

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OPEN-WORLD PEDESTRIAN TRAJECTORY PREDICTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Most deep learning-based pedestrian trajectory prediction models are trained offline, which significantly limits their performance when encountering novel motion patterns in open-world environments. To endow trajectory prediction agents with lifelong learning, we introduce the Open-World Pedestrian Trajectory Prediction (OWPTP). OWPTP requires models to autonomously detect distribution shifts in motion patterns, continually accommodate novel pattern information, and retain previously acquired knowledge. However, motion patterns are abstract and ill-defined. Our analysis indicates that the dominant source of motion pattern discrimination arises from trajectory epistemic uncertainty tied to pedestrian goals. Based on this insight, we propose Goal-based Motion Pattern Detection and Replay (GMPDR) framework. By modeling epistemic uncertainty, GMPDR extracts pattern-related trajectory features and builds an explicit instance-to-pattern mapping through dual contrast modules to delineate motion pattern boundaries. On top of this mapping, we formulate hyperspherical novelty detection and sparse, representative replay mechanisms at the motion-pattern level. These mechanisms respectively achieve novelty detection anchored to model-defined patterns and accommodation that preserves the semantic integrity of the patterns. The framework is extensible and integrates seamlessly with various existing trajectory predictors. Experiments demonstrate that GMPDR effectively adapts to novelty and reduces forgetting. The anonymous code link is provided in the reproducibility statement.

1 INTRODUCTION

Pedestrian trajectory prediction aims to forecast the movements of multiple agents based on their past trajectories (Xu et al., 2022). Due to the complexity of pedestrian motion, trajectory prediction models deployed in open-world environments often encounter unfamiliar motion patterns (Wu et al., 2022). However, deep learning-based models typically depend on offline training (Habibi et al., 2020). Their generalization capabilities are challenged when novelty emerges, as the distribution of training data may differ from that of the test samples (Knoedler et al., 2022). To operate effectively, models must continually detect and accommodate novel motion patterns (Fig. 1(a)) (Gummadi et al., 2022). We refer to this crucial paradigm as Open-World Pedestrian Trajectory Prediction (OWPTP).

OWPTP can be decomposed into two phases: detecting novel motion patterns and accommodating new knowledge, which can be framed as out-of-distribution (OOD) detection and continual learning (CL). OOD or novelty detection aims to determine whether a given trajectory sample belongs to known in-distribution (ID) motion patterns or unknown OOD patterns (Nguyen et al., 2015). Upon detecting novelty, CL aims to adapt the model to new knowledge while effectively mitigating catastrophic forgetting that arises from parameter overwriting (Fig. 1 (b)) (McCloskey & Cohen, 1989).

OWPTP emphasizes detection and accommodation at the motion-pattern level. Existing trajectory-related methods fail to handle both phases simultaneously and are restricted to the instance level. Current trajectory OOD detection approaches typically identify anomalies by quantifying deviations between predicted and actual trajectories (Noghre et al., 2024). However, such methods can only assess whether an individual trajectory is anomalous and rely on future actual trajectories. Research on continual trajectory prediction often employs replay mechanisms, preserving a subset of known trajectories and integrating them into subsequent training to mitigate forgetting (Wu et al., 2022). Nevertheless, these methods incur high memory costs to support replay across diverse patterns.

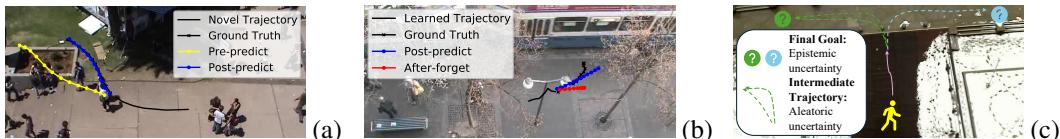


Figure 1: (a) The model fails in predicting novel motion. (b) Model accommodating novel knowledge leads to forgetting. (c) Epistemic uncertainty reflects unknown in the pedestrian’s final goals.

Motion patterns are inherently abstract and ill-defined concepts, whereas trajectory instances represent concrete observations. To achieve learning at the motion-pattern level, OWPTP necessitates an explicit mapping between instances and patterns. Prior research indicates that features encoded from trajectories capture their pattern information (Fragkedaki et al., 2024). However, this information remains implicit and inadequate. To better focus on the essential components of motion patterns and extract discriminative features, we model trajectory patterns by decomposing trajectory uncertainty into epistemic and aleatoric components (Fig. 1(c)) (Mangalam et al., 2021). Epistemic uncertainty pertains to sources that are known to the agent but unknown to the model. It can be primarily understood as the model’s insufficient knowledge regarding the pedestrian’s intended goal, corresponding to the question of determining the destinations. Aleatoric uncertainty refers to uncertainty sources that are unknown to both the agent and the model. It encompasses the randomness in decisions and intents of other agents, which influence how pedestrians reach their goals (Kahneman, 2011).

We argue that the essence of assessing the novelty and distinctiveness of motion patterns stems partly from epistemic uncertainty. This is because novel motion patterns largely manifest as goal shifts: people head to different destinations under changing contexts, whereas responses to environmental and social cues are comparatively regular. Recent works have demonstrated that numerous methods first predict goals and subsequently employ the predicted goals to assist in intermediate trajectory refinement, corresponding to the goal prediction and trajectory refinement stages (Xu et al., 2022; Yue et al., 2022; Lin et al., 2024a). Our experiments demonstrate that, when a series of patterns is learned, approximately **85%** of the forgetting occurs in the goal prediction module. Therefore, we highlight that a goal-based framework offers a promising approach to realizing OWPTP.

This paper proposes a Goal-based Motion Pattern Detection and Replay (GMPDR) framework. By estimating the probability distribution of goals, the framework constructs an encoder-decoder goal prediction model to capture epistemic uncertainty (Mangalam et al., 2021). Based on this, GMPDR further enhances its capacity to extract motion pattern-specific features through branch expansion. To establish the mapping between trajectory instances and motion patterns, we introduce a theoretically grounded Motion Pattern Dual Contrast (MPDC) module. MPDC first clusters trajectory features into motion patterns through set-level contrastive learning (Li et al., 2021). Subsequently, it uses the clustering results as priors to construct hyperspherical embedding space via instance-level contrastive learning. Within this space, GMPDR autonomously defines the boundaries of known motion patterns, enabling hyperspherical OOD detection. To alleviate forgetting during accommodation, GMPDR selects trajectories based on the mapping relationships, constructing sparse, representative replay that preserve semantic diversity across patterns. Our contributions are threefold:

- To address the challenge of complex and dynamic pedestrian trajectory prediction in open-world environments, we introduce the OWPTP paradigm. Empirical and experimental analysis demonstrates that continual trajectory forecasting is bottlenecked by the goal prediction stage.
- We propose GMPDR, which employs a Motion Pattern Dual Contrast module grounded in theory. This MPDC module achieves hyperspherical OOD detection and representative sparse replay at the motion-pattern level, corresponding to autonomous detection and accommodation functions.
- GMPDR is a goal prediction framework that can be integrated with various trajectory refinement modules. This enables the extension of existing trajectory prediction algorithms into OWPTP.

2 RELATED WORK

Pedestrian trajectory prediction. Deep learning-based trajectory prediction approaches typically focus on leveraging scene information or extracting features related to motion and interactions (Lin et al., 2024a; Yue et al., 2022; Xiang et al., 2024). Numerous methods can be interpreted as a two-stage process: goal prediction followed by trajectory refinement. For instance, YNet proposes a

108 mutually coupled goal and trajectory decoder, which employs skip connections to effectively embed
 109 goal information (Mangalam et al., 2021). ExpertNet constructs a query-based framework that
 110 retrieves detailed trajectory goals to guide trajectory refinement (Zhao & Wildes, 2021). MemoNet
 111 introduces a dual-memory structure to store representative instances (Xu et al., 2022). Our analysis
 112 ultimately reveals that the goal prediction is crucial to achieving OWPTP.

113 **Open-world Learning.** Models deployed in open-world environments require detection and ac-
 114 commodation of novelty, which correspond to OOD detection and CL, respectively. However, most
 115 research focuses only on either OOD detection or CL individually (Kim et al., 2025). Replay-based
 116 CL methods have been widely explored, replaying previous samples to mitigate forgetting (Hayes
 117 et al., 2020; Tong et al., 2023; Guo et al., 2022; Wang et al., 2023; Yan et al., 2021; Wang et al.,
 118 2022; Hu et al., 2023). Meanwhile, OOD detection highlights the necessity for the capability to
 119 reject OOD instances (Morteza & Li, 2022; Tao et al., 2023; Jiang et al., 2024; Sun et al., 2022; Du
 120 et al., 2022; Sehwag et al., 2021; Guille-Escuret et al., 2023). Few studies have addressed detection
 121 and accommodation jointly, often employing multiple expert networks, termed task-agnostic meth-
 122 ods (Zhu et al., 2024; Zeno et al., 2021; Lee et al., 2020). However, such approaches fail to decouple
 123 the processes into OOD detection and CL, leading to suboptimal performance. SHELS (Gummadi
 124 et al., 2022) is a rare method that explicitly separates detection and accommodation, achieving this
 125 through orthogonal embedding and regularization. Furthermore, these prior methods often remain
 126 limited to supervised image classification tasks and struggle to generalize to complex scenarios.
 127

128 Exploring OWPTP enables models to adapt to evolving motion patterns. Works most relevant to
 129 OWPTP have focused exclusively on either accommodating new trajectories or detecting abnormal
 130 trajectories. Moreover, these approaches either rely on manually defined task boundaries for ac-
 131 commodation (Wu et al., 2022), or depend on future actual trajectories for detection (Noghre et al.,
 132 2024). To our knowledge, no existing research has specifically addressed the OWPTP problem.
 133

3 FRAMEWORK ANALYSIS

3.1 OWPTP FORMALIZATION

134 Let \mathcal{M} denote a trajectory predictor deployed in open-world environments. The objective of \mathcal{M} is
 135 to predict the future trajectory $\mathbf{R}_{\text{pred}}^{(i)} = [\mathbf{r}_{w_{\text{obs}}+1}^{(i)}, \dots, \mathbf{r}_{w_{\text{obs}}+w_{\text{fut}}}^{(i)}]$ based on the observation $\mathbf{R}_{\text{obs}}^{(i)} =$
 136 $[\mathbf{r}_0^{(i)}, \dots, \mathbf{r}_{w_{\text{obs}}}^{(i)}]$ of pedestrian i , along with other complementary information. Here, \mathbf{r} denotes the
 137 2D coordinates, $w_{\text{obs}}, w_{\text{fut}}$ represent the lengths of the observation and prediction window. We
 138 assume that model \mathcal{M} has been trained on dataset $D_{0:C}$, and there are C abstract motion patterns
 139 within the data domain $\mathcal{X}_{0:C}^{ID}$. During inference, \mathcal{M} performs detection and prediction. If the input \mathbf{x}_i
 140 matches a known pattern c , the model predicts normally. However, when \mathbf{x}_i belongs to an unknown
 141 motion pattern, \mathcal{M} identifies \mathbf{x}_i as an OOD sample and accumulates this detection result. Based on
 142 these detections, \mathcal{M} autonomously transitions to a training phase upon detecting the emergence of
 143 a novel motion pattern. Subsequently, \mathcal{M} conducts accommodation using dataset D_{C+1} associated
 144 with the new pattern, updating the known data domain to $\mathcal{X}_{0:C+1}^{ID}$, as Fig. 2(a). It is important to
 145 note that multiple novel motion patterns may be detected and accommodated simultaneously.
 146

3.2 GOAL-BASED FRAMEWORK

147 By analyzing the essence of motion patterns, we identify the key aspects for OOD detection as well
 148 as the specific locations where forgetting occurs. It has been noted that uncertainty in pedestrian tra-
 149 jectories can be decomposed into epistemic and aleatoric components, corresponding to the goal and
 150 intermediate trajectory. When accounting for environments, an intended goal reflects a unique pat-
 151 tern, whereas the trajectory refinement strategy is shared across patterns. This means that epistemic
 152 uncertainty and its carrier, the goals, often correspond to the distinctiveness of motion patterns.
 153

154 Prior work has also shown that jointly encoding goals enhances algorithmic performance (Zhao &
 155 Wildes, 2021). We assume that \mathcal{M} can be decoupled into two sub-modules: goal prediction $\mathcal{M}_{\text{goal}}$
 156 and trajectory refinement $\mathcal{M}_{\text{traj}}$. Given observed trajectory $\mathbf{R}_{\text{obs}}^{(i)}$ of pedestrian i , the associated
 157 complementary information $S_{\text{goal}}^{(i)}$ and $S_{\text{traj}}^{(i)}$ required by the two sub-modules, the output is:
 158

$$\mathbf{R}_{\text{pred}}^{(i)} = \mathcal{M}_{\text{traj}}(\mathbf{R}_{\text{obs}}^{(i)}, S_{\text{traj}}^{(i)}, \mathbf{G}_{\text{pred}}^{(i)}), \quad \mathbf{G}_{\text{pred}}^{(i)} = \mathcal{M}_{\text{goal}}(\mathbf{R}_{\text{obs}}^{(i)}, S_{\text{goal}}^{(i)}), \quad (1)$$

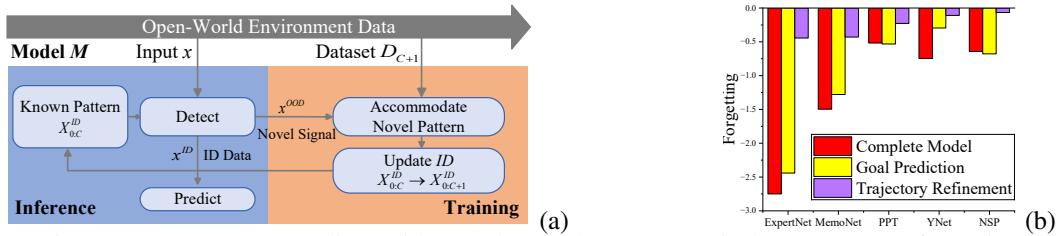


Figure 2: (a) OWPTP paradigm with two phases. (b) Average Displacement Error forgetting.

where $\mathbf{G}_{\text{pred}}^{(i)}$ denotes the predicted goal. We validate across different methods, focusing on which module is more sensitive to forgetting. This is achieved by freezing the module weights during training. As shown in Fig. 2(b), all methods exhibit some degree of performance degradation after continual accommodation. However, the goal prediction module experiences significant forgetting compared to the trajectory refinement module. Therefore, we argue that addressing OWPTP should prioritize improvements in the goal prediction module, termed the goal-based framework.

While replay is effective in preventing forgetting, the conventional replay necessitates a complete set of trajectories captured simultaneously. This is because the refinement module relies on the social interaction context $S_{\text{traj}}^{(i)}$. However, $S_{\text{traj}}^{(i)}$ is redundant for the goal-based framework, therefore only sparse samples are needed to fulfill the replay function. Moreover, the goal-based framework allows integration with various trajectory refinement modules, which can be either frozen or fine-tuned to maintain the performance. We present further analysis of the goal-based framework in Appendix A.

