all analyzed features, with color being

the primary factor, followed by beak shape and size.
After analyzing these features, provide the name of the bird species that most closely matches the
visual characteristics observed in the target image, supported by specific observations from the hybrid
reference image.

SLAKE: Radiological Images
Given the MRI scan image, identify and list all visible abnormalities present in the brain. Your response
should include specific conditions, such as edema and tumors, along with their locations (e.g., “Right
Lobe” for edema). Refer to the labeled markers in the image to assist with your analysis. Aim to provide
a comprehensive answer that covers all relevant conditions without omitting any visible feature. Ensure
your response is clear and concise.

DrivingVQA: Driving Images
Examine the provided image of a road scenario and determine the most appropriate action based on
specific visual cues. Pay close attention to the following details:
1. Lane Markings: Identify the lane markings; solid lines indicate a no-overtaking zone, while dashed
lines indicate a safe area for overtaking. Clearly explain how these markings influence your decision.
2. Position of Vehicles: Assess the positions and distances of the vehicles. Determine if there is enough
space and time to safely execute an overtaking maneuver based on their speeds and proximity.
3. Traffic Signs: Observe all visible traffic signs, particularly their meanings. For example, a triangular
sign may indicate a hazard ahead, while a circular sign specifies speed limits. Explain how each sign
influences your decision.
Based on your observations, decide whether you would (A) continue the overtaking maneuver or (B)
move to the right. Justify your choice with specific details from the image, ensuring clarity in your
reasoning. Conclude your response with “The answer is [answer].” Use the image as a reference
to support your analysis of lane markings, vehicle positions, and relevant traffic signs in this driving
scenario.

RSVQA: Remote Sensing Images
Analyze the provided neighborhood map and respond to the following questions with accurate counts
and concise answers:
1. Count the total number of small roads (less than 5 feet wide), medium roads (5-10 feet wide), and
large roads (greater than 10 feet wide). Indicate which category has the highest count. Use the legend
provided to classify each road accurately.
2. Identify if there is a commercial building (a structure used for business purposes, such as shops or
offices) located to the left of any farmland area. Ensure you consider the top-down perspective of the
map when determining placement.
3. For any presence or absence questions, provide a direct “Yes” or “No” response.
Refer to the maps’s colors and labels, ensuring you utilize the legend for accurate identification of each
category. Pay special attention to spatial relationships as defined in the map to avoid misinterpretations.

Table 9: Qualitative examples of the optimized multimodal (image and text) prompts.
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Drive&Act: Driver’s Action Videos

Classify the primary action being performed in the video, focusing specifically on interactions with objects or devices. If multiple actions
are present, prioritize the action that is most visually prominent or contextually relevant. For example, if a person is both eating and using
a phone, classify the action of using the phone. Use the definitions provided for each action to guide your decision. Consider visual cues
such as hand movements, object handling, and the overall context of the scene to help determine the primary action. If two actions appear
equally relevant, choose the one that is visually dominant or crucial to understanding the situation.

VANEBench: Abnormal Videos

Analyze the provided video to identify and describe specific actions or behaviors depicted. Focus particularly on actions that diverge from
common social norms or expectations. For instance, typical actions might include greeting someone or making eye contact, while atypical
actions could involve unexpected emotional reactions, erratic movements, or interactions that seem out of place. Consider the following
examples:
- A) A person suddenly laughing in a serious situation.
- B) Someone avoiding eye contact in a social setting.
Please select the most striking anomaly from the provided options and present your answer in the format: “The answer is [answer].”

Table 10: Qualitative examples of the optimized multimodal (video and text) prompts.

Absorption: Drug Absorption to Human
You are a drug discovery assistant tasked with predicting the human intestinal absorption (HIA) of a newly
designed hybrid molecule. Your analysis should focus on the following physicochemical properties, taking into
account both the strengths and limitations of previous reference molecules:
1. Molecular Weight (MW): Calculate the molecular weight of the hybrid molecule. A molecular weight
below 500 Da is generally favorable for absorption.
2. Lipophilicity (LogP): Estimate the LogP value of the hybrid molecule. Aim for a value between -2 and 5,
ensuring that it balances contributions from both polar and non-polar functional groups.
3. Polarity and Solubility: Analyze the overall polarity of the molecule. While polar functional groups
can enhance solubility, ensure that their presence does not excessively hinder absorption through lipid-rich
environments.

