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Abstract
We propose a Gaussian manifold variational auto-
encoder (GM-VAE) whose latent space consists
of a set of Gaussian distributions. It is known that
the set of the univariate Gaussian distributions
with the Fisher information metric form a hyper-
bolic space, which we call a Gaussian manifold.
To learn the VAE endowed with the Gaussian
manifolds, we propose a pseudo-Gaussian man-
ifold normal distribution based on the Kullback-
Leibler divergence, a local approximation of the
squared Fisher-Rao distance, to define a density
over the latent space. In experiments, we demon-
strate the efficacy of GM-VAE on two different
tasks: density estimation of image datasets and
environment modeling in model-based reinforce-
ment learning. GM-VAE outperforms the other
variants of hyperbolic- and Euclidean-VAEs on
density estimation tasks and shows competitive
performance in model-based reinforcement learn-
ing. We observe that our model provides strong
numerical stability, addressing a common limita-
tion reported in previous hyperbolic-VAEs.

1. Introduction
The geometry of latent space in generative models, such
as variational auto-encoders (VAE), reflects the structure
of the data representations. Mathieu et al. (2019); Nagano
et al. (2019); Cho et al. (2022) show that employing hyper-
bolic space as the latent space improves the preservation
of the hierarchical structure within the data. The theoret-
ical background for adopting hyperbolic space lies in the
analysis of Sarkar (2011); the tree-structured data can be
embedded with arbitrary low distortion in hyperbolic space,
while Euclidean space requires extensive dimensions.

Previously proposed hyperbolic VAEs rely on Poincaré
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normal distribution (Mathieu et al., 2019) or hyperbolic
wrapped normal distribution (Nagano et al., 2019) for the
prior and variational distributions. Unlike the Gaussian dis-
tribution in Euclidean space, however, these distributions
suffer from several shortcomings, including the absence of
closed-form Kullback-Leibler (KL) divergence, numerical
instability (Mathieu et al., 2019; Skopek et al., 2019), and
high computational cost in sampling (Mathieu et al., 2019).

Meanwhile, we can form a Riemannian manifold from the
set of univariate Gaussian distributions by equipping the
Fisher information metric (FIM). It is known that the FIM of
univariate Gaussian distributions is akin to that of the metric
tensor of the Poincaré half-plane model (Costa et al., 2015),
providing a perspective of viewing the points in hyperbolic
space as univariate Gaussian distributions. In other words,
a Gaussian distribution can be mapped to a single point in
the open half-plane manifold , where the shortest geodesic
distance between two Gaussian distributions is formed by
the FIM. Noting that the numerical issue of Poincaré normal
arises from the geodesic distance of hyperbolic space, we
question whether this perspective can lead us to define a
new distribution with better analytic properties.

In this work, inspired by the fact that KL divergence it-
self is a statistical distance that locally approximates the
geodesic distance (Tifrea et al., 2018), we propose a hy-
perbolic distribution by substituting the geodesic distance
of Poincaré normal with the KL divergence between the
univariate Gaussian distributions. We then verify that this
simple yet powerful alteration results in several practical
analytic properties; the proposed distribution reduces into
the product of two well-known distributions, i.e., the Gaus-
sian and gamma distributions which are easy to sample and
there is a closed-form KL divergence between the proposed
distributions. By adopting the proposed hyperbolic distribu-
tion, we introduce a new variant of hyperbolic VAE, named
Gaussian manifold VAE (GM-VAE), whose latent space is
a set of Gaussian distributions.

During the experiments, we observe that the proposed dis-
tribution is robust in terms of sampling and KL divergence
computation compared to the commonly-used hyperbolic
distributions; we briefly explain the reason why others are
numerically unstable. Experimental results on the density
estimation task with image datasets show that GM-VAE
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can achieve outperforming generalization performances to
unseen data against baselines of Euclidean and hyperbolic
VAEs. Application of GM-VAE on model-based reinforce-
ment learning (RL) verifies the feasibility of using hyper-
bolic space on another domain of task.

2. Gaussian Manifold VAE
In this section, we present the concept of the Gaussian
manifold, propose a pseudo Gaussian manifold normal dis-
tribution, and suggest a new variant of the VAE defined over
the Gaussian manifold with PGM normal as prior.