4 GOAL-BASED MOTION PATTERN DETECTION AND REPLAY

The proposed GMPDR is a goal-based framework. Its core is to enhance focus on motion-pattern discriminability by learning epistemic uncertainty, thereby achieving OOD detection and representative replay at the motion-pattern level. Unlike classical methods that rely directly on supervised information to construct memory and define distribution boundaries, GMPDR establishes an unsupervised mapping between trajectories and motion patterns. Specifically, GMPDR employs an encoder-decoder architecture, where trajectory mapping is carried out by MPDC modules. Upon detecting novelty, GMPDR triggers an accommodation process. First, it updates the predictor using novel data along with previous replay samples. Subsequently, the corresponding MPDC module is optimized to incorporate the novel patterns into the ID space and select new representative replay samples. Once the accommodation process is complete, the system resumes the inference phase to carry out subsequent detection and prediction tasks. The pipeline is illustrated in Fig. 3.

4.1 CONTINUAL GOAL PROBABILITY DISTRIBUTION PREDICTION

GMPDR first addresses goal prediction, which employs a U-Net encoder U_e , a goal decoder U_g , and an auxiliary trajectory decoder U_t . For input \mathbf{x}_i , GMPDR only requires the observation $\mathbf{R}_{\text{obs}}^{(i)}$ and the complementary information $S_{\text{goal}}^{(i)}$, which refers to a scene segmentation map. To align inputs, we represent observations as heatmaps, where the values decay with distance from observed points. For OWPTP, GMPDR must not only complete the final goal prediction, but also needs to extract motion-pattern-related trajectory features by encoder U_e . These features are transmitted through skip connections to the goal decoder U_g , which generates the goal probability distribution map. The learned goal probability reflects the epistemic uncertainty in trajectories, thereby compelling U_e to encode trajectory and scene information into features that represent corresponding patterns (Fragkedaki et al., 2024; Deng et al., 2024). Additionally, the trajectory decoder U_t utilizes intermediate trajectory information to stabilize and facilitate the learning process.

In the OWPTP process, GMPDR first conducts an initial training phase to optimize all parameters, enabling the model to develop cognitive and predictive capabilities. GMPDR freezes the parameters of U_e after the initial training. This fixed parameter space prevents shifts in the encoding of previously acquired patterns for detection. Meanwhile, to accommodate new knowledge, GMPDR allows the goal decoder U_g to be updated and incorporates sparse replay to alleviate forgetting. Inspired by prior work (Mangalam et al., 2021), the encoder-decoder architecture incorporates both convolutional and deconvolutional blocks. The details of the goal predictor are provided in Appendix B.

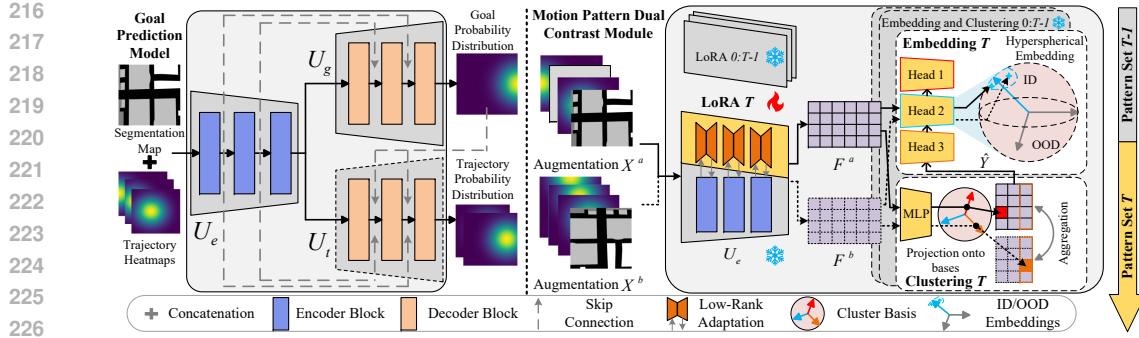


Figure 3: Overview of GMPDR, which includes a goal prediction model and MPDC modules. Whenever confronted with a novel pattern set, MPDC first projects features onto clustering bases. Subsequently, the clustering guides each embedding head to filter the ID and OOD samples.

4.2 MOTION PATTERN DUAL CONTRAST MODULE (MPDC)

We propose abstracting trajectories into motion patterns, and thus patterns can serve as units for detection and replay selection. Suppose there exists a trajectory dataset X that can be abstracted into N patterns. We define this pattern set M as task T . MPDC employs contrastive learning to perform clustering of the samples \mathbf{x}_i into M , and conducts OOD detection using M as ID. To implement contrastive learning, the inputs are augmented to generate X^a and X^b . Given that trajectory data encompass temporal and spatial information, we apply masking, rotation, and flipping augmentation.

Although features encoded during goal prediction are closely associated with motion patterns, the relationship captured by U_e remains implicit. Therefore, MPDC introduces Low-Rank Adaptation (LoRA) (Hu et al., 2022) for each task, enabling the model to explicitly adapt features and enhance their discriminability. These weights are inserted into each block of U_e , and are optimized jointly with the downstream components. After feature extraction and adjustment via task-specific LoRAs, MPDC produces feature sets F^a and F^b that are suited for motion pattern clustering and embedding.

4.2.1 CLUSTERING CONTRASTIVE COMPONENT

For task T with N motion patterns, there exists a corresponding set of bases that serve as clusters. We assume that a specific feature \mathbf{f}_i corresponds to a pattern category n and an associated basis μ_n , where $n \in \{0, 1, \dots, N\}$. By mapping the feature to all bases through an MLP projector f_θ , we can then compute the probability that \mathbf{f}_i belongs to cluster n using the softmax function:

$$q_\theta(n | \mathbf{f}_i) = \exp(\mu_n^\top f_\theta(\mathbf{f}_i)) / \sum_{j=1}^N \exp(\mu_j^\top f_\theta(\mathbf{f}_i)). \quad (2)$$

To facilitate clustering, a clear separation between clusters is required. Building on set representation (Zaheer et al., 2017), MPDC represents clusters by constructing probability distributions based on the likelihood within a feature set. Specifically, in the clustering component, the output $\mathbf{y}_i \in \mathbb{R}^{N \times 1}$ of a single feature \mathbf{f}_i is obtained by concatenating all $q_\theta(n | \mathbf{f}_i)$ in Eq. 2 along the category dimension. The overall output $\mathbf{Y} \in \mathbb{R}^{N \times B}$ for the feature set F is obtained by stacking all individual \mathbf{y}_i along the batch dimension. Therefore, each column vector along the batch dimension B represents the result of querying each cluster basis using the feature set (Shen et al., 2021).

We denote \mathbf{p}_n as the set representation of the n th cluster basis. Subsequently, MPDC aggregates and separates various representations through contrastive learning. The augmented representations \mathbf{p}_n^a and \mathbf{p}_n^b are considered positive samples, whereas representations from different clusters are considered as negative samples. We adopt the SimCLR framework (Chen et al., 2020) to minimize:

$$\mathcal{L}_{clu} = -\frac{1}{N} \sum_{n=1}^N \log \frac{\exp(\mathbf{p}_n^a \top \mathbf{p}_n^b / \tau)}{\exp(\mathbf{p}_n^a \top \mathbf{p}_n^b / \tau) + \sum_{j=1}^N \exp(\mathbf{p}_j^\top \mathbf{p}_n / \tau) \mathbf{1}(j \neq n)}, \quad (3)$$

where $\mathbf{1}$ denotes the indicator function, and τ refers to the temperature. Ultimately, Eq. 3 explicitly correlates trajectories with motion patterns, establishing an unsupervised motion pattern clustering space. The assumption underlying this clustering is that cluster bases exist and are distinct. According to Lemma 1, contrastive loss leads to an asymptotically uniform embedding distribution. The objective of Eq. 3 implies that the set representations of different clustering categories should be distributed as evenly as possible, thereby increasing diversity among bases to satisfy the assumption.

270 4.2.2 EMBEDDING CONTRASTIVE COMPONENT
271

272 In the embedding component, we implement OOD detection by constructing multi-head hyperspherical
273 embeddings for each motion pattern set. To enable effective separation between ID and OOD
274 embeddings, we leverage the clustering probability $q_\theta(n | \mathbf{f}_i)$ to facilitate the transfer of pattern
275 category. Assume that I is the total sample size. For feature \mathbf{f}_i , we formulate its likelihood of being
276 distinguishable from the other samples as $p_\theta(i | \mathbf{f}_i)$ through contrastive learning. We can derive the
277 ELBO of $p_\theta(i | \mathbf{f}_i)$ with Jensen's inequality and KL divergence. See Appendix D for the proof:

$$278 \log p_\theta(i | \mathbf{f}_i) \geq \mathbb{E}_{q_\theta(n | \mathbf{f}_i)} [\log p_\theta(i | \mathbf{f}_i, n)] - \text{KL}(q_\theta(n | \mathbf{f}_i) \| p_\theta(n | \mathbf{f}_i)). \quad (4)$$

279 For the second term, the true distribution $p_\theta(n | \mathbf{f}_i)$ of abstract motion patterns is unknown. Following
280 prior work (Shen et al., 2021), we use a fixed uniform prior instead. Consequently, this term
281 simplifies to an information entropy \mathcal{H} form, $-\text{KL}(q_\theta(n | \mathbf{f}_i) \| p_\theta(n | \mathbf{f}_i)) = \log N + \mathcal{H}(q_\theta(n | \mathbf{f}_i))$.
282 This formulation encourages a balanced distribution of trajectories across motion pattern categories.

283 The first term in Eq. 4 indicates that categorical priors are incorporated via conditional probabilities.
284 Based on this, the embedding component assigns N embedding heads, corresponding to the number
285 of patterns. In the embedding space generated by the n th head with normalization f_θ^n , features clas-
286 sified as pattern n are treated as ID, whereas all other samples are regarded as OOD. Concurrently,
287 each embedding head constructs a unit hyperspherical embedding space and a prototype. Every
288 head aims to embed ID samples close to the prototype while pushing OOD samples away. This
289 embedding space is modeled using the von Mises-Fisher (vMF) distribution (Mardia & Jupp, 2009),

$$290 p_d(\mathbf{a}; \mathbf{z}, \kappa) = Z_d(\kappa) \exp(\kappa \mathbf{a}^\top \mathbf{z}), \quad (5)$$

291 where κ denotes the concentration parameter, and $Z_d(\kappa)$ is the normalization factor. By feeding all
292 features into each head, we construct distinct hyperspherical embedding spaces for each motion pat-
293 tern. Within each hyperspherical embedding space, ID samples associated with the corresponding
294 motion pattern are pulled as close as possible to their respective prototype vector \mathbf{z}_n , thereby form-
295 ing a well-defined decision boundary that separates them from OOD samples belonging to other
296 patterns. The normalized probability of the optimization objective is formulated as:

$$297 \mathcal{L}_{emb} = -\frac{1}{NI} \sum_{n=1}^N \sum_{i=1}^I \log \frac{\exp(f_\theta^n(\mathbf{f}_i)^\top \mathbf{z}_n / \tau) \mathbf{1}(\hat{y}_i = n)}{\exp(f_\theta^n(\mathbf{f}_i)^\top \mathbf{z}_n / \tau) + \sum_{j=1}^I \exp(f_\theta^n(\mathbf{f}_j)^\top \mathbf{z}_n / \tau) \mathbf{1}(\hat{y}_j \neq n)}, \quad (6)$$

300 where $\hat{y}_i = \arg \max_{n \in \{0, 1, \dots, N\}} q_\theta(n | \mathbf{f}_i)$. However, Eq. 6 relies entirely on the categorical priors
301 provided by the clustering component, which may lead to unstable optimization during the early
302 stages. Therefore, we further introduce an auxiliary contrastive loss, which directly aggregates
303 positive sample pairs obtained via the auxiliary head f_θ^{aux} mapping. Let $\mathbf{q}_i = f_\theta^{aux}(\mathbf{f}_i)$, we have:

$$304 \mathcal{L}_{aux} = -\frac{1}{I} \sum_{i=1}^I \log \frac{\exp(\mathbf{q}_i^{a\top} \mathbf{q}_i^b / \tau)}{\exp(\mathbf{q}_i^{a\top} \mathbf{q}_i^b / \tau) + \sum_{j=1}^I \exp(\mathbf{q}_j^\top \mathbf{q}_i / \tau) \mathbf{1}(j \neq i)}. \quad (7)$$

307 Ultimately, we obtain the overall optimization objective of MPDC as:

$$308 \mathcal{L} = \lambda_1 \mathcal{L}_{clu} + (1 - \lambda_1) \mathcal{L}_{emb} + \lambda_2 \mathcal{L}_{aux} + \lambda_3 \mathbb{E}_i (\mathcal{H}(q_\theta(n | \mathbf{f}_i))), \quad (8)$$

309 where different λ are hyperparameters for balancing the loss. Eq. 8 indicates that the pattern cat-
310 egories generated by the clustering component guide the construction of the OOD hyperspherical
311 embedding space. Conversely, learning instance-specific semantics in the embedding component
312 enhances the stability and validity of the clustering space. The training process is shown in Alg. 1.

314 4.3 DETECTION AND ACCOMMODATION
315

316 After training the MPDC module on the motion pattern set M , the first step involves determining a
317 set of OOD detection thresholds $\Gamma = \{\gamma_0, \dots, \gamma_N\}$. Specifically, MPDC feeds the samples \mathbf{x}_i into
318 the clustering component to obtain the category assignment. Based on this, samples are routed to
319 the appropriate embedding heads. Using the vMF distribution in Eq. 5, the inner product between
320 the embedding $f_\theta^n(\mathbf{f}_i)$ and the prototype \mathbf{z}_n in space n is computed as a distance metric, denoted as:

$$321 \mathcal{D}_n = \left\{ i \mid \arg \max_n q_\theta(n | \mathbf{f}_i) = n \right\}, \quad d_i = f_\theta^n(\mathbf{f}_i)^\top \mathbf{z}_n \quad \text{for } i \in \mathcal{D}_n. \quad (9)$$

323 For each pattern n , GMPDR determines the OOD detection threshold γ_n by ranking all embedding
324 distances in descending order and taking the p -quantile value. Through these thresholds, GMPDR

324 further employs a dual-criteria OOD detection mechanism, where each test sample is augmented
 325 multiple times. The first criterion requires that augmented versions are clustered into the same
 326 motion pattern. The second criterion requires that the distance to the corresponding prototype is
 327 greater than the OOD threshold. A test sample is identified as an ID sample by GMPDR only if
 328 both criteria are satisfied. Meanwhile, the MPDC module selects a set of representative samples
 329 from M for replay. Following Eq. 9, GMPDR selects either random samples or nearest neighbors
 330 of the prototype for each motion pattern. This memory selection strategy effectively preserves the
 331 semantic diversity of the original dataset. In GMPDR, a replay ratio of 1% is sufficient to capture
 332 these highly representative samples, helping mitigate forgetting while maintaining sparsity.

