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Chair for Geometry and Analysis

RWTH Aachen University
Aachen, Germany

fuehr@mathga.rwth-aachen.de

Mahya Ghandehari
Department of Mathematical Sciences

University of Delaware
Newark, USA

mahya@udel.edu

Abstract—We study sampling methods for Paley-Wiener func-
tions on graphons, thereby adapting and generalizing methods
initially developed for graphs to the graphon setting. We then
derive conditions under which such a sampling estimate is
consistent with graphon convergence.

Index Terms—graph/graphon signal processing, sampling

I. INTRODUCTION

A graphon w can be interpreted as a probability distribution
on random graphs, sampled via the w-random graph process
G(n,w), defined as follows. Given the vertex set with labels
{1, 2, . . . , n}, edges are formed according to w in two steps.
First, each vertex i is assigned a value xi drawn uniformly at
random from [0, 1]. Next, for each pair of vertices with labels
i < j independently, an edge {i, j} is added with probability
w(xi, xj). It is known that the sequence {G(n,w)}n∈N almost
surely forms a convergent graph sequence, for which the limit
object is the graphon w (see [7]).

In the context of graph signal processing, graphons have
been proposed as a framework to develop and study signal
processing techniques that are consistent across classes of
similar graphs [4], [10]. In this context graph convergence
provides a method of identifying similarity in graphs, and then
consistency of a method can be understood as the property of
being compatible with convergence to the limit object.

Our paper can be viewed as an application of this paradigm
to the problem of Shannon sampling, initially studied for
graphs in [8]. We first adapt the average sampling methods
from [9] to the graphon setting, and then a prove a consistency
property for these methods, showing their compatibility with
graphon convergence.

II. NOTATIONS AND BACKGROUND

For a graph G, we let V (G) and E(G) denote its vertex
set and edge set respectively. Throughout this paper, we focus
on simple graphs, i.e., undirected graphs without loops and
multiple edges. For n ∈ N, let [n] denote the set {1, . . . , n}.
We think of Cn as the vector space, equipped with the inner
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product ⟨X,Y ⟩ =
∑
i∈[n]XiYi. We equip the interval [0, 1]

with its Lebesgue measure, and for every measurable subset
S ⊆ [0, 1], we denote its Lebesgue measure by |S|. For every
such S, L2(S) denotes the vector space of square-integrable,
Lebesgue measurable functions on S equipped with inner
product ⟨f, g⟩L2(S) =

∫
S
f(x)g(x)dx, when dx denotes the

restriction of the Lebesgue measure on S.

A. Convergence of graphs, graphons and w-random graphs

For simple graphs F and G, let hom(F,G) denote the
number of homomorphisms of F into G; i.e., the number of
maps V (F ) → V (G) that preserve edges. The homomorphism
density of F into G, defined as t(F,G) = hom(F,G)

|V (G)||V (F )| ,
allows us to define the notion of convergent graph sequences.
Let {Gn}n∈N be a sequence of simple graphs such that
|V (Gn)| → ∞. We say that {Gn}n∈N converges if for
every simple graph F , the numerical sequence {t(F,Gn)}n∈N
is Cauchy. Every convergent graph sequence admits a limit
that can be interpreted as a graphon. Graphons are mea-
surable functions w : [0, 1]2 → [0, 1] that are symmetric,
i.e. w(x, y) = w(y, x) for almost every point (x, y) in [0, 1]2.

Let W0 denote the set of all graphons, and W denote the
(real) linear span of W0. Let G be a graph on n vertices
labeled {1, 2, . . . , n}. The graph G can be identified with a
{0, 1}-valued graphon wG as follows: split [0, 1] into n equal-
sized intervals {Ii}n∈[n]. For i, j ∈ [n], the graphon wG attains
1 on Ii × Ij precisely when vertices with labels i and j are
adjacent. Note that wG depends on the labeling of the vertices
of G, i.e., relabeling V (G) may result in a different graphon.

B. Cut norm and converging graph sequences

The topology described by convergent (dense) graph se-
quences can be formalized by endowing W with the cut-norm,
introduced in [3]. For w ∈ W , the cut-norm is defined as:

∥w∥□ = sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

w(x, y) dxdy

∣∣∣∣ ,
where the supremum is taken over all measurable subsets S, T .
That the graph sequence {Gn} is convergent to w ∈ W0 is
equivalent to the existence of suitable vertex labelings of each
of the graphs Gn so that we have ∥wGn

−w∥□ → 0. See [2,
Theorem 2.3] for the above convergence results.