2.1. Gaussian manifold with arbitrary curvature

We show that the Riemannian manifold of univariate Gaus-
sian distributions can have an arbitrary constant negative
curvature by reparameterizing the univariate Gaussian dis-
tribution properly. Let the univariate Gaussian distribution
as N (x;µ, σ2) = 1√

2πσ2
exp

(
− (µ−x)2

2σ2

)
. We reparame-

terize the distribution with additional parameter c > 0 as
N (

√
2cµ, σ2). The reparameterization leads to the FIM of

σ−2diag(1, 1/c) showing that the curvature is −c.

We call the Riemannian manifold with the reparameterized
univariate Gaussians and the extended FIM as the Gaussian
manifold and denote it as Gc, where −c is the curvature. We
then verify that the KL divergence between the points of
the Gaussian manifold approximates the geodesic distance,
even in the presence of arbitrary curvature in the Gaussian
manifold. Let (µ, σ) ∈ Gc be an arbitrary point of the
Gaussian manifold. The KL divergence between (µ, σ) and
its neighbor (µ+ dµ, σ + dσ) can be computed as:

DKL

(
N (

√
2c(µ+ dµ), (σ + dσ)2) ∥ N (

√
2cµ, σ2)

)
2c

=
1

2

(
dµ
dσ

)T ( 1
σ2 0
0 1

cσ2

)(
dµ
dσ

)
+O

(
(dσ)3

)
, (1)

where the first term is the squared Riemannian norm of the
tangent vector (dµ, dσ) approximating the squared Fisher-
Rao distance.

2.2. Pseudo Gaussian manifold normal distribution

We propose a pseudo Gaussian manifold (PGM) normal dis-
tribution defined over the Gaussian manifold. Let (µ, σ) ∈
Gc be a point in the Gaussian manifold. Inspired by the
Riemannian normal distribution, we define the probability
density function of PGM normal with the KL divergence as:

Kc(µ, σ;α, β, γ) =
σ3

Z(c, β, γ)
(2)

× exp

(
−DKL(N (

√
2c · µ, σ2) ∥ N (

√
2c · α, β2))

2c · γ2

)
,

where (α, β) ∈ Gc, and γ ∈ R>0 are the parameters of the
distribution. The distribution is centered at (α, β) with addi-
tional scale parameter γ. As shown in Equation 1, the KL di-
vergence of the Gaussian manifold approximates the Fisher-
Rao distance between N (

√
2c · α, β2) and N (

√
2c · µ, σ2).

Therefore, the PGM normal accounts for the geometric
structure of the univariate Gaussian distributions.

The factorization of the probability density function in Equa-
tion 2 multiplied with the square root of the determinant of
the FIM shows the advantages of the PGM normal, which
can be written as:

Kc(µ, σ;α, β, γ) ·
√

det(g) (3)

= N (µ;α, β2γ2) · 2σGamma

(
σ2;

1

4cγ2
+ 1,

1

4cβ2γ2

)
,

where Gamma(z; a, b) = ba

Γ(a)z
a−1 exp (−bz) and g is the

FIM of the Gaussian manifold. Thanks to the properties of
Gaussian and gamma distributions, the PGM normal is easy
to sample and has a closed-form KL divergence.

The factorization has the same form as the well-known con-
jugate prior to the Gaussian distribution. In that sense, the
PGM normal explicitly incorporates the geometric structure
between Gaussians into the known prior distribution.

We note that the PGM normal can be easily extended for the
diagonal Gaussian manifold, a manifold formed by diagonal
Gaussian distributions since the diagonal Gaussian manifold
is the product of the Gaussian manifolds.

2.3. Gaussian manifold VAE

We introduce a Gaussian manifold VAE (GM-VAE) whose
latent space is defined over the diagonal Gaussian manifold
with the help of the PGM normal. We use the PGM normal
for variational and prior distributions.

