
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEXT-TOKEN PREDICTION AND REGRET MINIMIZA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the question of how to employ next-token prediction algorithms in
adversarial online decision making environments. Specifically, if we train a next-
token prediction model on a distribution D over sequences of opponent actions,
when is it the case that the induced online decision making algorithm (by approxi-
mately best responding to the model’s predictions) has low adversarial regret (i.e.,
when is D a low-regret distribution)?

For unbounded context windows (where the prediction made by the model can de-
pend on all the actions taken by the adversary thus far), we show that although not
every distribution D is a low-regret distribution, every distribution D is exponen-
tially close (in TV distance) to one low-regret distribution, and hence sublinear
regret can always be achieved at negligible cost to the accuracy of the original
next-token prediction model. In contrast to this, for bounded context windows
(where the prediction made by the model can depend only on the past w actions
taken by the adversary, as may be the case in modern transformer architectures),
we show that there are some distributions D of opponent play that are Θ(1)-far
from any low-regret distribution D′ (even when w = Ω(T) and such distributions
exist). Finally, we complement these results by showing that the unbounded con-
text robustification procedure can be implemented by layers of a standard trans-
former architecture, and provide empirical evidence that transformer models can
be efficiently trained to represent these new low-regret distributions.

1 INTRODUCTION

Large language models are trained to perform well at the task of next-token prediction: given some
substring of text, estimate the conditional distribution of the next word/token. Increasingly, there
is a focus on using these models to perform a far broader set of tasks, including making strategic
decisions on our behalf (Chen et al., 2021; Park et al., 2025; Krishnamurthy et al., 2024; Nie et al.,
2025).

Consider the problem of training such a model to play a repeated game (e.g., repeated rock-paper-
scissors). Like in next-token prediction, the model has to take the actions taken in the game so far
(a subsequence of tokens) and, from this, come up with a new mixed action to take (a distribution
over next tokens). If we think of the tokens as the adversary’s actions, then it even makes sense that
playing well in this game directly corresponds to how well our model can predict the next token.
Where things differ is in how these tokens are generated – instead of being stochastically sampled
from a large data set, they are adversarially chosen by an opposing player who wants the model to
fail. One basic property we might desire from these models in such settings is adversarial regret
minimization. That is, regardless of what actions the adversary takes, our model does at least as well
as if it always played the best fixed action in hindsight.

This raises the question: are regret minimization and next-token prediction compatible goals? When
is it the case that training a next-token predictor on a dataset (e.g., of game transcripts) will produce
a low-regret learning algorithm? Are there ways to automatically augment a data set with more data
so the resulting models have less regret? What alternatives to next-token prediction are there when
training these models?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1.1 OUR RESULTS

We study an online decision making setting where a decision maker needs to take actions in response
to a changing state of nature (e.g. an adversary’s action in a game, a current stock price, etc.). The
decision maker has access to a next-token prediction model trained on some distribution of state
sequences, and would like use the predictions from this model to help them make utility optimizing
decisions.

Importantly, they would like to perform well not just when the true distribution of states is drawn
from the distribution their model is trained on but also when the sequence of states is controlled by
an adversary. This leads to the question of whether it is possible to robustify a decision-model: take
a modelM0 and produce a modelM that represents a similar distribution over sequences asM0,
while guaranteeing low regret against any adversary.

We prove the following results.

• First, we remark that there exist next-token prediction models such that if a decision maker ap-
proximately best responds to these predictions (e.g., via a quantal best response), they guarantee
sublinear regret. In particular, quantal best responses to the Polya urn process closely simulate the
classical Hedge learning algorithm (Theorem 2.3).

• Second, we positively answer the question of robustification by showing that given any next-token
prediction modelM0 it is possible to produce a modelM such that i. quantal best responses to
the predictions of M lead to sublinear regret, and ii. the TV distance between the distributions
represented byM andM0 is arbitrarily small (Theorem 3.1).

• We then shift our attention to prediction models with bounded context length (i.e., prediction
models whose outputs can only depend on the previous L tokens). In contrast to the previous
result, we show that such models are in general impossible to robustify (Theorem 4.1). However,
if the robustified model is allowed to use a larger context length L′, it is possible to produce a
robust model with O(1/

√
L′ − L) per-round regret (Theorem 4.2).

• Finally, we address the question of whether it is actually possible to train robust models, with a
focus on transformer models. We provide two pieces of evidence towards an affirmative answer
to this question. First, we show that transformer models can effectively represent the robustified
models of Theorem 3.1 with a mild increase in size (Theorem 5.1). Second, we provide experi-
mental evidence that it is possible to train small transformers to represent robustified versions of
simple distributions (Section 5.2).

1.2 RELATED WORK

We discuss additional related work in more detail in Appendix A.

2 MODEL AND PRELIMINARIES

Notation We use I [A] to denote the indicator function of expression A, which takes the value
1 when A is true, and 0 otherwise. We generally denote sequences of elements in bolded letters
(e.g., θ), elements of these sequences with subscripts (θt), and subsegments of these sequences with
superscripts (θa:b = (θa, θa+1, . . . , θb), θb = (θ1, . . . , θb)). Full proofs are generally deferred to
Appendix B for the sake of brevity.

2.1 NEXT-TOKEN PREDICTION

The problem of next-token prediction can be formally stated as follows. We are given a distribution
D ∈ ∆(ΘT) over sequences of T tokens from an alphabet Θ. The goal is to learn a (next-token
prediction) modelM that, given as input any prefix token sequence θt−1 = (θ1, . . . , θt−1), outputs
the conditional distribution of the next token given this prefix, which we denote by M(θt−1) ∈
∆(Θ). We writeM(θ | θt−1) to denote the probability of a specific token θ ∈ Θ in the distribution
M(θt−1).

By iterating the operation of next token prediction, any candidate solution M to the next token
prediction problem induces its own distribution D(M) over sequences of T tokens. In particular,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

we can define
Pr

θT∼D(M)
[θT] =M(θ1|∅)M(θ2|θ1)M(θ3|θ1, θ2) · · ·M(θT |θT−1).

Conversely, every distribution D corresponds1 to some model (in the sense that it is induced by a
collection of conditional distribution functionsM(θt|θt−1)). We can therefore measure the quality
of a solutionM to the next-token prediction problem via the TV distance dTV (D,D(M)) between
the true distribution and the distribution induced by the model. Likewise, we can measure the
similarity between two modelsM andM′ via the TV distance of their respective distributions.

Bounded context length Later in the paper, we will consider models that have the additional
restriction of bounded context length – that is, the model’s predictionM(θt|θt−1) for the tth token
can only depend on the w preceding tokens (θt−w, θt−w+1, . . . , θt−1) for some window size w. We
defer further discussion of bounded context lengths to the beginning of Section 4.

2.2 ADVERSARIAL ONLINE DECISION MAKING

The second problem we consider is that of (adversarial) online decision making. In this problem, a
decision maker interacts with an adversary over the course of T rounds. In each round t ∈ [T] of
interaction, the learner takes an action (specifically, a mixed action πt ∈ ∆(A) supported on some
finite action set A) while, simultaneously, an adversary selects a state θt ∈ Θ. As a result of this
interaction, the decision maker receives expected utility Eat∼πt [U(a, θt)], where the utility function
U : A × Θ → [−1, 1] is known to all parties and fixed over time (we extend U linearly to mixed
strategies of the decision maker by writing U(π, θ) = Ea∼π[U(a, θ)]). After this interaction, the
state θt chosen by the adversary is revealed to the learner, who can then use this information in the
selection of their subsequent actions.

The goal of the decision maker is to maximize their cumulative utility over all T rounds. Of course,
the extent to which they can do so depends on the adversarial choices of θt taken by the adversary
(notably, unlike in the next-token prediction problem, the sequence of states θT = (θ1, θ2, . . . , θT)
is not necessarily sampled from some distribution D). Despite this, one of the fundamental results
in the theory of online learning shows that regardless of the actions taken by the adversary, it is
possible for the decision maker to obtain sublinear regret: the gap between their cumulative utility
and the cumulative utility of the best fixed action in hindsight. Formally, given a sequence of (mixed)
actions π = (π1, . . . , πT) and states θ = (θ1, . . . , θT), we define the external regret as

EXTREG(π,θ) = max
a∗∈A

1

T

∑
t

[U(a∗, θt)− U(πt, θt)] .

One algorithm that guarantees sublinear regret for the decision maker is the Hedge algorithm
(Freund & Schapire, 1997). The Hedge algorithm chooses πt so that (for any a ∈ A)
πt(a) ∝ exp

(
1√
T

∑t−1
s=1 U(a, θs)

)
. It can be shown that this guarantees that EXTREG(π,θ) =

O(
√

(log |A|)/T), regardless of the sequence of states chosen by the adversary.

