

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 NEXT-TOKEN PREDICTION AND REGRET MINIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

We consider the question of how to employ next-token prediction algorithms in adversarial online decision making environments. Specifically, if we train a next-token prediction model on a distribution \mathcal{D} over sequences of opponent actions, when is it the case that the induced online decision making algorithm (by approximately best responding to the model’s predictions) has low adversarial regret (i.e., when is \mathcal{D} a *low-regret distribution*)?

For unbounded context windows (where the prediction made by the model can depend on all the actions taken by the adversary thus far), we show that although not every distribution \mathcal{D} is a low-regret distribution, every distribution \mathcal{D} is exponentially close (in TV distance) to one low-regret distribution, and hence sublinear regret can always be achieved at negligible cost to the accuracy of the original next-token prediction model. In contrast to this, for bounded context windows (where the prediction made by the model can depend only on the past w actions taken by the adversary, as may be the case in modern transformer architectures), we show that there are some distributions \mathcal{D} of opponent play that are $\Theta(1)$ -far from any low-regret distribution \mathcal{D}' (even when $w = \Omega(T)$ and such distributions exist). Finally, we complement these results by showing that the unbounded context robustification procedure can be implemented by layers of a standard transformer architecture, and provide empirical evidence that transformer models can be efficiently trained to represent these new low-regret distributions.

1 INTRODUCTION

Large language models are trained to perform well at the task of next-token prediction: given some substring of text, estimate the conditional distribution of the next word/token. Increasingly, there is a focus on using these models to perform a far broader set of tasks, including making strategic decisions on our behalf (Chen et al., 2021; Park et al., 2025; Krishnamurthy et al., 2024; Nie et al., 2025).

Consider the problem of training such a model to play a repeated game (e.g., repeated rock-paper-scissors). Like in next-token prediction, the model has to take the actions taken in the game so far (a subsequence of tokens) and, from this, come up with a new mixed action to take (a distribution over next tokens). If we think of the tokens as the adversary’s actions, then it even makes sense that playing well in this game directly corresponds to how well our model can predict the next token. Where things differ is in how these tokens are generated – instead of being stochastically sampled from a large data set, they are adversarially chosen by an opposing player who wants the model to fail. One basic property we might desire from these models in such settings is *adversarial regret minimization*. That is, regardless of what actions the adversary takes, our model does at least as well as if it always played the best fixed action in hindsight.

This raises the question: are regret minimization and next-token prediction compatible goals? When is it the case that training a next-token predictor on a dataset (e.g., of game transcripts) will produce a low-regret learning algorithm? Are there ways to automatically augment a data set with more data so the resulting models have less regret? What alternatives to next-token prediction are there when training these models?

054 1.1 OUR RESULTS
055056 We study an online decision making setting where a decision maker needs to take actions in response
057 to a changing state of nature (e.g. an adversary’s action in a game, a current stock price, etc.). The
058 decision maker has access to a next-token prediction model trained on some distribution of state
059 sequences, and would like use the predictions from this model to help them make utility optimizing
060 decisions.061 Importantly, they would like to perform well not just when the true distribution of states is drawn
062 from the distribution their model is trained on but also when the sequence of states is controlled by
063 an adversary. This leads to the question of whether it is possible to *robustify* a decision-model: take
064 a model \mathcal{M}_0 and produce a model \mathcal{M} that represents a similar distribution over sequences as \mathcal{M}_0 ,
065 while guaranteeing low regret against any adversary.066 We prove the following results.
067068 • First, we remark that there exist next-token prediction models such that if a decision maker ap-
069 proximately best responds to these predictions (e.g., via a quantal best response), they guarantee
070 sublinear regret. In particular, quantal best responses to the Polya urn process closely simulate the
071 classical Hedge learning algorithm (**Theorem 2.3**).
072 • Second, we positively answer the question of robustification by showing that given any next-token
073 prediction model \mathcal{M}_0 it is possible to produce a model \mathcal{M} such that i. quantal best responses to
074 the predictions of \mathcal{M} lead to sublinear regret, and ii. the TV distance between the distributions
075 represented by \mathcal{M} and \mathcal{M}_0 is arbitrarily small (**Theorem 3.1**).
076 • We then shift our attention to prediction models with bounded context length (i.e., prediction
077 models whose outputs can only depend on the previous L tokens). In contrast to the previous
078 result, we show that such models are in general impossible to robustify (**Theorem 4.1**). However,
079 if the robustified model is allowed to use a larger context length L' , it is possible to produce a
080 robust model with $O(1/\sqrt{L' - L})$ per-round regret (**Theorem 4.2**).
081 • Finally, we address the question of whether it is actually possible to *train* robust models, with a
082 focus on transformer models. We provide two pieces of evidence towards an affirmative answer
083 to this question. First, we show that transformer models can effectively represent the robustified
084 models of Theorem 3.1 with a mild increase in size (**Theorem 5.1**). Second, we provide experi-
085 mental evidence that it is possible to train small transformers to represent robustified versions of
086 simple distributions (**Section 5.2**).
087088 1.2 RELATED WORK
089090 We discuss additional related work in more detail in Appendix A.
091092 2 MODEL AND PRELIMINARIES
093094 **Notation** We use $\mathbb{I}[A]$ to denote the indicator function of expression A , which takes the value
095 1 when A is true, and 0 otherwise. We generally denote sequences of elements in bolded letters
096 (e.g., $\boldsymbol{\theta}$), elements of these sequences with subscripts (θ_t), and subsegments of these sequences with
097 superscripts ($\boldsymbol{\theta}^{a:b} = (\theta_a, \theta_{a+1}, \dots, \theta_b)$, $\boldsymbol{\theta}^b = (\theta_1, \dots, \theta_b)$). Full proofs are generally deferred to
098 Appendix B for the sake of brevity.099 2.1 NEXT-TOKEN PREDICTION
100101 The problem of *next-token prediction* can be formally stated as follows. We are given a distribution
102 $D \in \Delta(\Theta^T)$ over sequences of T tokens from an alphabet Θ . The goal is to learn a (next-token
103 prediction) *model* \mathcal{M} that, given as input any prefix token sequence $\boldsymbol{\theta}^{t-1} = (\theta_1, \dots, \theta_{t-1})$, outputs
104 the conditional distribution of the next token given this prefix, which we denote by $\mathcal{M}(\boldsymbol{\theta}^{t-1}) \in$
105 $\Delta(\Theta)$. We write $\mathcal{M}(\theta | \boldsymbol{\theta}^{t-1})$ to denote the probability of a specific token $\theta \in \Theta$ in the distribution
106 $\mathcal{M}(\boldsymbol{\theta}^{t-1})$.107 By iterating the operation of next token prediction, any candidate solution \mathcal{M} to the next token
108 prediction problem induces its own distribution $D(\mathcal{M})$ over sequences of T tokens. In particular,

108 we can define

$$109 \quad \Pr_{\boldsymbol{\theta}^T \sim D(\mathcal{M})}[\boldsymbol{\theta}^T] = \mathcal{M}(\theta_1|\emptyset)\mathcal{M}(\theta_2|\theta_1)\mathcal{M}(\theta_3|\theta_1, \theta_2) \cdots \mathcal{M}(\theta_T|\boldsymbol{\theta}^{T-1}).$$

111 Conversely, every distribution D corresponds¹ to some model (in the sense that it is induced by a
112 collection of conditional distribution functions $\mathcal{M}(\theta_t|\boldsymbol{\theta}^{t-1})$). We can therefore measure the quality
113 of a solution \mathcal{M} to the next-token prediction problem via the TV distance $d_{TV}(D, D(\mathcal{M}))$ between
114 the true distribution and the distribution induced by the model. Likewise, we can measure the
115 similarity between two models \mathcal{M} and \mathcal{M}' via the TV distance of their respective distributions.

116 **Bounded context length** Later in the paper, we will consider models that have the additional
117 restriction of *bounded context length* – that is, the model’s prediction $\mathcal{M}(\theta_t|\boldsymbol{\theta}^{t-1})$ for the t th token
118 can only depend on the w preceding tokens $(\theta_{t-w}, \theta_{t-w+1}, \dots, \theta_{t-1})$ for some window size w . We
119 defer further discussion of bounded context lengths to the beginning of Section 4.

121 2.2 ADVERSARIAL ONLINE DECISION MAKING

122 The second problem we consider is that of (adversarial) *online decision making*. In this problem, a
123 *decision maker* interacts with an *adversary* over the course of T rounds. In each round $t \in [T]$ of
124 interaction, the learner takes an action (specifically, a mixed action $\pi_t \in \Delta(A)$ supported on some
125 finite action set A) while, simultaneously, an adversary selects a state $\theta_t \in \Theta$. As a result of this
126 interaction, the decision maker receives expected utility $\mathbb{E}_{a_t \sim \pi_t}[U(a, \theta_t)]$, where the utility function
127 $U : A \times \Theta \rightarrow [-1, 1]$ is known to all parties and fixed over time (we extend U linearly to mixed
128 strategies of the decision maker by writing $U(\pi, \theta) = \mathbb{E}_{a \sim \pi}[U(a, \theta)]$). After this interaction, the
129 state θ_t chosen by the adversary is revealed to the learner, who can then use this information in the
130 selection of their subsequent actions.

131 The goal of the decision maker is to maximize their cumulative utility over all T rounds. Of course,
132 the extent to which they can do so depends on the adversarial choices of θ_t taken by the adversary
133 (notably, unlike in the next-token prediction problem, the sequence of states $\boldsymbol{\theta}^T = (\theta_1, \theta_2, \dots, \theta_T)$
134 is not necessarily sampled from some distribution D). Despite this, one of the fundamental results
135 in the theory of online learning shows that regardless of the actions taken by the adversary, it is
136 possible for the decision maker to obtain sublinear *regret*: the gap between their cumulative utility
137 and the cumulative utility of the best fixed action in hindsight. Formally, given a sequence of (mixed)
138 actions $\boldsymbol{\pi} = (\pi_1, \dots, \pi_T)$ and states $\boldsymbol{\theta} = (\theta_1, \dots, \theta_T)$, we define the external regret as

$$139 \quad \text{EXTREG}(\boldsymbol{\pi}, \boldsymbol{\theta}) = \max_{a^* \in A} \frac{1}{T} \sum_t [U(a^*, \theta_t) - U(\pi_t, \theta_t)].$$

140 One algorithm that guarantees sublinear regret for the decision maker is the Hedge algorithm
141 (Freund & Schapire, 1997). The Hedge algorithm chooses π_t so that (for any $a \in A$)
142 $\pi_t(a) \propto \exp\left(\frac{1}{\sqrt{T}} \sum_{s=1}^{t-1} U(a, \theta_s)\right)$. It can be shown that this guarantees that $\text{EXTREG}(\boldsymbol{\pi}, \boldsymbol{\theta}) =$
143 $O(\sqrt{(\log |A|)/T})$, regardless of the sequence of states chosen by the adversary.

144 2.3 INTERPLAY BETWEEN NEXT-TOKEN PREDICTION AND REGRET MINIMIZATION

145 One natural way to apply a next-token prediction algorithm to the problem of online decision making
146 is by using it to predict the sequence of adversary states. In particular, the decision maker
147 can use an algorithm for next-token prediction to predict the next state, and then play the optimal
148 action conditioned on this state. Formally, for any distribution $\mu \in \Delta(\Theta)$ over states, let
149 $\text{BR}(\mu) = \arg \max_{a \in A} \mathbb{E}_{\theta \sim \mu}[U(a, \theta)]$ be the decision maker’s *best response* action to this distribution.
150 In online decision making in *stochastic settings* (where the sequence of states $\boldsymbol{\theta}$ is drawn from
151 some distribution D), best responding to the predictions of an accurate model leads to zero external
152 regret.