4. Functional Groups: Identify and describe key functional groups present in the hybrid molecule. Focus on ionizable groups that can
enhance solubility while ensuring that non-polar groups are balanced to facilitate membrane permeability. Discuss how these groups interact
to affect absorption.
5. Stereochemistry: Note any chiral centers present in the molecule. Different enantiomers may exhibit varying absorption profiles, so
explain how stereochemistry could influence absorption.
At the end of your analysis, provide a conclusion formatted as either ‘Final answer: Absorbed’ or ‘Final answer: Not absorbed.’ Ensure
that your evaluation is comprehensive and considers the combined properties derived from the reference molecules to accurately predict the
absorption potential of the hybrid molecule.
Utilization of the Reference Molecule: This hybrid molecule is designed to improve predictions for human intestinal absorption (HIA) by
integrating key features that enhance solubility and membrane permeability. The presence of two carboxylic acid groups increases the likeli-
hood of ionization, which can improve solubility in the gastrointestinal tract, while the tertiary amine enhances interaction with transporters,
facilitating absorption into the bloodstream.
The molecular weight is kept below 500 Da, aligning with favorable absorption criteria, and the LogP is balanced to ensure optimal lipophilic-
ity. This design allows for a comprehensive analysis of the hybrid molecule’s physicochemical properties, which can be used to inform
predictive models for HIA. By leveraging the strengths of both reference molecules, the hybrid is expected to yield more accurate predictions
regarding absorption potential, thereby aiding in drug discovery efforts. The combination of polar and non-polar functional groups ensures
that the molecule can effectively navigate the lipid-rich environments of the intestinal membrane while maintaining sufficient solubility for
absorption.

Table 11: Qualitative examples of the optimized multimodal (molecule and text) prompts.
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BBBP: Penetration to Blood-Brain Barrier
You are a drug discovery assistant responsible for predicting the blood-brain barrier (BBB) penetration capa-
bility of a new hybrid molecule based on its physicochemical properties. Follow these detailed instructions to
conduct your analysis effectively:
### Key Considerations for BBB Penetration:
1. Lipophilicity (LogP): Estimate the lipophilicity of the hybrid molecule. Aim for a LogP between 1 and
5, which is optimal for BBB crossing. Use computational tools like ALOGPS or ChemDraw to report the
estimated LogP value.
2. Molecular Weight: Check the molecular weight of the hybrid molecule. It should be below 450 Da. Provide
the exact molecular weight in your analysis.

3. Hydrogen Bonding: Assess the number of hydrogen bond donors (HBDs) and acceptors (HBAs). Aim for 1-2 HBDs and 3-5 HBAs to
enhance the likelihood of BBB penetration. If the counts exceed these ranges, note how this may affect permeability.
4. Ionization State: Evaluate if the hybrid molecule is neutral or charged at physiological pH (˜7.4). Clearly state the estimated ionization
state and include pKa values for relevant groups.
5. Presence of Polar Groups: Identify polar functional groups and assess their overall impact on BBB permeability. Ensure a balanced
presence to avoid excessive hydrophilicity.
### Analysis Instructions:

- Analyze the provided hybrid molecular structure and evaluate how these properties collectively influence its ability to cross the BBB.
Provide specific quantitative measures where applicable.

- Compare the hybrid molecule’s characteristics with those of a well-characterized reference molecule known to cross the BBB, noting key
differences in properties that may influence permeability.

- Summarize your findings clearly, stating the implications of the physicochemical properties on BBB crossing capability.
### Final Answer Format:
Conclude your analysis with a clear statement formatted as either: ‘Final answer: Can cross BBB’ or ‘Final answer: Cannot cross BBB.’
Ensure that your analysis is thorough and based on the specific physicochemical properties outlined above to enhance the accuracy of your
predictions.
Utilization of the Reference Molecule: This modified molecule enhances predictions for blood-brain barrier (BBB) penetration by addressing
several key physicochemical properties.
1. Lipophilicity (LogP): The addition of a methyl group (C) at the terminal position increases the hydrophobic character of the molecule,
which can improve its LogP value, making it more favorable for BBB crossing. This change is aimed at achieving a LogP within the optimal
range of 1-5.
2. Molecular Weight: The modified molecule maintains a molecular weight below 450 Da, ensuring compliance with a critical criterion for
BBB penetration. This is essential as larger molecules often struggle to cross the barrier.
3. Hydrogen Bonding: The modification retains a balanced number of hydrogen bond donors (HBDs) and acceptors (HBAs). By keeping the
HBDs to a minimum (1-2) and ensuring HBAs are within the optimal range (3-5), the likelihood of effective BBB penetration is increased.
4. Ionization State: The structural modifications aim to maintain the molecule in a neutral or partially ionized state at physiological pH,
which is critical for enhancing lipophilicity and reducing the likelihood of charge-related hindrances to BBB penetration.
5. Presence of Polar Groups: The molecule has been adjusted to balance polar functional groups, reducing excessive hydrophilicity while
retaining necessary polar characteristics for biological activity.
By focusing on these modifications, the molecule is better positioned for predictive modeling of BBB penetration capabilities, as it aligns
with established physicochemical parameters known to influence permeability. This can inform computational predictions and improve the
accuracy of models assessing BBB crossing potential.