2.3 INTERPLAY BETWEEN NEXT-TOKEN PREDICTION AND REGRET MINIMIZATION

One natural way to apply a next-token prediction algorithm to the problem of online decision mak-
ing is by using it to predict the sequence of adversary states. In particular, the decision maker
can use an algorithm for next-token prediction to predict the next state, and then play the opti-
mal action conditioned on this state. Formally, for any distribution µ ∈ ∆(Θ) over states, let
BR(µ) = argmaxa∈A Eθ∼µ[U(a, θ)] be the decision maker’s best response action to this distribu-
tion. In online decision making in stochastic settings (where the sequence of states θ is drawn from
some distribution D), best responding to the predictions of an accurate model leads to zero external
regret.
Lemma 2.1. Let D ∈ ∆(ΘT) be a distribution over sequences of T states, and letM be a next-
token prediction model that has perfectly learned the distribution D (D(M) = D). Consider the
algorithm for the decision maker which sets πt = BR(M(θ(t−1))) (that is, the best response to the
model’s prediction of state at time t). Then the expected regret of the decision maker on sequences
sampled from D is at most zero, i.e., Eθ∼D[EXTREG(π,θ)] ≤ 0.

1For mathematical convenience, we will assume that all distributions D we consider have full support –
that is, every sequence in ΘT appears with some positive (albeit possibly arbitrarily small) probability in the
distribution. Under this assumption, this correspondence is bijective.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

However, we would like stronger guarantees than this – ideally, we would like to construct an online
decision making algorithm with adversarial regret guarantees (e.g., those obtained by Hedge). This
leads to the question: does there exist a distribution D where the online decision making algorithm
constructed in Lemma 2.1 incurs o(1) regret against any adversary? Unfortunately, the answer to
this question is negative, as the following lemma demonstrates.

Lemma 2.2. LetM be a next-token prediction model. There exists a utility function U such that,
if the decision maker sets πt = BR(M(θ(t−1))), there exists an adversarial sequence of states
θ ∈ ΘT that induces high regret, i.e., with the property that EXTREG(π,θ) = Ω(1).

Ultimately, the negative result in Lemma 2.2 follows from the fact that the learning algorithms
constructed by best responding to a sequence of next-token prediction are deterministic (in the sense
of always playing pure actions in A).

We can attempt to sidestep this issue by introducing noise in the best response of the decision
maker. One natural and well-studied way to do this is to replace the best response with a quantal
best response2. Given a distribution µ ∈ ∆(Θ) over states and a parameter η > 0, we define the
quantal best response QBR(µ, η) ∈ ∆(A) to be the mixed action that plays action a ∈ A with
probability proportional to exp(1η U(a, µ)). Note that as η → 0, this approaches the deterministic
best response (and as η →∞, this approaches the uniform distribution over all actions).

We define the Polya urn model MPolya to be the following next-token prediction model: for any
t ∈ [T], we let

MPolya(θ|θ(t−1)) =
1 +

∑t−1
s=1 I [θs = θ]

|Θ|+ (t− 1)
. (1)

Intuitively, the probability of seeing a specific token θ at round t is roughly equal to the empirical
probability of observing θ in the string so far. More accurately, it is exactly the fraction of tokens
equal to θ in the string Str(Θ) + θ(t−1), where Str(Θ) is an arbitrary concatenation of all the tokens
in Θ (it is necessary to add this additional term so that equation 1 is well-defined for t = 1, and so
that the induced distribution D(MPolya) has full support). The following lemma shows that quantal
best responses to predictions of the Polya urn model guarantee adversarial low regret.

Lemma 2.3. Consider the algorithm for the decision maker which sets πt =
QBR(MPolya(θ

(t−1)), η), for η = 1/
√
T . Then for any adversarial sequence of states θ ∈ ΘT ,

EXTREG(π,θ) = O

(
log T + log |A|√

T

)
.

Motivated by Lemma 2.3, we say that a next-token model M is a low-regret model if quan-
tal best responses to this model guarantee o(1) worst-case regret; formally, for any adversar-
ial sequence of states θ ∈ ΘT , the sequence of mixed actions π ∈ ∆(A)T defined via πt =

QBR(M(θt−1), 1/
√
T) satisfies EXTREG(π,θ) = o(1).

Example (Adversarial Online Prediction) By selecting the utility function U appropriately, the
online decision making framework can be made to capture a wide range of different possible appli-
cations. One particularly relevant example (that we will use as a running example throughout the
remainder of this paper) is the problem of adversarial online prediction.

In this problem, we set the action set A equal to the state space Θ, and define U(a, θ) = I [a = θ];
that is, the decision maker receives a point if they successfully predict the current state (and receives
zero points otherwise). In some later applications (e.g., the experiments in Section 5.2), we will
further insist that actions and states are binary (A = Θ = {0, 1}).
Note that in this example, the goals of the online decision maker and the next-token prediction
algorithm are very closely aligned – they both want to produce good predictions of the next state,
but with slightly different metrics of success (adversarial regret guarantees versus statistical distance
guarantees). One consequence of this is that we can directly interpret the quantal best response as
sampling from the next-token prediction model with temperature η.

2This response function is also known under many other names, including softmax response, Boltzmann
exploration, and multinomial logit response.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 ROBUSTIFICATION WITH UNBOUNDED CONTEXT LENGTH

Lemma 2.3 demonstrates that the Polya urn model is a low-regret model – following its recommen-
dations (by quantally best responding to them) will result in adversarial low-regret guarantees for an
online decision maker. While it is possible to construct other low-regret models similarly, not every
model is low-regret. For example, the modelM for binary states (Θ = {0, 1}) which always pre-
dicts the next bit to be 1 with probability 1/3 can be shown to incur Ω(1) regret against adversarial
sequences of states (e.g., if the adversary selects the all-zero sequence of states θt = 0, this model
will never predict the next state correctly).

This raises a natural question. Assume we have access to a next-token modelM0. Can we “robus-
tify” our model and obtain a new modelM that is both low-regret and close to the original model
M0 (in the sense that the distributions D0 and D they induce are similar in TV distance)?

In this section, we answer this question affirmatively. In Algorithm 1, we give a procedure for
taking an arbitrary next-token prediction modelM0 and transforming it into a low-regret next-token
prediction modelM. The key idea is to only modify the behavior of the model on prefixes θt where
the model has already incurred high regret (by arguments similar to those in Lemma 2.1, this should
happen with low probability if the sequence of states truly is sampled from D(M0)). On such high-
regret prefixes, we instead draw the prediction of the model from a Polya urn model, guaranteeing
low-regret on the remainder of the time horizon.

Algorithm 1 Robustification of a next-token prediction model

Require: Next-token prediction modelM0 implementing distribution D0, sequence of states θt−1,
utility function U : A×Θ→ [−1, 1], parameter α > 0.

Ensure: OutputsM(θt−1) for some modelM implementing a low-regret distribution D.
for s = 1 . . . t− 1 do

Define πs ← QBR(M0(θ
s−1), 1/

√
T) (the mixed action of a quantal best response to the

original model).
Define πHEDGE,s ← QBR(MPolya(θ

s−1), 1√
T
) (the mixed action of a quantal best response to

Polya urn model)
Define REGRETs ← EXTREG(πs,θs)
Define REGRETHEDGE,s ← EXTREG(πs

HEDGE,θ
s)

if REGRETs ≥ REGRETHEDGE,s +
1√
T
log |A|+

√
8(1 + α)(log T)/s then

▷ (We are out-of-distribution, return prediction of Polya urn model)
returnMPolya(θ

t−1)
end if

end for
▷ (We are in distribution, return original model prediction)

returnM0(θ
t−1)

Theorem 3.1. Running Algorithm 1 on a modelM0 (with D0 := D(M0)) results in a robustified
modelM (with D := D(M)) with the following properties:

• M is a low-regret model with worst-case regret O
(

1√
T
log(|A| · T) +

√
(1 + α) log T)

)
.

• The TV distance between D and D0 is bounded by dTV(D,D0) ≤ |A|T−α.

4 ROBUSTIFICATION WITH A BOUNDED CONTEXT LENGTH

In the previous section, we concerned ourselves with next-token prediction models whose prediction
of the state θt at time t could depend on all previous states θt−1. In practice, most next-token pre-
diction models (e.g. those based on transformer architectures) are autoregressive models restricted
by a context length L. That is to say, the model’s prediction M(θt|θt−1) is a round-independent
function of the previous L tokens θ(t−L):(t−1) = (θt−L, θt−L+1, . . . , θt−1). When t ≤ L, then
M(θt|θt−1) can be an arbitrary function of the past tokens (as in the unbounded context case). We
will refer to such models as L-bounded models for short.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

As before, every bounded context modelM induces a distribution D(M) over state sequences of
length T , and as before, we will measure the similarity of two models by the TV distance of their
induced distributions.

We still would like to use these models to aid in adversarial online decision making3. Of course, the
limited context window of these models constrains what regret guarantees are possible. The setting
of online learning with bounded recall studies online decision making instances where the action
at round t must be a function of the previous L losses (i.e., states). It can be shown (Schneider &
Vodrahalli, 2024) that in this setting, there are simple modifications of Hedge that guarantee at most
O(L−1/2) regret against any adversary, and that this regret bound is tight (intuitively, this regret
bound is achievable by restarting Hedge every L rounds).