153 **Lemma 2.1.** *Let $D \in \Delta(\Theta^T)$ be a distribution over sequences of T states, and let \mathcal{M} be a next-
154 token prediction model that has perfectly learned the distribution D ($D(\mathcal{M}) = D$). Consider the
155 algorithm for the decision maker which sets $\pi_t = \text{BR}(\mathcal{M}(\boldsymbol{\theta}^{t-1}))$ (that is, the best response to the
156 model’s prediction of state at time t). Then the expected regret of the decision maker on sequences
157 sampled from D is at most zero, i.e., $\mathbb{E}_{\boldsymbol{\theta} \sim D}[\text{EXTREG}(\boldsymbol{\pi}, \boldsymbol{\theta})] \leq 0$.*

158 ¹For mathematical convenience, we will assume that all distributions D we consider have full support –
159 that is, every sequence in Θ^T appears with some positive (albeit possibly arbitrarily small) probability in the
160 distribution. Under this assumption, this correspondence is bijective.

162 However, we would like stronger guarantees than this – ideally, we would like to construct an online
 163 decision making algorithm with *adversarial* regret guarantees (e.g., those obtained by Hedge). This
 164 leads to the question: does there exist a distribution D where the online decision making algorithm
 165 constructed in Lemma 2.1 incurs $o(1)$ regret against any adversary? Unfortunately, the answer to
 166 this question is negative, as the following lemma demonstrates.

167 **Lemma 2.2.** *Let \mathcal{M} be a next-token prediction model. There exists a utility function U such that,
 168 if the decision maker sets $\pi_t = BR(\mathcal{M}(\theta^{(t-1)}))$, there exists an adversarial sequence of states
 169 $\theta \in \Theta^T$ that induces high regret, i.e., with the property that $\text{EXTREG}(\pi, \theta) = \Omega(1)$.*

171 Ultimately, the negative result in Lemma 2.2 follows from the fact that the learning algorithms
 172 constructed by best responding to a sequence of next-token prediction are *deterministic* (in the sense
 173 of always playing pure actions in A).

174 We can attempt to sidestep this issue by introducing noise in the best response of the decision
 175 maker. One natural and well-studied way to do this is to replace the best response with a *quantal*
 176 *best response*². Given a distribution $\mu \in \Delta(\Theta)$ over states and a parameter $\eta > 0$, we define the
 177 quantal best response $QBR(\mu, \eta) \in \Delta(A)$ to be the mixed action that plays action $a \in A$ with
 178 probability proportional to $\exp(\frac{1}{\eta} U(a, \mu))$. Note that as $\eta \rightarrow 0$, this approaches the deterministic
 179 best response (and as $\eta \rightarrow \infty$, this approaches the uniform distribution over all actions).

180 We define the *Polya urn model* $\mathcal{M}_{\text{Polya}}$ to be the following next-token prediction model: for any
 181 $t \in [T]$, we let

$$\mathcal{M}_{\text{Polya}}(\theta | \theta^{(t-1)}) = \frac{1 + \sum_{s=1}^{t-1} \mathbb{I}[\theta_s = \theta]}{|\Theta| + (t-1)}. \quad (1)$$

185 Intuitively, the probability of seeing a specific token θ at round t is roughly equal to the empirical
 186 probability of observing θ in the string so far. More accurately, it is exactly the fraction of tokens
 187 equal to θ in the string $\text{Str}(\Theta) + \theta^{(t-1)}$, where $\text{Str}(\Theta)$ is an arbitrary concatenation of all the tokens
 188 in Θ (it is necessary to add this additional term so that equation 1 is well-defined for $t = 1$, and so
 189 that the induced distribution $D(\mathcal{M}_{\text{Polya}})$ has full support). The following lemma shows that quantal
 190 best responses to predictions of the Polya urn model guarantee adversarial low regret.

191 **Lemma 2.3.** *Consider the algorithm for the decision maker which sets $\pi_t =$
 192 $QBR(\mathcal{M}_{\text{Polya}}(\theta^{(t-1)}), \eta)$, for $\eta = 1/\sqrt{T}$. Then for any adversarial sequence of states $\theta \in \Theta^T$,*

$$\text{EXTREG}(\pi, \theta) = O\left(\frac{\log T + \log |A|}{\sqrt{T}}\right).$$

197 Motivated by Lemma 2.3, we say that a next-token model \mathcal{M} is a *low-regret model* if quantal
 198 best responses to this model guarantee $o(1)$ worst-case regret; formally, for any adversarial
 199 sequence of states $\theta \in \Theta^T$, the sequence of mixed actions $\pi \in \Delta(A)^T$ defined via $\pi_t =$
 200 $QBR(\mathcal{M}(\theta^{t-1}), 1/\sqrt{T})$ satisfies $\text{EXTREG}(\pi, \theta) = o(1)$.

201 **Example (Adversarial Online Prediction)** By selecting the utility function U appropriately, the
 202 online decision making framework can be made to capture a wide range of different possible appli-
 203 cations. One particularly relevant example (that we will use as a running example throughout the
 204 remainder of this paper) is the problem of *adversarial online prediction*.

206 In this problem, we set the action set A equal to the state space Θ , and define $U(a, \theta) = \mathbb{I}[a = \theta]$;
 207 that is, the decision maker receives a point if they successfully predict the current state (and receives
 208 zero points otherwise). In some later applications (e.g., the experiments in Section 5.2), we will
 209 further insist that actions and states are binary ($A = \Theta = \{0, 1\}$).

210 Note that in this example, the goals of the online decision maker and the next-token prediction
 211 algorithm are very closely aligned – they both want to produce good predictions of the next state,
 212 but with slightly different metrics of success (adversarial regret guarantees versus statistical distance
 213 guarantees). One consequence of this is that we can directly interpret the quantal best response as
 214 sampling from the next-token prediction model with temperature η .

215 ²This response function is also known under many other names, including *softmax response*, *Boltzmann exploration*, and *multinomial logit response*.

216

3 ROBUSTIFICATION WITH UNBOUNDED CONTEXT LENGTH

217

218 Lemma 2.3 demonstrates that the Polya urn model is a low-regret model – following its recommendations (by quantally best responding to them) will result in adversarial low-regret guarantees for an
219 online decision maker. While it is possible to construct other low-regret models similarly, not every
220 model is low-regret. For example, the model \mathcal{M} for binary states ($\Theta = \{0, 1\}$) which always predicts the next bit to be 1 with probability 1/3 can be shown to incur $\Omega(1)$ regret against adversarial
221 sequences of states (e.g., if the adversary selects the all-zero sequence of states $\theta_t = 0$, this model
222 will never predict the next state correctly).
223

224 This raises a natural question. Assume we have access to a next-token model \mathcal{M}_0 . Can we “robustify” our model and obtain a new model \mathcal{M} that is both low-regret and close to the original model
225 \mathcal{M}_0 (in the sense that the distributions D_0 and D they induce are similar in TV distance)?
226

227 In this section, we answer this question affirmatively. In Algorithm 1, we give a procedure for
228 taking an arbitrary next-token prediction model \mathcal{M}_0 and transforming it into a low-regret next-token
229 prediction model \mathcal{M} . The key idea is to only modify the behavior of the model on prefixes θ^t where
230 the model has already incurred high regret (by arguments similar to those in Lemma 2.1, this should
231 happen with low probability if the sequence of states truly is sampled from $D(\mathcal{M}_0)$). On such high-
232 regret prefixes, we instead draw the prediction of the model from a Polya urn model, guaranteeing
233 low-regret on the remainder of the time horizon.
234

235 **Algorithm 1** Robustification of a next-token prediction model
236

237 **Require:** Next-token prediction model \mathcal{M}_0 implementing distribution D_0 , sequence of states θ^{t-1} ,
238 utility function $U : A \times \Theta \rightarrow [-1, 1]$, parameter $\alpha > 0$.
239 **Ensure:** Outputs $\mathcal{M}(\theta^{t-1})$ for some model \mathcal{M} implementing a low-regret distribution D .
240
241 **for** $s = 1 \dots t - 1$ **do**
242 Define $\pi_s \leftarrow \text{QBR}(\mathcal{M}_0(\theta^{s-1}), 1/\sqrt{T})$ (*the mixed action of a quantal best response to the*
243 *original model*).
244 Define $\pi_{\text{HEDGE},s} \leftarrow \text{QBR}(\mathcal{M}_{\text{Polya}}(\theta^{s-1}), \frac{1}{\sqrt{T}})$ (*the mixed action of a quantal best response to*
245 *Polya urn model*)
246 Define $\text{REGRET}_s \leftarrow \text{EXTREG}(\pi^s, \theta^s)$
247 Define $\text{REGRET}_{\text{HEDGE},s} \leftarrow \text{EXTREG}(\pi_{\text{HEDGE}}^s, \theta^s)$
248 **if** $\text{REGRET}_s \geq \text{REGRET}_{\text{HEDGE},s} + \frac{1}{\sqrt{T}} \log |A| + \sqrt{8(1+\alpha)(\log T)/s}$ **then**
249 ▷ (*We are out-of-distribution, return prediction of Polya urn model*)
250 **return** $\mathcal{M}_{\text{Polya}}(\theta^{t-1})$
251 **end if**
252 **end for**
253 ▷ (*We are in distribution, return original model prediction*)
254 **return** $\mathcal{M}_0(\theta^{t-1})$

255 **Theorem 3.1.** *Running Algorithm 1 on a model \mathcal{M}_0 (with $D_0 := D(\mathcal{M}_0)$) results in a robustified*
256 *model \mathcal{M} (with $D := D(\mathcal{M})$) with the following properties:*
257

258 • \mathcal{M} *is a low-regret model with worst-case regret* $O\left(\frac{1}{\sqrt{T}} \log(|A| \cdot T) + \sqrt{(1+\alpha) \log T}\right)$.
259
260 • *The TV distance between D and D_0 is bounded by* $d_{\text{TV}}(D, D_0) \leq |A|T^{-\alpha}$.
261

262

4 ROBUSTIFICATION WITH A BOUNDED CONTEXT LENGTH

263

264 In the previous section, we concerned ourselves with next-token prediction models whose prediction
265 of the state θ_t at time t could depend on all previous states θ^{t-1} . In practice, most next-token
266 prediction models (e.g. those based on transformer architectures) are autoregressive models restricted
267 by a context length L . That is to say, the model’s prediction $\mathcal{M}(\theta_t|\theta^{t-1})$ is a round-independent
268 function of the previous L tokens $\theta^{(t-L):(t-1)} = (\theta_{t-L}, \theta_{t-L+1}, \dots, \theta_{t-1})$. When $t \leq L$, then
269 $\mathcal{M}(\theta_t|\theta^{t-1})$ can be an arbitrary function of the past tokens (as in the unbounded context case). We
will refer to such models as *L-bounded models* for short.

270 As before, every bounded context model \mathcal{M} induces a distribution $D(\mathcal{M})$ over state sequences of
 271 length T , and as before, we will measure the similarity of two models by the TV distance of their
 272 induced distributions.

273 We still would like to use these models to aid in adversarial online decision making³. Of course, the
 274 limited context window of these models constrains what regret guarantees are possible. The setting
 275 of *online learning with bounded recall* studies online decision making instances where the action
 276 at round t must be a function of the previous L losses (i.e., states). It can be shown (Schneider &
 277 Vodrahalli, 2024) that in this setting, there are simple modifications of Hedge that guarantee at most
 278 $O(L^{-1/2})$ regret against any adversary, and that this regret bound is tight (intuitively, this regret
 279 bound is achievable by restarting Hedge every L rounds).

280 As in the unbounded context setting, we can use an L -bounded model \mathcal{M} to solve online learning
 281 with L -bounded recall by playing quantal best responses to the predictions of \mathcal{M} . In particular, we
 282 can show (in analogy to Lemma 2.3) that there exist L -bounded models \mathcal{M} where if the decision
 283 maker plays $\pi_t = \text{QBR}(\mathcal{M}(\theta^{t-1}), 1/\sqrt{L})$, the decision maker guarantees $O(1/\sqrt{L})$ regret for
 284 themselves.