CYP Inhibition: Inhibitory Effect to Cytochrome P450 (CYP) Enzymes
You are a drug discovery assistant tasked with predicting the CYP2C19 inhibition potential of a target
molecule. Your analysis should focus on identifying and evaluating specific structural features that correlate
with CYP2C19 inhibition. Address the following key characteristics:
1. Aromatic Rings: Identify the number and type of aromatic rings present in the target molecule. Multiple
aromatic rings are important for π-π stacking interactions with the CYP2C19 enzyme, enhancing inhibition
potential.
2. Functional Groups: Assess for the presence of functional groups known to enhance binding, such as:

- Sulfonamide groups (–S(=O)2–N–) and amide groups (–C(=O)N–), which facilitate hydrogen bonding
and electrostatic interactions.

- Highlight any other functional groups that may support or hinder binding.
3. Basic Nitrogen Atoms or Heterocycles: Determine if the molecule includes basic nitrogen atoms or heterocycles that could enhance
binding affinity through electrostatic interactions.
4. Comparison with Known Inhibitors: Compare the structural features of the target molecule with those of known CYP2C19 inhibitors
like Omeprazole or Voriconazole. Pay close attention to similarities and differences in aromaticity, functional groups, and other relevant
characteristics.
Conclude your analysis with a clear statement regarding the inhibition status of the target molecule, formatted as follows: ‘Final answer:
Inhibits CYP2C19’ or ‘Final answer: Does not inhibit CYP2C19.’ Ensure your comparisons and conclusions are supported by your structural
analysis.
Utilization of the Reference Molecule: This generated molecule, which contains multiple aromatic rings, a sulfonamide group, and an
amide group, can significantly improve predictions for CYP2C19 inhibition potential. The presence of two aromatic rings enhances π-π
stacking interactions with the CYP2C19 enzyme, which is crucial for binding affinity. The sulfonamide group (–S(=O)2–N–) is known to
facilitate hydrogen bonding, while the amide group (–C(=O)N–) can participate in additional hydrogen bonding interactions, both of which
are important for stabilizing the enzyme-inhibitor complex.
Furthermore, the molecule incorporates basic nitrogen atoms in the amide and sulfonamide groups, which can engage in electrostatic interac-
tions with the enzyme, further enhancing binding affinity. This structural design aligns with the characteristics observed in known CYP2C19
inhibitors like Omeprazole and Voriconazole, which also feature multiple aromatic systems and functional groups that promote hydrogen
bonding.
By comparing the generated molecule’s structural features with those of established inhibitors, we can derive insights into the molecular
descriptors that correlate with inhibition potential. This molecule serves as a reference point for evaluating new compounds in terms of their
predicted CYP2C19 inhibition, helping to refine predictive models and improve the accuracy of virtual screening processes. The combination
of aromaticity, functional groups, and basic nitrogen atoms in this molecule provides a robust framework for understanding and predicting
CYP2C19 inhibition.

Table 12: Qualitative examples of the optimized multimodal (molecule and text) prompts.
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Task Example: CUB(Grosbeak) Classification

Optimized
Prompt
(SEE)
(Score: 96.7)

Identify the species of the bird in the given image using the options provided. Please respond with the bird’s name exactly
as it is listed (e.g., ‘rose breasted grosbeak’).

Make sure to write the name precisely as it appears in the choices, without any extra punctuation or modifications. Pay
attention to distinctive features such as color patterns, markings, and size to accurately identify the bird.

If you find that the bird in the image does not match any of the listed options, please state ‘not identifiable’ rather than
guessing. Ensure that your answer is selected only from the choices provided and refrain from inferring details about the
species.

After determining the bird, verify that your response is among the listed options before you submit it.