To be specific, with the PGM normal, the evidence lower
bound (ELBO) of the GM-VAE can be formalized with the
diagonal Gaussian manifold {(µ,Σ) | µ ∈ Rn,Σ ∈ Rn

>0}
as:

E
qϕ(µ,Σ|x)·

√
det(g)

[log pθ(x | µ,Σ)]

−DKL

(
qϕ(µ,Σ | x) ·

√
det(g) ∥ p(µ,Σ) ·

√
det(g)

)
,

where pθ(x | µ,Σ) is the decoder network, qϕ(µ,Σ |
x) is the encoder network and p(µ,Σ) is the prior.
The variational distribution is set to qϕ(µ,Σ | x) =
Kc(αϕ(x), βϕ(x), γϕ(x)), where αθ(x) ∈ Rn and
βϕ(x), γϕ(x) ∈ Rn

>0, and the prior is set to p(µ,Σ) =
Kc(0, I, I) in our experiments given curvature −c. The
pseudo-algorithm for the encoder and decoder of GM-VAE
is present at Algorithm 1, respectively.
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Algorithm 1 Decoder
Input Parameter (α, β) ∈ Gc, γ, Decoding layers Dec(·)
Output Reconstruction x′

1: Sample µ ∼ N (α, βγ)

2: Sample σ2 ∼ Gamma
(

1
4cγ2 + 1, 1

4cβ2γ2

)
3: x′ = Dec([µ, σ])
4: return x′

3. Related Work
The latent space of VAE reflects the geometrical property of
the representations of the data. Hyperbolic space as the la-
tent space of the VAE has been adopted in several works by
proposing a tractable distribution over hyperbolic space. For
example, Nagano et al. (2019) suggest hyperbolic wrapped
normal distribution (HWN) from the observation that the
tangent space is Euclidean space. Leveraging operations de-
fined on the tangent spaces, e.g., parallel transport, enables
an easy sampling algorithm. Also, Mathieu et al. (2019)
propose a rejection sampling method for the Riemannian
normal distribution defined on the Poincaré disk model,
namely Poincaré normal distribution.

These distributions are studied in many cases (Skopek et al.,
2019; Mathieu & Nickel, 2020; Cho et al., 2022) but suffer
from instability because of the absence of closed-form KL
divergence. Our proposed distribution, however, not only
shares the common merits but also overcomes the stability
problem with closed-form KL divergence. Our method en-
joys easy sampling and provides closed-form KL divergence
while utilizing the geometric structure of the statistical man-
ifold, i.e., the use of (approximated) geodesic distance. Ta-
ble 1 summarizes the properties of each distribution.

4. Experiments
In this section, we demonstrate the performances of GM-
VAE on two tasks: density estimation of image datasets
and model-based RL. We remark on the practical proper-
ties of GM-VAE shown in the experiments with additional
analyses.

Table 1. A comparison of the PGM normal (PGM-N ) with HWN
and Poincaré normal (Poincaré-N ). Geometry denotes whether the
distribution utilizes the geometric structure. Tractable KL indicates
whether the distribution has a closed-form KL divergence.

Sampling Geometry Tractable KL

HWN low-cost × ×
Poincaré N expensive ⃝ ×
PGM-N low-cost ⃝ ⃝

Table 2. Density estimation on real-world datasets. d denotes the
latent dimension. We report the negative test log-likelihoods of
average 10 runs for Breakout, CUB, Food101, and Oxford102 with
95% confidence interval. N/A in the log-likelihood indicates that
the results are not available due to the failure of all runs, and N/A
in the standard deviation indicates the results are not available due
to failures of some runs. The best results are bolded.

d E-VAE L-VAE P-VAE GM-VAE

Breakout
2 124.74±0.86 122.58N/A 270.05±2.84 121.52±1.00121.52±1.00121.52±1.00

4 66.39±0.76 66.70±0.32 271.73±42.95 65.83±0.4965.83±0.4965.83±0.49

8 44.97±0.3744.97±0.3744.97±0.37 45.25±0.27 81.55±64.61 45.14±0.30

CUB
50 992.05±1.38 993.03±1.64 990.49±2.26 985.46±3.82985.46±3.82985.46±3.82

60 969.99±3.13 968.79±3.70 964.02±3.55 958.00±3.25958.00±3.25958.00±3.25

70 949.13±2.72 948.88±3.19 944.24±4.40 939.08±3.12939.08±3.12939.08±3.12

Food101
50 1297.81±4.51 1298.45±6.32 1293.26±7.14 1286.30±6.191286.30±6.191286.30±6.19

60 1224.03±8.31 1227.16±5.18 1218.09±3.88 1213.31±3.881213.31±3.881213.31±3.88

70 1164.95±3.80 1165.39±5.54 1165.91±4.91 1152.80±3.351152.80±3.351152.80±3.35

Oxford102
50 1297.41±2.69 1296.41±1.56 1294.12±1.80 1292.90±3.431292.90±3.431292.90±3.43