285 We are then faced with the same question as in the previous section: if we start with an existing
 286 L -bounded next-token prediction model \mathcal{M}_0 , can we robustify it into a model \mathcal{M} that is similar to
 287 \mathcal{M}_0 but also obtains optimal worst-case regret guarantees against an adversary?

289 4.1 IMPOSSIBILITY WITH THE SAME CONTEXT LENGTH

290 We begin by demonstrating that, unlike in the unbounded context setting, robustification of bounded
 291 context models is in general impossible, even in very simple online decision-making settings (e.g.
 292 the adversarial online prediction problem with binary states).

293 Intuitively, this is because there can exist different L -bounded models \mathcal{M}_0 and \mathcal{M}_1 that induce very
 294 different distributions $D(\mathcal{M}_0)$ and $D(\mathcal{M}_1)$ over sequences of length T (in particular, almost never
 295 agreeing about the next token), but that share the same distribution of substrings of length L . In
 296 particular, an L -bounded model that can only ever see substrings of length L will have trouble dis-
 297 tinguishing whether the state sequence is being generated by \mathcal{M}_0 or \mathcal{M}_1 . If the goal is to robustify
 298 \mathcal{M}_0 , \mathcal{M} then has the impossible tradeoff between playing predictions close to that of \mathcal{M}_0 (guar-
 299 anteeing low TV distance, but possibly incurring high regret with respect to sequences drawn from
 300 \mathcal{M}_1) or playing predictions that guarantee low regret for \mathcal{M}_1 (which cause a large TV distance with
 301 respect to \mathcal{M}_0).

302 **Theorem 4.1.** *Set $L = T/2$, $A = \Theta = \{0, 1\}$, and $U(a, \theta) = \mathbb{I}[a = \theta]$ (the binary adversarial
 303 online prediction task). There exists a context length L model \mathcal{M}_0 (with $D_0 = D(\mathcal{M}_0)$) such that
 304 for any other context length L model \mathcal{M} (with $D = D(\mathcal{M})$), either:*

- 305 1. *The TV distance $d_{\text{TV}}(D_0, D) > 1/24$ (i.e., the two models are not close).*
- 306 2. *There exists an adversarial sequence of states $\theta \in \Theta^T$ such that if $\pi \in \Delta(A)^T$ is the sequence
 307 of quantal best responses to \mathcal{M} ($\pi_t = \text{QBR}(\mathcal{M}(\theta^{t-1}), 1/\sqrt{L})$), then $\text{EXTREG}(\pi, \theta) > 1/24$.
 308 (That is, the model \mathcal{M} is not a low-regret model).*

310 4.2 ROBUSTIFICATION WITH A LONGER CONTEXT LENGTH

311 In the previous section, we showed that there is no way to robustify an existing L -bounded model
 312 \mathcal{M}_0 to a low-regret L -bounded model \mathcal{M} (while implementing approximately the same distribu-
 313 tion). In this section, we show that if we allow the robustified model to have a slightly larger context
 314 window L' , we can effectively perform this robustification. Said another way, this fact implies that
 315 it is possible to learn a model that will length-generalize from the distribution of a sufficiently short
 316 sequence while maintaining no-regret guarantees in the bounded context setting (a more realistic
 317 setting for transformer-based models).

318 We do this by adapting the “AverageRestartHedge” algorithm of Schneider & Vodrahalli (2024),
 319 which achieves $O\left(\frac{1}{\sqrt{m}}\right)$ external regret in adversarial online learning settings with m -bounded

321 ³For technical reasons, in this section we will restrict ourselves to binary action settings ($|A| = 2$). This
 322 has the consequence that the quantal best response function $\text{QBR}(\cdot, 1/\sqrt{L})$ has a convex image, which will
 323 be important for implementing some of the algorithms for online learning with bounded recall (e.g., see the
 second-to-last line of Algorithm 2).

recall. At a high level, this algorithm is configured with some non-constrained low-regret sub-algorithm (canonically, Hedge) as a subroutine. It then outputs the average prediction of this sub-algorithm on a uniformly randomly chosen suffix of the previous L losses.

We will run a variant of this algorithm with Algorithm 1 in place of Hedge. Specifically, given an expanded context of length L' , we use L out of L' tokens are used for next-token prediction under the original distribution D_0 . The remaining $\Delta = L' - L$ tokens can then be viewed as the actual context length given to the online algorithm in Schneider & Vodrahalli (2024). Our Algorithm 2 calls Algorithm 1 as a subroutine, which achieves an external regret of $\tilde{O}\left(\frac{1}{\sqrt{\Delta}}\right)$ (as implied by Theorem 4.1, it is impossible to get non-trivial guarantees when $\Delta = 0$).

Algorithm 2 Robustifying Bounded Context Models with Longer Context Lengths

Require: An existing L -bounded next-token prediction model \mathcal{M}_0 , parameter $\alpha > 0$, input $\theta^{L'}$.
Ensure: A robustified L' -bounded next-token prediction model \mathcal{M} (with $L' > L$, $\Delta = L' - L$).
Run Algorithm 1 on \mathcal{M}_0 with time horizon Δ to produce a robustified model \mathcal{M}_Δ .
for $m = L + 1, \dots, L'$ **do**
 $\mu_m \leftarrow \mathcal{M}_\Delta(\theta^{m:L'})$ (i.e., the output of \mathcal{M}_Δ on the sequence $\theta_m, \theta_{m+1}, \dots, \theta_L$)
end for
 Choose a $\mu \in \Delta(\Theta)$ so that $\text{QBR}(\mu, 1/\sqrt{\Delta}) = \frac{1}{\Delta} \sum_{m=L+1}^{L'} \text{QBR}(\mu_m, 1/\sqrt{\Delta})$.
return $\mathcal{M}(\theta^{L'}) = \mu$.

Theorem 4.2. Fix $L' > L$ and let $\Delta = L' - L$. Running Algorithm 2 on an L -bounded model \mathcal{M}_0 (with $D_0 := D(\mathcal{M}_0)$) results in a robustified L' -bounded model \mathcal{M} (with $D := D(\mathcal{M})$) with the following properties:

- The model \mathcal{M} is a low-regret model, with worst-case regret $(1 + \frac{\Delta}{T}) \left[\frac{\sqrt{2}+1}{\Delta} + \sqrt{\frac{8 \log T + 8(\alpha+1) \log \Delta}{\Delta}} \right]$.
- The TV distance between D and D_0 is bounded by $d_{\text{TV}}(D, D_0) \leq \Delta^{-\alpha}$.

5 TRAINING LOW-REGRET TRANSFORMER MODELS

On one hand, Theorem 3.1 demonstrates that it is information theoretically possible to robustify any next-token prediction model \mathcal{M} with negligible changes to the underlying distribution. At the same time, this raises questions about whether we can actually *train* low-regret models (after all, if $d_{\text{TV}}(D, D_0)$ is exponentially small, no training procedure can efficiently distinguish between samples drawn from D and samples drawn from D_0).

In this section we investigate this question for the special case of *transformer models*, providing evidence that it is possible to directly robustify low-regret transformer models. In Section 5.1, we show it is possible to implement the operations of Algorithm 1 in the logic of a standard transformer model (i.e., if \mathcal{M}_0 can be represented by a small transformer, so can \mathcal{M}). In Section 5.2, we provide experimental evidence showing that a simple masking procedure allows us to practically train low-regret transformer models.

5.1 REPRESENTING ROBUSTIFIED MODELS

In this section, we show that the representational limitations of transformers pose no obstacle to robustification. To that end, we construct a transformer that robustly predicts future states by adding a constant number of layers to a transformer that solves next-token prediction.

Theorem 5.1. Suppose there exists a transformer \mathcal{M}_0 with L layers and embedding dimension m that exactly solves the next token prediction task over distribution D_0 ; that is, $\mathcal{M}_0(\theta_t | \theta^{t-1}) = \Pr_{D_0}[\theta_t | \theta^{t-1}]$. Then, there exists a transformer \mathcal{M}' with $L' = L + 4$ layers and embedding dimension $m' = m + O(1)$ that approximates the output of Algorithm 1.

We state the theorem rigorously and present its proof in Appendix C. At a high-level, the argument relies on constructing four layers that use the outputs of \mathcal{M}_0 to simulate Algorithm 1. Self-attention

378 plays an essential role in the construction. Identifying the distribution induced by the Polya Urn
 379 strategy and calculating the two regret quantities involve computing aggregations over sequences
 380 of tokens, which are naturally simulated with self-attention layers. Our construction reflects a re-
 381 alistic class of transformers by maintaining tight bounds on embedding dimension and depth and
 382 employing multi-layer perceptrons that can be compactly represented as shallow ReLU networks.
 383

384 5.2 EMPIRICALLY ROBUSTIFYING SIMPLE TRANSFORMERS

385 In the previous sections, we demonstrated the existence of a procedure for learning specialized low-
 386 regret online learning algorithms by carefully perturbing the original statistical training data. In this
 387 section, we also demonstrate that in simple settings, it is also practically efficient to train small trans-
 388 formers with this algorithm, suggesting that robustification procedures may be practically plausible
 389 for modifying LLM behavior for decision-making while retaining good statistical performance.
 390

391 We consider the special case of a decision problem to match the state. Both the action space and
 392 the state space are binary $A = \Theta = \{0, 1\}$, and the utility function $U(a, \theta) = \mathbb{I}[a = \theta]$. We
 393 conduct experiments with the minimal decoder-only transformer, NanoDO (Liu et al., 2024). The
 394 transformer predicts a binary sequence. We adopt the default parameters of NanoDO, with a context
 395 length of $T = 1024$, 256 embedding dimensions, 4 attention heads, 3 transformer block layers, and
 396 1024 inner dimensions.
 397

398 We train the transformer on three datasets with a batch size of 128. The three training processes all
 399 converge and stop after 500 steps.
 400

401 **BERNOULLI** is the in-distribution and non-robust transformer. The dataset is generated from the
 402 distribution where the first half of 512 bits are from $\text{Ber}(1/3)$ and the second half are from $\text{Ber}(2/3)$.
 403

404 **POLYAURN** is the robust transformer without distributional information. The transformer is
 405 trained on Polya Urn sequences, where the next bit is generated from the empirical distribution
 406 in history: $\Pr[\theta_{t+1} = 1 | \theta_1, \dots, \theta_t] = \frac{\sum_{i \in [t]} \theta_i}{t}$. By setting the temperature to $\frac{1}{\sqrt{T}}$, POLYAURN
 407 plays the same strategy as the Hedge algorithm.
 408

409 **ROBUST_BERNOULLI** is trained on the robustified distribution of **BERNOULLI**. We do this in
 410 the following way. We sample training data from the same distribution as **BERNOULLI**. We also
 411 sample an equal number of Polya Urn sequences. For a Polya Urn sequence, we keep it only if
 412 transformer **BERNOULLI** has a regret higher than $\frac{\alpha}{\sqrt{t}}$ for some $t \leq T$, with $\alpha = 1.5$. In other cases,
 413 we discard the sequence. To keep the TV-distance unchanged in the training process, we mask out
 414 the loss calculation over the prefix of a Polya urn sequence, up to the first position t where there is
 415 a regret higher than $\frac{\alpha}{\sqrt{t}}$. By masking out the prefix, the transformer does not learn the distribution
 416 that generates a high-regret prefix.
 417

5.2.1 REGRET EVALUATION

418 We evaluate the regret of the three transformers on eight ground truth distributions over sequences.
 419 The bits are drawn independently from each other. The first four are static distributions where each
 420 bit is drawn from either $\text{Ber}(1/3)$ or $\text{Ber}(2/3)$. In the other four simulations, we adopt the same
 421 simulation setup as in Schneider & Vodrahalli (2024). The bits are generated from a periodically
 422 drifting distribution with $\Pr[\theta_t = 1] = |\sin(\pi/6 + t \cdot \pi/\phi)|$, for period $\phi \in \{\frac{T}{2}, \frac{T}{5}, \frac{T}{10}, \frac{T}{20}\}$. We
 423 evaluate the regret of quantal best-response by applying a soft-max layer and setting the temperature
 424 to $\frac{1}{\sqrt{T}}$. We estimate from 128 independent sequences sampled from the ground truth distribution.
 425