C. Graphon operators

For a graphon w, the graphon adjacency operator Tw and
the graphon Laplacian operator Lw are operators on L2[0, 1]
defined as follows: for f ∈ L2[0, 1] and a.e. x ∈ [0, 1],

Tw(f)(x) =

∫ 1

0

w(x, y)f(y) dy, (1)

Lw(f)(x) =

∫ 1

0

w(x, y)(f(x)− f(y)) dy. (2)

It is known that Tw and Lw are bounded self-adjoint operators.
In addition, Tw is compact and Lw is positive semidefinite.
The operator Tw has a countable spectrum lying in the interval
[−1, 1] for which 0 is the only possible accumulation point.

For more details on graph limit theory, see [6].

III. GRAPHON SIGNAL SAMPLING

In this section, we extend the results from [9] to the setting
of graphons, providing analogous statements for graphons.

Theorem 1: Let w ∈ W0 be a graphon, and consider a
partition {S1, . . . , Sk} of [0, 1] into measurable subsets. For
j ∈ [k], let wj denote the restriction of w to Sj × Sj , and
Lj be the associated Laplacian operator on L2(Sj) defined
similar to Equation (2). For each j ∈ [k], pick ψj ∈ L2(Sj)
such that ∥ψj∥ = 1 and

∫
Sj
ψj ̸= 0. Suppose that, for each

j ∈ [k], we have the following:
(i) there exists δj > 0 such that for every f ∈ L2(Sj)

satisfying
∫
Sj
f = 0, we have ∥L

1
2
j f∥ ≥ δj∥f∥.

Then, for every f ∈ L2[0, 1] and for ϵ > 0, we have

∥f∥22 ≤ (1 + ϵ)
∑
j∈[k]

 |Sj |∥L
1
2
j fj∥2

δ2j |
∫
Sj
ψj |2

+
|Sj ||⟨ψj , fj⟩|2

ϵ|
∫
Sj
ψj |2

 .

Proof: Let f ∈ L2[0, 1] be arbitrary, and for j ∈ [k], let
fj ∈ L2(Sj) denote the restriction of f to Sj . For each j, the
function ϕj =

1Sj√
|Sj |

∈ L2(Sj) is a unit eigenfunction of Lj
associated with eigenvalue 0. Condition (i) implies that 0 is a
simple eigenvalue of Lj . So, the function ϕj is an eigenvector
of L

1
2
j associated with its simple eigenvalue 0 as well.

Claim 2: Let j ∈ [k], and consider Lj : L2(Sj) → L2(Sj).
For every g ∈ L2(Sj) satisfying ⟨g, ψj⟩ = 0, we have

∥L
1
2
j g∥ ≥ δ1|⟨ψj , ϕj⟩|∥g∥.

Proof of claim: It is easy to see that Lj is a bounded positive
semidefinite operator on L2(Sj). Consider the closed subspace
Hj := {h ∈ L2(Sj) : ⟨h, ϕj⟩ = 0} of L2(Sj), and let Pj :
L2(Sj) → Hj denote the associated orthogonal projection.

Let g be any element of L2(Sj) satisfying ⟨g, ψj⟩ = 0, and
write g = g1+ g2, where g1 = ⟨g, ϕj⟩ϕj and g2 = Pjg. Since
⟨g, ψj⟩ = 0, we have ⟨g1, ψj⟩ = −⟨g2, ψj⟩, which can be
written as ⟨g, ϕj⟩⟨ϕj , ψj⟩ = −⟨g − g1, ψj⟩. So, we have

|⟨ψj , ϕj⟩|2∥g∥2 = |⟨ψj , ϕj⟩|2(|⟨g, ϕj⟩|2 + ∥g − g1∥2)
= |⟨g − g1, ψj⟩|2 + |⟨ψj , ϕj⟩|2∥g − g1∥2

= |⟨g − g1, Pjψj⟩|2 + |⟨ψj , ϕj⟩|2∥g − g1∥2,

where in the last equation, we used the fact that Pj(g−g1) =
g − g1. Applying the Cauchy–Schwartz inequality, we get

|⟨ψj , ϕj⟩|2∥g∥2 ≤ ∥g − g1∥2∥Pjψj∥2 + |⟨ψj , ϕj⟩|2∥g − g1∥2

= ∥g − g1∥2∥ψj∥2.

Noting that g − g1 = Pjg and ∥ψj∥ = 1, we get

|⟨ψj , ϕj⟩|∥g∥ ≤ ∥Pjg∥. (3)

Since ϕj is an eigenvector of L
1
2
j associated with eigenvalue 0,

we have L
1
2
j ϕj = 0, and thus, L

1
2
j g = L

1
2
j (g1+Pjg) = L

1
2
j Pjg.