As in the unbounded context setting, we can use an L-bounded modelM to solve online learning
with L-bounded recall by playing quantal best responses to the predictions ofM. In particular, we
can show (in analogy to Lemma 2.3) that there exist L-bounded models M where if the decision
maker plays πt = QBR(M(θt−1), 1/

√
L), the decision maker guarantees O(1/

√
L) regret for

themselves.

We are then faced with the same question as in the previous section: if we start with an existing
L-bounded next-token prediction modelM0, can we robustify it into a modelM that is similar to
M0 but also obtains optimal worst-case regret guarantees against an adversary?

4.1 IMPOSSIBILITY WITH THE SAME CONTEXT LENGTH

We begin by demonstrating that, unlike in the unbounded context setting, robustification of bounded
context models is in general impossible, even in very simple online decision-making settings (e.g.
the adversarial online prediction problem with binary states).

Intuitively, this is because there can exist different L-bounded modelsM0 andM1 that induce very
different distributions D(M0) and D(M1) over sequences of length T (in particular, almost never
agreeing about the next token), but that share the same distribution of substrings of length L. In
particular, an L-bounded model that can only ever see substrings of length L will have trouble dis-
tinguishing whether the state sequence is being generated byM0 orM1. If the goal is to robustify
M0, M then has the impossible tradeoff between playing predictions close to that of M0 (guar-
anteeing low TV distance, but possibly incurring high regret with respect to sequences drawn from
M1) or playing predictions that guarantee low regret forM1 (which cause a large TV distance with
respect toM0).
Theorem 4.1. Set L = T/2, A = Θ = {0, 1}, and U(a, θ) = I [a = θ] (the binary adversarial
online prediction task). There exists a context length L modelM0 (with D0 = D(M0)) such that
for any other context length L modelM (with D = D(M)), either:
1. The TV distance dTV(D0, D) > 1/24 (i.e., the two models are not close).

2. There exists an adversarial sequence of states θ ∈ ΘT such that if π ∈ ∆(A)T is the sequence
of quantal best responses toM (πt = QBR(M(θt−1), 1/

√
L)), then EXTREG(π,θ) > 1/24.

(That is, the modelM is not a low-regret model).

4.2 ROBUSTIFICATION WITH A LONGER CONTEXT LENGTH

In the previous section, we showed that there is no way to robustify an existing L-bounded model
M0 to a low-regret L-bounded model M (while implementing approximately the same distribu-
tion). In this section, we show that if we allow the robustified model to have a slightly larger context
window L′, we can effectively perform this robustification. Said another way, this fact implies that
it is possible to learn a model that will length-generalize from the distribution of a sufficiently short
sequence while maintaining no-regret guarantees in the bounded context setting (a more realistic
setting for transformer-based models).

We do this by adapting the “AverageRestartHedge” algorithm of Schneider & Vodrahalli (2024),
which achieves O

(
1√
m

)
external regret in adversarial online learning settings with m-bounded

3For technical reasons, in this section we will restrict ourselves to binary action settings (|A| = 2). This
has the consequence that the quantal best response function QBR(·, 1/

√
L) has a convex image, which will

be important for implementing some of the algorithms for online learning with bounded recall (e.g., see the
second-to-last line of Algorithm 2).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

recall. At a high level, this algorithm is configured with some non-constrained low-regret sub-
algorithm (canonically, Hedge) as a subroutine. It then outputs the average prediction of this sub-
algorithm on a uniformly randomly chosen suffix of the previous L losses.

We will run a variant of this algorithm with Algorithm 1 in place of Hedge. Specifically, given an
expanded context of length L′, we use L out of L′ tokens are used for next-token prediction under
the original distribution D0. The remaining ∆ = L′ − L tokens can then be viewed as the actual
context length given to the online algorithm in Schneider & Vodrahalli (2024). Our Algorithm 2
calls Algorithm 1 as a subroutine, which achieves an external regret of Õ

(
1√
∆

)
(as implied by

Theorem 4.1, it is impossible to get non-trival guarantees when ∆ = 0).

Algorithm 2 Robustifying Bounded Context Models with Longer Context Lengths

Require: An existing L-bounded next-token prediction modelM0, parameter α > 0, input θL′
.

Ensure: A robustified L′-bounded next-token prediction modelM (with L′ > L, ∆ = L′ − L).
Run Algorithm 1 onM0 with time horizon ∆ to produce a robustified modelM∆.
for m = L+ 1, . . . , L′ do

µm ←M∆(θ
m:L′

) (i.e., the output ofM∆ on the sequence θm, θm+1, . . . , θL)
end for
Choose a µ ∈ ∆(Θ) so that QBR(µ, 1/

√
∆) = 1

∆

∑L′

m=L+1 QBR(µm, 1/
√
∆).

returnM(θL′
) = µ.

Theorem 4.2. Fix L′ > L and let ∆ = L′ − L. Running Algorithm 2 on an L-bounded modelM0

(with D0 := D(M0)) results in a robustified L′-bounded modelM (with D := D(M)) with the
following properties:

• The model M is a low-regret model, with worst-case regret(
1 + ∆

T

) [√
2+1
∆ +

√
8 log T+8(α+1) log∆

∆

]
.

• The TV distance between D and D0 is bounded by dTV(D,D0) ≤ ∆−α.

5 TRAINING LOW-REGRET TRANSFORMER MODELS

On one hand, Theorem 3.1 demonstrates that it is information theoretically possible to robustify
any next-token prediction model M with negligible changes to the underlying distribution. At
the same time, this raises questions about whether we can actually train low-regret models (after
all, if dTV(D,D0) is exponentially small, no training procedure can efficiently distinguish between
samples drawn from D and samples drawn from D0

In this section we investigate this question for the special case of transformer models, providing
evidence that it is possible to directly robustify low-regret transformer models. In Section 5.1, we
show it is possible to implement the operations of Algorithm 1 in the logic of a standard transformer
model (i.e., ifM0 can be represented by a small transformer, so canM). In Section 5.2, we provide
experimental evidence showing that a simple masking procedure allows us to practically train low-
regret transformer models.

5.1 REPRESENTING ROBUSTIFIED MODELS

In this section, we show that the representational limitations of transformers pose no obstacle to
robustification. To that end, we construct a transformer that robustly predicts future states by adding
a constant number of layers to a transformer that solves next-token prediction.

Theorem 5.1. Suppose there exists a transformerM0 with L layers and embedding dimension m
that exactly solves the next token prediction task over distribution D0; that is, M0(θt|θt−1) =
PrD0 [θt|θt−1]). Then, there exists a transformer M′ with L′ = L + 4 layers and embedding
dimension m′ = m+O(1) that approximates the output of Algorithm 1.

We state the theorem rigorously and present its proof in Appendix C. At a high-level, the argument
relies on constructing four layers that use the outputs ofM0 to simulate Algorithm 1. Self-attention

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

plays an essential role in the construction. Identifying the distribution induced by the Polya Urn
strategy and calculating the two regret quantities involve computing aggregations over sequences
of tokens, which are naturally simulated with self-attention layers. Our construction reflects a re-
alistic class of transformers by maintaining tight bounds on embedding dimension and depth and
employing multi-layer perceptrons that can be compactly represented as shallow ReLU networks.

5.2 EMPIRICALLY ROBUSTIFYING SIMPLE TRANSFORMERS

In the previous sections, we demonstrated the existence of a procedure for learning specialized low-
regret online learning algorithms by carefully perturbing the original statistical training data. In this
section, we also demonstrate that in simple settings, it is also practically efficient to train small trans-
formers with this algorithm, suggesting that robustification procedures may be practically plausible
for modifying LLM behavior for decision-making while retaining good statistical performance.

We consider the special case of a decision problem to match the state. Both the action space and
the state space are binary A = Θ = {0, 1}, and the utility function U(a, θ) = I [a = θ]. We
conduct experiments with the minimal decoder-only transformer, NanoDO (Liu et al., 2024). The
transformer predicts a binary sequence. We adopt the default parameters of NanoDO, with a context
length of T = 1024, 256 embedding dimensions, 4 attention heads, 3 transformer block layers, and
1024 inner dimensions.

We train the transformer on three datasets with a batch size of 128. The three training processes all
converge and stop after 500 steps.

BERNOULLI is the in-distribution and non-robust transformer. The dataset is generated from the
distribution where the first half of 512 bits are from Ber(1/3) and the second half are from Ber(2/3).

POLYAURN is the robust transformer without distributional information. The transformer is
trained on Polya Urn sequences, where the next bit is generated from the empirical distribution
in history: Pr[θt+1 = 1|θ1, . . . , θt] =

∑
i∈[t] θi

t . By setting the temperature to 1√
T

, POLYAURN
plays the same strategy as the Hedge algorithm.

ROBUST BERNOULLI is trained on the robustified distribution of BERNOULLI. We do this in
the following way. We sample training data from the same distribution as BERNOULLI. We also
sample an equal number of Polya Urn sequences. For a Polya Urn sequence, we keep it only if
transformer BERNOULLI has a regret higher than α√

t
for some t ≤ T , with α = 1.5. In other cases,

we discard the sequence. To keep the TV-distance unchanged in the training process, we mask out
the loss calculation over the prefix of a Polya urn sequence, up to the first position t where there is
a regret higher than α√

t
. By masking out the prefix, the transformer does not learn the distribution

that generates a high-regret prefix.

