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Abstract

Flow-based models establish a continuous-time invertible transport map between
a data distribution and a pre-specified target distribution, such as the standard
Gaussian in normalizing flow. In this work, we study beyond the constraint of
known target distributions. We specifically aim to find the worst-case distribution in
distributional robust optimization (DRO), which is an infinite-dimensional problem
that becomes particularly challenging in high-dimensional settings. To this end,
we introduce a computational tool called FlowDRO. Specifically, we reformulate
the difficult task of identifying the worst-case distribution within a Wasserstein-
2 uncertainty set into a more manageable form, i.e., training parameters of a
corresponding flow-based neural network. Notably, the proposed FlowDRO is
applicable to general risk functions and data distributions in DRO. We demonstrate
the effectiveness of the proposed approach in various high-dimensional problems
that can be viewed as DRO, including adversarial attack and differential privacy.

1 Introduction

Flow-based models are continuous-time models that gradually transform base distributions into
desired target distributions. Such models have been popular in the field of normalizing flow [Kobyzev
et al., 2020], where the target distribution is pre-specified as the standard multivariate Gaussian. In
this context, flow-based models allow accurate density estimation of and efficient sampling from
the base distribution. However, in many problems, our objective is not to model the current data
distribution but to find a density transport map that fits other goals. In this sense, we need to
extrapolate the data distribution along certain directions. In this regards, one particular consideration
is the problem of distributionally robust optimization (DRO) [Mohajerin Esfahani and Kuhn, 2018],
which aims to find robust optimal solutions that minimize certain risk over the worst-case distribution
within a pre-specified uncertainty set. An essential aspect of solving DRO is to find the worst-case
distribution, which is an infinite-dimensional optimization problem that is particularly challenging in
high dimension for general risk functions.

Contributions. In this work, to overcome the challenges in high dimension, we develop a flow-based
neural network called FlowDRO to find the worst-case distribution in DRO. Main contributions
are: (1) Re-formulate the problem of finding worst-case distributions in DRO into its Wasserstein
proximal form and subsequently reduce the infinite-dimensional problem into solving for a transport
map; (2) Parametrize the transport map by continuous-time flow neural networks and develop an
efficient block-wise training algorithm to train the flow parameters; (3) Demonstrate the effectiveness
of FlowDRO on various high-dimensional problems from adversarial attack and differential privacy.

Related works. The problem of DRO aims to find a minimax robust optimal solution that minimizes
some expected loss taken over the worst-case distribution within a pre-specified set of distributions
(i.e., a uncertainty set). At the core of DRO is how to find the worst-case distribution within an
appropriately specified uncertainty set, so as to enable theoretical analyses and computational methods.
The celebrated work [Mohajerin Esfahani and Kuhn, 2018] considers the Wasserstein uncertainty set
over the base distribution, which is restricted to be the empirical data distribution. It proves a strong
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duality result for the problem and reformulates it as a finite-dimensional convex problem, where a
worst-case discrete distribution can be found to attain the worst-case expectation in finite sample or
asymptotically. Later works considered more general settings: [Gao and Kleywegt, 2023] considers a
more general Wasserstein DRO problem, where the base distribution lies in a general Polish space.
[Staib and Jegelka, 2019] considered maximum mean discrepancy (MMD) uncertainty sets. [Wang
et al., 2021] considered uncertainty sets based on the sinkhorn distance. Despite the existing efforts to
find appropriate DRO formulations that allow analytic or approximate solutions, current approaches
still have limited scalability in solving high-dimensional problems with general loss functions.

Problem setup. Consider a real-valued risk function R taking as inputs a d-dimensional distribution
P with a finite second moment and a measurable test function ϕ. Specifically, we assume there is
a pre-specified loss function ℓ so that R(P, ϕ) = EX∼P [ℓ(X,ϕ)]. We are interested in solving the
following distributionally robust optimization (DRO) problem:

min
ϕ∈Φ

max
P∈Pr

R(P, ϕ). (1)

In (1), Φ denotes the constraint set for ϕ and Pr is the Wasserstein-2 (W2) ball around the data
distribution PX . Namely, we let

Pr = {P :W 2
2 (P, PX) ≤ r2}, (2)

where by the Monge formulation, the W2 distance W 2
2 (P2, P1) between two d-dimensional distribu-

tions P2, P1 with finite second moments is written as
W 2

2 (P2, P1) = min
T :T#P1=P2

EX∼P1
∥T (X)−X∥22. (3)

In (3), T : Rd → Rd denotes the transport map and T# denotes the push-forward operation by T ,
where (T#P )(A) = P (T−1(A)) for a measureable set A.