426 We plot the regret of the three transformers in Figure 1. The following observations validate that
 427 NanoDO learns the dataset constructed by Algorithm 1. First, The transformers effectively learn to
 428 play the robust strategy. **ROBUST_BERNOULLI** and **POLYAURN** both have vanishing regret on all
 429 eight ground truth data-generating processes. Second, **ROBUST_BERNOULLI** learns the switch-
 430 ing policy of Algorithm 1. **ROBUST_BERNOULLI** preserves the same in-distribution regret of
 431 **BERNOULLI** in plot (1, 2), which is negative around -0.16 .
 432

5.2.2 TV-DISTANCE

433 We report the estimated TV-distance between the models in Table 1. We estimate from 128 inde-
 434 pendent sample of sequences and report the 95% confidence interval. We also test the TV-distance
 435

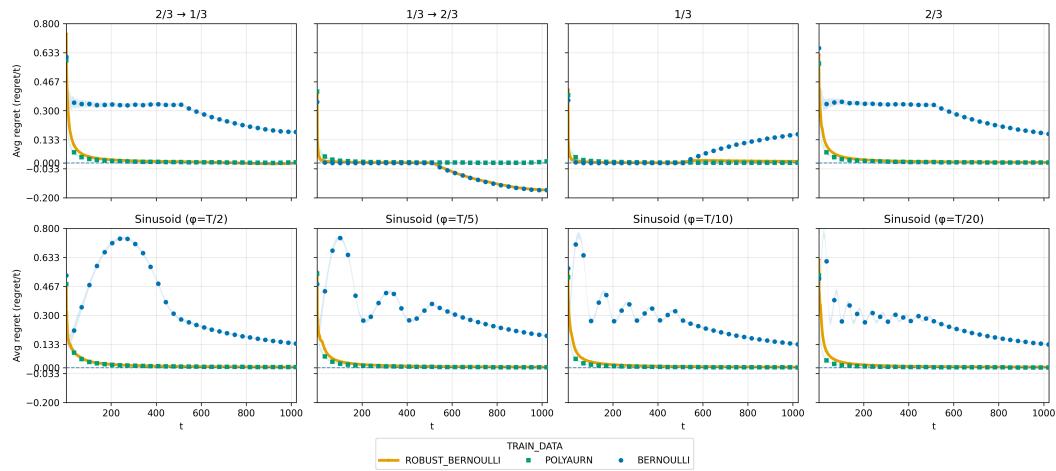


Figure 1: The regret of three transformers over 8 ground truth distributions. The three transformers are 1) ROBUST_BERNOULLI, robustified BERNOUILLI, 2) POLYAURN, and 3) BERNOUILLI. The eight ground truth distributions are: a) half $\text{Ber}(2/3)$ and then half $\text{Ber}(1/3)$; b) half $\text{Ber}(1/3)$ and half $\text{Ber}(2/3)$, the same distribution that ROBUST_BERNOULLI and BERNOUILLI were trained on; c) $\text{Ber}(1/3)$; d) $\text{Ber}(2/3)$; and four periodically changing distributions on the second row. The plot shows (very narrow) confidence intervals in light color.

	BERNOULLI ₁	ROBUST_BERNOULLI	POLYAURN
BERNOULLI ₁	—	0.7602 ± 0.0267	1.0000 ± 0
BERNOULLI ₂	0.4193 ± 0.0232	0.6869 ± 0.0295	1.0000 ± 0

Table 1: The TV-distance between transformers. BERNOULLI_i are two models trained on the same $\text{Ber}(1/3) \rightarrow \text{Ber}(2/3)$ process with different random seeds.

between two models trained on the same BERNOUILLI distribution, but with different random seeds. ROBUST_BERNOULLI achieves a lower TV-distance than POLYAURN, where POLYAURN has a TV-distance estimated as high as 1.0000 from the original distribution BERNOUILLI.

In addition to the TV-distance, we report the Next-Token TV-distance here. As shown in Table 1, the full-sequence TV-distance is brutally strict and even high for two models trained on the same distribution. Tiny per-token differences are calculated as a difference across the entire sequence. Even models that behave similarly at a token level can have a high TV-distance on whole sequences. Per-step TV instead measures the local difference of the two predictive models at each prefix.

We define the following Next-Token TV-distance. For each prefix θ^s , we can calculate the TV-distance of the next-token prediction, $d_{\text{TV}}(\mathcal{M}_1(\cdot|\theta^s), \mathcal{M}_2(\cdot|\theta^s))$. The Next-Token TV-distance d_{NT} takes the expectation of the prefix from the distribution of BERNOUILLI, i.e., with the first $T/2$ drawn from $\text{Ber}(1/3)$ and the second $T/2$ tokens from $\text{Ber}(2/3)$: $d_{\text{NT}} = \mathbb{E}_{\theta \sim \text{BERNOULLI}} \left[\frac{1}{T} \sum_{s \in [T]} d_{\text{TV}}(\mathcal{M}_1(\cdot|\theta^s), \mathcal{M}_2(\cdot|\theta^s)) \right]$.

We report the Next-Token TV-distance in Table 2. The results are calculated with 128 independent draws of a sequence.

	BERNOULLI ₁	ROBUST_BERNOULLI	POLYAURN
BERNOULLI ₁	—	0.0199 ± 0.0001	0.1529 ± 0.0003
BERNOULLI ₂	0.0156	0.0299 ± 0.0001	0.1655 ± 0.0004

Table 2: Next-Token TV distance between transformers. BERNOULLI_i are two models trained on the same $\text{Ber}(1/3) \rightarrow \text{Ber}(2/3)$ process with different random seeds.

486 REFERENCES
487

488 Elchanan Ben-porath. The complexity of computing a best response automaton in repeated games
489 with mixed strategies. *Games and Economic Behavior*, 2(1):1–12, March 1990. doi: None. URL
490 <https://ideas.repec.org/a/eee/gamebe/v2y1990i1p1-12.html>.

491 Emmanuel Candes and Terence Tao. Decoding by linear programming, 2005. URL <https://arxiv.org/abs/math/0502327>.
492

493 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
494 Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
495 via sequence modeling, 2021. URL <https://arxiv.org/abs/2106.01345>.
496

497 Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
498 application to boosting. *Journal of computer and system sciences*, 55(1):119–139, 1997.
499

500 Akshay Krishnamurthy, Keegan Harris, Dylan J. Foster, Cyril Zhang, and Aleksandrs Slivkins. Can
501 large language models explore in-context?, 2024. URL <https://arxiv.org/abs/2403.15371>.
502

503 Ehud Lehrer and Eilon Solan. Approachability with bounded memory. *Games and Economic Behavior*,
504 66(2):995–1004, July 2009. doi: None. URL <https://ideas.repec.org/a/eee/gamebe/v66y2009i2p995-1004.html>.
505

506 Peter J. Liu, Roman Novak, Jaehoon Lee, Mitchell Wortsman, Lechao Xiao, Katie Everett, Alexander A. Alemi, Mark Kurzeja, Pierre Marcenac, Izzeddin Gur, Simon Kornblith, Kelvin Xu, Gamaleldin Elsayed, Ian Fischer, Jeffrey Pennington, Ben Adlam, and Jascha-Sohl Dickstein. Nanodo: A minimal transformer decoder-only language model implementation in JAX., 2024.
507 URL <https://github.com/google-deepmind/nanodo>.
508

509 Annie Marsden, Evan Dogariu, Naman Agarwal, Xinyi Chen, Daniel Suo, and Elad Hazan. Provable
510 length generalization in sequence prediction via spectral filtering, 2024. URL <https://arxiv.org/abs/2411.01035>.
511

512 Shahar Mendelson, Alain Pajor, and Nicole Tomczak-Jaegermann. Reconstruction and subgaussian
513 operators in asymptotic geometric analysis. *Geometric and Functional Analysis*, 17:1248–1282,
514 11 2007. doi: 10.1007/s00039-007-0618-7.
515

516 Allen Nie, Yi Su, Bo Chang, Jonathan N. Lee, Ed H. Chi, Quoc V. Le, and Minmin Chen. Evolve:
517 Evaluating and optimizing llms for in-context exploration, 2025. URL <https://arxiv.org/abs/2410.06238>.
518

519 Chanwoo Park, Xiangyu Liu, Asuman Ozdaglar, and Kaiqing Zhang. Do llm agents have regret?
520 a case study in online learning and games, 2025. URL <https://arxiv.org/abs/2403.16843>.
521

522 Michele Piccione and Ariel Rubinstein. Finite automata play a repeated extensive game. *Journal of Economic Theory*, 61(1):160–168, 1993. ISSN 0022-0531. doi: <https://doi.org/10.1006/jeth.1993.1063>. URL <https://www.sciencedirect.com/science/article/pii/S002205318371063X>.
523

524 Ariel Rubinstein. Finite automata play the repeated prisoner’s dilemma. *Journal of Economic
525 Theory*, 39(1):83–96, June 1986. doi: None. URL <https://ideas.repec.org/a/eee/jetheo/v39y1986i1p83-96.html>.
526

527 Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and
528 limitations of transformers. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
529 M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing
530 Systems*, volume 36, pp. 36677–36707. Curran Associates, Inc., 2023. URL
531 https://proceedings.neurips.cc/paper_files/paper/2023/file/73bf692447f174984f30499ec9b20e04-Paper-Conference.pdf.
532

540 Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Transformers, parallel computation, and log-
541 arithmetic depth. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
542 Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International
543 Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*,
544 pp. 43276–43327. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/sanford24a.html>.

545

546 Jon Schneider and Kiran Vodrahalli. Online learning with bounded recall. In *Proceedings of the
547 41st International Conference on Machine Learning*, pp. 43791–43803, 2024.

548

549 Aron Vallinder and Edward Hughes. Cultural evolution of cooperation among llm agents, 2024.
550 URL <https://arxiv.org/abs/2412.10270>.

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 **A ADDITIONAL RELATED WORK**

596 Our study is at the intersection of decision-making in online learning as well as modern transformer
 597 architectures in deep learning.

598 Classically, there have been many studies of online decision-making for model families defined by
 599 classes of finite automata (Rubinstein, 1986; Ben-porath, 1990; Lehrer & Solan, 2009; Piccione &
 600 Rubinstein, 1993), though these earlier works are typically in the context of repeated games (which,
 601 while related, is distinct from the online learning setting we study in this work). We can view the
 602 connection to this earlier work by considering a transformer to implement a class of finite automata.
 603

604 Park et al. (2025) is a particularly relevant modern study that studies the behavior of large language
 605 models (LLMs) as game theoretic agents in both online learning and game theory, and is perhaps
 606 the first study to directly examine whether a transformer-based architecture can also be a no-regret
 607 agent. This work focuses more on the empirical behavior of existing LLMs and also defines a
 608 complex regret-based training objective by which to train transformers. Comparatively, we present
 609 distinct and simpler algorithms to achieve the goal of low-regret transformer models and present
 610 results in different settings, focusing on the relation between next-token-prediction and regret.

611 Marsden et al. (2024) is another work investigating connections between length generalization in
 612 next-token-prediction and online sequence prediction, albeit in the specialized setting of online lin-
 613 ear dynamical systems.

614 The idea of using transformers for decision-making has also long been present in the deep learn-
 615 ing literature. Chen et al. (2021) proposed to use transformer models for decision-making, and
 616 Nie et al. (2025) has built on this work in the era of large language models, exploring multiple al-
 617 gorithms for transforming an existing LLM into a model that can perform in-context exploration
 618 in online decision-making settings. Krishnamurthy et al. (2024) also explores the connection be-
 619 between LLMs and decision-making settings, but again focuses on existing LLMs and investigating
 620 multi-arm bandit environments via online in-context learning. Finally, Vallinder & Hughes (2024)
 621 proposes another approach to modify the behavior of LLM agents in an online decision-making
 622 setting via evolving prompts.