So, by condition (i) of Theorem 1 and (3), we have

∥L
1
2
j g∥ = ∥L

1
2
j Pjg∥ ≥ δj∥Pjg∥ ≥ δj |⟨ψj , ϕj⟩|∥g∥.

This finishes the proof of the claim.
Applying Claim 2 to fj − ⟨fj ,ψj⟩

⟨ϕj ,ψj⟩ϕj , we get

∥L
1
2
j (fj−

⟨fj , ψj⟩
⟨ϕj , ψj⟩

ϕj)∥ ≥ δj |⟨ψj , ϕj⟩|∥fj−
⟨fj , ψj⟩
⟨ϕj , ψj⟩

ϕj∥. (4)

Let ϵ > 0 be arbitrary, and note that for any nonnegative
numbers a, b, we have (

√
ϵa − 1√

ϵ
b)2 ≥ 0. This inequality

can be equivalently written as (a+ b)2 ≤ (1 + ϵ)a2 + 1+ϵ
ϵ b2.

Combining this fact with the triangle inequality, we get

∥fj∥2 ≤ (1 + ϵ)

∥∥∥∥fj − ⟨fj , ψj⟩ϕj
⟨ϕj , ψj⟩

∥∥∥∥2 + 1 + ϵ

ϵ

∥∥∥∥ ⟨fj , ψj⟩ϕj⟨ϕj , ψj⟩

∥∥∥∥2 .
The inequality above, combined with (4) and the fact that
L

1
2
j ϕj = 0, implies that

∥fj∥2 ≤ (1 + ϵ)
∥L

1
2
j fj∥2

δ2j |⟨ψj , ϕj⟩|2
+

1 + ϵ

ϵ

∣∣∣∣ ⟨fj , ψj⟩⟨ϕj , ψj⟩

∣∣∣∣2
= (1 + ϵ)

|Sj |∥L
1
2
j fj∥2

δ2j |
∫
Sj
ψj |2

+
1 + ϵ

ϵ

|Sj |
|
∫
Sj
ψj |2

|⟨ψj , fj⟩|2,

which finishes the proof, since ∥f∥2 =
∑k
j=1 ∥fj∥2.

Remark 3: We say wj : Sj × Sj → [0, 1] is connected, if
for every measurable subset S ⊆ Sj with 0 < |S| < |Sj |,∫
S×(Sj\S) w(x, y) dx dy > 0. Condition (i) implies that 0

is a simple eigenvalue of Lj . We claim that 0 is a simple
eigenvalue of Lj if wj is connected. Clearly, 1Sj

is a 0-
eigenvector of Lj . Suppose that 0 ̸= f ∈ L2(Sj) is another
eigenvector of Lj associated with 0 such that f ⊥ 1Sj . Let
E := f−1(0,∞), and observe that 0 < |E| < |Sj |. Clearly,
Sj \ E := f−1(−∞, 0]. Next, we have

0 = ⟨Ljf, f⟩ =
1

2

∫∫
Sj×Sj

w(x, y)(f(x)− f(y))2

≥ 1

2

∫∫
E×(Sj\E)

w(x, y)(f(x)− f(y))2.

Since f(x) − f(y) > 0 for (x, y) ∈ E × (Sj \ E), the
last integral in the above expression is zero precisely when
w|E×(Sj\E) ≡ 0 a.e.; this is a contradiction as w is connected.



Notation 4: Let j ∈ [k]. We define the following notations.

θj :=
|Sj |

|
∫
Sj
ψj |2

, θ := max
j∈[k]

θj , δ := min
j∈[k]

δj .

Corollary 5: With notations and assumptions from Theo-
rem 1 and Notation 4, for every f ∈ L2[0, 1] and for ϵ > 0,

∥f∥2 ≤ (1 + ϵ)θ

δ2
∥L

1
2
wf∥2 +

1 + ϵ

ϵ
θ

k∑
j=1

|⟨ψj , f⟩|2.