2 Proposed FlowDRO

We focus on solving for the worst-case distribution within Pr (i.e., the maximizer of the inner problem
of (1)), assuming ϕ is given. Note that for each r > 0, there is an h > 0 dependent on r, such that we
have the following equivalent unconstrained problem:

min
P∈P

−R(P, ϕ) +
1

2h
W 2

2 (P, PX), (4)

where P denotes the space of all probability distributions on Rd with a finite second moment. Problem
(4) can be viewed as a proximal step to minimize the objective −R(P, ϕ) under the Wasserstein-2
metric in probability space [Jordan et al., 1998, Salim et al., 2020, Lin et al., 2021]. By the Monge
formulation of the W2 distance and the assumption that R(P, ϕ) = EX∼P [ℓ(X,ϕ)] for some loss
function ℓ, the problem of solving for the worst-case distribution P in (4) thus reduces to finding the
optimal transport map T : Rd → Rd that maps on data X ∼ PX :

min
T :Rd→Rd

EX∼PX

ï
−ℓ(T (X), ϕ) +

1

2h
∥T (X)−X∥22

ò
. (5)

To yield a tractable and meaningful solution of T , we parametrize it as the solution map of a
NeuralODE model [Chen et al., 2018]. Specifically, consider a density evolution (i.e., flow) ρ(x, t)
such that ρ(x, 0) = Px at t = 0, and as t increases, ρ(x, t) approaches P̃ , which is the (unknown)
maximizer of (4).

We consider when the flow is induced by an ODE of x(t) in Rd: ẋ(t) = v(x(t), t), where x(0) ∼ PX .
We then parametrize v(x(t), t) by a neural network f(x(t), t;ψ) with trainable parameters ψ. As a
result, at any time t > 0, the ψ-parametrized solution map T ts over an arbitrary interval [s, t) can be
expressed as

T ts(x;ψ) = x+

∫ t

s

f(x(s′), s′;ψ)ds′. (6)

Without loss of generality, we assume the entire solution map is the integral of f(x(t), t;ψ) over
the unit interval [0, 1). Using (6), the problem of finding T in (5) thus reduces to training ψ in the
following problem:

min
ψ

EX∼PX

ï
−ℓ(T 1

0 (X;ψ), ϕ) +
1

2h
∥T 1

0 (X;ψ)−X∥22
ò
. (7)
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Algorithm 1 Block-wise FlowDRO training

Require: Penalty parameters {hk}Kk=1, training data
X(0) ∼ PX .

Ensure: K Trained flow blocks {T 1
0 (·; ψ̂k)}.

1: for k = 1, . . . ,K do
2: Optimize T 1

0 (·;ψk) upon minimizing (7) with h = hk
using mini-batch sample average, given previous k−1

blocks {T 1
0 (·; ψ̂i)}k−1

i=1 .
3: end for

We also propose a step-wise training
algorithm of minimizing (7) with re-
spect to the network parameters ψ.
We build on the block-wise training
method in [Xu et al., 2023], which
was originally developed for training
normalizing flows. Specifically, we
would learn K networks block-wise,
where the networks are parametrized
by {ψk}Kk=1. To do so, we first train
ψ1 using (7) with the penalty factor
h = h1. The expectation is taken over x(0) ∼ PX , the data distribution. Using the trained parameters
ψ̂1, we could thus compute the push-forward distribution P1 = T 1

0 (·; ψ̂1)#PX . This push-forward
operation is done empirically by computing x(t1) = T 1

0 (x(0); ψ̂1), x(0) ∼ PX using the trained
flow model. Then, we continue training ψ2 using (7), where the expectation is instead taken over
x(t1) ∼ P1. In general, starting at P0 = PX , we are able to train the (k + 1)th block parameters
ψk+1 given previous k blocks, where the expectation is taken over Pk.