333 During inference, GMPDR leverages the MPDC modules to determine whether a test sample is
 334 novel. If the sample is rejected by all existing patterns, we accumulate the detection results. GM-
 335 PDR triggers a switching mechanism when either a sufficient number of OOD instances have been
 336 accumulated or when the proportion of OOD within a batch is significant. Subsequently, GMPDR
 337 transitions into accommodation, integrating replay samples with the novel dataset to optimize the
 338 model and generating a new MPDC module. Once the new threshold is configured and new replay
 339 samples are selected, the model reverts to inference. This process is detailed in Alg. 2.

340 5 EXPERIMENT

343 5.1 EXPERIMENT SETTING

345 **Datasets.** We build the OWPTP paradigm on three complex and diverse datasets: SDD (Robicquet
 346 et al., 2016), ETH (Pellegrini et al., 2009), and UCY (Leal-Taixé et al., 2014). To design tasks for
 347 OWPTP, it is necessary to divide and reorganize the datasets. Previous research has indicated that
 348 pedestrian motion patterns are related to their respective scenes (Yang et al., 2022; Wu et al., 2022).
 349 Therefore, following the dataset partition proposed by Yang et al. (2022), we construct an SDD task
 350 comprising four pattern sets and an ETH/UCY task comprising three pattern sets.

351 **Baselines.** We select state-of-the-art pedestrian trajectory prediction methods as baselines, with
 352 which GMPDR is integrated and compared, including ExpertNet (Zhao & Wildes, 2021), PEC-
 353 Net (Mangalam et al., 2020), MemoNet (Xu et al., 2022), YNet (Mangalam et al., 2021), PPT (Lin
 354 et al., 2024a), and NSP (Yue et al., 2022). We also adopt continual trajectory prediction methods,
 355 CL-ER and CL-SGR (Wu et al., 2022). SHELS (Gummadi et al., 2022) is among the few methods
 356 that integrate accommodation and detection capabilities simultaneously, although it is initially
 357 developed for image classification tasks. We adapt and optimize SHELS to fit the OWPTP paradigm.

358 **Evaluation metrics.** Following prior works, we use the past 8 frames to predict the future 12 steps,
 359 and generate 20 future trajectories for each instance, selecting the one that best matches the ground
 360 truth (GT). Average Displacement Error (ADE) and Final Displacement Error (FDE) measure the
 361 average position distance and the endpoint distance between predictions and GT. For accommoda-
 362 tion, we introduce Final-ADE/FDE (FADE and FFDE), which evaluate across all data after learning
 363 all patterns, reflecting the final performance. Incremental-ADE/FDE (IADE and IFDE) compute the
 364 average performance after each learning phase, reflecting the performance during learning. We also
 365 calculate the forgetting degree (FGT). For detection, we present the OOD detection AUROC and
 366 Novelty Detection Rate when new motion patterns are introduced.

367 **Implementation details.** We predefine 5 bases per motion pattern set, employ LoRAs of rank 4, and
 368 set the embedding dimension to 128. The temperature τ is 0.5, and the balanced hyperparameters λ
 369 of 0.5 are applied across all components. We set the OOD threshold set Γ at the 70th percentile of
 370 distances; the replay ratio is maintained at 1%. More details are provided in Appendix F.

371 5.2 PERFORMANCE OF ACCOMMODATION AND DETECTION

373 Table 1 presents the accommodation performance of GMPDR and baselines on the SDD task un-
 374 der the OWPTP paradigm. Since the baselines lack detection capabilities, we provide the task
 375 boundaries manually. Compared with the suboptimal method, GMPDR achieves improvements
 376 of 1.24 and 0.89 in FFDE and IFDE, effectively alleviating forgetting. As a goal-based frame-
 377 work, GMPDR consistently enhances performance in FADE and IADE when integrated with differ-
 378 ent baselines as trajectory refinement modules, outperforming the suboptimal method by 0.48 and

378 Table 1: Experiments conducted on SDD evaluate accommodation performance under OWPTP.
 379 GMPDR is built upon various methods and is validated through averaging across four pattern orders.

Method	FADE ↓	FFDE ↓	IADE ↓	IFDE ↓	FGT-A ↑	FGT-F ↑
ExpertNet	14.23	14.34	13.81	14.85	-3.06	-1.28
+GMPDR	13.36±0.35	11.79±0.43	13.32±1.01	11.78±0.52	-2.02±0.98	-0.07±0.62
PECNet	9.92	12.42	10.68	12.41	-0.30	-1.28
+GMPDR	9.74±0.84	11.66±0.46	10.48±0.31	11.82±0.53	0.46±0.52	-0.08±0.65
MemoNet	9.91	15.37	9.49	14.33	-1.49	-3.61
+GMPDR	8.56±0.25	11.70±0.43	8.54±0.25	11.90±0.52	-0.39±0.35	-0.07±0.62
YNet	8.05	12.41	7.91	12.22	-0.74	-1.34
+GMPDR	7.38±0.14	11.38±0.42	7.55±0.40	11.51±0.60	0.04±0.33	-0.12±0.55
PPT	7.35	12.40	7.36	12.39	-0.52	-1.28
+GMPDR	7.04±0.17	11.65±0.45	7.17±0.27	11.81±0.52	-0.05±0.35	-0.10±0.59
NSP	6.81	12.39	6.75	12.22	-0.49	-1.32
+GMPDR	6.33±0.26	11.15±0.51	6.39±0.24	11.33±0.71	-0.09±0.23	-0.19±0.52

392 Table 2: Experiments on ETH/UCY, where the unit is meters. Each experiment is performed and
 393 averaged in three motion pattern orders, and GMPDR employs YNet for trajectory refinement.

Method	FADE ↓	FFDE ↓	IADE ↓	IFDE ↓	FGT-A ↑	FGT-F ↑
MemoNet	0.232	0.409	0.222	0.393	-0.047	-0.085
YNet	0.246	0.417	0.207	0.339	-0.136	-0.274
NSP	0.199	0.415	0.195	0.336	-0.072	-0.258
PPT	0.197	0.378	0.188	0.325	-0.034	-0.113
GMPDR	0.186±0.01	0.293±0.02	0.182±0.02	0.280±0.03	-0.021±0.01	-0.049±0.02

400 Table 3: Compared to CL methods and SHELS on SDD, SHELS and GMPDR are built upon YNet.

Method	FADE ↓	FFDE ↓	IADE ↓	IFDE ↓	AUROC ↑	Novelty Detection Rate ↑
CL-ER	13.32	15.21	13.05	15.10	-	-
CL-SGR	12.98	14.85	12.78	14.75	-	-
SHELS	7.93	12.04	7.81	11.97	0.6201	58.3%
GMPDR	7.38	11.38	7.55	11.51	0.7456	87.5%

406 0.36. Table 2 presents the performance comparison between four optimal baselines and GMPDR on
 407 the ETH/UCY task, where GMPDR also demonstrates superior performance. These improvements
 408 highlight the effectiveness of the representative sparse replay mechanism and the compatibility of
 409 GMPDR, further validating the importance of focusing on the goal prediction stage in OWPTP.

410 Existing continual pedestrian trajectory prediction methods lack the ability to autonomously detect
 411 novel motion patterns. CL-ER and CL-SGR in Table 3 utilize replay and pseudo-replay mechanisms
 412 to achieve continual accommodation. However, because they fail to account for goal prediction,
 413 these methods require large replay buffers and exhibit more limited performance compared with
 414 GMPDR. Previous open-world learning approaches that aim to achieve accommodation and detec-
 415 tion are often rudimentary and primarily limited to supervised image classification. For comparison,
 416 SHELS is adapted to the OWPTP scenario and adopts the basic framework of our method. Never-
 417 theless, its accommodation performance is inferior to that of GMPDR, which may be attributed to
 418 the challenges its regularization mechanism faces in handling complex trajectory prediction tasks.

419 For OWPTP, the objective of detection is to recognize the emergence of novelty. As shown in Ta-
 420 ble 3, GMPDR outperforms SHELS by 0.1245 in terms of AUROC. A set-level metric, Novelty
 421 Detection Rate, reflects the model’s ability to detect and trigger a switch upon encountering new
 422 patterns. GMPDR achieves a success rate of nearly 90%. These results demonstrate that GMPDR
 423 possesses more reliable novel motion pattern detection capabilities. In Fig. 4, GMPDR achieves
 424 continual detection and accommodation in two tasks. When novel pattern sets are introduced (black
 425 boundary), the number of unknown motion trajectories gradually increases in each test batch. Con-
 426 sequently, the proportion of OOD samples detected within a batch rises, eventually triggering the
 427 switching condition (red boundary). At this point, GMPDR transitions into the accommodation
 428 phase, during which a novel dataset is used to assimilate the novel motion patterns into the ID. The
 429 trigger condition employed here is a significant increase in the OOD proportion (a 10% rise). This
 430 does not imply that GMPDR is limited to batch-wise inference and detection. Alternative trigger
 431 conditions, such as accumulating a certain number of OOD samples and using them as a training set
 432 for novel patterns, are also viable. For more experiments, including visual comparisons of prediction
 433 results and the adaptation of CL methods to trajectory prediction tasks, refer to the Appendix G.

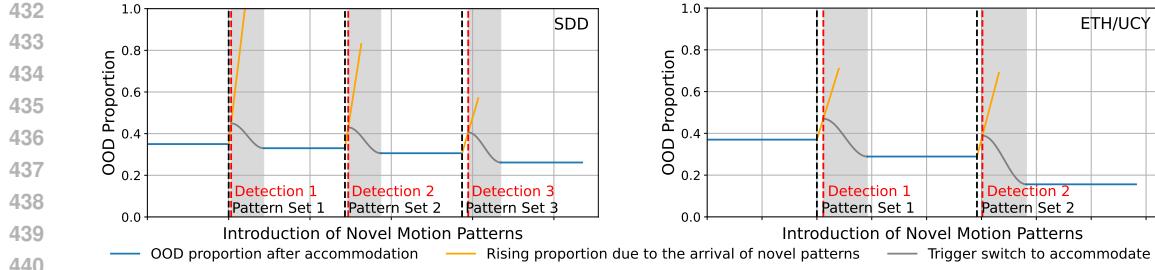


Figure 4: Experiments conducted on two datasets evaluated the ability of GMPDR to maintain continual detection. The proportion of detected OOD instances increases (orange) when novel motion patterns emerge, thereby triggering a transition to the accommodation phase (gray).

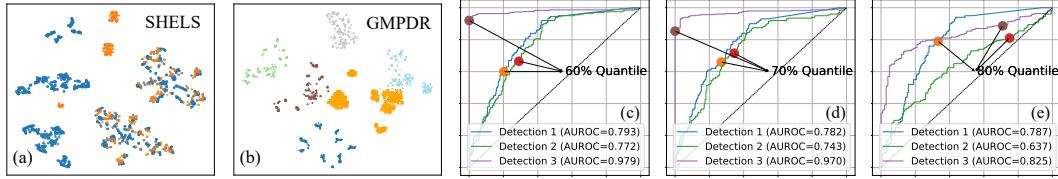


Figure 5: (a)(b): Visualization of the embeddings, with orange representing OOD samples and other colors representing ID samples. (c)(d)(e): ROC curves and p-quantile positions for detection.

Table 4: Impact of replay strategy/ratio, number of bases/motion patterns per set, and LoRA rank.

Replay	FADE	FFDE	Bases	FADE	FFDE	Rank	FADE	FFDE
Random 1%	8.08	12.28	1	7.83	12.01	2	7.86	11.64
GMPDR 1%	7.47	11.52	3	7.62	11.51	4	7.40	11.39
GMPDR 5%	7.48	11.65	5	7.49	11.42	8	7.65	11.52
GMPDR 10%	7.38	11.49	10	7.41	11.40	16	7.95	11.87

5.3 ALGORITHM ANALYSIS

Fig. 5(a)-(b) illustrates the embedding space of GMPDR and SHELS during detection. We observe that GMPDR effectively clusters ID instances into motion patterns while differentiating OOD samples. As part of the dual OOD detection criteria, the p-quantile serves to determine OOD threshold Γ . We apply 8 augmentations to each sample and require that more than half of the versions be classified into the same cluster. Fig. 5(c)-(e) presents the ROC curves and the corresponding positions of Γ selected based on different p-quantiles. The three curves represent the detection of three novelty introductions. Regardless of the p-quantile selected, the AUROC remains high, demonstrating the effectiveness of MPDC for OOD detection. Different replay strategies and ratios are evaluated in the left panel of Table 4. The results indicate that representative replay significantly outperforms random replay, and a sparse ratio of only 1% is sufficient for effective performance. The middle panel of Table 4 illustrates that when the number of bases is limited, MPDC struggles to distinguish among diverse patterns. Consequently, using a larger number of bases achieves more favorable clustering outcomes. However, an excessively large number of bases results in overly sparse sample allocation per cluster. Table 4 also presents the impact of the LoRA rank. Although a higher rank can offer a larger parameter space to learn pattern clustering, an excessively large rank diminishes the effect of regularization, compromising generalization (Lin et al., 2024b). Benefiting from model efficiency, GMPDR maintains a controlled memory footprint. Whenever GMPDR learns a novel pattern set in the ETH/UCY task, the model stores replay samples and the expanded module, resulting in an average memory usage of 14.81 MB in float32. Appendix H provides further algorithm analysis.

6 CONCLUSION

This paper offers insights into endowing trajectory prediction models with autonomous lifelong learning capabilities in open-world environments. Proposed OWPTP paradigm focuses on detecting and accommodating novel motion patterns. We analyze the essence of novel motion and emphasize the critical role of the goal prediction stage. Building on this foundation, the proposed GMPDR is a highly compatible framework that employs the MPDC module to generate abstract clustering and hyperspherical embeddings, enabling OOD detection and representative sparse replay. Future research can explore autonomous construction of novel datasets to further reduce human intervention.