Proof: From Theorem 1, the expression

(1 + ϵ)

k∑
j=1

|Sj |∥L
1
2
j fj∥2

δ2j |
∫
Sj
ψj |2

+
1 + ϵ

ϵ

k∑
j=1

|Sj |
|
∫
Sj
ψj |2

|⟨ψj , fj⟩|2

is an upper bound for ∥f∥2. Using Notation 4, we have

∥f∥2 ≤ (1 + ϵ)θ

δ2

k∑
j=1

∥L
1
2
j fj∥

2 +
(1 + ϵ)θ

ϵ

k∑
j=1

|⟨ψj , fj⟩|2

=
(1 + ϵ)θ

δ2

k∑
j=1

∥L
1
2
j fj∥

2 +
(1 + ϵ)θ

ϵ

k∑
j=1

|⟨ψj , f⟩|2,

where in the last equality we used the fact that each ψj is
supported in Sj .

To finish the proof, we only need to show that∑k
j=1 ∥L

1
2
j fj∥2 ≤ ∥L

1
2
wf∥2. To see this, note that

∥L
1
2
j fj∥

2 =
1

2

∫∫
Sj×Sj

wj(x, y)(fj(x)− fj(y))
2 dxdy

=
1

2

∫∫
Sj×Sj

w(x, y)(f(x)− f(y))2 dxdy,

which implies that

k∑
j=1

∥L
1
2
j fj∥

2 ≤ 1

2

∫∫
[0,1]2

w(x, y)(f(x)− f(y))2 = ∥L
1
2
wf∥22.

Definition 6: For τj > 0, we define the set

χj(τj) :=
{
f ∈ L2(Sj) : ∥L

1
2
j f∥2 ≤ τj∥f∥2

}
.

Corollary 7: Suppose all assumptions of Theorem 1 hold.
Let 0 ≤ σ < 1. For every j ∈ [k], choose τj > 0 satisfying
θj
δ2j
τ2j ≤ σ. For every f ∈ L2[0, 1] satisfying f |Sj

:= fj ∈
χj(τj), we have

(1− (1 + ϵ)σ)ϵ

(1 + ϵ)θ
∥f∥2 ≤

k∑
j=1

|⟨f, ψj⟩|2 ≤ ∥f∥2,

where ϵ > 0 is chosen such that (1 + ϵ)σ < 1.

Proof: The inequality
∑k
j=1 |⟨f, ψj⟩|2 ≤ ∥f∥2 follows

from the fact that {ψj : j ∈ [k]} is an orthonormal set. For
the other inequality, using Theorem 1 and Notation 4, we have

∥f∥2 ≤ (1 + ϵ)

k∑
j=1

θjτ
2
j ∥fj∥2

δ2j
+

1 + ϵ

ϵ

k∑
j=1

θj |⟨ψj , fj⟩|2

≤ (1 + ϵ)σ

k∑
j=1

∥fj∥2 +
1 + ϵ

ϵ
θ

k∑
j=1

|⟨ψj , fj⟩|2

= (1 + ϵ)σ∥f∥2 + 1 + ϵ

ϵ
θ

k∑
j=1

|⟨ψj , fj⟩|2,

where the first inequality follows from fj ∈ χj(τj). So,

(1− (1 + ϵ)σ)ϵ

(1 + ϵ)θ
∥f∥2 ≤

k∑
j=1

|⟨f, ψj⟩|2.

Definition 8: For γ > 0, define the spectral projection
Pγ = 1[0,γ](Lw) in the sense of functional calculus. The
Paley-Wiener space associated with the Laplacian operator Lw
is defined as the image of the above projection, and is denoted
by PWγ(w), i.e., PWγ(w) = Pγ(L

2[0, 1]).
Corollary 9: With terminology from Notation 4, let γ > 0

be such that γ < δ2

θ . With assumptions from Theorem 1, for
every f ∈ PWγ(w) we have

(δ −
√
θγ)2

θδ2
∥f∥2 ≤

k∑
j=1

|⟨f, ψj⟩|2 ≤ ∥f∥2.

Proof: By Corollary 5, for every f ∈ PWγ(w) and ϵ > 0,

∥f∥2 ≤ (1 + ϵ)θ

δ2
∥L

1
2
wf∥2 +

1 + ϵ

ϵ
θ

k∑
j=1

|⟨ψj , f⟩|2

≤ (1 + ϵ)θ

δ2
γ∥f∥2 + 1 + ϵ

ϵ
θ

k∑
j=1

|⟨ψj , f⟩|2,

where in the second inequality we used ∥L
1
2
wf∥ ≤ √

γ∥f∥ for
f ∈ PWγ(w). So, for ϵ ∈ (0, δ

2

θγ − 1), we get the following:

(1− (1+ϵ)θ
δ2 γ)ϵ

(1 + ϵ)θ
∥f∥2 ≤

k∑
j=1

|⟨ψj , f⟩|2. (5)

To optimize inequality (5), we observe that ϵ = δ√
θγ

− 1 lies

within the appropriate interval (0, δ
2

θγ − 1) and maximizes the

function f(ϵ) =
(1− (1+ϵ)θγ

δ2
)ϵ

(1+ϵ)θ . Plugging ϵ = δ√
θγ

− 1 in the
left hand side of (5) finishes the proof.