5.2.1 REGRET EVALUATION

We evaluate the regret of the three transformers on eight ground truth distributions over sequences.
The bits are drawn independently from each other. The first four are static distributions where each
bit is drawn from either Ber(1/3) or Ber(2/3). In the other four simulations, we adopt the same
simulation setup as in Schneider & Vodrahalli (2024). The bits are generated from a periodically
drifting distribution with Pr[θt = 1] =

∣∣ sin(π/6 + t · π/ϕ)
∣∣, for period ϕ ∈ {T2 ,

T
5 ,

T
10 ,

T
20}. We

evaluate the regret of quantal best-response by applying a soft-max layer and setting the temperature
to 1√

T
. We estimate from 128 independent sequences sampled from the ground truth distribution.

We plot the regret of the three transformers in Figure 1. The following observations validate that
NanoDO learns the dataset constructed by Algorithm 1. First, The transformers effectively learn to
play the robust strategy. ROBUST BERNOULLI and POLYAURN both have vanishing regret on all
eight ground truth data-generating processes. Second, ROBUST BERNOULLI learns the switch-
ing policy of Algorithm 1. ROBUST BERNOULLI preserves the same in-distribution regret of
BERNOULLI in plot (1, 2), which is negative around −0.16.

5.2.2 TV-DISTANCE

We report the estimated TV-distance between the models in Table 1. We estimate from 128 inde-
pendent sample of sequences and report the 95% confidence interval. We also test the TV-distance

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 1: The regret of three transformers over 8 ground truth distributions. The three transformers
are 1) ROBUST BERNOULLI, robustified BERNOULLI, 2) POLYAURN, and 3) BERNOULLI. The
eight ground truth distributions are: a) half Ber(2/3) and then half Ber(1/3); b) half Ber(1/3) and
half Ber(2/3), the same distribution that ROBUST BERNOULLI and BERNOULLI were trained on;
c) Ber(1/3); d) Ber(2/3); and four periodically changing distributions on the second row. The plot
shows (very narrow) confidence intervals in light color.

BERNOULLI1 ROBUST BERNOULLI POLYAURN
BERNOULLI1 − 0.7602± 0.0267 1.0000± 0
BERNOULLI2 0.4193± 0.0232 0.6869± 0.0295 1.0000± 0

Table 1: The TV-distance between transformers. BERNOULLIi are two models trained on the same
Ber(1/3)→Ber(2/3) process with different random seeds.

between two models trained on the same BERNOULLI distribution, but with different random seeds.
ROBUST BERNOULLI achieves a lower TV-distance than POLYAURN, where POLYAURN has a
TV-distance estimated as high as 1.0000 from the original distribution BERNOULLI.

In addition to the TV-distance, we report the Next-Token TV-distance here. As shown in Table 1,
the full-sequence TV-distance is brutally strict and even high for two models trained on the same
distribution. Tiny per-token differences are calculated as a difference across the entire sequence.
Even models that behave similarly at a token level can have a high TV-distance on whole sequences.
Per-step TV instead measures the local difference of the two predictive models at each prefix.

We define the following Next-Token TV-distance. For each prefix θs, we can calculate the
TV-distance of the next-token prediction, dTV(M1(·|θs),M2(·|θs)). The Next-Token TV-
distance dNT takes the expectation of the prefix from the distribution of BERNOULLI, i.e.,
with the first T/2 drawn from Ber(1/3) and the second T/2 tokens from Ber(2/3): dNT =

Eθ∼BERNOULLI

[
1
T

∑
s∈[T] dTV(M1(·|θs),M2(·|θs))

]
.

We report the Next-Token TV-distance in Table 2. The results are calculated with 128 independent
draws of a sequence.

BERNOULLI1 ROBUST BERNOULLI POLYAURN
BERNOULLI1 − 0.0199± 0.0001 0.1529± 0.0003
BERNOULLI2 0.0156 0.0299± 0.0001 0.1655± 0.0004

Table 2: Next-Token TV distance between transformers. BERNOULLIi are two models trained on
the same Ber(1/3)→Ber(2/3) process with different random seeds.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Elchanan Ben-porath. The complexity of computing a best response automaton in repeated games
with mixed strategies. Games and Economic Behavior, 2(1):1–12, March 1990. doi: None. URL
https://ideas.repec.org/a/eee/gamebe/v2y1990i1p1-12.html.

Emmanuel Candes and Terence Tao. Decoding by linear programming, 2005. URL https://
arxiv.org/abs/math/0502327.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling, 2021. URL https://arxiv.org/abs/2106.01345.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

Akshay Krishnamurthy, Keegan Harris, Dylan J. Foster, Cyril Zhang, and Aleksandrs Slivkins. Can
large language models explore in-context?, 2024. URL https://arxiv.org/abs/2403.
15371.

Ehud Lehrer and Eilon Solan. Approachability with bounded memory. Games and Economic Behav-
ior, 66(2):995–1004, July 2009. doi: None. URL https://ideas.repec.org/a/eee/
gamebe/v66y2009i2p995-1004.html.

Peter J. Liu, Roman Novak, Jaehoon Lee, Mitchell Wortsman, Lechao Xiao, Katie Everett, Alexan-
der A. Alemi, Mark Kurzeja, Pierre Marcenac, Izzeddin Gur, Simon Kornblith, Kelvin Xu,
Gamaleldin Elsayed, Ian Fischer, Jeffrey Pennington, Ben Adlam, and Jascha-Sohl Dickstein.
Nanodo: A minimal transformer decoder-only language model implementation in JAX., 2024.
URL http://github.com/google-deepmind/nanodo.

Annie Marsden, Evan Dogariu, Naman Agarwal, Xinyi Chen, Daniel Suo, and Elad Hazan. Prov-
able length generalization in sequence prediction via spectral filtering, 2024. URL https:
//arxiv.org/abs/2411.01035.

Shahar Mendelson, Alain Pajor, and Nicole Tomczak-Jaegermann. Reconstruction and subgaussian
operators in asymptotic geometric analysis. Geometric and Functional Analysis, 17:1248–1282,
11 2007. doi: 10.1007/s00039-007-0618-7.

Allen Nie, Yi Su, Bo Chang, Jonathan N. Lee, Ed H. Chi, Quoc V. Le, and Minmin Chen. Evolve:
Evaluating and optimizing llms for in-context exploration, 2025. URL https://arxiv.org/
abs/2410.06238.

Chanwoo Park, Xiangyu Liu, Asuman Ozdaglar, and Kaiqing Zhang. Do llm agents have regret?
a case study in online learning and games, 2025. URL https://arxiv.org/abs/2403.
16843.

Michele Piccione and Ariel Rubinstein. Finite automata play a repeated extensive game. Jour-
nal of Economic Theory, 61(1):160–168, 1993. ISSN 0022-0531. doi: https://doi.org/10.1006/
jeth.1993.1063. URL https://www.sciencedirect.com/science/article/pii/
S002205318371063X.

Ariel Rubinstein. Finite automata play the repeated prisoner’s dilemma. Journal of Economic
Theory, 39(1):83–96, June 1986. doi: None. URL https://ideas.repec.org/a/eee/
jetheo/v39y1986i1p83-96.html.

Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and
limitations of transformers. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing
Systems, volume 36, pp. 36677–36707. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
73bf692447f174984f30499ec9b20e04-Paper-Conference.pdf.

10

https://ideas.repec.org/a/eee/gamebe/v2y1990i1p1-12.html
https://arxiv.org/abs/math/0502327
https://arxiv.org/abs/math/0502327
https://arxiv.org/abs/2106.01345
https://arxiv.org/abs/2403.15371
https://arxiv.org/abs/2403.15371
https://ideas.repec.org/a/eee/gamebe/v66y2009i2p995-1004.html
https://ideas.repec.org/a/eee/gamebe/v66y2009i2p995-1004.html
http://github.com/google-deepmind/nanodo
https://arxiv.org/abs/2411.01035
https://arxiv.org/abs/2411.01035
https://arxiv.org/abs/2410.06238
https://arxiv.org/abs/2410.06238
https://arxiv.org/abs/2403.16843
https://arxiv.org/abs/2403.16843
https://www.sciencedirect.com/science/article/pii/S002205318371063X
https://www.sciencedirect.com/science/article/pii/S002205318371063X
https://ideas.repec.org/a/eee/jetheo/v39y1986i1p83-96.html
https://ideas.repec.org/a/eee/jetheo/v39y1986i1p83-96.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/73bf692447f174984f30499ec9b20e04-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/73bf692447f174984f30499ec9b20e04-Paper-Conference.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Transformers, parallel computation, and log-
arithmic depth. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pp. 43276–43327. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/
v235/sanford24a.html.

Jon Schneider and Kiran Vodrahalli. Online learning with bounded recall. In Proceedings of the
41st International Conference on Machine Learning, pp. 43791–43803, 2024.