486 REPRODUCIBILITY STATEMENT
487488 We provide a complete set of materials to reproduce experiments. Code is anonymously available at:
489 <https://anonymous.4open.science/r/GMPDR-03C3> (a public release is planned after
490 the review period). For transparency, the hyperparameter details for every experiment are reported
491 in Appendix F. Appendix F also describes the task-split and data-processing details.
492493 REFERENCES
494495 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
496 contrastive learning of visual representations. In *International Conference on Machine Learning*,
497 pp. 1597–1607. PMLR, 2020.498 Yingjian Deng, Li Zhang, Jie Chen, Yu Deng, Zhixiang Huang, Yingsong Li, Yice Cao, Zhongcheng
499 Wu, and Jun Zhang. Pedestrian trajectory prediction based on motion pattern de-perturbation
500 strategy. *Electronics*, 13(6):1135, 2024.
501502 Xuefeng Du, Gabriel Gozum, Yifei Ming, and Yixuan Li. Siren: Shaping representations for detect-
503 ing out-of-distribution objects. *Advances in Neural Information Processing Systems*, 35:20434–
504 20449, 2022.505 Kleio Fragkedaki, Frank J Jiang, Karl H Johansson, and Jonas Mårtensson. Pedestrian motion pre-
506 diction using transformer-based behavior clustering and data-driven reachability analysis. In *IEEE*
507 *International Conference on Intelligent Transportation Systems*, pp. 2236–2242. IEEE, 2024.
508509 Charles Guille-Escuret, Pau Rodriguez, David Vazquez, Ioannis Mitliagkas, and Joao Monteiro.
510 Cadet: Fully self-supervised out-of-distribution detection with contrastive learning. *Advances in*
511 *Neural Information Processing Systems*, 36:7361–7376, 2023.512 Meghna Gummadi, David Kent, Jorge A Mendez, and Eric Eaton. Shels: Exclusive feature sets
513 for novelty detection and continual learning without class boundaries. In *Conference on Lifelong*
514 *Learning Agents*, pp. 1065–1085. PMLR, 2022.
515516 Yiduo Guo, Bing Liu, and Dongyan Zhao. Online continual learning through mutual information
517 maximization. In *International Conference on Machine Learning*, pp. 8109–8126. PMLR, 2022.518 Golnaz Habibi, Nikita Jaipuria, and Jonathan P How. Sila: An incremental learning approach for
519 pedestrian trajectory prediction. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
520 *and Pattern Recognition Workshops*, pp. 1024–1025, 2020.
521522 Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher Kanan. Remind
523 your neural network to prevent catastrophic forgetting. In *European Conference on Computer*
524 *Vision*, pp. 466–483. Springer, 2020.525 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
526 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. In *International*
527 *Conference on Learning Representations*, 2022.529 Zhiyuan Hu, Yunsheng Li, Jiancheng Lyu, Dashan Gao, and Nuno Vasconcelos. Dense network ex-
530 pansion for class incremental learning. In *Proceedings of the IEEE/CVF Conference on Computer*
531 *Vision and Pattern Recognition*, pp. 11858–11867, 2023.532 Wenyu Jiang, Hao Cheng, MingCai Chen, Chongjun Wang, and Hongxin Wei. DOS: Diverse outlier
533 sampling for out-of-distribution detection. In *International Conference on Learning Representa-*
534 *tions*, 2024.
535536 Daniel Kahneman. Thinking, fast and slow. *Farrar, Straus and Giroux*, 2011.
537538 Gyuhak Kim, Changnan Xiao, Tatsuya Konishi, Zixuan Ke, and Bing Liu. Open-world continual
539 learning: Unifying novelty detection and continual learning. *Artificial Intelligence*, 338:104237,
2025.

540 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
 541 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
 542 ing catastrophic forgetting in neural networks. *Proceedings of the National Academy of Sciences*,
 543 114(13):3521–3526, 2017.

544 Luzia Knoedler, Chadi Salmi, Hai Zhu, Bruno Brito, and Javier Alonso-Mora. Improving pedes-
 545 trian prediction models with self-supervised continual learning. *IEEE Robotics and Automation
 546 Letters*, 7(2):4781–4788, 2022.

547 Laura Leal-Taixé, Michele Fenzi, Alina Kuznetsova, Bodo Rosenhahn, and Silvio Savarese. Learn-
 548 ing an image-based motion context for multiple people tracking. In *Proceedings of the IEEE/CVF
 549 conference on Computer Vision and Pattern Recognition*, pp. 3542–3549, 2014.

550 Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. A neural dirichlet process mixture
 551 model for task-free continual learning. In *International Conference on Learning Representations*,
 552 2020.

553 Depeng Li, Tianqi Wang, Junwei Chen, Qining Ren, Kenji Kawaguchi, and Zhigang Zeng. Towards
 554 continual learning desiderata via hsic-bottleneck orthogonalization and equiangular embedding.
 555 *Proceedings of the AAAI Conference on Artificial Intelligence*, 38(12):13464–13473, 2024.

556 Yunfan Li, Peng Hu, Zitao Liu, Dezhong Peng, Joey Tianyi Zhou, and Xi Peng. Contrastive cluster-
 557 ing. *Proceedings of the AAAI Conference on Artificial Intelligence*, 35(10):8547–8555, 2021.

558 Xiaotong Lin, Tianming Liang, Jianhuang Lai, and Jian-Fang Hu. Progressive pretext task learning
 559 for human trajectory prediction. In *European Conference on Computer Vision*, pp. 197–214.
 560 Springer, 2024a.

561 Yang Lin, Xinyu Ma, Xu Chu, Yujie Jin, Zhibang Yang, Yasha Wang, and Hong Mei. Lora dropout
 562 as a sparsity regularizer for overfitting control. *arXiv preprint arXiv:2404.09610*, 2024b.

563 Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal, Kuan-Hui Lee, Ehsan Adeli, Jitendra
 564 Malik, and Adrien Gaidon. It is not the journey but the destination: Endpoint conditioned trajec-
 565 tory prediction. In *European Conference on Computer Vision*, pp. 759–776. Springer, 2020.

566 Karttikeya Mangalam, Yang An, Harshayu Girase, and Jitendra Malik. From goals, waypoints &
 567 paths to long term human trajectory forecasting. In *Proceedings of the IEEE/CVF International
 568 Conference on Computer Vision*, pp. 15233–15242, 2021.

569 Kanti V Mardia and Peter E Jupp. *Directional statistics*. John Wiley & Sons, 2009.

570 Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
 571 sequential learning problem. In *Psychology of Learning and Motivation*, volume 24, pp. 109–165.
 572 Elsevier, 1989.

573 Peyman Morteza and Yixuan Li. Provable guarantees for understanding out-of-distribution detec-
 574 tion. *Proceedings of the AAAI Conference on Artificial Intelligence*, 36(7):7831–7840, 2022.

575 Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High con-
 576 fidence predictions for unrecognizable images. In *Proceedings of the IEEE/CVF Conference on
 577 Computer Vision and Pattern Recognition*, pp. 427–436, 2015.

578 Ghazal Alinezhad Noghre, Armin Danesh Pazho, and Hamed Tabkhi. An exploratory study on
 579 human-centric video anomaly detection through variational autoencoders and trajectory predic-
 580 tion. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*,
 581 pp. 995–1004, 2024.

582 Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc Van Gool. You’ll never walk alone:
 583 Modeling social behavior for multi-target tracking. In *Proceedings of the IEEE/CVF International
 584 Conference on Computer Vision*, pp. 261–268. IEEE, 2009.

585 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
 586 Incremental classifier and representation learning. In *Proceedings of the IEEE conference on
 587 Computer Vision and Pattern Recognition*, pp. 2001–2010, 2017.

594 Alexandre Robicquet, Amir Sadeghian, Alexandre Alahi, and Silvio Savarese. Learning social eti-
 595 quette: Human trajectory understanding in crowded scenes. In *European Conference on Computer*
 596 *Vision*, pp. 549–565. Springer, 2016.

597

598 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 599 image segmentation. In *International Conference on Medical Image Computing and*
 600 *Computer-assisted Intervention*, pp. 234–241. Springer, 2015.

601 Vikash Sehwag, Mung Chiang, and Prateek Mittal. Ssd: A unified framework for self-supervised
 602 outlier detection. In *International Conference on Learning Representations*, 2021.

603

604 Yuming Shen, Ziyi Shen, Menghan Wang, Jie Qin, Philip Torr, and Ling Shao. You never cluster
 605 alone. *Advances in Neural Information Processing Systems*, 34:27734–27746, 2021.

606

607 Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest
 608 neighbors. In *International Conference on Machine Learning*, pp. 20827–20840. PMLR, 2022.

609

610 Leitian Tao, Xuefeng Du, Jerry Zhu, and Yixuan Li. Non-parametric outlier synthesis. In *International*
 611 *Conference on Learning Representations*, 2023.

612

613 Shengbang Tong, Xili Dai, Ziyang Wu, Mingyang Li, Brent Yi, and Yi Ma. Incremental learning
 614 of structured memory via closed-loop transcription. In *International Conference on Learning*
 615 *Representations*, 2023.

616

617 FuYun Wang, DaWei Zhou, HanJia Ye, and DeChuan Zhan. Foster: Feature boosting and compres-
 618 sion for class-incremental learning. In *European Conference on Computer Vision*, pp. 398–414.
 619 Springer, 2022.

620

621 Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
 622 ment and uniformity on the hypersphere. In *International Conference on Machine Learning*, pp.
 623 9929–9939. PMLR, 2020.

624

625 Zifeng Wang, Zheng Zhan, Yifan Gong, Yucai Shao, Stratis Ioannidis, Yanzhi Wang, and Jennifer
 626 Dy. Dualhsic: Hsic-bottleneck and alignment for continual learning. In *International Conference*
 627 *on Machine Learning*, pp. 36578–36592. PMLR, 2023.

628

629 Ya Wu, Ariyan Bighashdel, Guang Chen, Gijs Dubbelman, and Pavol Jancura. Continual pedestrian
 630 trajectory learning with social generative replay. *IEEE Robotics and Automation Letters*, 8(2):
 631 848–855, 2022.

632

633 Wei Xiang, YIN Haoteng, He Wang, and Xiaogang Jin. Socialcvae: Predicting pedestrian trajectory
 634 via interaction conditioned latents. *Proceedings of the AAAI Conference on Artificial Intelligence*,
 635 38(6):6216–6224, 2024.

636

637 Chenxin Xu, Weibo Mao, Wenjun Zhang, and Siheng Chen. Remember intentions: Retrospective-
 638 memory-based trajectory prediction. In *Proceedings of the IEEE/CVF Conference on Computer*
 639 *Vision and Pattern Recognition*, pp. 6488–6497, 2022.

640

641 Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for
 642 class incremental learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 643 *Pattern Recognition*, pp. 3014–3023, 2021.

644

645 Biao Yang, Fucheng Fan, Rongrong Ni, Jie Li, Loochu Kiong, and Xiaofeng Liu. Continual
 646 learning-based trajectory prediction with memory augmented networks. *Knowledge-Based Sys-*
 647 *tems*, 258:110022, 2022.

648

649 Jiangbei Yue, Dinesh Manocha, and He Wang. Human trajectory prediction via neural social
 650 physics. In *European Conference on Computer Vision*, pp. 376–394. Springer, 2022.

651

652 Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
 653 Alexander J Smola. Deep sets. *Advances in Neural Information Processing Systems*, 30, 2017.

654

655 Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continual learning of context-dependent pro-
 656 cessing in neural networks. *Nature Machine Intelligence*, 1(8):364–372, 2019.

648 Chen Zeno, Itay Golan, Elad Hoffer, and Daniel Soudry. Task-agnostic continual learning using
649 online variational bayes with fixed-point updates. *Neural Computation*, 33(11):3139–3177, 2021.
650

651 He Zhao and Richard P Wildes. Where are you heading? dynamic trajectory prediction with expert
652 goal examples. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
653 pp. 7629–7638, 2021.

654 DaWei Zhou, QiWei Wang, HanJia Ye, and DeChuan Zhan. A model or 603 exemplars: Towards
655 memory-efficient class-incremental learning. In *International Conference on Learning Representations*, 2023.
656

657 Haoran Zhu, Maryam Majzoubi, Arijant Jain, and Anna Choromanska. Tame: Task agnostic con-
658 tinual learning using multiple experts. In *Proceedings of the IEEE/CVF Conference on Computer*
659 *Vision and Pattern Recognition Workshops*, pp. 4139–4148, 2024.
660

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

APPENDIX

A GOAL-BASED FRAMEWORK ANALYSIS

A.1 EXPERIMENTAL VALIDATION

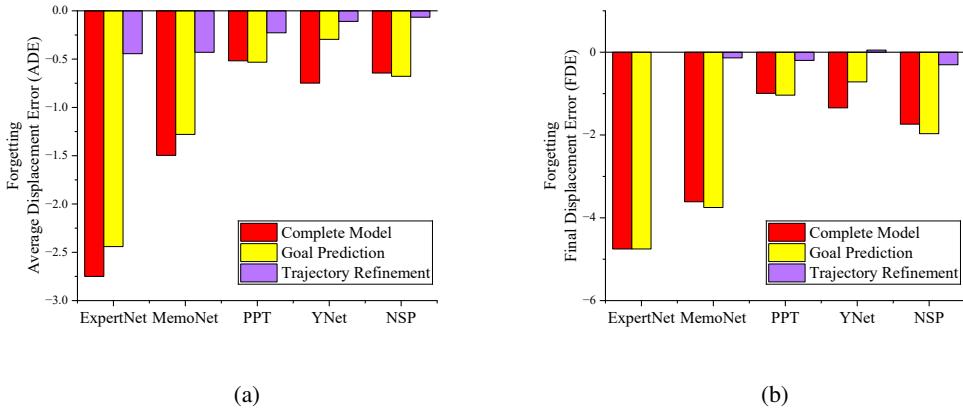


Figure 6: Forgetting that occurs after continual accommodation in different pedestrian trajectory prediction methods. (a) Average Displacement Error forgetting. (b) Final Displacement Error forgetting.

Motion Pattern Set	Goal Prediction \mathcal{M}_{goal}	Trajectory Refinement \mathcal{M}_{traj}
Pattern set 1	0.2626	0.0664
Pattern set 2	0.2713	0.0107
Pattern set 3	0.2302	0.0528

Table 5: Relative parameter changes that occur in NSP during the acquisition of novel motion patterns. Each row reflects the parameter changes following accommodation. It is evident that a greater degree of changes occurs in the goal prediction module.

To enhance OOD detection performance and effectively localize catastrophic forgetting, we focus on the discriminative information inherent in motion patterns by emphasizing the goal prediction module. Our empirical findings confirm the critical role of the goal prediction module in this endeavor. To further validate its importance, we decouple a wide range of pedestrian trajectory prediction methods into two distinct modules: goal prediction and trajectory refinement. We then apply these methods to continually learn various motion patterns and measure the resulting performance degradation, represented by the red portion in Fig. 6. This degradation indicates that existing trajectory prediction methods are prone to catastrophic forgetting when learning new motion patterns. When we freeze the trajectory refinement module and optimize only the goal prediction module, the model still exhibits significant forgetting, as shown by the yellow portion in Fig. 6. In contrast, when the goal prediction module is frozen and only the trajectory refinement module is optimized, the extent of forgetting across different methods remains relatively controlled, as indicated by the purple portion in Fig. 6.

We compare Fig. 6 (a) and (b) side by side. Fig. 6 (a) illustrates the average displacement error forgetting, reflecting the overall accuracy of the predicted trajectory. Consequently, the trajectory refinement module shows a slight decline in performance over time. In contrast, Fig. 6 (b) presents the final displacement error forgetting, which primarily reflects the accuracy of the pedestrian’s destination prediction and is therefore largely determined by the goal prediction stage.

The experiments in Fig. 6 validate the importance of the goal prediction component from a performance perspective. We further validated this from the perspective of parameter changes. Table 5

756 illustrates the extent of relative parameter changes each time the NSP (Yue et al., 2022) method
 757 acquires a novel set of motion patterns. Larger relative changes indicate more significant shift of
 758 parameter space and a greater susceptibility to catastrophic forgetting. Notably, the magnitude of
 759 parameter change is larger during the goal prediction stage. As a state-of-the-art hybrid model,
 760 NSP employs neural networks to approximate PDEs for trajectory refinement. Specifically, NSP
 761 simulates the environmental and social forces exerted by both the scene and the crowd during move-
 762 ment, which subsequently influence pedestrian acceleration. This mechanism reflects the adherence
 763 of trajectory refinement module to explicit physical principles, thereby facilitating more effective
 764 knowledge transfer across different motion patterns.