60 1253.80±2.57 1256.52±2.99 1251.77±1.82 1245.49±2.181245.49±2.181245.49±2.18

70 1231.52±3.18 1229.38±3.44 1219.75±1.72 1215.07±2.521215.07±2.521215.07±2.52

4.1. Density estimation on image datasets

We conduct density estimation on image datasets to mea-
sure the effectiveness of hyperbolic latent space against
Euclidean space with the proposed GM-VAE. We use four
datasets: the images from Atari2600 Breakout with bina-
rization (Breakout), Caltech-UCSD Birds-200-2011 (CUB),
Food101, and Oxford 102 Flower (Oxford102). The datasets
are chosen with the four lowest δ-H among the vision
datasets from torchvision.

We compare GM-VAE with the three baseline models: VAE
with Euclidean latent space (E-VAE), and hyperbolic VAE
equipped with HWN (L-VAE) and Poincaré normal (P-
VAE). We use the product latent space for both L-VAE and
P-VAE.

The results are reported at Table 2. GM-VAE outperforms
the baselines in all the settings, except one case of Breakout.
Especially in CUB and Oxford102, GM-VAE outperforms
the baselines regardless of the curvature value. In Breakout,
P-VAE shows inferior performance due to unstable train-
ing, and L-VAE fails in some of the runs with small latent
dimension.

4.2. Model-based RL

We focus on the model-based RL task to verify whether
GM-VAE can also be useful in other domains. Specifically,
we focus on applying GM-VAE to the world model, which
aims to model the learning environment of the RL agents.

We use DreamerV2 (Hafner et al., 2020) as the baseline to
evaluate the performance of GM-VAE in modeling environ-
ments. GM-VAE is employed by replacing the stochastic
state space zt with the Gaussian manifold and two compo-
nents in RSSM, the representation model qθ(zt|ht, xt) and
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Table 3. Model-based RL results on the 6 games of the Atari2600
environment. We compare the methods of using Euclidean, dis-
crete, and hyperbolic latent space. We report averaged rewards
over 4 runs. The best reward for each game is bolded.

Latent space Euc. Disc. Hyp. δ−H

Breakout 329.0 256.8 319.3 0.12
Alien 3412.5 3120.0 3485.0 0.14

Zaxxon 34275 38825 38950 0.14
Ice Hockey 25.50 11.80 20.75 0.14

Freeway 32.8 33.0 33.0 0.38
Krull 53290 36135 66185 0.38

transition predictor pϕ(zt|ht), with PGM normal.

We conduct a comparison of evaluation scores between
different types of latent space on world model learning over
the Atari2600 environments. The agents are trained with
100M environment steps. We select games having the δ-H
values of the four lowest and the two highest among 60
popular Atari2600 games.

The results are reported at Table 3 and Figure 1. The GM-
VAE shows competitive results with the baselines of em-
ploying Euclidean and discrete latent space in all the games
we test. We note that the reproduced Euclidean baseline re-
sults by using the official code are better than those reported
in Hafner et al. (2020). We also conduct experiments with
another hyperbolic distribution, i.e., HWN, but we could
not train the world model properly because of the numerical
stability issue.

Figure 1. The dots from yellow to purple represent the latent states
from the world model in the Atari2600 Breakout with decreasing
rewards. Along the red geodesic dashed line passing, we sample
for images to visualize the learned representations. We can observe
a hierarchical structure along the geodesic.

5. Conclusion & Future Work
In this work, we propose a novel method of representation
learning with GM-VAE, utilizing the Gaussian manifold for
the latent space. With the newly-proposed PGM normal
defined over the Gaussian manifold, which shows better
stability and ease of sampling compared to the commonly-
used ones, we verify the efficacy of our method on several
tasks. Our method achieves outperforming results on density
estimation with image datasets and competitive results on
model-based RL compared to the baselines. We explain
the behavior of GM-VAE in terms of solving the frequent
numerical issue of commonly-used hyperbolic VAEs. The
analysis of latent space exhibits that the hierarchy lying in
the dataset can be preserved by using GM-VAE.

We believe that the connection between the statistical man-
ifold and hyperbolic space provides new insight to the re-
search community and hope to see more interesting connec-
tions and analyses in the future.
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