The computational complexity of the block-wise training Algorithm 1 can be analyzed in terms
of counting the number of function evaluation of the network f(x(t), t;ψ) when computing the
loss (7). Suppose at block k, we break the integral of f(x(t), t;ψk) over [0, 1) into S ≥ 1 smaller
pieces {[ti, ti+1)}S−1

i=0 . Let the integral on each piece be numerically estimated by the fixed-stage
Runge-Kutta fourth-order method. As a result, it takes O(4S) evaluation of f(x(t), t;ψk) per X . If
we have N training data and a total K blocks is trained, the overall computation is thus on the order
of O(4SKN), which is linear in the number of samples and thus scalable to large datasets.

3 Experiments

We consider two sets of experiments to demonstrate the effectiveness of the learned worst-case
distribution of FlowDRO using Algorithm 1. Additional details are in Appendix A.

Adversarial attack. In the context of computer vision, adversarial attack perturb input raw images
Ximg into X̃img, so that the accuracy of a pre-trained classifier ϕ on perturbed images is low [Madry
et al., 2018]. Our FlowDRO can be used as a distributional attacker, where we find an alternative
distribution P̃ on which the risk (average cross-entropy loss) of ϕ is high and accuracy is low.

Table 1 quantitatively compare the risk and accuracy of the pre-trained classifier ϕ on CIFAR10. We
notice that under the same amount ofW2 perturbation as measured by EXtest∼PX,test

∥Xtest−X̃test∥2,
FlowDRO performs much more effective attacks than the PDG baselines under ℓ2 and ℓ∞ perturbation
[Madry et al., 2018]. Specifically, ϕ on the adversarial distribution found by FlowDRO yields
significantly larger risk and lower accuracy. Meanwhile, Figure 1 visualizes the qualitative changes
to test images Xtest by FlowDRO and PGD, where the proposed FlowDRO also induces more
meaningful contextual changes to the input image. Lastly, Figure A.1 visualizes the gradual changes
ofXtest over time and blocks by FlowDRO, demonstrating the continuous deformation by our trained
flow model on test images Xtest. In Appendix A.3, we consider additional examples on the MNIST
digits, where we provide more insights into the behavior of FlowDRO
Differential privacy. Differential privacy (DP) offers a structured method to measure how well
individual privacy is maintained in a statistical database, when collective data insights or statistical

Table 1: Risk and accuracy of a pre-trained VGG-16 classifier ϕ on clean test data and adversarially
perturbed data by FlowDRO and by PGD under ℓ2 and ℓ∞ perturbation. For a fair comparison, we
control the same amount of perturbation by different attacks as measured by the empirical Wasserstein-
2 distance from the test distribution.

Clean data Attack by FlowDRO Attack by PGD-ℓ2 Attack by PGD-ℓ∞
Risk in (12) 2.03 32.32 6.22 10.51

Accuracy in (13) 87.02 24.22 61.44 41.57
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(a) Attacked by FlowDRO (b) Attacked by PGD-ℓ2

Figure 1: Adversarial samples found by FlowDRO and by PGD-ℓ2. Captions show prediction by the
pre-trained classifier ϕ on input images Xtest (before attack) and X̃test (after attack).

summaries are shared as answers to the query. Specifically, given two neighboring datasets S and
S′ and a query function q(S), DP mechanisms Mr are introduced so that a test function ϕ cannot
distinguish between Mr(q(S)) and Mr(q(S

′)). The subscript r refers to the amount of perturbation
between q(S) and Mr(q(S)), which is the W2 distance in our examples. Our FlowDRO is thus a
distributional perturbation mechanism (DPM), which is distinguished from additional perturbation
mechanisms (APM) that add Gaussian [Dwork et al., 2014] or Laplacian noises [Dwork et al., 2006]
to q(S), which we call APM-G and APM-L respectively.

We demonstrate the effectiveness of DPM against APM on an example of MNIST with “one-
neighborhood digit missing”. Specifically, the dataset S = {X1, . . . , X9 : Xi = (Ximg,i, Yi) ∼
PX , Yi ̸= Yj if i ̸= j}, so it has precisely 9 random image-label pairs, one from each distinct class.
The query function q(S) =

∑9
i=1Ximg,i/9, where the sum is taken pixel-wise. The test function ϕ

is a pre-trained classifier on {q(S), YS}, where Y (S) denotes the corresponding missing labels to S.
Figure 2 shows both qualitative and quantitative comparisons of our proposed DPM against APM-G
and APM-L. Qualitatively, we notice more contextual changes by DPM in subfigure (a) than APMs in
subfigures (b) and (c). Quantitatively, the higher type-I and type-II errors in subfigure (d) demonstrate
the benefit of DPM at protecting privacy against a pre-trained test function ϕ. In Appendix A.4, we
perform an additional DP comparison on the raw MNIST digits, where the perturbation by DPM is
much more meaningful than APM and protects privacy better.