765 Based on the previous analysis and the aforementioned experimental results, the goal-based frame-
 766 work facilitates the identification and mitigation of forgetting. Furthermore, it indicates that the
 767 discriminative nature of novel motion patterns mainly arises from epistemic uncertainty. We empha-
 768 size the importance of the goal prediction stage, but this does not mean that the trajectory refinement
 769 module should be completely ignored. However, we highlight that the goal prediction stage and the
 770 corresponding goal-based framework are the key bottlenecks of the OWPTP problem.

771 **A.2 FRAMEWORK ADVANTAGES**

772 In the detection phase, the goal-based framework highlights the strong correlation between motion
 773 patterns and trajectory goals. By modeling the relationship between trajectory instances and in-
 774 tended goals, this framework enables the extraction of trajectory features that are rich in motion
 775 pattern information. With these informative features, the implementation of motion pattern OOD
 776 detection becomes more feasible.

777 In the accommodation phase, the goal-based framework reduces the reliance on large volumes of
 778 replay samples. Previous continual pedestrian trajectory prediction approaches depended heavily
 779 on storing extensive replay samples (Yang et al., 2022; Wu et al., 2022), primarily to capture social
 780 interaction information. Specifically, these methods required multiple sets of pedestrian trajectories
 781 simultaneously to simulate interactions and avoidance behaviors among agents—functions typically
 782 handled by the trajectory refinement module. In contrast, the goal-based framework focuses on the
 783 goal prediction module and transfers the knowledge required by the trajectory refinement module
 784 across different patterns. Consequently, it does not require access to a large number of simultaneous
 785 pedestrian trajectories for knowledge replay. This characteristic allows the goal-based framework to
 786 inherently avoid dependence on large memory buffers, thereby supporting sparse and representative
 787 replay strategies.

788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 B GOAL PREDICTOR ARCHITECTURE 811

812 To capture motion features and learn epistemic uncertainty, GMPDR first implements the fundamental
813 mission of goal prediction. Inspired by prior work (Mangalam et al., 2021; Yue et al., 2022),
814 GMPDR employs three sub-networks based on the classical U-Net architecture (Ronneberger et al.,
815 2015): the input encoder U_e , the goal decoder U_g , and the auxiliary trajectory decoder U_t .

816 As the focus lies on goal prediction rather than trajectory refinement, GMPDR only requires the
817 past observation trajectory $\mathbf{R}_{\text{obs}}^{(i)} = [\mathbf{r}_0, \dots, \mathbf{r}_k]$ and the complementary information $S_{\text{goal}}^{(i)}$ as input
818 \mathbf{x}_i to predict the goal, i.e., $\mathbf{x}_i = \{\mathbf{R}_{\text{obs}}^{(i)}, S_{\text{goal}}^{(i)}\}$. Here, the complementary information $S_{\text{goal}}^{(i)}$ refers
819 to a pixel-level semantic segmentation map of the scene $\mathcal{I}^{(i)}$ with dimensions $H \times W$. To align
820 multimodal inputs effectively, one intuitive approach is to encode the scene segmentation map using
821 a neural network. However, prior research has shown that encoding scene information can distort the
822 original spatial structure, thereby complicating its integration with trajectory coordinates (Mangalam
823 et al., 2021; 2020). To address this issue, we represent the observed trajectory as heatmaps of the
824 same size as the scene, where each value is inversely proportional to the distance from the pixel
825 to the corresponding trajectory point. As a result, the heatmap will exhibit a distinct peak at the
826 coordinates corresponding to the original trajectory point, with a gradual decline in all directions.
827 Formally, for a timestamp t satisfying $0 \leq t \leq w_{\text{obs}}$, the corresponding heatmap \mathbf{H}_t is:
828

$$829 \quad \mathbf{H}_t(i, j) = 2 \cdot \frac{\|(i, j) - \mathbf{r}_t\|}{\max_{(x, y) \in \mathcal{I}} \|(x, y) - \mathbf{r}_t\|}. \quad (10)$$

830 By stacking the trajectory heatmaps along the temporal dimension and combining them with the
831 scene segmentation map, we unify the input while preserving the original spatial structure. These
832 processed inputs are then fed into the encoder U_e for feature encoding. Each block of U_e reduces
833 the spatial dimension by half through max pooling, followed by convolutional operations and non-
834 linear ReLU activation to increase the channel depth. Through this hierarchical processing, U_e
835 extracts both deep and multi-scale features, which are then passed to the decoder.
836

837 The goal decoder U_g mirrors the expansion arm of the U-Net decoding path. Specifically, U_g per-
838 forms upsampling via transposed convolution at each level, concatenates the resulting feature maps
839 with the corresponding encoder outputs, and subsequently fuses them using convolutional layers.
840 The final output of U_g is a pixel-level goal probability distribution map $P_{\text{goal}}(\mathbf{x}_i)$ of size $H \times W$,
841 obtained after applying a sigmoid activation function. Although the coordinate with the highest
842 probability value could be directly selected as the predicted goal, the probability distribution gener-
843 ated during the early stages of training may be unstable. To enhance the robustness of the sampling,
844 the *softargmax* operation is employed to approximate the goal in a probabilistically differentiable
845 manner (Mangalam et al., 2021):
846

$$847 \quad \text{softargmax}(P_{\text{goal}}) = \left(\sum_i i \cdot \frac{\sum_j e^{P_{\text{goal}}(ij)}}{\sum_{i,j} e^{P_{\text{goal}}(ij)}}, \sum_j j \cdot \frac{\sum_i e^{P_{\text{goal}}(ij)}}{\sum_{i,j} e^{P_{\text{goal}}(ij)}} \right). \quad (11)$$

848 Since both U_e and U_g are randomly initialised during the initial learning phase of OWPTP, U_t is
849 introduced as an auxiliary trajectory decoder to stabilise and facilitate the learning process for goal
850 prediction. U_t adopts the same network structure as U_g , with the key distinction that it utilises both
851 the encoder features and the goal probability distribution map in skip connection. As a result, U_t
852 predicts the trajectory probability distribution map $P_t(\mathbf{x}_i)$, where $w_{\text{obs}} + 1 \leq t \leq w_{\text{obs}} + w_{\text{fut}}$.
853 By incorporating U_t into the training process, auxiliary trajectory information influences both the
854 encoder and the goal decoder through gradient backpropagation. This mechanism enables the model
855 to better capture motion patterns and enhances the discriminative capacity of deep features.
856

857 Given that all outputs are explicit probability distributions, a fixed 2D Gaussian kernel is applied to
858 transform real future trajectories into heatmaps, denoted as $\hat{P}_t(\mathbf{x}_i)$. Subsequently, using the binary
859 cross-entropy (BCE) and loss balance hyperparameter λ , we formulate the following optimization
860 objective with sample number I :

864

865

$$866 \quad \mathcal{L} = -\frac{1}{I} \sum_{i=1}^I (\text{BCE}(P_{goal}(\mathbf{x}_i), \hat{P}_{w_{obs}+w_{fut}}(\mathbf{x}_i)) + \lambda \sum_{t=w_{obs}+1}^{w_{obs}+w_{fut}-1} \text{BCE}(P_t(\mathbf{x}_i), \hat{P}_t(\mathbf{x}_i))). \quad (12)$$

867

868

869

870 By optimizing Eq. 12, the basic GMPDR framework gains the ability to predict goal distributions,
 871 which precisely characterises epistemic uncertainty.

872

873 In the subsequent accommodation phase, GMPDR freezes the parameters of encoder U_e , and fo-
 874 cuses solely on optimizing U_g to adapt to the prediction of the newly introduced motion pattern.
 875 During this phase, GMPDR performs joint training using both replay samples and the novel mo-
 876 tion pattern data, applying Eq. 12 to update U_g while effectively mitigating catastrophic forgetting.
 877 The discriminative feature learning of the novel pattern is carried out by the corresponding MPDC
 878 module in conjunction with the newly introduced LoRA, as detailed in Subsection 4.2. As previ-
 879 ously stated, the auxiliary trajectory decoder U_t can be further optimized, and it continues to play a
 880 supportive role in the overall optimization process.

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

17

918 **C LEMMA**
919

920 We introduce Lemma 1 to ensure that the underlying assumption of set-level contrastive learning are
921 satisfied. If different bases yield identical probabilities, it becomes necessary to eliminate the possi-
922 bility that two bases represent the same category. Therefore, there should be differences between
923 each cluster or base.

924 **Lemma 1** (Asymptotic Form of Contrastive Loss (Wang & Isola, 2020)). *Consider a measurable*
925 *encoder function $f : \mathbb{R}^n \rightarrow \mathbb{S}^{m-1}$, a given data distribution $p_{\text{data}}(x)$ and a positive-pair distribution*
926 *$p_{\text{pos}}(x, y)$ satisfying:*

927 1. *Symmetry: For all x, y ,*

928
$$p_{\text{pos}}(x, y) = p_{\text{pos}}(y, x).$$

929 2. *Matching marginal: For all x ,*

930
$$\int p_{\text{pos}}(x, y) dy = p_{\text{data}}(x).$$

931 Given a temperature parameter $\tau > 0$, define the contrastive loss as:

932
$$L_{\text{contrastive}}(f; \tau, A) = \mathbb{E}_{(x, y) \sim p_{\text{pos}}, \{x_i^-\}_{i=1}^A \stackrel{\text{i.i.d.}}{\sim} p_{\text{data}}} \left[-\log \frac{e^{f(x)^\top f(y)/\tau}}{e^{f(x)^\top f(y)/\tau} + \sum_{i=1}^M e^{f(x_i^-)^\top f(y)/\tau}} \right].$$

933 As the number of negative samples $A \rightarrow \infty$, the following asymptotic form holds:

934
$$\begin{aligned} \lim_{A \rightarrow \infty} [L_{\text{contrastive}}(f; \tau, A) - \log M] &= -\frac{1}{\tau} \mathbb{E}_{(x, y) \sim p_{\text{pos}}} [f(x)^\top f(y)] \\ &\quad + \mathbb{E}_{x \sim p_{\text{data}}} \left[\log \mathbb{E}_{x^- \sim p_{\text{data}}} \left[e^{f(x^-)^\top f(x)/\tau} \right] \right] \end{aligned} \quad (13)$$

935 We have the following results: The first term is minimized when f is well aligned with the positive
936 samples, and the second term converges if there exists a uniform encoders.

937 **D PROOF OF EQ. 4**
938

939 Based on the prior work (Shen et al., 2021), we can derive the ELBO of Eq. 4 with Jensen's inequality
940 as follows:

941
$$\begin{aligned} \log p_{\theta}(i \mid \mathbf{f}_i) &= \log \sum_{n=1}^N p_{\theta}(i, n \mid \mathbf{f}_i) \\ &= \log \sum_{n=1}^N p_{\theta}(i \mid \mathbf{f}_i, n) p_{\theta}(n \mid \mathbf{f}_i) \frac{q_{\theta}(n \mid \mathbf{f}_i)}{q_{\theta}(n \mid \mathbf{f}_i)} \\ &= \log \mathbb{E}_{q_{\theta}(n \mid \mathbf{f}_i)} \left[p_{\theta}(i \mid \mathbf{f}_i, n) \frac{p_{\theta}(n \mid \mathbf{f}_i)}{q_{\theta}(n \mid \mathbf{f}_i)} \right] \\ &\geq \mathbb{E}_{q_{\theta}(n \mid \mathbf{f}_i)} [\log p_{\theta}(i \mid \mathbf{f}_i, n)] + \mathbb{E}_{q_{\theta}(n \mid \mathbf{f}_i)} \left[\log \frac{p_{\theta}(n \mid \mathbf{f}_i)}{q_{\theta}(n \mid \mathbf{f}_i)} \right] \\ &= \mathbb{E}_{q_{\theta}(n \mid \mathbf{f}_i)} [\log p_{\theta}(i \mid \mathbf{f}_i, n)] - \text{KL}(q_{\theta}(n \mid \mathbf{f}_i) \parallel p_{\theta}(n \mid \mathbf{f}_i)), \end{aligned} \quad (14)$$

942 where KL denotes the Kullback-Leibler (KL) divergence.

943

972 E ALGORITHM PSEUDOCODE
973974 **Algorithm 1** MPDC Training Algorithm for Task T with Motion Pattern Set M
975

976 **Input:** Datasets $\mathcal{D}^{(T)}$; Frozen input encoder U_e ; Predefined motion pattern number N ; Temperature
977 τ ; Epoch for MPDC *epoch*, etc.

978 1: **# Training MPDC**

979 2: Initialize task-specific LoRA weights; clustering projector f_θ and clustering bases Ω ; N embed-
980 ding heads f_θ^n and prototypes \mathbf{z}_n ; auxiliary mapping head f_θ^{aux} .

981 3: **repeat**

982 4: Randomly select a batch from $\mathcal{D}^{(T)}$

983 5: Obtain augmented feature sets F^a and F^b by U_e and task-specific LoRA weights

984 6: Perform clustering and compute $q_\theta(n | f_i)$ by Eq. 2

985 7: Calculate the clustering loss \mathcal{L}_{clu} by Eq. 3

986 8: Construct an embedding space for each head f_θ^n based on the categorical prior

987 9: Calculate the embedding loss \mathcal{L}_{emb} by Eq. 6

988 10: Calculate the auxiliary loss \mathcal{L}_{aux} by Eq. 7

989 11: Update MPDC module by Eq. 8

990 12: **until** convergence or reaching epoch

991 **Output:** MPDC module for Task T with Motion Pattern Set M

992 **Algorithm 2** GMPDR workflow in the OWPTP paradigm
993

994 **After learning motion pattern set $T - 1$:** Goal prediction model \mathcal{M}^{T-1} ; MPDC modules $\mathcal{U}_{T-1} =$
995 $\{\square_0, \dots, \square_{T-1}\}$; Previous replay sample set $\mathcal{D}_{replay}^{T-1}$; Previous OOD threshold $\{\Gamma_0, \dots, \Gamma_{T-1}\}$, etc.