Aron Vallinder and Edward Hughes. Cultural evolution of cooperation among llm agents, 2024.
URL https://arxiv.org/abs/2412.10270.

11

https://proceedings.mlr.press/v235/sanford24a.html
https://proceedings.mlr.press/v235/sanford24a.html
https://arxiv.org/abs/2412.10270

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A ADDITIONAL RELATED WORK

Our study is at the intersection of decision-making in online learning as well as modern transformer
architectures in deep learning.

Classically, there have been many studies of online decision-making for model families defined by
classes of finite automata (Rubinstein, 1986; Ben-porath, 1990; Lehrer & Solan, 2009; Piccione &
Rubinstein, 1993), though these earlier works are typically in the context of repeated games (which,
while related, is distinct from the online learning setting we study in this work). We can view the
connection to this earlier work by considering a transformer to implement a class of finite automata.

Park et al. (2025) is a particularly relevant modern study that studies the behavior of large language
models (LLMs) as game theoretic agents in both online learning and game theory, and is perhaps
the first study to directly examine whether a transformer-based architecture can also be a no-regret
agent. This work focuses more on the empirical behavior of existing LLMs and also defines a
complex regret-based training objective by which to train transformers. Comparatively, we present
distinct and simpler algorithms to achieve the goal of low-regret transformer models and present
results in different settings, focusing on the relation between next-token-prediction and regret.

Marsden et al. (2024) is another work investigating connections between length generalization in
next-token-prediction and online sequence prediction, albeit in the specialized setting of online lin-
ear dynamical systems.

The idea of using transformers for decision-making has also long been present in the deep learn-
ing literature. Chen et al. (2021) proposed to use transformer models for decision-making, and
Nie et al. (2025) has built on this work in the era of large language models, exploring multiple al-
gorithms for transforming an existing LLM into a model that can perform in-context exploration
in online decision-making settings. Krishnamurthy et al. (2024) also explores the connection be-
tween LLMs and decision-making settings, but again focuses on existing LLMs and investigating
multi-arm bandit environments via online in-context learning. Finally, Vallinder & Hughes (2024)
proposes another approach to modify the behavior of LLM agents in an online decision-making
setting via evolving prompts.

B OMITTED PROOFS

B.1 PROOF OF LEMMA 2.1

Proof. Let ht−1 := (θ1, . . . , θt−1) denote the history up to time t− 1. By assumption, the model’s
next token prediction is the true conditional probability at every history:

M(ht−1) = D(· | ht−1).

At round t, the decision maker plays the best response to this next-token prediction:

πt ∈ BR
(
M(ht−1)

)
∈ arg max

π∈∆(A)
Eθt∼D(·|ht−1)

[
U(π, θt)

]
.

For any other action a∗ ∈ A. By the optimality of πt under the correct conditional,

E
[
U(πt, θt)

∣∣ht−1

]
≥ E

[
U(a∗, θt)

∣∣ht−1

]
.

Taking expectations over ht−1 and using the tower property yields

E
[
U(πt, θt)

]
≥ E

[
U(a∗, θt)

]
.

Summing over t = 1, . . . , T gives

Eθ∼D

[T∑
t=1

U(πt, θt)
]
≥ Eθ∼D

[T∑
t=1

U(a∗, θt)
]

for every a∗ ∈ A.

Equivalently, the expected (average) utility regret versus the best fixed action in hindsight is ≤ 0:

Eθ∼D

[
max
a∗∈A

1

T

T∑
t=1

(
U(a∗, θt)− U(πt, θt)

)]
≤ 0,

which is precisely Eθ∼D[EXTREG(π,θ)] ≤ 0.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B.2 PROOF OF LEMMA 2.2

Proof. Consider the binary token space and action space Θ = A = {0, 1}, with utility function
U(a, θ) = I [a = θ]. Fix any next-token model M and the induced (deterministic) decision rule
πt = BR(M(θ(t−1))), which is a deterministic function of the history ht−1 = (θ1, . . . , θt−1).

Define an adversary that, after observing at (or equivalently inferring at from the history), sets
θt = 1− at. Then the learner obtains zero utility each round:

U(at, θt) = 0 for all t,

so
∑T

t=1 U(at, θt) = 0.

On the other hand, for the realized state sequence θ1:T , the best fixed action in hindsight is the
majority element of the sequence, which achieves utility at least T/2. Therefore,

EXTREG(π,θ) =
1

T

(
max

a∈{0,1}

T∑
t=1

U(a, θt)−
T∑

t=1

U(at, θt)

)
≥ 1

2
.

Thus, the regret is bounded below by a constant, i.e. Ω(1).

B.3 PROOF OF LEMMA 2.3

Proof of Lemma 2.3. Fix a finite action set A and utilities U : A × Θ → [−1, 1]. At round t, the
Polya urn predictor is

MPolya(θ | θ1:t−1) =
1 +

∑t−1
s=1 I [θs = θ]

|Θ|+ (t− 1)
.

The QBR with parameter η > 0 plays

πt(a) ∝ exp
(

1
η U
(
a,MPolya(· | θ1:t−1)

))
,

where

exp
(

1
η U
(
a,MPolya(· | θ1:t−1)

))
= exp

(1

η (|Θ|+ t− 1)

[∑
θ∈Θ

U(a, θ) +

t−1∑
s=1

U(a, θs)
])

.

Thus, QBR plays

πt(a) ∝ exp
(

C(a)
η (|Θ|+t−1)

)
· exp

(
1

η (|Θ|+t−1)

t−1∑
s=1

U(a, θs)
)
.

Thus πt is an exponential-weights distribution over actions with round-t learning rate λt :=
1

η (|Θ|+t−1) applied to the realized utilities U(a, θs), and with an action-dependent prior factor that
only changes by a common (rescaling-invariant) temperature at each t. Standard analysis of Hedge
with time-varying learning rates (apply, e.g., the potential argument round by round) gives, for any
adversarial sequence θ1:T ,

T∑
t=1

(
U(πt, θt)− U(a⋆, θt)

)
≥ − ln |A|

λT
− 1

2

T∑
t=1

λt, for all a⋆ ∈ A,

using U ∈ [−1, 1]. Choosing η = T−1/2 (as in the statement) yields λt =
√
T

|Θ|+t−1 , so

1

T

T∑
t=1

(
U(a⋆, θt)−U(πt, θt)

)
≤ ln |A|

T λT
+

1

2T

T∑
t=1

λt =
ln |A|√

T
+ O

(log T√
T

)
= O

(
log T + ln |A|√

T

)
.

which implies the regret bound EXTREG(π,θ) = O
(

log T+ln |A|√
T

)
.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.4 PROOF OF THEOREM 3.1

Proof. Let E be the event that for some s ∈ [T − 1], REGRETs ≥ REGRETHEDGE,s +
1√
T
log |A|+√

8(1 + α)(log T)/s (i.e., we return MPolya(θ
t−1) for all rounds t > s). Let τ be the random

variable representing the minimum such s; if the event E does not occur, let τ = T .

We begin by proving that the new modelM implements a low-regret distribution D. Fix any ad-
versarial sequence of states θ and define πt = QBR(M(θt−1), 1/

√
T). We can decompose the

external regret EXTREG(π,θ) via

EXTREG(π,θ) = max
a∗∈A

1

T

(
τ∑

t=1

[U(a∗, θt)− U(πt, θt)] +

T∑
t=τ+1

[U(a∗, θt)− U(πt, θt)]

)

By assumption, for t ≤ τ , M(θt−1) = M0(θ
t−1), and so

∑τ
t=1[U(a∗, θt) −

U(πt, θt)] ≤ τREGRETτ . By the definition of τ , REGRETτ < REGRETHEDGE,s +
1√
T
log |Θ| +

√
8(1 + α)(log T)/τ , and so we in turn have that

∑τ
t=1[U(a∗, θt) −

U(πt, θt)] ≤ τ
(

REGRETHEDGE,s +
1√
T
log |Θ|+

√
8(1 + α)(log T)/τ

)
= τREGRETHEDGE,s +

O
(√

T
(
log |Θ|+

√
(1 + α) log T

))
.

For t > τ , we have that M(θt−1) = MPolya(θ
t−1). By Lemma 2.3, we therefore

have that τREGRETHEDGE,s +
∑T

t=τ+1[U(a∗, θt) − U(πt, θt)] = O
(
T · log(T)+log |A|√

T

)
=

O(
√
T log(|A| · T)). Combining these two terms, we have that EXTREG(π,θ) =

O
(

1√
T
(log(|A| · T) +

√
(1 + α) log T)

)
= o(1).

We next bound the TV-distance between D and D0. Note that because we play the recommendation
ofM0 (and sample from D0) until event E occurs, the TV distance dTV(D,D0) is upper bounded
by the probability Prθ∼D0

[E] of this event.

To do this, we begin by defining a to be the sequence of pure action best responses to the recom-
mendations ofM0; i.e., at = BR(M0(θ

t−1)). We argue that if θ is truly sampled from D0, then
a and π obtain similar utilities and hence similar regrets. We can quantitatively bound this through
the following lemma.