4 Conclusion

In this work, we developed a flow-based model to solve for the worst-case distribution in high-
dimensional distributional robust optimization. In the future, we would provide more rigorous
theoretical analyses of the proposed method. We also aim to proposed techniques that solve the
original min-max problem (1).

(a) DPM (top), APM-G (middle), and APM-L (bottom)
(b) Type-I and type-II errors by
DPM, APM-G, and APM-L.

Figure 2: Differential privacy example of one-neighborhood digit missing. Figures (a) visualize
privacy-protected queries Mr(q(S)) by DPM, APM-G, and APM-L within different Wasserstein-2
balls with radius r around the distribution of q(S). Figure (b) examines the type-I and type-II errors
defined in (17) over different r. We control the value of r by different DP mechanisms to be identical
for a fair comparison.
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A Experimental details

A.1 DRO in adversarial attack and differential privacy

We explain how adversarial attack and differential privacy can be formulated as (1).

Adversarial training with distributional robustness The problem of adversarial training is to
improve the robustness of predictive models so that they can defend against unseen malicious attacks.
Specifically, in the context of image classification, the test function ϕ is a K-class classifier mapping
raw images Ximg ∈ Rh×w×c to a probability distribution over the labels Y ∈ {0, . . . ,K}. Thus, the
constraint set Φ = {ϕ : Rh×w×c → [0, 1]K such that

∑K
i=1 ϕ(Ximg)i = 1}. Meanwhile, the loss

function ℓ is typically chosen as the cross-entropy loss. Specifically, let X = (Ximg, Y ), we would
have ℓ(X,ϕ) = − log(ϕ(Ximg)Y ). Minimizing the cross-entropy loss is thus equivalent to assigning
as high a predicted probability to the true label Y given an input image Ximg as possible. As a result,
the risk function R(P, ϕ) = EX∼P [ℓ(X,ϕ)] computes the expected loss over image-label pairs in
distribution P . Before perturbing P , we have P = PX , which is the distribution of clean images
along with their labels.

To improve the robustness of the classifier ϕ, it is essential to find alternative distributions P̃ on which
the risk of ϕ is high. In the language of robust training, we are thus performing an adversarial attack
on X ∼ PX . Conventionally, this is done via point-wise attack mechanisms as follows. Given a pair
X = (Ximg, Y ), the point-wise attacker fixes Y , and finds δimg as the maximizer of the following
problem:

arg max
δ:∥δ∥2≤r

− log(ϕ(Ximg + δ), Y ). (8)

Then, the adversarial image X̃img = Ximg+ δimg. Note that this is called a point-wise attack because
the maximizer of (8) only depends on the current pair X = (Ximg, Y ), without considering the
distribution of all X ∼ PX . It is also important to note that solving (8) exactly is hard, so that
practical procedures often employ the PGD method by iteratively perturbing Ximg [Madry et al.,
2018]. In the context of the DRO problem (1), we thus have the uncertainty set

Pr = {P : ∥X̃img −Ximg∥2 ≤ r, (X̃img, Y ) ∼ P and (Ximg, Y ) ∼ PX}. (9)

In our distributional attack formulation, we have the same definitions of the set of valid classifiers Φ
and the risk function R. Rather than considering the point-wise uncertainty set Pr in (9), we relax
it to be the Wasserstein-2 ball around PX as defined in (2). The resulting perturbation mechanism
is thus a distributional attacker of the data distribution PX . Note that when performing distribution
attack, we follow the convention that perturbation is only performed on raw images Ximg, so that the
corresponding label Y is untouched.

Differential privacy beyond additive mechanisms From the viewpoint of an adversary trying to
differentiate between neighboring datasets based on the mechanism output, differential privacy can
be well understood as a hypothesis testing problem. There have been several attempts to understand
and analyze differential privacy as a framework for hypothesis testing [Wasserman and Zhou, 2010,
Balle et al., 2020, Dong et al., 2022]. In the terminology of hypothesis testing, we consider

H0 : Y
d
=M(S) ∼ P vs H1 : Y

d
=M(S′) ∼ Q

given a single observation Y ∈ Y . The harder this test is, the more difficult it is to distinguish between
neighboring datasets, which implies that strong privacy is ensured. Now consider a (randomized) test
function ϕ for simple hypothesis testing, and denote its type-I and type-II errors as

αϕ = EY∼Pϕ(Y ), βϕ = 1− EY∼Qϕ(Y ).