Image Query Ground Truth: Evening Grosbeak
Key Features:

• White wing patches
• Yellow body color

Response rose breasted grosbeak

Table 13: Visualization of the SEE result on the CUB(Grosbeak) dataset.

Task Example: CUB (Grosbeak) Classification

Optimized
Prompt
(MPO)
(Score:
100.0)

Classify the bird in the target image by comparing it with the hybrid reference image of gros-
beaks. Follow these refined steps for accurate classification.

1. Identify the Grosbeak Group: Refer to the hybrid image that displays the Rose Breasted
Grosbeak, Pine Grosbeak, Blue Grosbeak, and Evening Grosbeak. Familiarize yourself with the
specific traits of each species, including color patterns and markings.

2. Analyze Visual Features: Focus on these critical features of the target bird:
– Dominant Color and Markings: Note the primary color and any distinctive patterns, such

as throat colors or wing designs.
– Beak Characteristics: Compare the shape and size of the beak with those in the reference

image, as these can vary significantly among species.
– Body Size Comparison: Assess the body size of the target bird relative to the reference

birds, ensuring accurate size comparisons.

3. Feature Prioritization:
– Prioritize color patterns first, as they are often the most telling feature.
– If colors are similar, evaluate beak shape and size next.
– Finally, consider body size. If the target bird does not closely match any reference species,

provide the name of the closest match or indicate ‘unknown’, based on the following criteria:
– Closeness is determined by the degree of similarity across all analyzed features, with color

being the primary factor, followed by beak shape and size.

After analyzing these features, provide the name of the bird species that most closely matches
the visual characteristics observed in the target image, supported by specific observations from
the hybrid reference image.

Image Query Ground Truth: Evening Grosbeak
Key Features:

• White wing patches
• Yellow body color

Response The bird in the target image has a predominantly yellow body with black wings and a white patch on its chest. Its beak
is short and conical, suitable for seed-eating. Comparing these features with the hybrid reference image of grosbeaks,
the bird most closely resembles the Evening Grosbeak. The yellow coloration, black wings, and white chest patch are
characteristic of this species. Therefore, the bird in the target image is classified as an Evening Grosbeak.

Table 14: Visualization of the MPO result on the CUB(Grosbeak) dataset.
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Task Example: CUB(Auklet) Classification

Optimized
Prompt
(SEE)
(Score: 50.0)

Classify the content of the target image based on the provided choices of bird species: [‘parakeet auklet’, ‘rhinoceros auklet’,
‘crested auklet’, ‘least auklet’].

Comprehensive Guidelines for Classification:

1. Physical Characteristics:
- Parakeet Auklet: Look for a small bird (approx. 23 cm), with a striking blue bill and a notable yellow eyebrow stripe. Its
compact body and vibrant colors are key identifiers.
- Rhinoceros Auklet: This medium-sized bird (about 35 cm) has a stout body and a distinctive horn-like projection on its
bill during breeding season. It typically weighs around 700 grams, so note its robust build.
- Crested Auklet: Identify this species by its long, curved crest of feathers and dark plumage, roughly 30 cm in size.
Weighing about 300 grams, it is often found in colonies, so observe any social behaviors.
- Least Auklet: The smallest of the auklets (around 20 cm), it features short wings and a stubby bill, weighing about 130
grams. Its petite size and subtle coloration are distinguishing traits.
2. Habitat and Behavior: Focus on typical habitats such as coastal regions and rocky cliffs. Note behaviors like diving and
feeding. For instance, the Rhinoceros Auklet may exhibit aggressive diving, while the Crested Auklet shows unique social
interactions.
3. Visual Cues: Pay attention to specific visual markers such as bill shape, color, and the feather crest on the Crested
Auklet. Consistently assess the color of the feet and overall body size.
4. Common Confusions: Be aware that the Rhinoceros Auklet appears more robust than the slender Least Auklet.
Additionally, plumage colors may vary under different lighting conditions.
5. Cross-Verification Process: Use a methodical approach to verify classification. For instance, check if dark plumage
corresponds with the bill shape and size of the suspected species, and look for unique features.
6. Key Features to Focus On: Highlight aspects such as beak shape, feather patterns, and eye color during evaluation.
7. Narrow Down Options: If the image shows features that could apply to multiple species, focus on the most probable
candidates based on observed visual cues and behaviors.
8. Confidence Level: Indicate your confidence in the classification as “certain,” “likely,” “uncertain,” or “doubtful.” Justify
your confidence by detailing which specific features influenced your assessment.
9. Step-by-Step Checklist for Classification: Use this systematic checklist: Observe the size and body structure; Note
the bill’s color and shape; Examine plumage patterns and unique features (e.g., crests); Consider the observed habitat and
behaviors; Cross-reference traits with the characteristics of all species.
10. Hypothetical Example Scenarios: Provide examples of images and a breakdown of classifications according to the
guidelines, illustrating effective application of features and observations.
Please provide the identified species name and your confidence level in the classification.