Lemma B.1. Let µ ∈ ∆(Θ) be a distribution over states θ. Let a = BR(µ) and π = QBR(µ, η).
Then

U(a, µ)− U(π, µ) ≤ η log |A|.

Proof. Note that we can equivalently define the quantal best response π as the mixed action that
maximizes the regularized utility V (π) = U(π, µ) + ηH(π) (where H is the entropy function). We
therefore have that V (a) ≤ V (π); expanding this out (and using the fact that H(a) = 0), we find
that U(a, µ) ≤ U(π, µ) + ηH(π) ≤ U(π, µ) + η log |A|, from which the conclusion follows.

From Lemma B.1, it follows that when θ ∼ D0, Eθt [U(at, θt) − U(πt, θt)] ≤ (log |A|)/
√
T .

Secondly, since at is the best response to the distribution of θt, for any action a∗t we have that
Eθt [U(a∗t , θt) − U(at, θt)] ≤ 0. Combining these expressions, we have that Eθt [U(a∗t , θt) −
U(πt, θt)] ≤ (log |A|)/

√
T .

Let Rt(a
∗) =

∑
t(U(a∗, θt) − U(πt, θt)) be the unnormalized regret at time t with respect to

a∗, and similarly RHEDGE,t(a
∗) =

∑
t(U(a∗, θt) − U(πHEDGE,t, θt)). By the previous observation,

Rt(a
∗)− RHEDGE,t(a

∗)− t(log |A|)/
√
T is a super-martingale, so by Azuma’s inequality, we have

that

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Pr

[
Rt(a

∗) ≥ RHEDGE,t(a
∗) +

t log |A|√
T

+ C

]
≤ exp

(
−C2

8t

)
.

Substituting C =
√
8(1 + α)(log T)t (and normalizing by t), we find that

Pr

[
1

t
Rt(a

∗) ≥ RHEDGE,t(a
∗) +

log |A|√
T

+

√
8(1 + α)(log T)

t

]
≤ T−(1+α).

Now, REGRETt = maxa∗
1
tRt(a

∗). Applying a union bound over all t ∈ [T] and a∗ ∈ |A|, we have
that Pr[E] ≤ |A| · T−α, as desired.

B.5 PROOF OF THEOREM 4.1

To formally construct these two modelsM0 andM1, we will make use of the theory of de Bruijn
sequences. The de Bruijn graph Ĝσ,k of order k on an alphabet Θ = {s1, . . . , s|Θ|} of size |Θ|
is a directed graph whose vertices represent all distinct sequences of length k − 1. For every se-
quence si1si2 . . . sik of length k, there is a directed edge from the vertex si1si2 . . . sik−1

to the
vertex si2si3 . . . sik . A de Bruijn sequence of order k is a cyclic sequence of characters in Θ where
each of the possible |Θ|k substrings of length k appears exactly once. Note that a de Bruijn sequence
of order k corresponds to a (loop-removed) Eulerian cycle in a de Bruijn graph of order k (which in
turn must exist since every node in Ĝσ,k has equal indegree and outdegree |Θ|).
Given a fixed de Bruijn sequence of order L and over a binary alphabet Θ = {0, 1}, we can use it to
construct two nearly deterministic L-bounded modelsM0 andM1. M0 andM1 induce the same
uniform marginal distribution over length L substrings, but the next-token predictions are different.
We construct in the following way: we define M0(θ

L) specified by the deterministic next-token
of the de Bruijn sequence, and M1(θ

L) = 1 − M0(θ
L) as the deterministic opposite of M1.

The first L tokens in the Markov process are seeded uniformly so that both processes remain in the
same stationary distribution: the marginal distribution over any t > L substring is uniform. Thus,
any context length L model M will not be able to distinguish M0 from M1. Such a model M
makes predictions very differently from the deterministic next-token of eitherM0 orM1, leading
to Theorem 4.1.

Proof. We will prove this by constructing two L-bounded modelsM0 andM1 with the following
guarantee: for any other L-bounded model,

dTV (D0, D) + Eθ∼D1 [EXTREG(π,θ)] ≥ 1/12.

The theorem statement then follows from this guarantee (if Eθ∼D1
[EXTREG(π,θ)] ≥ 1/24, there

exists some sequence in the support of D1 that realizes this).

We first describe the two models. These models will be (nearly) deterministic Markov processes
of order L. For bothM0 andM1, we set probabilities for the first L tokens so that each token is
equally likely to be 0 or 1 (i.e., for t ≤ w,M0(θt|θt−1) =M1(θt|θt−1) = Unif({0, 1})).
We then use a de Bruijn sequence to set the transition probabilities ofM0 andM1 as follows. Pick
an arbitrary binary de Bruijn sequence of order L. For an L-tuple of states θL = (θ1, . . . , θL), let
DB(θL) ∈ {0, 1} be the token immediately following θL in this de Bruijn sequence. Then:

• ForM0, setM0(θt|θ(t−L):(t−1)) = I
[
θt = DB(θ(t−L):(t−1))

]
.

• ForM1, setM1(θt|θ(t−L):(t−1)) = I
[
θt = 1− DB(θ(t−L):(t−1))

]
.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

That is, we deterministically4 setM0 to generate the next bit by following the de Bruijn sequence,
and set M1 to generate the next bit by deterministically following the opposite of the de Bruijn
sequence.

We begin by making the following observation: for both Markov processesM0 andM1, the uni-
form distribution over L-bit strings is a stationary distribution for the process. This follows because
the induced Markov chain over L-bit strings is doubly stochastic for bothM0 andM1 (for any state
θL, there are exactly two predecessor states that can lead to it, one from the de Bruijn sequence, and
one not from it). This means that for all t > L, the distribution of θ(t−L):(t−1) is uniform over ΘL.

Now let us consider the candidate robust L-bounded modelM (with distribution D(M) = D). We
will call an L-tuple of states θL ∈ ΘL high-regret if M(DB(θL)|θL) ≥ 2/3, and let α ∈ [0, 1]
equal the fraction of tuples in ΘL that are high-regret. Note that on a high-regret sequence the
prediction ofM disagrees with that ofM1, and will causeM to incur external regret on sequences
drawn from D1.

In particular, we first claim that Eθ∼D1 [EXTREG(π,θ)] ≥ 1
3α − (1 − α). To see this, we will

compare the expected utility of following the baseline strategy π∗ = (1/2, 1/2) to the utility of
following the sequence of recommendations πt = QBR(M(θt−1), 1/

√
L). The baseline strategy

has the property that U(π∗, θ) = 1/2 regardless of θ, so the cumulative utility of the baseline is
always T/2. If θ(t−L):(t−1) is a high-regret tuple, then πt will equal DB(θ(t−L):(t−1)) with proba-
bility at least 2/3 (this probability only gets amplified by the quantal best response), and therefore
U(πt, θt) ≤ 1/3. On the other hand, if θ(t−L):(t−1) is not a high-regret tuple, then we only have the
trivial bound U(πt, θt) ≤ 1. Finally, for any t < L, θt will be drawn uniformly from {0, 1}, so the
expected utility E[U(πt, θt)] = 1/2.

Combining these facts (and using the fact that for each t > L, θ(t−L):(t−1) is drawn uniformly from
ΘL and therefore has an α probability of being high-regret), we find that

Eθ∼D1 [EXTREG(π,θ)] ≥ Eθ∼D1

[
1

T

T∑
t=1

U(π∗, θt)− U(πt, θt)

]

≥ (T − L)

T
·
(
1

2
− α

3
− (1− α)

)
=

α

3
− 1

4
.

On the other hand, we will show that if α is too small, then the TV distance between D0 and D is
necessarily large. Indeed, let D̃0 and D̃ be the distributions of the first L+ 1 states from D0 and D
respectively – by the data-processing inequality, dTV(D0, D) ≥ dTV(D̃0, D̃). But we can directly
bound dTV(D̃0, D̃) ≥ (1 − α)/3, since if θ1:L is not high-regret (which happens with probability
1−α), with probability at least 1/3M(θ1:L) will not equal DB(θ1:L) and thus generate a sequence
lying outside the support ofM0. It follows that dTV (D0, D)+Eθ∼D1

[EXTREG(π,θ)] ≥ 1/12, as
desired.

B.6 PROOF OF THEOREM 4.2

Proof of Theorem 4.2. First, we bound the TV distance between D and D0. Following the proof of
Theorem 3.1, for any substring of length m ≤ ∆, the probability that Algorithm 1 plays the out-of-
distribution prediction is bounded by 1

T ·
1

∆α+1 . There are at most ∆T substrings of length bounded
by ∆. Applying a union bound we prove the TV distance result.