The main statistical objective of differentially private randomized mechanisms is to minimize the
perturbation (ensuring statistical utility) while obtaining a certain level of indistinguishability between
P and Q. Or, equivalently, one can aim to maximize the indistinguishability between P and Q
(statistical disclosure limitation) based on a given limited level of perturbation. Consider a risk
function R((P,Q), ϕ), typically constructed using αϕ and βϕ, which represents the ease of the test.
To ensure strong privacy with a randomized mechanism, even in the “worst-case scenario” with a
very good discriminator, one should make it difficult to distinguish by bringing the two distributions
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closely together, thereby reducing the risk function. Hence, constructing a DP mechanism with
highest possible statistical utility can be formulated as

inf
(P,Q)∈P

sup
ϕ∈Φ

R((P,Q), ϕ). (10)

Here, the choice of risk function is determined by the definition of DP being used. For instance, in the
situation of calibrating a mechanism that satisfies ε-DP, the risk function is given by R((P,Q), ϕ) =

min{ 1−βϕ

αϕ
,
1−αϕ

βϕ
}. Like this, the goal generally becomes to “maximize” these αϕ and βϕ in some

perspective depending on which definition of DP is used.

The standard and straightforward method to privatize a query function is to apply additive noise.
In this case, based on our DRO formulation, the class of perturbed distributions (P,Q) reduces to
P = Padd = {(P,Q) : q(S) + ξ ∼ P, q(S′) + ξ ∼ Q} with ξ of distribution in a specific family.
We will call a mechanism that adds noise of a certain distribution an additive perturbation mechanism
(APM). Typical noise distributions used in APM include the Laplace and Gaussian distributions.

However, beyond simple additive noise, our objective is to generalize the randomized mechanism by
distributional perturbation with respect to the Wasserstein distance as in (2). By solving

inf
(P,Q):W2(P,PX)≤r,W2(Q,QX)≤r

sup
ϕ∈Φ

R((P,Q), ϕ), (11)

we aim to provide a more flexible mechanism and consequently ensure indistinguishability with
less perturbation than additive mechanisms. We shall refer to the corresponding mechanism as
distributional perturbation mechanism (DPM).

A.2 Adversarial attack on CIFAR10

We describe the setup, introduce the comparison metrics, and present the comparative results.

Setup. Given a pre-trained image classifier ϕ and a test image Xtest with labels Ytest, the goal
of adversarial attack is to find a perturbed image X̃test based on Xtest so that ϕ(X̃test) makes
an incorrect classification. For this task, instead of performing point-wise attack given individual
Xtest, our FlowDRO finds a continuous flow T that gradually transports the distribution of Xtest to
an adversarial worst-case distribution, on which the classifier ϕ makes incorrect classification and
induces high classification loss on average.

Regarding training specifics, we pre-train a VGG-16 classifier [Simonyan and Zisserman, 2015] ϕwith
cross-entropy loss on the set of clean CIFAR-10 images, and then train three FlowDRO flow blocks
with hk = 10 using Algorithm 1. We train FlowDRO in the latent space of a variational auto-encoder
as proposed by [Esser et al., 2021], where the latent space dimension d = 192. The architecture of the
FlowDRO model on CIFAR10 consists of convolutional layers of 3-128-128-256, followed by
convolutional transpose layers of 256-128-128-3. The kernel sizes and strides in the CIFAR10
attacker are 3-3-3-3-4-3 and 1-2-1-1-2-1. We use the softplus activation with β = 20. Each
block is trained for 15 epochs using a batch size of 500, with the Adam optimizer [Kingma and Ba,
2015] with a constant learning rate of 1e-3.