623 **B OMITTED PROOFS**

625 **B.1 PROOF OF LEMMA 2.1**

627 *Proof.* Let $h_{t-1} := (\theta_1, \dots, \theta_{t-1})$ denote the history up to time $t-1$. By assumption, the model's
 628 next token prediction is the true conditional probability at every history:

$$629 \quad \mathcal{M}(h_{t-1}) = D(\cdot \mid h_{t-1}).$$

631 At round t , the decision maker plays the best response to this next-token prediction:

$$632 \quad \pi_t \in \text{BR}(\mathcal{M}(h_{t-1})) \in \arg \max_{\pi \in \Delta(A)} \mathbb{E}_{\theta_t \sim D(\cdot \mid h_{t-1})} [U(\pi, \theta_t)].$$

634 For any other action $a^* \in A$. By the optimality of π_t under the correct conditional,

$$635 \quad \mathbb{E}[U(\pi_t, \theta_t) \mid h_{t-1}] \geq \mathbb{E}[U(a^*, \theta_t) \mid h_{t-1}].$$

636 Taking expectations over h_{t-1} and using the tower property yields

$$638 \quad \mathbb{E}[U(\pi_t, \theta_t)] \geq \mathbb{E}[U(a^*, \theta_t)].$$

639 Summing over $t = 1, \dots, T$ gives

$$641 \quad \mathbb{E}_{\theta \sim D} \left[\sum_{t=1}^T U(\pi_t, \theta_t) \right] \geq \mathbb{E}_{\theta \sim D} \left[\sum_{t=1}^T U(a^*, \theta_t) \right] \quad \text{for every } a^* \in A.$$

643 Equivalently, the expected (average) *utility regret* versus the best fixed action in hindsight is ≤ 0 :

$$645 \quad \mathbb{E}_{\theta \sim D} \left[\max_{a^* \in A} \frac{1}{T} \sum_{t=1}^T (U(a^*, \theta_t) - U(\pi_t, \theta_t)) \right] \leq 0,$$

647 which is precisely $\mathbb{E}_{\theta \sim D}[\text{EXTREG}(\pi, \theta)] \leq 0$. \square

648 B.2 PROOF OF LEMMA 2.2
649650 *Proof.* Consider the binary token space and action space $\Theta = A = \{0, 1\}$, with utility function
651 $U(a, \theta) = \mathbb{I}[a = \theta]$. Fix any next-token model \mathcal{M} and the induced (deterministic) decision rule
652 $\pi_t = \text{BR}(\mathcal{M}(\theta^{(t-1)}))$, which is a deterministic function of the history $h_{t-1} = (\theta_1, \dots, \theta_{t-1})$.653 Define an adversary that, after observing a_t (or equivalently inferring a_t from the history), sets
654 $\theta_t = 1 - a_t$. Then the learner obtains zero utility each round:
655

656
$$U(a_t, \theta_t) = 0 \quad \text{for all } t,$$

657

658 so $\sum_{t=1}^T U(a_t, \theta_t) = 0$.

659 On the other hand, for the realized state sequence $\theta_{1:T}$, the best fixed action in hindsight is the
660 majority element of the sequence, which achieves utility at least $T/2$. Therefore,

661
$$\text{EXTREG}(\pi, \theta) = \frac{1}{T} \left(\max_{a \in \{0, 1\}} \sum_{t=1}^T U(a, \theta_t) - \sum_{t=1}^T U(a_t, \theta_t) \right) \geq \frac{1}{2}.$$

662

663 Thus, the regret is bounded below by a constant, i.e. $\Omega(1)$. □
664665 B.3 PROOF OF LEMMA 2.3
666667 *Proof of Lemma 2.3.* Fix a finite action set A and utilities $U : A \times \Theta \rightarrow [-1, 1]$. At round t , the
668 Polya urn predictor is

669
$$\mathcal{M}_{\text{Polya}}(\theta \mid \theta_{1:t-1}) = \frac{1 + \sum_{s=1}^{t-1} \mathbb{I}[\theta_s = \theta]}{|\Theta| + (t-1)}.$$

670

671 The QBR with parameter $\eta > 0$ plays
672

673
$$\pi_t(a) \propto \exp\left(\frac{1}{\eta} U(a, \mathcal{M}_{\text{Polya}}(\cdot \mid \theta_{1:t-1}))\right),$$

674

675 where

676
$$\exp\left(\frac{1}{\eta} U(a, \mathcal{M}_{\text{Polya}}(\cdot \mid \theta_{1:t-1}))\right) = \exp\left(\frac{1}{\eta(|\Theta| + t - 1)} \left[\sum_{\theta \in \Theta} U(a, \theta) + \sum_{s=1}^{t-1} U(a, \theta_s) \right]\right).$$

677

678 Thus, QBR plays
679

680
$$\pi_t(a) \propto \exp\left(\frac{C(a)}{\eta(|\Theta| + t - 1)}\right) \cdot \exp\left(\frac{1}{\eta(|\Theta| + t - 1)} \sum_{s=1}^{t-1} U(a, \theta_s)\right).$$

681

682 Thus π_t is an *exponential-weights* distribution over actions with round- t learning rate $\lambda_t :=$
683 $\frac{1}{\eta(|\Theta| + t - 1)}$ applied to the realized utilities $U(a, \theta_s)$, and with an action-dependent prior factor that
684 only changes by a common (rescaling-invariant) temperature at each t . Standard analysis of Hedge
685 with time-varying learning rates (apply, e.g., the potential argument round by round) gives, for any
686 adversarial sequence $\theta_{1:T}$,

687
$$\sum_{t=1}^T (U(\pi_t, \theta_t) - U(a^*, \theta_t)) \geq -\frac{\ln |A|}{\lambda_T} - \frac{1}{2} \sum_{t=1}^T \lambda_t, \quad \text{for all } a^* \in A,$$

688

689 using $U \in [-1, 1]$. Choosing $\eta = T^{-1/2}$ (as in the statement) yields $\lambda_t = \frac{\sqrt{T}}{|\Theta| + t - 1}$, so
690

691
$$\frac{1}{T} \sum_{t=1}^T (U(a^*, \theta_t) - U(\pi_t, \theta_t)) \leq \frac{\ln |A|}{T \lambda_T} + \frac{1}{2T} \sum_{t=1}^T \lambda_t = \frac{\ln |A|}{\sqrt{T}} + O\left(\frac{\log T}{\sqrt{T}}\right) = O\left(\frac{\log T + \ln |A|}{\sqrt{T}}\right).$$

692

693 which implies the regret bound $\text{EXTREG}(\pi, \theta) = O\left(\frac{\log T + \ln |A|}{\sqrt{T}}\right)$. □
694

702 B.4 PROOF OF THEOREM 3.1
703

704 *Proof.* Let \mathcal{E} be the event that for some $s \in [T - 1]$, $\text{REGRET}_s \geq \text{REGRET}_{\text{HEDGE},s} + \frac{1}{\sqrt{T}} \log |A| +$
705 $\sqrt{8(1 + \alpha)(\log T)/s}$ (i.e., we return $\mathcal{M}_{\text{Polya}}(\boldsymbol{\theta}^{t-1})$ for all rounds $t > s$). Let τ be the random
706 variable representing the minimum such s ; if the event \mathcal{E} does not occur, let $\tau = T$.
707

708 We begin by proving that the new model \mathcal{M} implements a low-regret distribution D . Fix any ad-
709 versarial sequence of states $\boldsymbol{\theta}$ and define $\pi_t = \text{QBR}(\mathcal{M}(\boldsymbol{\theta}^{t-1}), 1/\sqrt{T})$. We can decompose the
710 external regret $\text{EXTREG}(\boldsymbol{\pi}, \boldsymbol{\theta})$ via

$$713 \text{EXTREG}(\boldsymbol{\pi}, \boldsymbol{\theta}) = \max_{a^* \in A} \frac{1}{T} \left(\sum_{t=1}^{\tau} [U(a^*, \theta_t) - U(\pi_t, \theta_t)] + \sum_{t=\tau+1}^T [U(a^*, \theta_t) - U(\pi_t, \theta_t)] \right)$$

716 By assumption, for $t \leq \tau$, $M(\boldsymbol{\theta}^{t-1}) = M_0(\boldsymbol{\theta}^{t-1})$, and so $\sum_{t=1}^{\tau} [U(a^*, \theta_t) -$
717 $U(\pi_t, \theta_t)] \leq \tau \text{REGRET}^{\tau}$. By the definition of τ , $\text{REGRET}^{\tau} < \text{REGRET}_{\text{HEDGE},s} +$
718 $\frac{1}{\sqrt{T}} \log |\Theta| + \sqrt{8(1 + \alpha)(\log T)/\tau}$, and so we in turn have that $\sum_{t=1}^{\tau} [U(a^*, \theta_t) -$
719 $U(\pi_t, \theta_t)] \leq \tau \left(\text{REGRET}_{\text{HEDGE},s} + \frac{1}{\sqrt{T}} \log |\Theta| + \sqrt{8(1 + \alpha)(\log T)/\tau} \right) = \tau \text{REGRET}_{\text{HEDGE},s} +$
720 $O\left(\sqrt{T} \left(\log |\Theta| + \sqrt{(1 + \alpha) \log T} \right)\right)$.
721

723 For $t > \tau$, we have that $M(\boldsymbol{\theta}^{t-1}) = \mathcal{M}_{\text{Polya}}(\boldsymbol{\theta}^{t-1})$. By Lemma 2.3, we therefore
724 have that $\tau \text{REGRET}_{\text{HEDGE},s} + \sum_{t=\tau+1}^T [U(a^*, \theta_t) - U(\pi_t, \theta_t)] = O\left(T \cdot \frac{\log(T) + \log |A|}{\sqrt{T}}\right) =$
725 $O(\sqrt{T} \log(|A| \cdot T))$. Combining these two terms, we have that $\text{EXTREG}(\boldsymbol{\pi}, \boldsymbol{\theta}) =$
726 $O\left(\frac{1}{\sqrt{T}} (\log(|A| \cdot T) + \sqrt{(1 + \alpha) \log T})\right) = o(1)$.
727

729 We next bound the TV-distance between D and D_0 . Note that because we play the recommendation
730 of \mathcal{M}_0 (and sample from D_0) until event \mathcal{E} occurs, the TV distance $d_{\text{TV}}(D, D_0)$ is upper bounded
731 by the probability $\Pr_{\boldsymbol{\theta} \sim D_0} [\mathcal{E}]$ of this event.

732 To do this, we begin by defining \boldsymbol{a} to be the sequence of pure action best responses to the recom-
733 mendations of \mathcal{M}_0 ; i.e., $a_t = \text{BR}(\mathcal{M}_0(\boldsymbol{\theta}^{t-1}))$. We argue that if $\boldsymbol{\theta}$ is truly sampled from D_0 , then
734 \boldsymbol{a} and $\boldsymbol{\pi}$ obtain similar utilities and hence similar regrets. We can quantitatively bound this through
735 the following lemma.
736

737 **Lemma B.1.** *Let $\mu \in \Delta(\Theta)$ be a distribution over states $\boldsymbol{\theta}$. Let $a = \text{BR}(\mu)$ and $\pi = \text{QBR}(\mu, \eta)$.
738 Then*

$$740 U(a, \mu) - U(\pi, \mu) \leq \eta \log |A|.$$

743 *Proof.* Note that we can equivalently define the quantal best response π as the mixed action that
744 maximizes the regularized utility $V(\pi) = U(\pi, \mu) + \eta H(\pi)$ (where H is the entropy function). We
745 therefore have that $V(a) \leq V(\pi)$; expanding this out (and using the fact that $H(a) = 0$), we find
746 that $U(a, \mu) \leq U(\pi, \mu) + \eta H(\pi) \leq U(\pi, \mu) + \eta \log |A|$, from which the conclusion follows. \square
747

748 From Lemma B.1, it follows that when $\boldsymbol{\theta} \sim D_0$, $\mathbb{E}_{\theta_t} [U(a_t, \theta_t) - U(\pi_t, \theta_t)] \leq (\log |A|)/\sqrt{T}$.
749 Secondly, since a_t is the best response to the distribution of θ_t , for any action a_t^* we have that
750 $\mathbb{E}_{\theta_t} [U(a_t^*, \theta_t) - U(a_t, \theta_t)] \leq 0$. Combining these expressions, we have that $\mathbb{E}_{\theta_t} [U(a_t^*, \theta_t) -$
751 $U(\pi_t, \theta_t)] \leq (\log |A|)/\sqrt{T}$.