The external regret bound follows from the same proof in Schneider & Vodrahalli (2024). We write
the proof here. Given a context of length L, the output of Algorithm 2 can be viewed as the uniform

4If we want to ensure D0 and D1 have full support, we can add infinitesimal mass on the other option (i.e.
follow the de Bruijn sequence with probability 1 − ϵ, follow the opposite with probability ϵ). This does not
affect any of the subsequent logic.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

combination of ∆ copies of Algorithm 1, each starting at a time m = L + 1, . . . , L′. Intuitively,
Algorithm 2 inherits the regret of Algorithm 1 over length ∆ strings with the given parameters,

which is bounded by
√
2+1
∆ +

√
8 log T+8(α+1) log∆

∆ . We denote Algorithm 1 by A and its regret
by REGRETA. First, we introduce notation related to offsets. For any t ∈ −(∆ − 1), T − 1 and
m ∈ [∆], we write

ãmt = amt+m = A(θt, . . . , θt+m−1),

which is the prediction by the m-th copy of A about state θt+m.

Now we rearrange the total payoff of Algorithm 2 and write it in copies of A:

∑
t

I [at = θt] =

T∑
t=1

1

∆

∆∑
m=1

I [amt = θt]

=

T∑
t=1

1

∆

∆∑
m=1

I
[
ãmt−m = θt

]
=

T−1∑
t=−∆+1

1

∆

∆∑
m=1

I [ãmt = θt+m]

≥
T−1∑

t=−∆+1

1

∆

[
max

θ∈{0,1}

t+∆∑
m=t

I [θ = θm]−∆REGRETA

]

≥ max
θ∈{0,1}

T∑
t=1

I [θ = θt]− (T +M)REGRETA.

Normalizing both sides by 1
T , we prove the theorem.

C TRANSFORMER ROBUSTIFICATION CONSTRUCTION

C.1 TRANSFORMER PRELIMINARIES

We introduce a formal model of a transformer, drawing heavily from Sanford et al. (2024).

For a sequence of queries, keys, and values Q,K, V ∈ RT×m, an autoregressive self-attention head
of embedding dimension m with softmax attention is defined by

f(Q,K, V) = softmax(QKT)V,

where the softmax operator

softmax(v) =
1∑T

i=1 exp(vi)
(exp(v1), . . . , exp(vT))

is applied row-wise, and mask M ∈ RT×T satisfies

Mi,j =

{
0 if i ≥ j,

−∞ otherwise.

Multi-headed attention concatenates the outputs for multiple attention heads. For some sequential
input X ∈ RT×m, an H-headed attention unit computes H queries, keys, and values of embedding
dimension m

H as
Qh = XWh

Q, K
h = XW k

K , V h = XWh
V ,

for projections Wh
Q,W

h
K ,Wh

V ∈ Rm×m/H , for every h ∈ [H]. The output of the resulting H-headed
attention layer is the following:

X 7→ [f(Q1,K1, V 1) . . . f(QH ,KH , V H)],

for parameters (Wh
Q,W

h
K ,Wh

V)h∈[H].

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

We define a transformer of depth L as a function of the form

g = ϕL ◦ fL ◦ · · · ◦ ϕ1 ◦ f1 ◦ ϕ0,

where f1, . . . , fL are multi-headed attention layers of embedding dimension m, and ϕ1, . . . , ϕL−1 :
Rm → Rm are multi-layer perceptrons applied element-wise, i.e.

ϕℓ(X) = (ϕℓ(X1), . . . ϕℓ(XT)),

ϕ0 : Σ → Rm is an embedding layer from some alphabet Σ, and ϕL : Rm → Rdout is an output
MLP layer. In the subsequent proof, we argue informally that our MLP units can be efficiently
constructed as a shallow ReLU network with bounded width (typically, logarithmic in sequence
length T) and bit-precision (log(T) as well).

We assume that the alphabet Σ encodes a positional encoding. That is, in the proof of Theorem 5.1,
we let Σ = Θ× [T] and encode the input sequence θT ∈ ΘT as ((θ1, 1), . . . , (θT , T)). We assume
that there exists a constant “beginning-of-sequence token” XBOS that produces constant key and
value vectors and can be attended to.

C.2 PROOF OF THEOREM 5.1

We restate Theorem 5.1 precisely.
Theorem C.1. Suppose there exists a transformer gM0

of depth L and embedding dimension m
that exactly computes the next-token probabilities over some distribution D0 (i.e. for any θT ∈
ΘT , gM0

(θT)t,i = PrD0
[θt = i | θt−1]). Suppose the loss function U is Lipschitz and can be

exactly represented by a multi-layer perceptron with width independent of T . Then, there exists
a transformer g′ of depth L′ = L + 4, heads H ′ = O(|A|2), and embedding dimension m′ =
m + O(|A|3 + |Θ|) such that the following is true (in the notation of Algorithm 1) for some error
term δ ≤ 1

T c (for any fixed c > 0), for all t ≤ T :

1. If there exists s ≤ t− |A| such that

REGRETs ≥ REGRETHEDGE,s +
1√
T

log |A|+
√

8(1 + α)(log T)/s+ δ,

then g′(θT)t =MPolya(θ
(t−1)).

2. If every s ≤ t− |A| satisfies

REGRETs < REGRETHEDGE,s +
1√
T

log |A|+
√

8(1 + α)(log T)/s− δ,

then g′(θT)t =M0(θ
t−1) = gM0

(θT).

Before proving Theorem C.1, we observe that there are two senses in which the transformer con-
struction is approximate:

• The REGRETs condition makes no guarantees within an additive interval of width 2δ.
• The transformer guarantee does not account for the previous |A| states in the outcomes.

Both issues are insignificant in the regime where T is large, and Theorem 3.1 could be adapted in a
straightforward manner to accommodate these changed conditions.

Proof. We transformer g′ by introducing six gadgets. Assume that A = {1, . . . , k} throughout.

1. The first L layers of g′ exactly compute the output of gM0 . Concretely, we assume that the
tth output of the Lth layer exactly encodes a positional embedding ut, the input state θt−1,
and the next token distribution under D0:

pt =

(
Pr
D0

[θt = θ | θt−1]

)
θ∈Θ

∈ R|Θ|.

The output MLP computes the expected loss of each action with respect to pt:

ℓta = Eθ∼pt [U(a, θ)], for each a ∈ A.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

2. An additional head in layer L computes

MPolya(θ
(t−1)) =

(
1 +

∑t−1
s=1 I [θs = θ]

|Θ|+ (t− 1)

)
θ∈Θ

in the tth output by calculating a rolling average with the self-attention head. The output
MLP computes

ℓHEDGE,t
a = Eθ∼MPolya(θ(t−1))[U(a, θ)], for each a ∈ A.

3. k − 1 heads in layer L+ 1 jointly retrieve the pairs of partial losses

(ℓt−k+1
1 , ℓHEDGE,t−k+1

1), (ℓt−k+2
2 , ℓHEDGE,t−k+2

2), . . . , (ℓt−1
k−1, ℓ

HEDGE,t−1
k−1)

from the k previous tokens.

4. Layer L+ 2 uses k2 attention heads to compute each component of both QBRs.

πt−k
a =

exp(
√
Tℓt−k

a)∑
a′ exp(

√
Tℓt−k

a′)
, πHEDGE,t−k

a =
exp(
√
TℓHEDGE,t−k

a)∑
a′ exp(

√
TℓHEDGE,t−k

a′)
.

5. Layer L + 3 uses one head to compute REGRETt−k − REGRETHEDGE,s by averaging the
QBR losses, and evaluate whether the inequality condition holds for t− k.

6. Layer L+4 detects whether the inequality condition occurs for any s ≤ t−k by computing
an OR over the inequality conditions.

While the proof does not formally define all weights in the model, we outline how each gadget is
constructed in the following sections. We focus in greatest specificity on the attention patterns that
construct the aggregations employed by different gadgets. We also provide brief justifications for
why all MLPs can be compactly constructed and a high-level error analysis.

Gadget 1: Next-token probabilities (Layers 1 to L). The relative sizes of the two models im-
mediately imply that the first L layers of g′ can exactly simulate gM0

. The residual connections in
g′ (and the slight increase in embedding dimension) make it possible for g′ to preserve a positional
encoding ut and θt−1 throughout the L layers, even if the residual stream of gM0

“forgets” them.

Because ℓta is a linear function of pt, it can be trivially computed with a linear layer of the Lth layer’s
MLP ϕL. The MLP additionally computes

(I [θt−1 = θ])θ∈Θ ∈ {0, 1}k,
which employs k distinct ReLU circuits as fixed thresholds.

Gadget 2: Polya urn average (Layer L). The Polya urn next-state prediction model (equation 1)
can be computed exactly for each state θ by an attention head that averages over the indicators
I [θs = θ] for s < t. The bias of the Polya urn predictor is accounted for by attending to the
constant-valued BOS token.

A single autoregressive attention head in the Lth layer computes MPolya(θ
(t−1)) by attending to

previous tokens (including a BOS token) with the following keys, queries, and values, which are
either constant-valued or can be obtained using O(|Θ|) ReLU neurons as thresholds.

Qt = 1, Kt = 0, Vt = (I [θt−1 = θ])θ∈Θ;

KBOS = log(|Θ| − 1), VBOS =
1

|Θ| − 1
.