Comparison metric. We evaluate the effectiveness of adversarial attack by FlowDRO and PGD on
the pre-trained classifier ϕ. Specifically, given test images Xtest, we find adversarial samples X̃test

using different attack mechanisms, where we fix identical amounts of Wasserstein-2 perturbation
measured by EXtest∼PX,test

∥Xtest − X̃test∥2 to ensure a fair comparison. Then, given P̃test defined
by the set of perturbed test images X̃test, we evaluate ϕ on P̃test based on the sample average of

R(P̃test, ϕ) = EX∼P̃test
[ℓ(ϕ(X), Y )], (12)

Accurcy(P̃test, ϕ) = EX∼P̃test
[100 · 1(Y = argmax

j
ϕ(X)j)]. (13)

Hence, under the same amount of perturbation to find P̃test, a higher risk (12) and a lower accuracy
(13) indicate a more effective adversarial attack on ϕ.
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Figure A.1: Trajectory of FlowDRO adversarial attacks on different Xtest (columns) to X̃test. We
visualize the changes as rows over three FlowDRO blocks, each of which breaks [0, 1) into three
evenly spaced sub-intervals, resulting in nine perturbation steps. Captions on the top and bottom
indicate predictions by the pre-trained ϕ on raw Xtest and perturbed X̃test.

A.3 Adversarial attack on MNIST

We now apply FlowDRO on finding the worst-case distribution, given a pre-trained LeNet classifier
[LeCun et al., 1998] ϕ. On this example, we focus on providing more insights into the behavior of
FlowDRO, without comparing it against other baselines. We train FlowDRO using Algorithm 1 on
the latent space of an auto-encoder with latent dimension d = 16. The architecture of the flow model
consists of fully-connected layers of d-256-256-d with softplus activation.

Figure A.2 visualizes the gradual and smooth perturbation of test images Xtest by FlowDRO. We
specifically notice the cost-effectiveness and interpretability of FlowDRO. First, the T-SNE em-
bedding in (a) shows that FlowDRO prefers to perturb digits around the boundary of certain digit
clouds to that of other digit clouds, as such changes take the least amount of transport cost but can
likely induce great increase of the classification loss by ϕ. Second, changes in the pixel space in (b)
shows that more perturbation is applied to the foreground of the image (i.e., actual digits) than to
the background (i.e., black regions), as the foreground tends to have a higher impact on the decision
making of ϕ.

A.4 Differential privacy on raw MNIST digit recognition

We first describe the precise DP setup, comparison metrics, and then show the results against the
baselines. This example directly follows from the adversarial attack example on MNIST in Section
A.3. Specifically, the test function ϕ is a pre-trained convolutional neural network classifier on raw
MNIST digits with 10 classes, and we train three continuous flow blocks on the class of all digits
using Algorithm 1.
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(a) Digit deformation trajectories under 2D T-SNE embedding (b) Gradual change of Xtest in pixel space

Figure A.2: FlowDRO perturbation of MNIST digits over blocks and time integration. Figure (a)
visualizes the perturbation trajectories from digits 0 to 8 under 2D T-SNE embedding. Figure (b)
shows the trajectory in pixel space, along with the corresponding W2 perturbation between original
and perturbed images over time.

DP setup. We describe the following necessary components in a DP problem: (1) the definition of
neighboring datasets S and S′, where the two datasets differ in exactly one record; (2) the choice of
the query function q taking the datasets as inputs; (3) the privacy-protection randomized mechanism
Mr applied to q(S), under the constraint that P ∈ Pr for Pr defined in (2); (4) the hypothesis testing
problem with the test function ϕ to distinguish between S and S′. Notation-wise, we assumeX ∼ PX
is a pair X = (Ximg, Y ), where Ximg is the raw image and Y ∈ {0, . . . , 9} is the corresponding
label.

For (1), we let each dataset S contain one image-label pair X ∼ PX , so that two datasets S and S′

are naturally neighbors in terms of X . In other words, S and S′ contain digits either from the same
class or from different classes. For (2), given S = {X}, we let the query function q(S) = Ximg, so
that it returns the raw image of the image-label pair X . For (3), the privacy-protection randomized
mechanism Mr either applies our trained FlowDRO model to q(S) or adds random Gaussian or
Laplacian noises to q(S), under a pre-specified amount of perturbation. For (4), given the true label
Y of image Ximg, we consider the following sets of hypotheses depending on labels k ∈ {0, . . . , 9}:

H0(k) : Y ̸= k and H1(k) : Y = k. (14)

Hence, the goal of a DP mechanism Mr in this case is to not let the classifier ϕ correctly classify the
true class of a privacy-protected test image Mr(Xtest,img).