752 Let $R_t(a^*) = \sum_t (U(a^*, \theta_t) - U(\pi_t, \theta_t))$ be the unnormalized regret at time t with respect to
753 a^* , and similarly $R_{\text{HEDGE},t}(a^*) = \sum_t (U(a^*, \theta_t) - U(\pi_{\text{HEDGE},t}, \theta_t))$. By the previous observation,
754 $R_t(a^*) - R_{\text{HEDGE},t}(a^*) - t(\log |A|)/\sqrt{T}$ is a super-martingale, so by Azuma's inequality, we have
755 that

756

$$\Pr \left[R_t(a^*) \geq R_{\text{HEDGE},t}(a^*) + \frac{t \log |A|}{\sqrt{T}} + C \right] \leq \exp \left(-\frac{C^2}{8t} \right).$$

760

761 Substituting $C = \sqrt{8(1+\alpha)(\log T)t}$ (and normalizing by t), we find that

762

$$\Pr \left[\frac{1}{t} R_t(a^*) \geq R_{\text{HEDGE},t}(a^*) + \frac{\log |A|}{\sqrt{T}} + \sqrt{\frac{8(1+\alpha)(\log T)}{t}} \right] \leq T^{-(1+\alpha)}.$$

763

764 Now, $\text{REGRET}_t = \max_{a^*} \frac{1}{t} R_t(a^*)$. Applying a union bound over all $t \in [T]$ and $a^* \in |A|$, we have
765 that $\Pr[\mathcal{E}] \leq |A| \cdot T^{-\alpha}$, as desired. \square

766

770 B.5 PROOF OF THEOREM 4.1

771 To formally construct these two models \mathcal{M}_0 and \mathcal{M}_1 , we will make use of the theory of *de Bruijn sequences*. The *de Bruijn graph* $\hat{G}_{\sigma,k}$ of order k on an alphabet $\Theta = \{s_1, \dots, s_{|\Theta|}\}$ of size $|\Theta|$ is a directed graph whose vertices represent all distinct sequences of length $k-1$. For every sequence $s_{i_1} s_{i_2} \dots s_{i_k}$ of length k , there is a directed edge from the vertex $s_{i_1} s_{i_2} \dots s_{i_{k-1}}$ to the vertex $s_{i_2} s_{i_3} \dots s_{i_k}$. A *de Bruijn sequence* of order k is a cyclic sequence of characters in Θ where each of the possible $|\Theta|^k$ substrings of length k appears exactly once. Note that a de Bruijn sequence of order k corresponds to a (loop-removed) Eulerian cycle in a de Bruijn graph of order k (which in turn must exist since every node in $\hat{G}_{\sigma,k}$ has equal indegree and outdegree $|\Theta|$).

772 Given a fixed de Bruijn sequence of order L and over a binary alphabet $\Theta = \{0, 1\}$, we can use it to
773 construct two nearly deterministic L -bounded models \mathcal{M}_0 and \mathcal{M}_1 . \mathcal{M}_0 and \mathcal{M}_1 induce the same
774 uniform marginal distribution over length L substrings, but the next-token predictions are different.
775 We construct in the following way: we define $\mathcal{M}_0(\theta^L)$ specified by the deterministic next-token
776 of the de Bruijn sequence, and $\mathcal{M}_1(\theta^L) = 1 - \mathcal{M}_0(\theta^L)$ as the deterministic opposite of \mathcal{M}_1 .
777 The first L tokens in the Markov process are seeded uniformly so that both processes remain in the
778 same stationary distribution: the marginal distribution over any $t > L$ substring is uniform. Thus,
779 any context length L model \mathcal{M} will not be able to distinguish \mathcal{M}_0 from \mathcal{M}_1 . Such a model \mathcal{M}
780 makes predictions very differently from the deterministic next-token of either \mathcal{M}_0 or \mathcal{M}_1 , leading
781 to Theorem 4.1.

782

783

784 *Proof.* We will prove this by constructing two L -bounded models \mathcal{M}_0 and \mathcal{M}_1 with the following
785 guarantee: for any other L -bounded model,

786

787

$$d_{TV}(D_0, D) + \mathbb{E}_{\theta \sim D_1} [\text{EXTREG}(\pi, \theta)] \geq 1/12.$$

788

789

790 The theorem statement then follows from this guarantee (if $\mathbb{E}_{\theta \sim D_1} [\text{EXTREG}(\pi, \theta)] \geq 1/24$, there
791 exists some sequence in the support of D_1 that realizes this).

792

793

794 We first describe the two models. These models will be (nearly) deterministic Markov processes
795 of order L . For both \mathcal{M}_0 and \mathcal{M}_1 , we set probabilities for the first L tokens so that each token is
796 equally likely to be 0 or 1 (i.e., for $t \leq w$, $\mathcal{M}_0(\theta_t | \theta^{t-1}) = \mathcal{M}_1(\theta_t | \theta^{t-1}) = \text{Unif}(\{0, 1\})$).

797

798

799 We then use a de Bruijn sequence to set the transition probabilities of \mathcal{M}_0 and \mathcal{M}_1 as follows. Pick
800 an arbitrary binary de Bruijn sequence of order L . For an L -tuple of states $\theta^L = (\theta_1, \dots, \theta_L)$, let
801 $\text{DB}(\theta^L) \in \{0, 1\}$ be the token immediately following θ^L in this de Bruijn sequence. Then:

802

803

804

805

806

807

808

809

- For \mathcal{M}_0 , set $\mathcal{M}_0(\theta_t | \theta^{(t-L):(t-1)}) = \mathbb{I}[\theta_t = \text{DB}(\theta^{(t-L):(t-1)})]$.
- For \mathcal{M}_1 , set $\mathcal{M}_1(\theta_t | \theta^{(t-L):(t-1)}) = \mathbb{I}[\theta_t = 1 - \text{DB}(\theta^{(t-L):(t-1)})]$.

That is, we deterministically⁴ set \mathcal{M}_0 to generate the next bit by following the de Bruijn sequence, and set \mathcal{M}_1 to generate the next bit by deterministically following the opposite of the de Bruijn sequence.

We begin by making the following observation: for both Markov processes \mathcal{M}_0 and \mathcal{M}_1 , the uniform distribution over L -bit strings is a stationary distribution for the process. This follows because the induced Markov chain over L -bit strings is doubly stochastic for both \mathcal{M}_0 and \mathcal{M}_1 (for any state θ^L , there are exactly two predecessor states that can lead to it, one from the de Bruijn sequence, and one not from it). This means that for all $t > L$, the distribution of $\theta^{(t-L):(t-1)}$ is uniform over Θ^L .

Now let us consider the candidate robust L -bounded model \mathcal{M} (with distribution $D(\mathcal{M}) = D$). We will call an L -tuple of states $\theta^L \in \Theta^L$ *high-regret* if $\mathcal{M}(\text{DB}(\theta^L)|\theta^L) \geq 2/3$, and let $\alpha \in [0, 1]$ equal the fraction of tuples in Θ^L that are high-regret. Note that on a high-regret sequence the prediction of \mathcal{M} disagrees with that of \mathcal{M}_1 , and will cause \mathcal{M} to incur external regret on sequences drawn from D_1 .

In particular, we first claim that $\mathbb{E}_{\theta \sim D_1}[\text{EXTREG}(\pi, \theta)] \geq \frac{1}{3}\alpha - (1 - \alpha)$. To see this, we will compare the expected utility of following the baseline strategy $\pi^* = (1/2, 1/2)$ to the utility of following the sequence of recommendations $\pi_t = \text{QBR}(\mathcal{M}(\theta^{t-1}), 1/\sqrt{L})$. The baseline strategy has the property that $U(\pi^*, \theta) = 1/2$ regardless of θ , so the cumulative utility of the baseline is always $T/2$. If $\theta^{(t-L):(t-1)}$ is a high-regret tuple, then π_t will equal $\text{DB}(\theta^{(t-L):(t-1)})$ with probability at least $2/3$ (this probability only gets amplified by the quantal best response), and therefore $U(\pi_t, \theta_t) \leq 1/3$. On the other hand, if $\theta^{(t-L):(t-1)}$ is not a high-regret tuple, then we only have the trivial bound $U(\pi_t, \theta_t) \leq 1$. Finally, for any $t < L$, θ_t will be drawn uniformly from $\{0, 1\}$, so the expected utility $\mathbb{E}[U(\pi_t, \theta_t)] = 1/2$.

Combining these facts (and using the fact that for each $t > L$, $\theta^{(t-L):(t-1)}$ is drawn uniformly from Θ^L and therefore has an α probability of being high-regret), we find that

$$\begin{aligned} \mathbb{E}_{\theta \sim D_1}[\text{EXTREG}(\pi, \theta)] &\geq \mathbb{E}_{\theta \sim D_1} \left[\frac{1}{T} \sum_{t=1}^T U(\pi^*, \theta_t) - U(\pi_t, \theta_t) \right] \\ &\geq \frac{(T-L)}{T} \cdot \left(\frac{1}{2} - \frac{\alpha}{3} - (1 - \alpha) \right) \\ &= \frac{\alpha}{3} - \frac{1}{4}. \end{aligned}$$

On the other hand, we will show that if α is too small, then the TV distance between D_0 and D is necessarily large. Indeed, let \tilde{D}_0 and \tilde{D} be the distributions of the first $L + 1$ states from D_0 and D respectively – by the data-processing inequality, $d_{\text{TV}}(D_0, D) \geq d_{\text{TV}}(\tilde{D}_0, \tilde{D})$. But we can directly bound $d_{\text{TV}}(\tilde{D}_0, \tilde{D}) \geq (1 - \alpha)/3$, since if $\theta^{1:L}$ is not high-regret (which happens with probability $1 - \alpha$), with probability at least $1/3$ $\mathcal{M}(\theta^{1:L})$ will not equal $\text{DB}(\theta^{1:L})$ and thus generate a sequence lying outside the support of \mathcal{M}_0 . It follows that $d_{\text{TV}}(D_0, D) + \mathbb{E}_{\theta \sim D_1}[\text{EXTREG}(\pi, \theta)] \geq 1/12$, as desired. \square

B.6 PROOF OF THEOREM 4.2

Proof of Theorem 4.2. First, we bound the TV distance between D and D_0 . Following the proof of Theorem 3.1, for any substring of length $m \leq \Delta$, the probability that Algorithm 1 plays the out-of-distribution prediction is bounded by $\frac{1}{T} \cdot \frac{1}{\Delta^{\alpha+1}}$. There are at most ΔT substrings of length bounded by Δ . Applying a union bound we prove the TV distance result.

The external regret bound follows from the same proof in Schneider & Vodrahalli (2024). We write the proof here. Given a context of length L , the output of Algorithm 2 can be viewed as the uniform

⁴If we want to ensure D_0 and D_1 have full support, we can add infinitesimal mass on the other option (i.e. follow the de Bruijn sequence with probability $1 - \epsilon$, follow the opposite with probability ϵ). This does not affect any of the subsequent logic.

combination of Δ copies of Algorithm 1, each starting at a time $m = L + 1, \dots, L'$. Intuitively, Algorithm 2 inherits the regret of Algorithm 1 over length Δ strings with the given parameters, which is bounded by $\frac{\sqrt{2}+1}{\Delta} + \sqrt{\frac{8 \log T + 8(\alpha+1) \log \Delta}{\Delta}}$. We denote Algorithm 1 by \mathcal{A} and its regret by $\text{REGRET}_{\mathcal{A}}$. First, we introduce notation related to offsets. For any $t \in -(\Delta-1), T-1$ and $m \in [\Delta]$, we write

$$\tilde{a}_t^m = a_{t+m}^m = \mathcal{A}(\theta_t, \dots, \theta_{t+m-1}),$$

which is the prediction by the m -th copy of \mathcal{A} about state θ_{t+m} .