996 1: **# Inference**

997 2: Detection and prediction, ID: $0 : T - 1$

998 3: **repeat**

999 4: Augment a test sample or batch of test samples

1000 5: Detecting augmented samples in each MPDC module using Eq. 9 and OOD thresholds

1001 6: **if** Samples belong to ID **then**

1002 7: Predict trajectories using Goal prediction model \mathcal{M}^{T-1}

1003 8: **else**

1004 9: Cumulative OOD detection results

1005 10: **end if**

1006 11: **until** Sufficient OOD samples are accumulated to meet the switching criteria

1007 12: Switch to training phase

1008 13: **# Training**

1009 14: Accommodation for T

1010 15: Mix novel motion pattern data \mathcal{D}^T and replay samples $\mathcal{D}_{replay}^{T-1}$

1011 16: Update the prediction model $\mathcal{M}^{T-1} \rightarrow \mathcal{M}^T$ through Eq. 12

1012 17: Create a MPDC module \square_T for pattern set T using Algorithm 1, $\mathcal{U}_{T-1} \rightarrow \mathcal{U}_T$

1013 18: Calculate the OOD threshold $\Gamma_T = \{\gamma_0, \dots, \gamma_N\}$ using Eq. 9 and p-quantile,
integrated as $\{\Gamma_0, \dots, \Gamma_{T-1}, \Gamma_T\}$

1014 19: Select the replay sample using Eq. 9, integrated as $\mathcal{D}_{replay}^{T-1} \rightarrow \mathcal{D}_{replay}^T$

1015 20: Switch back to inference phase

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 **F EXPERIMENT SETTING**
 1027

1028 We construct the OWPTP paradigm on three widely used datasets: SDD (Robicquet et al., 2016),
 1029 ETH (Pellegrini et al., 2009), and UCY (Leal-Taixé et al., 2014). The Stanford Drone Dataset
 1030 is one of the most popular benchmarks and is characterised by its complex and diverse motion
 1031 patterns. It is captured by a drone camera from a bird’s-eye view and comprises 5,232 pedestrian
 1032 trajectories across six distinct scenes. The ETH/UCY dataset is a combination of the ETH and UCY
 1033 datasets and contains five different scenes comprising approximately 1,500 pedestrian trajectories.
 1034 To design tasks for continual prediction in open-world environments, we incrementally structure the
 1035 datasets based on motion patterns. Following the dataset partition proposed by Yang et al. (2022),
 1036 we construct an SDD task comprising four motion pattern sets and an ETH/UCY task comprising
 1037 three motion pattern sets, excluding scenes with limited data availability. Table 6 and Table 7 show
 1038 the task division of the two datasets by scene, respectively. In addition, 20% of the training samples
 1039 are set aside as the validation set.

Dataset	Training set	Test set
coupa	coupa: 3	coupa: 0,1
gates	gates: 0,1,3,4,5,6,7,8	gates: 2
hyang	hyang: 4,5,6,7,9	hyang: 0,1,3,8
nexus	nexus: 0,1,2,3,4,7,8,9	nexus: 5,6

1040
 1041 Table 6: SDD task divides into four motion pattern set.
 1042
 1043
 1044

Dataset	Training set	Test set
ETH	biwi_eth_train, biwi_hotel_train	biwi_eth_val, biwi_hotel_val
STU	students001_train, students003_train, uni_examples_train	students001_val, students003_val, uni_examples_val
ZARA	crowds_zara01_train, crowds_zara02_train, crowds_zara03_train	crowds_zara01_val, crowds_zara02_val, crowds_zara03_val

1045
 1046 Table 7: ETH/UCY task divides into four motion pattern set.
 1047

1048 For performance evaluation, we refer to classic prediction metrics: Average Displacement Error
 1049 (ADE) and Final Displacement Error (FDE), which measure the average positional distance and the
 1050 endpoint distance between the predicted trajectory and the GT, respectively. For simplicity, let us
 1051 assume that we are given I pedestrian trajectories and are required to predict L future frames. When
 1052 the prediction and GT are denoted by \mathbf{y}_i^t and $\hat{\mathbf{y}}_i^t$, the two evaluation metrics can be formulated as
 1053 follows:

$$1054 \text{ADE} = \frac{1}{IL} \sum_{i=1}^I \sum_{j=1}^L \left\| \hat{\mathbf{y}}_i^j - \mathbf{y}_i^j \right\|_2 \quad (15)$$

$$1055 \text{FDE} = \frac{1}{I} \sum_{i=1}^I \left\| \hat{\mathbf{y}}_i^L - \mathbf{y}_i^L \right\|_2. \quad (16)$$

1056 Under the OWPTP, we introduce four new metrics: Final-ADE (FADE) and Final-FDE (FFDE),
 1057 which evaluate ADE and FDE performance across all data after the model has learned all motion
 1058 patterns, reflecting the final model performance. In contrast, Incremental-ADE (IADE) and
 1059 Incremental-FDE (IFDE) compute the average performance after each learning phase, reflecting the
 1060 model’s performance during the learning process. Lower values across all four metrics indicate
 1061 superior prediction performance. Assume there are T sets of motion patterns or tasks. ADE_t repre-
 1062 sents the ADE performance of pattern sets from 0 to t after task t is accommodated. These OWPTP
 1063 metrics can be formally expressed as:

1080

$$1081 \quad \text{FADE} = \text{ADE}_T \quad (17)$$

1082

1083

$$1084 \quad \text{FFDE} = \text{FDE}_T \quad (18)$$

1085

1086

$$1087 \quad \text{IADE} = \frac{1}{T} \sum_{t=1}^T \text{ADE}_t \quad (19)$$

1088

1089

$$1090 \quad \text{IFDE} = \frac{1}{T} \sum_{t=1}^T \text{FDE}_t \quad (20)$$

1091

1092

1093 Additionally, we calculate the forgetting degree (FGT) for ADE and FDE. Specifically, we compute
 1094 the difference between the performance of each pattern set immediately after accommodation and
 1095 its performance following the completion of learning all tasks. This difference reflects the extent of
 1096 performance degradation. Since FGT-A and FGT-F are typically negative, smaller values indicate a
 1097 greater degree of forgetting.

1098

1099 We employ AUROC as the evaluation metric for instance-based OOD detection performance. It
 1100 is important to note that the OWPTP task requires detecting multiple novel motion patterns, each
 1101 of which is mutually exclusive with the others. Consequently, the reported AUROC represents the
 1102 average performance across all these incremental and individual detection tasks. In Appendix G.4,
 1103 we present a comparative analysis of GMPDR’s AUROC results against those of other methods,
 1104 while Appendix H examines the influence of different OOD detection criteria.

1105

1106 For the goal prediction model in GMPDR, we use the same U-Net architecture and training settings
 1107 as Ynet (Mangalam et al., 2021), employing task-specific LoRA weights of rank 4. The prediction
 1108 model is trained using the Adam optimizer with a learning rate of 0.0001. Meanwhile, no fine-tuning
 1109 is performed on the pre-trained scene segmentation model. Each set of motion patterns requires 50
 1110 epochs to accommodate.

1111

1112 Regarding the MPDC module, we predefine 5 categories per motion pattern set, corresponding to
 1113 the number of clustering bases and embedding heads. The clustering head, embedding head, and
 1114 auxiliary head are each implemented as single-layer MLP with normalisation layers. The input
 1115 dimension of MLP is the flattened dimension of the deepest layer features of the encoder U_e , and
 1116 the feature embedding dimension is set to 128. The temperature parameter τ used in the contrastive
 1117 learning loss is 0.5, and a balanced hyperparameter λ of 0.5 is applied across all loss components
 1118 in Eq. 8. For the heuristic selection strategy of the OOD threshold, we define the threshold γ as
 1119 MPDC 70th percentile of distances, and the replay ratio is maintained at 1%. The MPDC module is
 1120 also optimized using the Adam optimizer with a learning rate of 0.0001. For the SDD task, a batch
 1121 size of 32 and 500 training epochs are employed; for the ETH/UCY task, a batch size of 128 and 50
 1122 epochs are used.

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

G SUPPLEMENTARY COMPARATIVE EXPERIMENTS

G.1 VISUALIZATION RESULTS OF GMPDR

We first present the visualization results of GMPDR and the baseline pedestrian trajectory prediction method. Fig. 7 provides a visual comparison of GMPDR and YNet on the ETH/UCY dataset. After the model has learned all patterns, we re-predict the trajectories that were previously learned. It is evident that YNet suffers from forgetting, resulting in prediction failures, as shown by frequent deviations of blue trajectories from the yellow GT. In contrast, GMPDR alleviates forgetting through representative replay, as it continues to produce trajectory predictions that remain highly consistent with the GT.

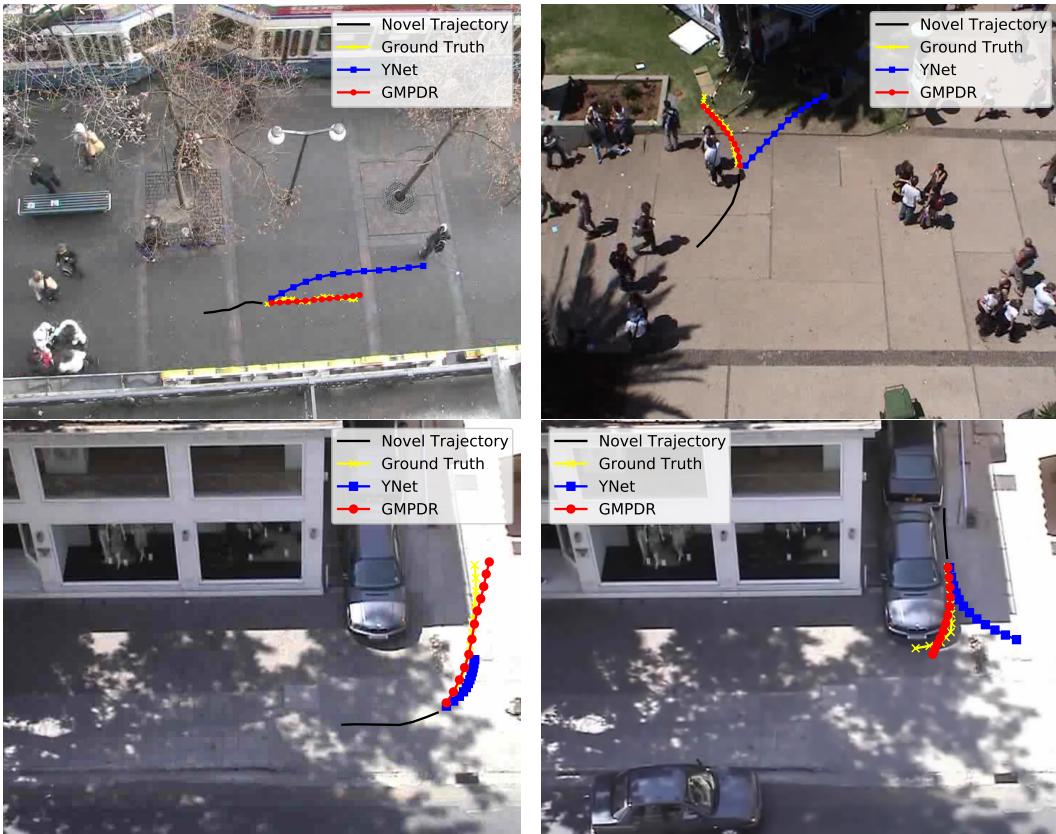


Figure 7: After accommodating a series of motion patterns, GMPDR acquires sufficient knowledge to perform accurate predictions (red trajectories), whereas classical prediction methods tend to suffer from forgetting (blue trajectories).

Furthermore, we also presented more continual detection results graphs of GMPDR. Fig. 8 and 9 demonstrate that GMPDR achieves continual detection and accommodation in the SDD and ETH/UCY tasks, with four and three distinct motion pattern set learning orders illustrated.

These experiments demonstrate that GMPDR successfully detects novelty through the multi-head hyperspherical OOD detection mechanism. This effective detection function, in turn, serves as a switching signal for the accommodation phase. The final introduction and detection shown in Fig. 8(c) is the only detection failure case observed, which may be because the patterns in the final motion pattern set are potentially subsumed by the previous ones. It is important to reiterate that motion patterns are inherently abstract concepts. The division based on scene information in our experiments is merely an approximation of an ideal scenario. When deployed in real-world environments, GMPDR is expected to effectively detect and accommodate novel trajectories.

In addition, an interesting observation is that as GMPDR learns an increasing number of patterns, the proportion of OOD samples per batch in the data stream decreases notably. We attribute this

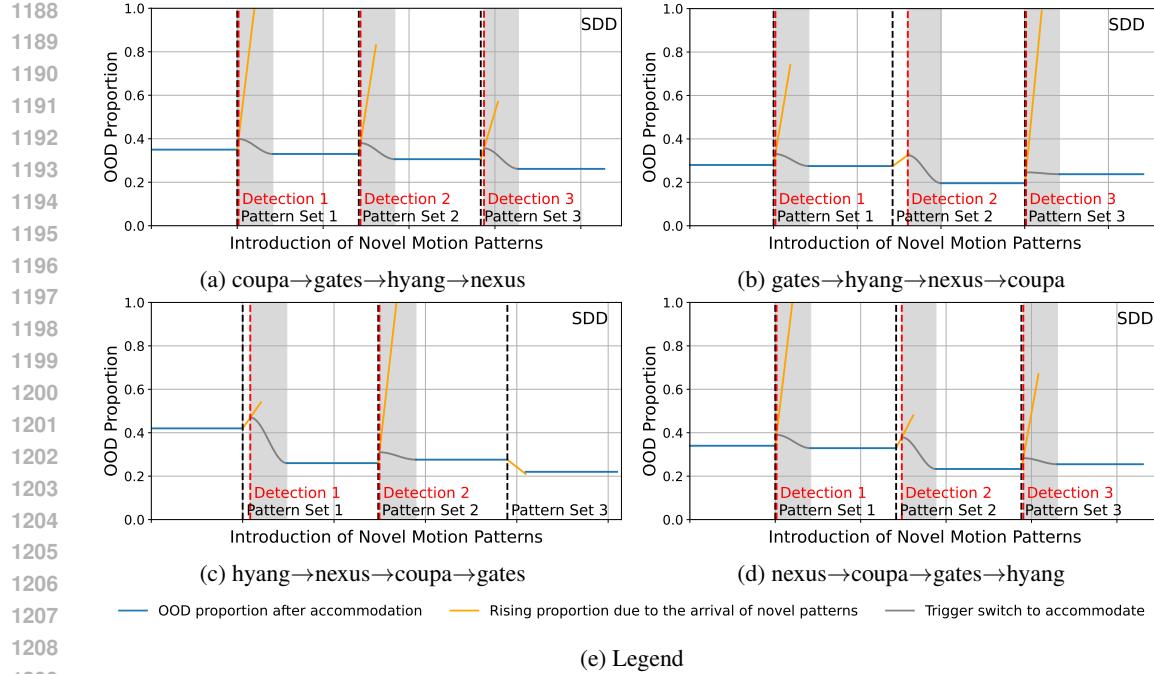


Figure 8: Experiments conducted on SDD evaluated the ability of GMPDR to maintain continual detection under OWPTP.