Comparison metrics. We measure the performance of different privacy-protecting randomized
mechanisms Mr at radius r by the type-I and type-II errors of the classifier ϕ on testing (14)
over different classes k. Recall the classifier ϕ maps an arbitrary input image to a probability
distribution over the 10 classes. Thus, given a test dataset Stest = {Xtest} for Xtest ∼ PX,test, we
let Ŷ (Mr) = argmaxj=0,...,9 ϕ(Mr(q(Stest)))j be the predicted class of Mr(q(Stest)) by ϕ. Then,
the type-I error α(k,Mr) and type-II error β(k,Mr) are computed as

α(k,Mr) = P(Ŷ (Mr) = k|Y ̸= k) (15)

β(k,Mr) = P(Ŷ (Mr) ̸= k|Y = k), (16)

9



(a) DPM by FlowDRO

(b) APM-G (additive Gaussian)

(c) APM-L (additive Laplacian)

(d) Type-I and type-II errors by DPM, APM-G, and APM-L.

Figure A.3: Differential privacy example of raw MNIST digit recognition. We present similar sets of
figures as in Figure 2, where the main difference lies in the definition of dataset S and query function
q(S).

where the probability is taken over test image-label pairs Xtest = (Xtest,img, Ytest) for Xtest ∼
PX,test. We then measure the performance of Mr by taking the average of (15) and (16) over k:

α(Mr) =

9∑
k=0

α(k,Mr)/10, β(Mr) =

9∑
k=0

β(k,Mr)/10. (17)

If the mechanism Mr provides strong privacy, we would then expect high values of α(Mr) and
β(Mr), as the classifier ϕ makes high errors on privacy-protected images Mr(Xtest,img).

Results. Figure 2 shows the comparative results by the proposed FlowDRO DPM against the APM-G
and APM-L baselines. Qualitatively, we notice in (a)-(c) that under the same amount of perturbation r,
DPM induces meaningful contextual changes to the queries q(S) (i.e., changing a digit 0 to a digit 8),
whereas the additive mechanisms only blur the queries slightly. Quantitatively, as shown in (d), such
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difference helps protect privacy against the test function ϕ: the type-I and type-II errors of ϕ under
our proposed DPM are much higher than those of ϕ under the additive perturbation mechanisms. As
a result, our DPM is an empirically more effective privacy-protecting mechanism under the same
amount of average perturbation as measured in r.

A.5 Differential privacy on one-neighborhood digit missing

We follow the notations in Section A.4 when describing the setup and metrics.

DP setup and comparison metric. We define (1)–(4) in this new setting. For (1), we define a dataset
S = {X1, . . . , X9 : Xi = (Ximg,i, Yi) ∼ PX , Yi ̸= Yj if i ̸= j}. Thus, the dataset S has precisely
9 random image-label pairs, one from each distinct class. Given two datasets S and S′, they are
neighbors in the sense that the set of labels {Yi} in S and S′ differ by at most one value. For (2), the
query function q(S) =

∑9
i=1Ximg,i/9, where the sum is taken pixel-wise, so that q(S) returns an

average image of the same dimension as each Ximg. For (3), the privacy-protection mechanism Mr

either applies our trained FlowDRO model to the average image q(S) or adds random noises to it.
For (4), given the true missing label Y (S) of the dataset S, we then consider the following sets of
hypotheses depending on the label k ∈ {0, . . . , 9}:

H0(k) : Y (S) ̸= k and H1(k) : Y (S) = k. (18)

In this new setup, we still evaluate the effectiveness of a DP mechanism Mr using (17), where the
probabilities of type-I and type-II errors are taken over test datasets Stest, each of which contains
nine random test image-label pairs Xtest ∼ PX,test.

We also explain how we train the classifier ϕ and the flow model T in this new setting. The architecture
of ϕ is still based on convolutional layers, where the training data of ϕ consists of {q(S), Y (S)},
which are the set of average images q(S) and corresponding missing labels Y (S). We then train ϕ
using empirical risk minimization under the cross-entropy loss by sampling mini-batches of datasets
S. The classifier ϕ is thus trained to determine the missing label Y (S) given the average image.
To train the flow model T using Algorithm 1, we adopt the identical network architecture as in the
previous MNIST examples and train three blocks given the classifier ϕ to maximize the expected
cross-entropy loss of ϕ with W2 regularization.
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