Now we rearrange the total payoff of Algorithm 2 and write it in copies of \mathcal{A} :

$$\begin{aligned} \sum_t \mathbb{I}[a_t = \theta_t] &= \sum_{t=1}^T \frac{1}{\Delta} \sum_{m=1}^{\Delta} \mathbb{I}[a_t^m = \theta_t] \\ &= \sum_{t=1}^T \frac{1}{\Delta} \sum_{m=1}^{\Delta} \mathbb{I}[\tilde{a}_{t-m}^m = \theta_t] \\ &= \sum_{t=-\Delta+1}^{T-1} \frac{1}{\Delta} \sum_{m=1}^{\Delta} \mathbb{I}[\tilde{a}_t^m = \theta_{t+m}] \\ &\geq \sum_{t=-\Delta+1}^{T-1} \frac{1}{\Delta} \left[\max_{\theta \in \{0,1\}} \sum_{m=t}^{t+\Delta} \mathbb{I}[\theta = \theta_m] - \Delta \text{REGRET}_{\mathcal{A}} \right] \\ &\geq \max_{\theta \in \{0,1\}} \sum_{t=1}^T \mathbb{I}[\theta = \theta_t] - (T + M) \text{REGRET}_{\mathcal{A}}. \end{aligned}$$

Normalizing both sides by $\frac{1}{T}$, we prove the theorem. \square

C TRANSFORMER ROBUSTIFICATION CONSTRUCTION

C.1 TRANSFORMER PRELIMINARIES

We introduce a formal model of a transformer, drawing heavily from Sanford et al. (2024).

For a sequence of queries, keys, and values $Q, K, V \in \mathbb{R}^{T \times m}$, an *autoregressive self-attention head* of embedding dimension m with softmax attention is defined by

$$f(Q, K, V) = \text{softmax}(QK^T)V,$$

where the softmax operator

$$\text{softmax}(v) = \frac{1}{\sum_{i=1}^T \exp(v_i)} (\exp(v_1), \dots, \exp(v_T))$$

is applied row-wise, and mask $M \in \mathbb{R}^{T \times T}$ satisfies

$$M_{i,j} = \begin{cases} 0 & \text{if } i \geq j, \\ -\infty & \text{otherwise.} \end{cases}$$

Multi-headed attention concatenates the outputs for multiple attention heads. For some sequential input $X \in \mathbb{R}^{T \times m}$, an H -headed attention unit computes H queries, keys, and values of embedding dimension $\frac{m}{H}$ as

$$Q^h = XW_Q^h, \quad K^h = XW_K^h, \quad V^h = XW_V^h,$$

for projections $W_Q^h, W_K^h, W_V^h \in \mathbb{R}^{m \times m/H}$, for every $h \in [H]$. The output of the resulting H -headed attention layer is the following:

$$X \mapsto [f(Q^1, K^1, V^1) \dots f(Q^H, K^H, V^H)],$$

for parameters $(W_Q^h, W_K^h, W_V^h)_{h \in [H]}$.

918 We define a *transformer* of depth L as a function of the form
 919
 920

$$g = \phi_L \circ f_L \circ \cdots \circ \phi_1 \circ f_1 \circ \phi_0,$$

921 where f_1, \dots, f_L are multi-headed attention layers of embedding dimension m , and $\phi_1, \dots, \phi_{L-1} : \mathbb{R}^m \rightarrow \mathbb{R}^m$ are *multi-layer perceptrons* applied element-wise, i.e.
 922

$$\phi_\ell(X) = (\phi_\ell(X_1), \dots, \phi_\ell(X_T)),$$

923 $\phi_0 : \Sigma \rightarrow \mathbb{R}^m$ is an embedding layer from some alphabet Σ , and $\phi_L : \mathbb{R}^m \rightarrow \mathbb{R}^{d_{\text{out}}}$ is an output
 924 MLP layer. In the subsequent proof, we argue informally that our MLP units can be efficiently
 925 constructed as a shallow ReLU network with bounded width (typically, logarithmic in sequence
 926 length T) and bit-precision ($\log(T)$ as well).
 927

928 We assume that the alphabet Σ encodes a positional encoding. That is, in the proof of Theorem 5.1,
 929 we let $\Sigma = \Theta \times [T]$ and encode the input sequence $\theta^T \in \Theta^T$ as $((\theta_1, 1), \dots, (\theta_T, T))$. We assume
 930 that there exists a constant ‘‘beginning-of-sequence token’’ X_{BOS} that produces constant key and
 931 value vectors and can be attended to.
 932

933 C.2 PROOF OF THEOREM 5.1

935 We restate Theorem 5.1 precisely.

936 **Theorem C.1.** *Suppose there exists a transformer $g_{\mathcal{M}_0}$ of depth L and embedding dimension m
 937 that exactly computes the next-token probabilities over some distribution D_0 (i.e. for any $\theta^T \in \Theta^T$,
 938 $g_{\mathcal{M}_0}(\theta^T)_{t,i} = \Pr_{D_0}[\theta_t = i \mid \theta^{t-1}]$). Suppose the loss function U is Lipschitz and can be
 939 exactly represented by a multi-layer perceptron with width independent of T . Then, there exists
 940 a transformer g' of depth $L' = L + 4$, heads $H' = O(|A|^2)$, and embedding dimension $m' =$
 941 $m + O(|A|^3 + |\Theta|)$ such that the following is true (in the notation of Algorithm 1) for some error
 942 term $\delta \leq \frac{1}{T^c}$ (for any fixed $c > 0$), for all $t \leq T$:*

943 1. *If there exists $s \leq t - |A|$ such that*

$$944 \text{REGRET}_s \geq \text{REGRET}_{\text{HEDGE},s} + \frac{1}{\sqrt{T}} \log |A| + \sqrt{8(1 + \alpha)(\log T)/s} + \delta,$$

945 *then $g'(\theta^T)_t = \mathcal{M}_{\text{Polya}}(\theta^{t-1})$.*

946 2. *If every $s \leq t - |A|$ satisfies*

$$947 \text{REGRET}_s < \text{REGRET}_{\text{HEDGE},s} + \frac{1}{\sqrt{T}} \log |A| + \sqrt{8(1 + \alpha)(\log T)/s} - \delta,$$

948 *then $g'(\theta^T)_t = \mathcal{M}_0(\theta^{t-1}) = g_{\mathcal{M}_0}(\theta^T)$.*

949 Before proving Theorem C.1, we observe that there are two senses in which the transformer
 950 construction is approximate:
 951

- 952 • The REGRET_s condition makes no guarantees within an additive interval of width 2δ .
- 953 • The transformer guarantee does not account for the previous $|A|$ states in the outcomes.

954 Both issues are insignificant in the regime where T is large, and Theorem 3.1 could be adapted in a
 955 straightforward manner to accommodate these changed conditions.
 956

957 *Proof.* We transform g' by introducing six gadgets. Assume that $A = \{1, \dots, k\}$ throughout.
 958

959 1. The first L layers of g' exactly compute the output of $g_{\mathcal{M}_0}$. Concretely, we assume that the
 960 t th output of the L th layer exactly encodes a positional embedding u_t , the input state θ_{t-1} ,
 961 and the next token distribution under D_0 :

$$962 p^t = \left(\Pr_{D_0}[\theta_t = \theta \mid \theta^{t-1}] \right)_{\theta \in \Theta} \in \mathbb{R}^{|\Theta|}.$$

963 The output MLP computes the expected loss of each action with respect to p^t :

$$964 \ell_a^t = \mathbb{E}_{\theta \sim p^t}[U(a, \theta)], \text{ for each } a \in A.$$

972 2. An additional head in layer L computes

$$\mathcal{M}_{\text{Polya}}(\boldsymbol{\theta}^{(t-1)}) = \left(\frac{1 + \sum_{s=1}^{t-1} \mathbb{I}[\theta_s = \theta]}{|\Theta| + (t-1)} \right)_{\theta \in \Theta}$$

973 in the t th output by calculating a rolling average with the self-attention head. The output
974 MLP computes

$$\ell_a^{\text{HEDGE}, t} = \mathbb{E}_{\theta \sim \mathcal{M}_{\text{Polya}}(\boldsymbol{\theta}^{(t-1)})}[U(a, \theta)], \text{ for each } a \in A.$$

975 3. $k-1$ heads in layer $L+1$ jointly retrieve the pairs of partial losses

$$(\ell_1^{t-k+1}, \ell_1^{\text{HEDGE}, t-k+1}), (\ell_2^{t-k+2}, \ell_2^{\text{HEDGE}, t-k+2}), \dots, (\ell_{k-1}^{t-1}, \ell_{k-1}^{\text{HEDGE}, t-1})$$

976 from the k previous tokens.

977 4. Layer $L+2$ uses k^2 attention heads to compute each component of both QBRs.

$$\pi_a^{t-k} = \frac{\exp(\sqrt{T}\ell_a^{t-k})}{\sum_{a'} \exp(\sqrt{T}\ell_{a'}^{t-k})}, \quad \pi_a^{\text{HEDGE}, t-k} = \frac{\exp(\sqrt{T}\ell_a^{\text{HEDGE}, t-k})}{\sum_{a'} \exp(\sqrt{T}\ell_{a'}^{\text{HEDGE}, t-k})}.$$

978 5. Layer $L+3$ uses one head to compute $\text{REGRET}_{t-k} - \text{REGRET}_{\text{HEDGE}, s}$ by averaging the
979 QBR losses, and evaluate whether the inequality condition holds for $t-k$.

980 6. Layer $L+4$ detects whether the inequality condition occurs for *any* $s \leq t-k$ by computing
981 an OR over the inequality conditions.

982 While the proof does not formally define all weights in the model, we outline how each gadget is
983 constructed in the following sections. We focus in greatest specificity on the attention patterns that
984 construct the aggregations employed by different gadgets. We also provide brief justifications for
985 why all MLPs can be compactly constructed and a high-level error analysis.

986 **Gadget 1: Next-token probabilities (Layers 1 to L).** The relative sizes of the two models im-
987 mediately imply that the first L layers of g' can exactly simulate $g_{\mathcal{M}_0}$. The residual connections in
988 g' (and the slight increase in embedding dimension) make it possible for g' to preserve a positional
989 encoding u_t and θ_{t-1} throughout the L layers, even if the residual stream of $g_{\mathcal{M}_0}$ “forgets” them.

990 Because ℓ_a^t is a linear function of p^t , it can be trivially computed with a linear layer of the L th layer’s
991 MLP ϕ_L . The MLP additionally computes

$$(\mathbb{I}[\theta_{t-1} = \theta])_{\theta \in \Theta} \in \{0, 1\}^k,$$

992 which employs k distinct ReLU circuits as fixed thresholds.

993 **Gadget 2: Polya urn average (Layer L).** The Polya urn next-state prediction model (equation 1)
994 can be computed exactly for each state θ by an attention head that averages over the indicators
995 $\mathbb{I}[\theta_s = \theta]$ for $s < t$. The bias of the Polya urn predictor is accounted for by attending to the
996 constant-valued BOS token.