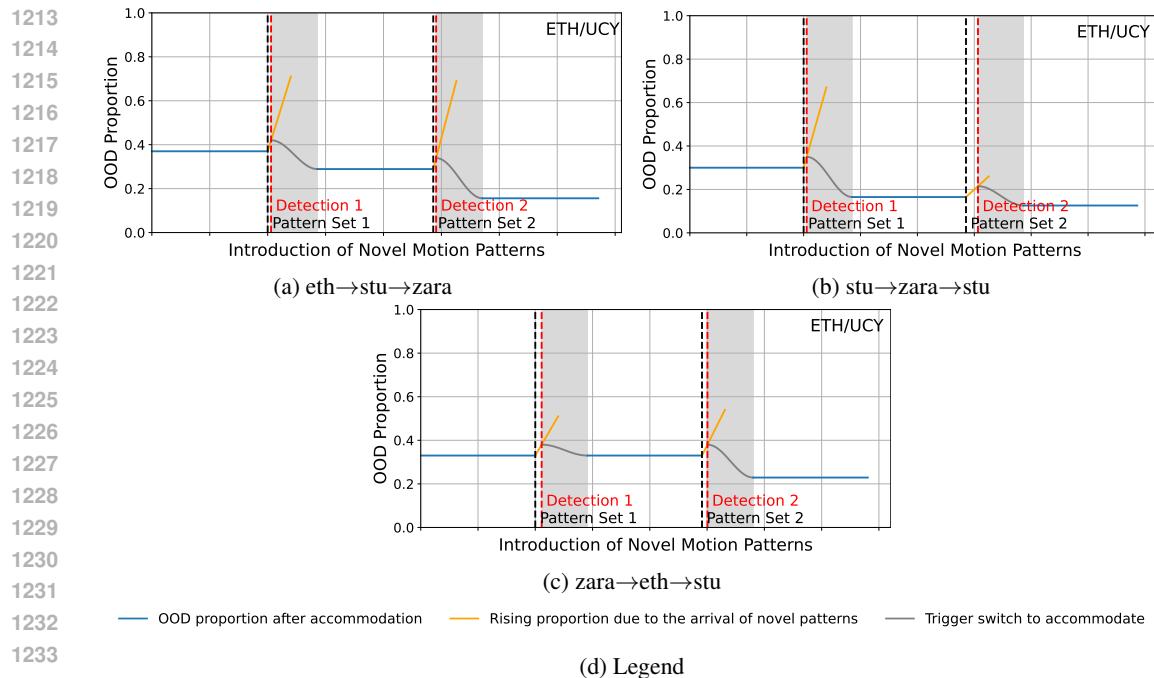


Figure 9: Experiments conducted on ETH/UCY evaluated the ability of GMPDR to maintain continual detection under OWPTP.

trend to the model’s gradual accumulation of knowledge through continual accommodation. During the detection phase, each sample is evaluated for its membership across all previously identified patterns. Consequently, newly acquired patterns enhance the earlier pattern set by addressing previously under-learned components, leading to a more stable and well-defined ID over time.

1242 G.2 COMPARISON WITH CONTINUAL LEARNING METHODS
1243

1244 The accommodation process in OWPTP can be viewed as a CL phase. GMPDR is specifically
1245 designed for pedestrian trajectory prediction tasks. To further evaluate the effectiveness of its con-
1246 tinual accommodation capability, we adapt several CL methods to pedestrian trajectory prediction
1247 and conduct comparative experiments. However, these methods exhibit two key limitations: first,
1248 they lack autonomous detection mechanisms, necessitating manual provision of task boundary in-
1249 formation during the accommodation process; second, they were originally developed for image
1250 classification benchmarks, which may limit their applicability and effectiveness in the context of
1251 trajectory prediction.

1252 Table 8: Comparison with the continual learning approach on SDD task, focuses primarily on ac-
1253 commodation performance.

Method	FADE ↓	FFDE ↓	IADE ↓	IFDE ↓	FGT-A ↑	FGT-F ↑
FineTune	8.04	12.38	7.89	12.35	-0.69	-1.35
EWC	8.00	12.33	7.82	12.26	-0.71	-1.30
iCaRL	8.22	12.91	7.95	12.46	-1.42	-1.34
DER	7.65	12.10	7.74	12.34	-0.38	-0.60
MEMO	7.73	12.01	7.70	12.25	-0.54	-0.97
GMPDR	7.38	11.38	7.55	11.51	0.04	-0.12

1262 We evaluate and adapt several classical and state-of-the-art methods, with results provided in Table 8.
1263 All experiments are conducted on the SDD task using YNet as the baseline network to ensure a con-
1264 sistent evaluation framework, under a fixed replay ratio of 1%. FineTune adopt a straightforward
1265 fine-tuning strategy without additional constraints. EWC (Kirkpatrick et al., 2017), a representative
1266 regularization-based method, mitigates catastrophic forgetting by penalizing changes to important
1267 parameters using Fisher information matrices. However, due to the complexity of trajectory pre-
1268 diction networks, accurately estimating parameter importance remains challenging, which limits
1269 EWC’s effectiveness.

1270 iCaRL (Rebuffi et al., 2017), a classical replay-based approach, selects and preserves highly rep-
1271 resentative samples for rehearsal. Nevertheless, replay-based methods such as iCaRL encounter
1272 difficulties in OWPTP, where motion patterns are inherently unsupervised and cannot be segmented
1273 based on category labels as in image classification tasks. This limitation underscores the importance
1274 of abstract motion pattern clustering, which is a core focus of GMPDR. In fact, without motion
1275 pattern clustering, directly selecting features centered across the entire feature distribution fails to
1276 preserve complex semantic information in replay samples, ultimately leading to overfitting of certain
1277 trajectories and suboptimal performance. Methods such as DER (Yan et al., 2021) and MEMO (Zhou
1278 et al., 2023) represent more advanced replay strategies that incorporate model extensions. However,
1279 their effectiveness remains limited. In contrast, GMPDR employs sparse representative replay based
1280 on motion pattern clustering, enabling the memory system to retain the semantic meaning of each
1281 distinct motion pattern.

1282 We also evaluated classical OWM (Zeng et al., 2019) and the more recent CLDNet (Li et al., 2024).
1283 However, these orthogonal space-based update methods require large projection matrices. While
1284 such matrices are manageable in image classification tasks, their dimensions become prohibitively
1285 large in trajectory prediction scenarios, severely limiting their applicability and transferability.

1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296 G.3 COMPARISON WITH CONTINUAL PEDESTRIAN TRAJECTORY PREDICTION METHODS
1297

1298 Some studies have investigated pedestrian trajectory prediction within a continual learning sce-
1299 nario (Habibi et al., 2020; Knoedler et al., 2022; Yang et al., 2022; Wu et al., 2022). However,
1300 as previously noted, these approaches rely on manually defined task boundaries and are unable to
1301 automatically identify emerging motion patterns. Consequently, it can be argued that these methods
1302 have only addressed the continual accommodation phase of OWPTP.

1303 In the accommodation phase, the limitations of these methods stem from their inability to account
1304 for the critical factors of goal prediction and epistemic uncertainty, which results in suboptimal
1305 performance. The most recent and advanced continual pedestrian trajectory prediction methods,
1306 CLTP-MAN, CL-ER, and CL-SGR, are all based on replay or pseudo-replay mechanisms (Yang
1307 et al., 2022; Wu et al., 2022). These approaches typically require large replay buffers, such as
1308 10% of the dataset, to store social interaction information. However, this rapid increase in memory
1309 overhead restricts their applicability in open-world environments.

1310 To further evaluate the effectiveness of the proposed GMPDR framework, we specifically examine
1311 its performance during the accommodation phase and compared it with these state-of-the-art meth-
1312 ods. All performance metrics are based on the results reported in the original papers or obtained
1313 from the source code repositories. For the sake of fair comparison, we restrict the baseline methods
1314 to using only 1% of the replay samples. Some comparison results have already been presented in
1315 the main text.

1316 Since this subfield has not been sufficiently explored, the relevant evaluation frameworks have not
1317 yet been fully standardized. Given that CLTP-MAN is not open-source, we consistently adopt its
1318 evaluation metrics in this subsection, specifically average error (AER) and average forgetting (FGT).
1319 Let $R_{i,j}$ denotes the testing error (ADE/FDE) at the j th task after training on the i th task, K is
1320 the total number of tasks. AER is a metric used to assess prediction performance in continual
1321 accommodation. FGT evaluates the degree to which a model forgets previously learned knowledge.
1322 Lower values indicate better performance for both metrics. Their calculation methods are as follows:

$$1324 \quad \text{AER} = \frac{1}{K(K+1)/2} \sum_{i=1}^K \sum_{j \leq i} R_{i,j} \quad (21)$$

$$1328 \quad \text{FGT} = \frac{1}{K(K-1)/2} \sum_{i=2}^K \sum_{j < i} R_{i,j} - R_{j,j} \quad (22)$$

1332 Table 9: Comparison with continual pedestrian trajectory prediction methods on ETH/UCY task.
1333 Each experiment is performed and averaged in three different motion pattern orders, and GMPDR
1334 employs YNet for trajectory refinement.

Method	AER-ADE \downarrow	FGT-ADE \downarrow	AER-FDE \downarrow	FGT-FDE \downarrow
CL-ER	0.545 \pm 0.075	0.164 \pm 0.065	1.145 \pm 0.165	0.345 \pm 0.117
CL-SGR	0.515 \pm 0.048	0.144 \pm 0.034	1.105 \pm 0.103	0.323 \pm 0.034
CLTP-MAN	0.403 \pm 0.023	0.040 \pm 0.010	0.823 \pm 0.061	0.083 \pm 0.025
GMPDR	0.185 \pm 0.011	0.029 \pm 0.013	0.286 \pm 0.018	0.058 \pm 0.025

1341 Table 9 presents the comparison results between GMPDR and continual pedestrian trajectory predic-
1342 tion baselines on the ETH/UCY task. It can be observed that GMPDR achieves superior performance
1343 with significantly less forgetting compared to these methods. This suggests that GMPDR effectively
1344 identifies the locations where forgetting occurs by focusing on goal prediction and epistemic un-
1345 certainty. Furthermore, this mechanism supports a sparse representative replay strategy, which not
1346 only mitigates forgetting effectively but also facilitates knowledge transfer. The visualization re-
1347 sults in Fig. 10 demonstrate that GMPDR successfully distinguishes trajectory instances through
1348 abstract clustering of motion patterns. Selecting samples for replay at this clustering level effec-
1349 tively preserves the semantic structure of the original dataset, thereby validating the effectiveness of
the proposed sparse representative replay strategy.

1350 G.4 COMPARISON WITH OPEN-WORLD LEARNING METHODS
1351

1352 Below, we compare GMPDR with other open-world learning methods. Although several open-
1353 world learning approaches have addressed the two phases of continuous detection and accommo-
1354 dation (Zhu et al., 2024; Zeno et al., 2021; Lee et al., 2020), they typically operate as prototype
1355 methods applied to image classification benchmark tasks. Direct application of these methods to
1356 OWPTP is challenging due to their lack of fundamental trajectory prediction capabilities and inabil-
1357 ity to recognize distinct motion patterns. To validate the effectiveness of the proposed GMPDR, we
1358 conduct a comparative analysis using SHELS (Gummadi et al., 2022) as a case study.

1359 SHELS is a state-of-the-art open-world learning method that effectively captures the interplay be-
1360 tween the detection and accommodation phases, corresponding the integration of OOD detection
1361 and CL. To adapt SHELS for the OWPTP paradigm, we utilize our proposed goal-based framework
1362 and encoder-decoder architecture as the base model. Building upon this structure, we incorpo-
1363 rate SHELS’s regularization strategy to mitigate catastrophic forgetting during the accommoda-
1364 tion phase, and apply its cosine normalization technique to facilitate effective OOD detection. This
1365 adapted framework represents a refined and optimized version of the original SHELS method, tai-
1366 lored specifically for OWPTP paradigm.

1367 Table 10: Comparison with the open-world learning approach on SDD task, focuses primarily on
1368 accommodation performance.

Method	FADE ↓	FFDE ↓	IADE ↓	IFDE ↓	FGT-A ↑	FGT-F ↑
YNet	8.05	12.41	7.91	12.22	-0.74	-1.34
SHELS	7.93	12.04	7.81	11.97	-0.66	-1.03
GMPDR	7.38	11.38	7.55	11.51	0.04	-0.12

1374 We compare GMPDR with SHELS on the SDD task. First, we evaluate their performance in knowl-
1375 edge accommodation, as presented in Table 10. It can be observed that SHELS achieves a certain
1376 level of improvement over the YNet baseline, primarily due to the regularization strategy alleviating
1377 catastrophic forgetting. However, this approach appears insufficient for handling complex trajectory
1378 prediction tasks. In contrast, GMPDR employs a sparse representative replay strategy, which more
1379 effectively mitigates forgetting. This highlights a key advantage of GMPDR over other open-world
1380 learning approaches: under the OWPTP paradigm, sparse representative replay better preserves prior
1381 knowledge, which is particularly critical given the inherent complexity of trajectory prediction.

1383 Table 11: Comparison with the open-world learning approach on SDD task, focuses primarily on
1384 detection performance.

Method	Novelty Detection Rate ↑	ID Pattern Forgetting Rate ↓	AUROC ↑
SHELS	58.3%	45.8%	0.6201
GMPDR	87.5%	0%	0.7456

1389 Next, we evaluate the detection performance, as presented in Table 11. To quantitatively assess
1390 the model’s ability to detect novel motion patterns, we introduce three evaluation metrics. Metrics
1391 **Novelty Detection Rate** and **ID Pattern Forgetting Rate** correspond to the set level, considering
1392 whether novel motion pattern sets have been detected or known motion pattern sets have been for-
1393 gotten. Metric **AUROC** corresponds to the instance level, directly focusing on the model’s OOD
1394 detection performance for distinguishing each instance.

1395 Each time a new motion pattern set is introduced, we examine whether the model successfully
1396 identifies the novelty and transitions into the accommodation phase. This transition success rate
1397 is referred to as the Novelty Detection Rate. Our results show that GMPDR achieves an 87.5%
1398 success rate in detecting novel patterns. This high performance can be attributed to the MPDC
1399 module’s clustering and embedding capabilities, which enable the model to distinguish between different
1400 motion patterns by clustering trajectory samples accordingly. Additionally, the explicit vMF mod-
1401 eling and distance metric ensure that the embeddings of novel trajectories significantly differ from
1402 those of ID trajectories. In contrast, SHELS demonstrates a lower detection success rate. This is
1403 primarily due to SHELS’ limited trajectory aggregation capability, which impedes the formation of
1404 trajectory-to-pattern associations. Moreover, its cosine-normalized embedding strategy, used as a

1404 distance metric, lacks prior support and may not be optimal. These findings highlight the superior
 1405 detection performance of the proposed GMPDR framework compared to other open-world learning
 1406 approaches.

1407 Another metric that quantifies detection capability is the ID Pattern Forgetting Rate. This refers to
 1408 the phenomenon wherein previously learned ID patterns are gradually forgotten during subsequent
 1409 accommodation processes, causing them to be misclassified as OOD patterns. In our specific calcu-
 1410 lation, we assume that a set of patterns originally identified as ID becomes progressively classified
 1411 as OOD, with a degradation proportion increasing by 50%. Our observations indicate that SHELS
 1412 exhibits a significant forgetting rate, requiring the model to relearn previously acquired patterns and
 1413 thereby incurring additional computational overhead. This issue primarily stems from parameter
 1414 overwriting within the encoder. In contrast, GMPDR achieves a forgetting rate of 0 for ID patterns
 1415 due to our strategy of freezing the encoder, which ensures full preservation of the prior feature space.
 1416 These results further validate the effectiveness of GMPDR for the OWPTP paradigm.