Image Query Ground Truth: Crested Auklet
Key Features:

• Dark plumage
• Curved crest of feathers
• Orange beak

Response Based on the provided image, let’s analyze the bird step-by-step using the comprehensive guidelines:

1. Physical Characteristics: The bird has a robust body, which aligns with the Rhinoceros Auklet being described as
medium-sized (about 35 cm) and having a stout body. The bill is orange with a black tip, which is characteristic of the
Rhinoceros Auklet. There is a noticeable horn-like projection on the bill, which is a key feature of the Rhinoceros Auklet
during the breeding season.
2. Habitat and Behavior: The bird is perched on a rocky cliff, which is consistent with the Rhinoceros Auklet’s habitat
preference. The posture and behavior do not provide additional specific clues but do not contradict the identification either.
3. Visual Cues: The bill shape and color match the description of the Rhinoceros Auklet. The overall body structure and
size are consistent with the Rhinoceros Auklet.
4. Common Confusions: The Least Auklet is much smaller and has a shorter bill, which does not match the image. The
Crested Auklet has a long, curved crest, which is not present here. The Parakeet Auklet is smaller and has a distinct yellow
eyebrow stripe, which is not seen here.
5. Cross-Verification Process: The combination of the robust body, orange bill with a black tip, and the horn-like projection
strongly supports the identification of the Rhinoceros Auklet.
6. Key Features to Focus On: The bill shape and color are critical features for this identification.
7. Narrow Down Options: The image clearly matches the Rhinoceros Auklet based on the physical characteristics and
visual cues.
8. Confidence Level: Given the clear match with the Rhinoceros Auklet’s physical characteristics and the absence of any
conflicting features, I am confident in the classification.

Conclusion:
The identified species is the Rhinoceros Auklet, and my confidence level in this classification is certain.

Table 15: Visualization of the SEE result on the CUB(Auklet) dataset.
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Task Example: CUB(Auklet) Classification

Optimized
Prompt
(MPO)
(Score: 80.3)

Analyze the provided hybrid image of auklet species and classify the bird in the target
image into one of the following categories: [‘parakeet auklet’, ‘rhinoceros auklet’,
‘crested auklet’, ‘least auklet’]. Focus on the following critical visual features:

1. Bill Shape: Prioritize the size and shape of the bill, comparing it directly with the
examples in the hybrid image. Be specific about curvature and thickness.

2. Plumage Color: Observe the overall body color and any variations, noting how
these compare to the reference images.

3. Body Patterns: Identify unique markings or patterns on the body, ensuring to
highlight any significant differences that may aid in classification.

Use the hybrid image as a guide for your comparison and classification. Clearly
mention any distinguishing traits that support your decision, and ensure to prioritize
bill shape in cases of ambiguity.

Image Query Ground Truth: Crested Auklet
Key Features:

• Dark plumage
• Curved crest of feathers
• Orange beak

Response The bird in the target image can be classified as a “crested auklet” based on the following observations:

1. Bill Shape: The bill is relatively short and thick, with a slight curve at the tip. This matches the description of the “crested
auklet” in the reference image, which has a similar bill shape but with a more pronounced curve. The “rhinoceros auklet”
also has a thick bill but with a more pronounced curve, while the “parakeet auklet” and “least auklet” have thinner bills.

2. Plumage Color: The overall body color is dark, almost black, with some lighter areas around the neck and underparts.
This is consistent with the “crested auklet” in the reference image. The “rhinoceros auklet” has a similar dark plumage,
but the “parakeet auklet” and “least auklet” have lighter plumage.

3. Body Patterns: The most distinctive feature of the “crested auklet” is the presence of a crest on its head, which is clearly
visible in the target image. The “parakeet auklet” and “least auklet” do not have crests, and the “rhinoceros auklet” has a
shorter crest compared to the “crested auklet”.

In conclusion, the combination of the short and thick bill, dark plumage, and the presence of a crest on the head strongly
supports the classification of the bird in the target image as a “crested auklet”.

Table 16: Visualization of the MPO result on the CUB(Auklet) dataset.
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