997 A single autoregressive attention head in the L th layer computes $\mathcal{M}_{\text{Polya}}(\boldsymbol{\theta}^{(t-1)})$ by attending to
998 previous tokens (including a BOS token) with the following keys, queries, and values, which are
999 either constant-valued or can be obtained using $O(|\Theta|)$ ReLU neurons as thresholds.

$$Q_t = 1, \quad K_t = 0, \quad V_t = (\mathbb{I}[\theta_{t-1} = \theta])_{\theta \in \Theta};$$

$$K_{\text{BOS}} = \log(|\Theta| - 1), \quad V_{\text{BOS}} = \frac{1}{|\Theta| - 1}.$$

1000 These choices produce the following self-attention outputs.

$$\begin{aligned} \text{softmax}(Q_t K^{\top}) V &= \frac{\exp(Q_t K_{\text{BOS}}) V_{\text{BOS}} + \sum_{s \leq t} \exp(Q_t K_s) V_s}{\exp(Q_t K_{\text{BOS}}) + \sum_{s \leq t} \exp(Q_t K_s)} \\ &= \frac{(|\Theta| - 1) \cdot \frac{1}{|\Theta| - 1} + \sum_{s \leq t} \mathbb{I}[\theta_{s-1} = \theta]}{(|\Theta| - 1) + t} \\ &= \mathcal{M}_{\text{Polya}}(\boldsymbol{\theta}^{(t-1)}). \end{aligned}$$

1026 As in Gadget 1, the partial losses $\ell_a^{\text{HEDGE},t}$ can be computed in the output MLP.
 1027
 1028 Note that none of these quantities depend on \mathcal{M}_0 ; hence, concurrent computation in layer L is
 1029 possible.
 1030

1031 **Gadget 3: Retrieving previous losses (Layer $L + 1$).** For each $a \in A$, assume that the positional
 1032 encoding u_t is sufficiently structured to make possible the retrieval of u_{t-k+a} in an MLP layer. This
 1033 is possible with simple sinusoidal embeddings (see, e.g., the proof of Theorem 6 of Sanford et al.
 1034 (2023)). We further assume that $\|u_t\| = 1$ and $u_t^\top u_s \leq 1 - \frac{1}{T^c}$ for some constant $c \geq 0$ if $t \neq s$.

1035 The a th attention head has the following components, which can be computed in the MLP of the
 1036 previous layer:

$$1037 \quad Q_t = T^C u_{t-k+a}, \quad K_t = u_t, \quad V_t = (\ell_a^t, \ell_a^{\text{HEDGE},t}),$$

1038 for any $C \geq c + 1$. For any constant $c' > 0$, there exists some sufficiently large C such that the first
 1039 dimension of the a th self-attention output approximately equals ℓ_a^{t-k+a} :

$$\begin{aligned} 1041 \quad & |\text{softmax}(Q_t^\top K) V_{:,1} - \ell_a^{t-k+a}| \\ 1042 \quad &= \left| \frac{\sum_{s \leq t} \exp(T^C u_{t-k+a}^\top u_s) \ell_a^s}{\sum_{s \leq t} \exp(T^C u_{t-k+a}^\top u_s)} - \ell_a^{t-k+a} \right| \\ 1044 \quad &\leq \left| \frac{\exp(T^C)}{\exp(T^C) + (t-1) \exp(T^C - T^{C-c})} \ell_a^{t-k+a} - \ell_a^{t-k+a} \right| + \left| \frac{(t-1) \exp(T^C - T^{C-c})}{\exp(T^C)} \right| \\ 1046 \quad &\leq \frac{1}{T^{c'}}. \end{aligned}$$

1050 We refer back to this inverse-polynomial additive error later when bounding δ . Note that the outputs
 1051 of this self-attention unit can be computed with bit precision $O(\log T)$.

1052 The analogous claim holds for $v_{:,2}$ and $\ell_i^{\text{HEDGE},t-k+a}$.

1055 **Gadget 4: Computing QBR (Layer $L + 2$).** Before formally constructing the QBR predictor π ,
 1056 we outline how we wish to obtain some π_a^{t-k} for some action $a \in A$ in the t th sequential position
 1057 for a single fixed index t by providing a partial softmax over a subset of k embeddings.

$$1058 \quad \tilde{Q}_t = \sqrt{T}, \quad \tilde{K}_{t-k+a'} = \ell_{a'}^{t-k}, \quad \tilde{V}_{t-k+a'} = \mathbb{I}[a' = a], \quad \text{for } a' \in A.$$

1060 Note that the previous gadget ensures that sequence element $t - k + a'$ has access to partial loss
 1061 $\ell_{a'}^{t-k}$. The corresponding softmax exactly computes π_a^{t-k} .

$$\begin{aligned} 1063 \quad & \text{softmax}(\tilde{Q}_t \tilde{K}) \tilde{V} = \frac{\sum_{s=t-k+1}^t \exp(\tilde{Q}_t \tilde{K}_s) \tilde{V}_s}{\sum_{s=t-k+1}^t \exp(\tilde{Q}_t \tilde{K}_s)} \\ 1064 \quad &= \frac{\sum_{a'=1}^k \exp(\tilde{Q}_t \tilde{K}_{t-k+a'}) \tilde{V}_{t-k+a'}}{\sum_{a'=1}^k \exp(\tilde{Q}_t \tilde{K}_{t-k+a'})} \\ 1066 \quad &= \frac{\exp(\sqrt{T} \ell_{a'}^{t-k})}{\sum_{a'=1}^k \exp(\sqrt{T} \ell_{a'}^{t-k})} = \pi_a^{t-k}. \end{aligned}$$

1072 This construction in its current is not sufficient because its parameterization depends on a single
 1073 sequence index t , and it attends to only a subset of elements. Two modifications suffice to adapt this
 1074 construction to compute all sequential outputs.

1075

- 1076 1. We employ a *width- k interval positional encoding* that the t th sequence element only non-
 1077 negligibly attends to the k previous elements.
- 1078 2. We use k^2 heads such that the t th output of the head indexed by (a, j) is π_a^{t-k} if $t \equiv j$
 1079 $(\text{mod } k)$ and 0 otherwise.

We assume that the positional encoding u_t can be used to derive a width- k interval encoding w_t that satisfies the following property:

$$w_t^\top u_s = 1 \text{ if } t - k \leq s < t, \text{ and } w_t^\top u_s \leq \frac{1}{2} \text{ otherwise.}$$

These embedding vectors are known to exist and have dimension $O(k)$ by a restricted-isometry condition established by Mendelson et al. (2007); Candes & Tao (2005)⁵.

Fix some pair $(a, j) \in [k]^2$. We construct the queries, keys, and values of the corresponding head as follows. We define $a'_{j,t} \in [k]$ as $a'_{j,t} \equiv t - j \pmod{k}$.

$$Q_t = \sqrt{T} w_t, \quad K_t = u_t \left(\ell_{a'_{j,t}}^{t-a'_{j,t}} + c\sqrt{T} \right) - cT, \quad V_t = \mathbb{I}[a'_{j,t} = a].$$

Note that the new query, key, and value embeddings are defined for all t and that $V_{t-k+a} = \tilde{V}_{t-k+a}$. Furthermore, the query/key inner-products are preserved within the k -interval, and inner-products outside the interval are much smaller under the assumption that U is bounded independently of T . For a sufficiently large constant c :

$$Q_t^\top K_s = \sqrt{T} \left(\ell_{a'_{j,t}}^{t-a'_{j,t}} + c\sqrt{T} \right) - cT = \sqrt{T} \ell_{a'_{j,t}}^{t-a'_{j,t}} = \tilde{Q}_t \tilde{K}_s, \quad \text{if } t - k \leq s < t.$$

$$Q_t^\top K_s \leq \frac{\sqrt{T}}{2} \left(\ell_{a'_{j,t}}^{t-a'_{j,t}} + c\sqrt{T} \right) - cT = \frac{\sqrt{T}}{2} \ell_{a'_{j,t}}^{t-a'_{j,t}} - \frac{cT}{2} \leq -\frac{cT}{4}, \quad \text{otherwise.}$$

A judicious choice of c ensures that the additive error in the self-attention unit from inner products outside the interval of width k is inversely polynomial in T . We conclude the following:

$$\text{softmax}(Q_t^\top K) V = \frac{\sum_{s=1}^t \exp(Q_t^\top K_s) V_s}{\sum_{s=1}^t \exp(Q_t^\top K_s)} \approx \frac{\sum_{s=t-k}^{t-1} \exp(\tilde{Q}_t^\top \tilde{K}_s) \tilde{V}_s}{\sum_{s=t-k}^{t-1} \exp(\tilde{Q}_t^\top \tilde{K}_s)} = \pi_a^{t-k},$$

where the approximation conceals an additive inverse polynomial error whose degree depends on the choice of c , which can be bounded with a similar softmax analysis used in the previous gadget.

Given the QBR distribution π^{t-k} , the layer's MLP computes $\mathbb{E}_{a \sim \pi^{t-k}}[U(a, \theta_{t-k})]$ by evaluating $\mathbb{E}_{a \sim \pi^{t-k}}[U(a, \theta)]$ for every $\theta \in \Theta$ as a linear function of π^{t-k} , and using $|\Theta|$ ReLU thresholds to retrieve the correct expectation for θ_{t-k} ⁶.

Layer $L + 2$ consists of two copies of this gadget. The other one computes $\pi^{\text{HEDGE}, t-k}$ and

$$\mathbb{E}_{a \sim \pi^{\text{HEDGE}, t-k}}[U(a, \theta_{t-k})]$$

with k^2 additional attention heads and corresponding MLP weights.

Gadget 5: Evaluating REGRET $_{t-k}$ condition (Layer $L + 3$). Obtaining REGRET $_{t-k}$ requires first computing

$$\frac{1}{t - k} \sum_{s \leq t - k} \mathbb{E}_{a \sim \pi^s}[U(a, \theta_s)],$$

which can be attained by a transformer that computes a rolling average among $t - k$ preceding elements. The following queries, keys, and values enable that construction:

$$Q_t = 1, \quad K_t = \begin{cases} T & t > k, \\ 0 & t \leq k, \end{cases} \quad V_t = \mathbb{E}_{a \sim \pi^{t-k}}[U(a, \theta_{t-k})].$$

This computes the above quantity up to additive inverse polynomial error.

An analogous computation retrieves the corresponding term for HEDGE:

$$\frac{1}{t - k} \sum_{s \leq t - k} \mathbb{E}_{a \sim \pi^{\text{HEDGE}, s}}[U(a, \theta_s)].$$

⁵This connection is discussed in detail in Sanford et al. (2023).

⁶This relies on θ_{t-k} being retrieved from index $t - k + 1$, which is possible with an additional “look-up” attention head that applies the construction of Gadget 3.

1134 The difference in regrets can be computed in the MLP by subtracting the two quantities and scaling
 1135 appropriately. We conclude by determining whether REGRET_{t-k} meets the condition. Since the
 1136 regret is only used as a threshold, we design an MLP that evaluates the following condition:
 1137

$$1138 \quad q_{t-k} = \mathbb{I} \left[\text{REGRET}_{t-k} - \text{REGRET}_{\text{HEDGE}, t-k} \geq \frac{1}{\sqrt{T}} \log |A| + \sqrt{\frac{8(1+\alpha)(\log T)}{t-k}} \right].$$

$$1139$$

$$1140$$

1141 Note that the total additive error of the thresholded quantity in the condition is at most inverse
 1142 polynomial.
 1143

1144 **Gadget 6: Determining whether the condition holds anywhere (Layer $L+4$)** The final layer
 1145 tests whether $q_{s-k} = 1$ for any $s \leq t$ and returns the appropriate distribution based on the result.
 1146 We employ a single self-attention head with the following components:
 1147

$$Q_t = 1, \quad K_t = 2T \cdot q_{t-k}, \quad V_t = 1, \quad k_{\text{BOS}} = T, \quad v_{\text{BOS}} = 0.$$

1149 We set $q_{t-k} = 0$ for $t \leq k$. Consequently, $\text{softmax}(Q_t K^T) V > \frac{2}{3}$ if there exists some $q_{s-k} = 1$
 1150 for $s \leq t$, and $\text{softmax}(Q_t K^T) V < \frac{1}{3}$ otherwise. Thresholding on this value is sufficient to ensure the
 1151 that proof claim holds. \square
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187