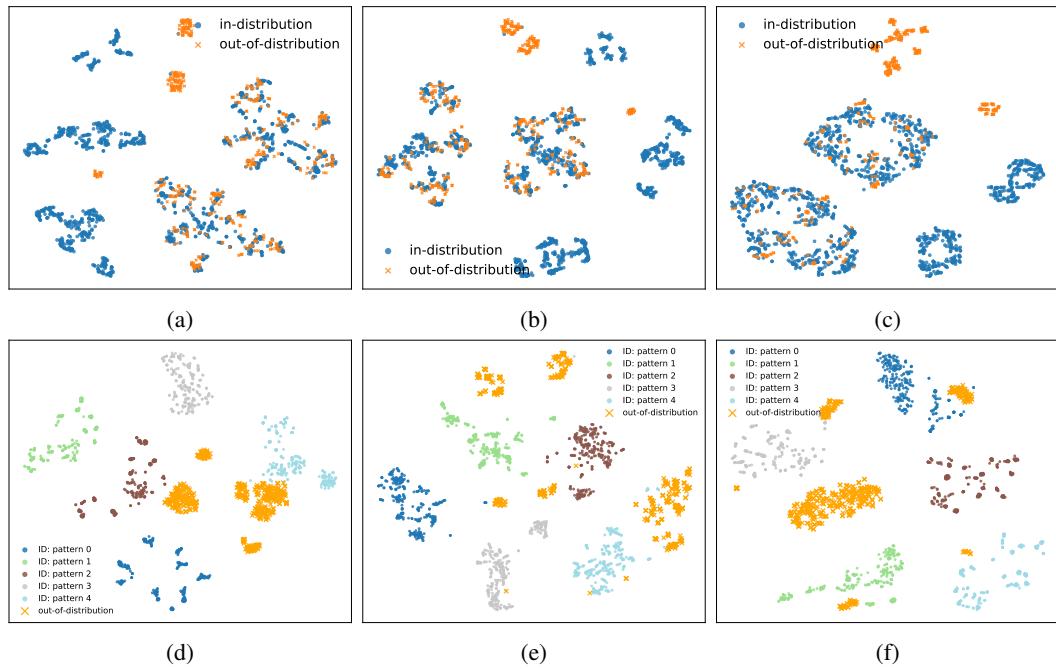
1417 The final metric is the average AUROC value across multiple detections. We first note that GM-
 1418 PDR achieves significantly higher AUROC values compared to SHELS. This further confirms the
 1419 effectiveness of hyperspherical OOD detection combined with abstract clustering specifically de-
 1420 signed for trajectory tasks. Attributing to the intrinsic complexity of trajectory prediction tasks and
 1421 the abstract characteristics of motion patterns, it is inherently challenging to precisely determine
 1422 whether each given trajectory instance belongs to the known class. Nevertheless, we emphasize that
 1423 this does not suggest that effective detection function in OWPTP is unattainable. In OWPTP, the
 1424 switching mechanism typically depends on cumulative evidence, which allows for a more lenient
 1425 evaluation of individual samples. Therefore, Novelty Detection Rate and ID Pattern Forgetting Rate
 1426 are practically more direct metrics for OWPTP.

1427 Transferring prototype open-world learning algorithms to the OWPTP paradigm is challenging. We
 1428 emphasize that SHELS exhibits a certain degree of adaptability and detection capabilities, which are
 1429 partly derived from the goal-based framework proposed in this paper. This framework provides a
 1430 foundational guideline for OWPTP implementation, underscoring the critical roles of goal predic-
 1431 tion and epistemic uncertainty. Meanwhile, GMPDR’s sparse representative replay strategies and
 1432 motion pattern clustering are specifically designed for trajectory prediction tasks, which highlight
 1433 the importance of transitioning from concrete instances to abstract patterns. Ultimately, these fea-
 1434 tures demonstrate that GMPDR offers superior adaptability compared to other open-world learning
 1435 methods when applied to complex and realistic OWPTP paradigm.

1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458
1459

G.5 CLUSTERING AND EMBEDDING VISUALIZATION

1460
1461
1462
1463
1464
1465
1466
1467
1468
1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

Figure 10: Comparing the embedding spaces of trajectory instances, each subfigure visualizes the embeddings of ID samples after one accommodation process and those of OOD samples during the subsequent detection process. (a), (b), (c) depict the embedding space of SHELs, while (d), (e), (f) illustrate the embedding space of the proposed GMPDR.

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

To further analyze the effectiveness of GMPDR, we visualize the clustering and embedding spaces generated on the SDD task, as shown in Fig. 10. The subfigures labeled "(d), (e), (f)" present the results of GMPDR. It can be observed that after an accommodation process, GMPDR successfully aggregates ID features into clearly distinguishable clusters through the MPDC module's clustering capability, thereby establishing corresponding clustering bases. As a result, a favorable instance embedding space is formed, as indicated by the distinct ID patterns in the subfigures, which facilitates the selection of representative replay samples. Subsequently, when novel motion pattern instances arrive, GMPDR maps the OOD samples into the embedding space, achieving a clear separation between ID and OOD samples, as illustrated by the orange-labeled examples in the subfigures. This process ultimately contributes to robust detection performance.

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

Comparing this with the SHELs model ((a), (b), (c)), the limitation of SHELs becomes evident in its inability to identify and group distinct motion patterns. As a result, all ID samples are uniformly treated and assigned to a single central vector. At the same time, the embeddings of OOD instances with novel trajectories partially overlap with those of ID trajectories. These issues jointly lead to less-than-optimal detection performance. From the visualization results, we observe that the ID embeddings generated by SHELs still exhibit a certain spatial structure, suggesting the presence of underlying motion patterns. Intuitively, one might consider applying clustering techniques, such as the K-means algorithm, to further segment the ID samples. However, this approach essentially aligns with the core idea proposed in this work: mapping specific trajectory instances to abstract motion patterns through clustering.

1506

1507

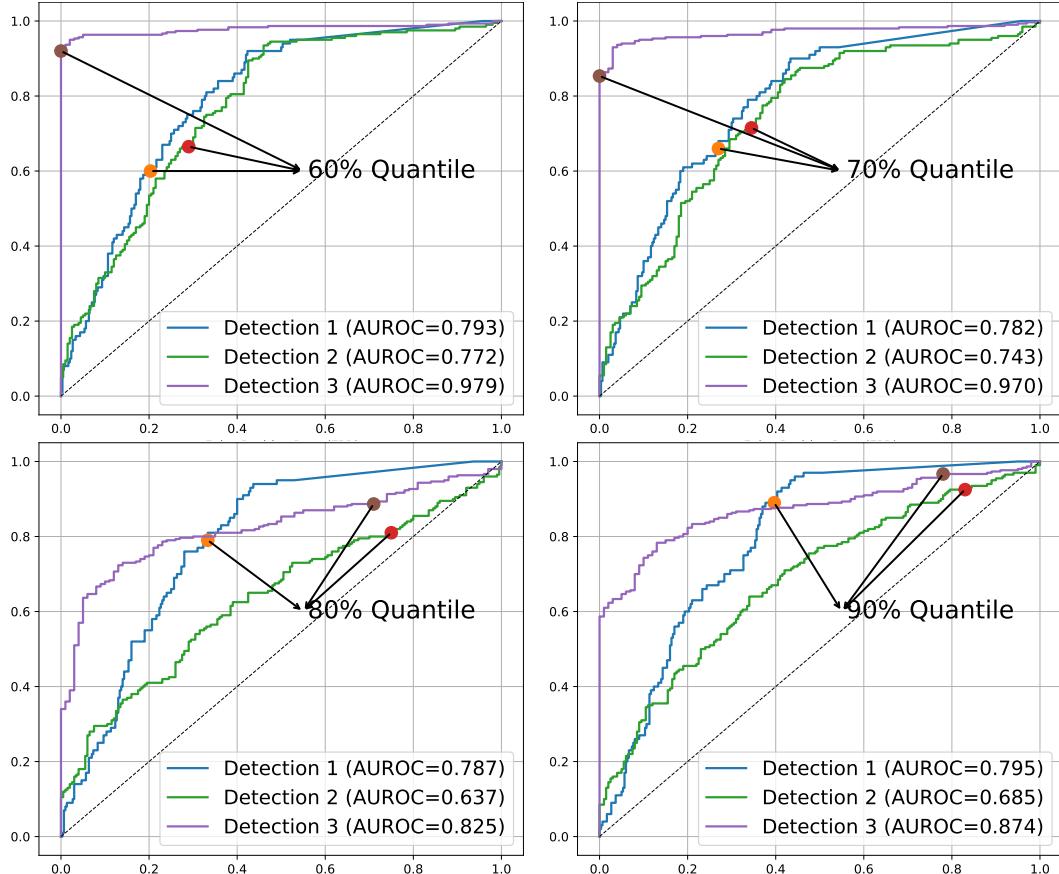
1508

1509

1510

1511

1512 **H SUPPLEMENTARY ALGORITHM ANALYSIS**
1513

1514 When evaluating the conditions for samples belonging to the ID category, we employ the dual OOD
1515 detection criteria. In the first criterion, we apply 8 augmentations to each sample and require that
1516 more than half of these augmented versions be assigned to the same cluster. In the second criterion,
1517 we assess whether the distance between each sample and its corresponding prototype is greater than
1518 the OOD threshold $\gamma_n \in \Gamma$, determined by the p-quantile.
1519

1548
1549 Figure 11: ROC curves and p-quantile positions for detection using multiple thresholds for calibra-
1550
1551

1552 To begin with, we focus on the influence of the p-quantile. However, since GMPDR utilises a multi-
1553 threshold OOD detection approach, where each pattern corresponds to a distinct OOD threshold γ_n ,
1554 it is not feasible to directly construct a receiver operating characteristic (ROC) curve or mark the
1555 positions of different p-quantiles. To address this issue, we adopt a modified approach. Specifically,
1556 we select OOD thresholds Γ corresponding to different p-quantiles and then standardise the distances
1557 computed after classifying each sample using the associated γ_n . This standardisation aligns all
1558 thresholds to a common scale, thereby enabling the construction of a calibrated ROC curve. Fig. 11
1559 presents the ROC curves and the corresponding positions of Γ selected based on different p-quantile
1560 for the SDD task. The three curves represent the detection performance across three instances of
1561 novelty introduction. Regardless of the p-quantile selected, the area under the ROC curve (AUROC)
1562 remains high, demonstrating the effectiveness of MPDC for OOD detection. Although GMPDR can
1563 determine an optimal p-quantile by analysing the ROC curve on the validation set, we recommend
1564 the use of the 70th percentile for generalization purposes. This choice achieves a higher AUROC
1565 while positioning Γ in the upper-left region of the curve, corresponding to a higher true positive rate
1566 and lower false positive rate.
1567

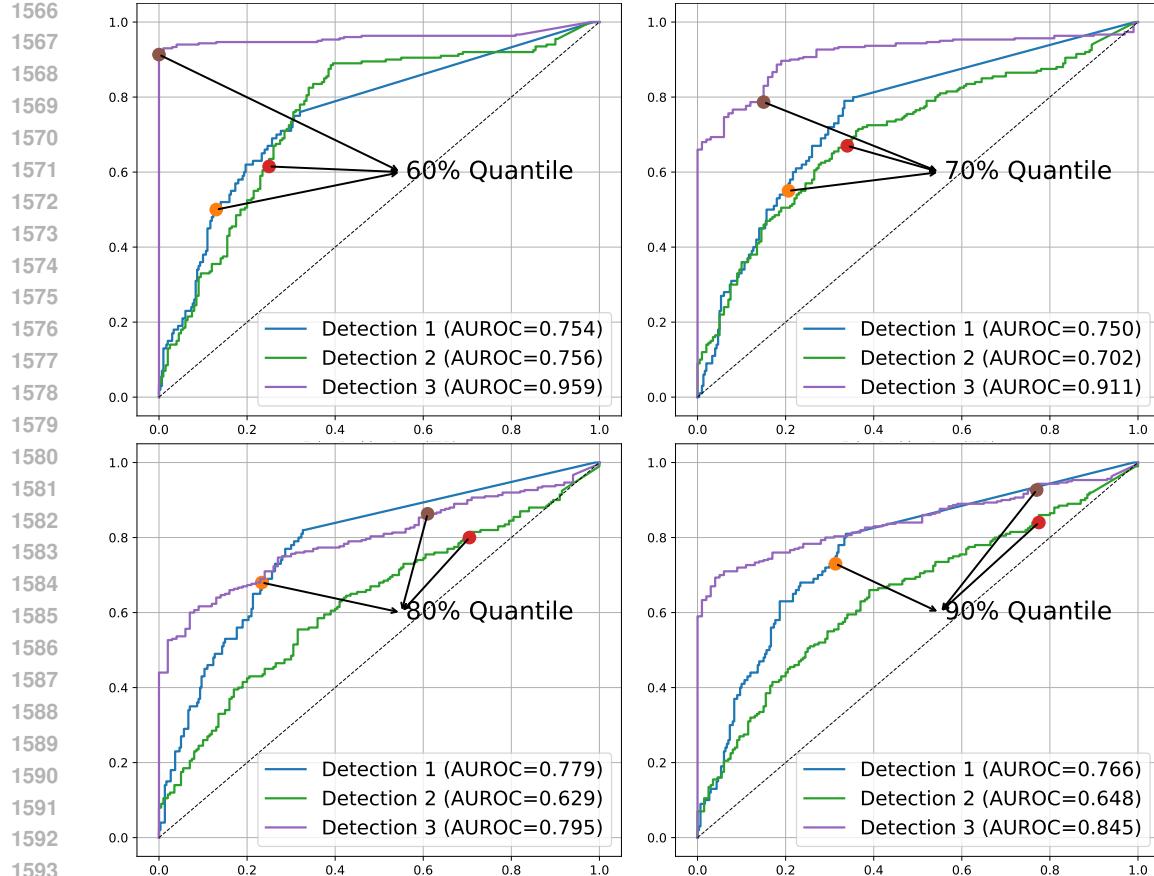


Figure 12: ROC curves and p-quantile positions for detection using multiple thresholds for calibration. The first criterion requires that more than 87.5% of the augmented versions belong to the same cluster.

We further tighten the first criterion by requiring that at least 7 out of 8 augmentations in each sample belong to the same cluster. Fig. 12 presents the calibrated ROC curves for different p-quantiles under this stricter condition. It can be seen that the 70th percentile remains an appropriate choice. Compared to the previously more lenient first criterion, the stricter criterion yields a slightly lower AUROC, as some ID samples are now misclassified as OOD under the stricter dual detection criteria. However, this stricter criterion achieves a lower false positive rate, as evidenced by the leftward shift in the p-quantile positions.

I THE USE OF LARGE LANGUAGE MODELS

We use an LLM solely as a general-purpose writing assistant for grammar and style polishing. All technical content is created and verified by the authors, who take full responsibility for the manuscript.