These choices produce the following self-attention outputs.

softmax(QtK
T)V =

exp(QtKBOS)VBOS +
∑

s≤t exp(QtKs)Vs

exp(QtKBOS) +
∑

s≤t exp(QtKs)

=
(|Θ| − 1) · 1

|Θ|−1 +
∑

s≤t I [θs−1 = θ]

(|Θ| − 1) + t

=MPolya(θ
(t−1)).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

As in Gadget 1, the partial losses ℓHEDGE,t
a can be computed in the output MLP.

Note that none of these quantities depend on M0; hence, concurrent computation in layer L is
possible.

Gadget 3: Retrieving previous losses (Layer L+1). For each a ∈ A, assume that the positional
encoding ut is sufficiently structured to make possible the retrieval of ut−k+a in an MLP layer. This
is possible with simple sinusoidal embeddings (see, e.g., the proof of Theorem 6 of Sanford et al.
(2023)). We further assume that ∥ut∥ = 1 and uT

t us ≤ 1− 1
T c for some constant c ≥ 0 if t ̸= s.

The ath attention head has the following components, which can be computed in the MLP of the
previous layer:

Qt = TCut−k+a, Kt = ut, Vt = (ℓta, ℓ
HEDGE,t
a),

for any C ≥ c+ 1. For any constant c′ > 0, there exists some sufficiently large C such that the first
dimension of the ath self-attention output approximately equals ℓt−k+a

a :∣∣softmax(QT
t K)V·,1 − ℓt−k+a

a

∣∣
=

∣∣∣∣∣
∑

s≤t exp(T
CuT

t−k+aus)ℓ
s
a∑

s≤t exp(T
CuT

t−k+aus)
− ℓt−k+a

a

∣∣∣∣∣
≤
∣∣∣∣ exp(TC)

exp(TC) + (t− 1) exp(TC − TC−c)
ℓt−k+a
a − ℓt−k+a

a

∣∣∣∣+ ∣∣∣∣ (t− 1) exp(TC − TC−c)

exp(TC)

∣∣∣∣
≤ 1

T c′
.

We refer back to this inverse-polynomial additive error later when bounding δ. Note that the outputs
of this self-attention unit can be computed with bit precision O(log T).

The analogous claim holds for v·,2 and ℓHEDGE,t−k+a
i .

Gadget 4: Computing QBR (Layer L + 2). Before formally constructing the QBR predictor π,
we outline how we wish to obtain some πt−k

a for some action a ∈ A in the tth sequential position
for a single fixed index t by providing a partial softmax over a subset of k embeddings.

Q̃t =
√
T , K̃t−k+a′ = ℓt−k

a′ , Ṽt−k+a′ = I [a′ = a] , for a′ ∈ A.

Note that the previous gadget ensures that sequence element t − k + a′ has access to partial loss
ℓt−k
a′ . The corresponding softmax exactly computes πt−k

a .

softmax(Q̃tK̃)Ṽ =

∑t
s=t−k+1 exp(Q̃tK̃s)Ṽs∑t
s=t−k+1 exp(Q̃tK̃s)

=

∑k
a′=1 exp(Q̃tK̃t−k+a′)Ṽt−k+a′∑k

a′=1 exp(Q̃tK̃t−k+a′)

=
exp(
√
Tℓt−k

a)∑k
a′=1 exp(

√
Tℓt−k

a′)
= πt−k

a .

This construction in its current is not sufficient because its parameterization depends on a single
sequence index t, and it attends to only a subset of elements. Two modifications suffice to adapt this
construction to compute all sequential outputs.

1. We employ a width-k interval positional encoding that the tth sequence element only non-
negligibly attends to the k previous elements.

2. We use k2 heads such that the tth output of the head indexed by (a, j) is πt−k
a if t ≡ j

(mod k) and 0 otherwise.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

We assume that the positional encoding ut can be used to derive a width-k interval encoding wt that
satisfies the following property:

wT
t us = 1 if t− k ≤ s < t, and wT

t us ≤
1

2
otherwise.

These embedding vectors are known to exist and have dimension O(k) by a restricted-isometry
condition established by Mendelson et al. (2007); Candes & Tao (2005)5.

Fix some pair (a, j) ∈ [k]2. We construct the queries, keys, and values of the corresponding head as
follows. We define a′j,t ∈ [k] as a′j,t ≡ t− j (mod k).

Qt =
√
Twt, Kt = ut

(
ℓ
t−a′

j,t

a′
j,t

+ c
√
T
)
− cT, Vt = I

[
a′j,t = a

]
.

Note that the new query, key, and value embeddings are defined for all t and that Vt−k+a = Ṽt−k+a.
Furthermore, the query/key inner-products are preserved within the k-interval, and inner-products
outside the interval are much smaller under the assumption that U is bounded indepently of T . For
a sufficiently large constant c:

QT
t Ks =

√
T
(
ℓ
t−a′

j,t

a′
j,t

+ c
√
T
)
− cT =

√
Tℓ

t−a′
j,t

a′
j,t

= Q̃tK̃s, if t− k ≤ s < t.

QT
t Ks ≤

√
T

2

(
ℓ
t−a′

j,t

a′
j,t

+ c
√
T
)
− cT =

√
T

2
ℓ
t−a′

j,t

a′
j,t

− cT

2
≤ −cT

4
, otherwise.

A judicious choice of c ensures that the additive error in the self-attention unit from inner products
outside the interval of width k is inversely polynomial in T . We conclude the following:

softmax(QT
t K)V =

∑t
s=1 exp(Q

T
t Ks)Vs∑t

s=1 exp(Q
T
t Ks)

≈
∑t−1

s=t−k exp(Q̃
T
t K̃s)Ṽs∑t−1

s=t−k exp(Q̃
T
t K̃s)

= πt−k
a ,

where the approximation conceals an additive inverse polynomial error whose degree depends on
the choice of c, which can be bounded with a similar softmax analysis used in the previous gadget.

Given the QBR distribution πt−k, the layer’s MLP computes Ea∼πt−k [U(a, θt−k)] by evaluating
Ea∼πt−k [U(a, θ)] for every θ ∈ Θ as a linear function of πt−k, and using |Θ| ReLU thresholds to
retrieve the correct expectation for θt−k

6.

Layer L+ 2 consists of two copies of this gadget. The other one computes πHEDGE,t−k and

Ea∼πHEDGE,t−k [U(a, θt−k)]

with k2 additional attention heads and corresponding MLP weights.

Gadget 5: Evaluating REGRETt−k condition (Layer L + 3). Obtaining REGRETt−k requires
first computing

1

t− k

∑
s≤t−k

Ea∼πs [U(a, θs)],

which can be attained a transformer that computes a rolling average among t−k preceding elements.
The following queries, keys, and values enable that construction:

Qt = 1, Kt =

{
T t > k,

0 t ≤ k,
Vt = Ea∼πt−k [U(a, θt−k)].

This computes the above quantity up to additive inverse polynomial error.

An analogous computation retrieves the corresponding term for HEDGE:

1

t− k

∑
s≤t−k

Ea∼πHEDGE,s [U(a, θs)].

5This connection is discussed in detail in Sanford et al. (2023).
6This relies on θt−k being retrieved from index t − k + 1, which is possible with an additional “look-up”

attention head that applies the construction of Gadget 3.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

The difference in regrets can be computed in the MLP by subtracting the two quantities and scaling
appropriately. We conclude by determining whether REGRETt−k meets the condition. Since the
regret is only used as a threshold, we design an MLP that evaluates the following condition:

qt−k = I

[
REGRETt−k − REGRETHEDGE,t−k ≥

1√
T

log |A|+
√

8(1 + α)(log T)

t− k

]
.

Note that the total additive error of the thresholded quantity in the condition is at most inverse
polynomial.

Gadget 6: Determining whether the condition holds anywhere (Layer L + 4) The final layer
tests whether qs−k = 1 for any s ≤ t and returns the appropriate distribution based on the result.
We employ a single self-attention head with the following components:

Qt = 1, Kt = 2T · qt−k, Vt = 1, kBOS = T, vBOS = 0.

We set qt−k = 0 for t ≤ k. Consequently, softmax(QtK
T)V > 2

3 if there exists some qs−k = 1

for s ≤ t, and softmax(qtk
T)v < 1

3 otherwise. Thresholding on this value is sufficient to ensure the
that proof claim holds.

22

	Introduction
	Our Results
	Related Work

	Model and Preliminaries
	Next-Token Prediction
	Adversarial Online Decision Making
	Interplay between Next-Token Prediction and Regret Minimization

	Robustification with Unbounded Context Length
	Robustification with a Bounded Context Length
	Impossibility with the Same Context Length
	Robustification with a Longer Context Length

	Training Low-Regret Transformer Models
	Representing Robustified Models
	Empirically Robustifying Simple Transformers
	Regret Evaluation
	TV-distance

	Additional Related Work
	Omitted Proofs
	Proof of Lemma 2.1
	Proof of Lemma 2.2
	Proof of Lemma 2.3
	Proof of thm: main
	Proof of thm: same context length impossibility
	Proof of thm: bounded context no regret

	Transformer Robustification Construction
	Transformer Preliminaries
	Proof of thm:transformer