IV. SAMPLING FROM CONVERGING GRAPH SEQUENCES

Let w and wn, for n ∈ N, denote graphons.
Definition 10: The degree function of a graphon w is

defined as follows. For almost every x ∈ [0, 1],

dw : [0, 1] → [0, 1], dw(x) :=

∫ 1

0

w(x, y) dy.



For a graphon w with degree function dw, the associated
multiplication operator is defined as

Mw : L2[0, 1] → L2[0, 1], Mwf(x) = dw(x)f(x), a. e.

Lemma 11: Suppose limn→∞ ∥wn − w∥□ = 0. Then
Mwn

→ Mw in the weak operator topology (WOT). As a
consequence, Lwn

→ Lw in WOT as well.
Proof: For a measurable subset S of [0, 1], we have

limn→∞
∫∫
S×[0,1]

(wn(x, y)−w(x, y)) dx dy = 0, as wn → w

in cut-norm. So, for every measurable subset S ⊆ [0, 1],

lim
n→∞

∫ 1

0

(dwn(x)− d(x))1S(x) dx = 0. (6)

Using the fact that step functions are dense in L1[0, 1] and
∥dwn − d∥∞ ≤ 2, and applying Hölder’s inequality, we can
extend (6) to obtain the following:

lim
n→∞

∫ 1

0

(dwn(x)− d(x))h(x) dx = 0, ∀ h ∈ L1[0, 1]. (7)

Now, let f, g ∈ L2[0, 1] be arbitrary. Since fg ∈ L1[0, 1],
applying (7), we get limn→∞⟨(Mwn

−Mw)f, g⟩ = 0.
To show that Lwn → Lw in WOT, we only need to verify

the convergence Twn → Tw in WOT, given that Lw =Mw −
Tw for any graphon w. Now, applying [5, Equation 4.4 and
Lemma E.6], we observe that {Twn

}n∈N converges to Tw in
the operator norm. This finishes the proof, as convergence in
operator norm implies convergence in WOT.

Using Lemma 11, if limn→∞ ∥wn − w∥□ = 0 then for
every f ∈ L2[0, 1] we have limn→∞ ∥L

1
2
wnf∥2 = ∥L

1
2
wf∥2.

Under the conditions of Theorem 1, approximating ∥L
1
2
wnf∥2

by ∥L
1
2
wf∥2 from below and appealing to Theorem 1, we get

that for every f ∈ L2[0, 1], there exists a large enough index
N such that for every n ≥ N , if f ∈ PWγ(wn) then

(δ −
√
θγ)2

2θδ2
∥f∥2 ≤

k∑
j=1

|⟨f, ψj⟩|2 ≤ ∥f∥2.

To prove a more friendly robustness result in sampling,
we need a stronger convergence, namely the operator norm
convergence, of the graphon Laplacian operators. Adding extra
assumptions on the sequence of degree functions, we show that
the sampling rate for a given f belonging to the Paley-Wiener
space of wn, for large enough n, is independent of n. This
can be interpreted as robustness in sampling.

Theorem 12: Suppose limn→∞ ∥wn −w∥□ = 0. Suppose,
in addition, that limn→∞ ∥dn − d∥∞ = 0. Let {Sj}j∈[k] and
ψj ∈ L2(Sj) be as in Theorem 1, and let θ, δ denote the
constants associated to w, {Sj}, {ψj} according to Notation 4.
Let γ > 0 such that γ < δ2

θ . There exists N ∈ N, such that
for all n ≥ N , if f ∈ PWγ(wn) then

(δ −
√
θγ)2

2θδ2
∥f∥2 ≤

k∑
j=1

|⟨f, ψj⟩|2 ≤ ∥f∥2.

Proof: It is well-known that the norm of a multiplication
operator on L2[0, 1] is given by the L∞-norm of the multiply-
ing function. So, ∥Mwn −Mw∥opr = ∥dn − d∥∞ → 0 as n

tends to infinity. Consequently, limn→∞ ∥Lwn
−Lw∥opr = 0.

The following argument can be understood as a perturbed
version of the proof of Corollary 9.

We fix ϵ ∈ (0, δ
2

θγ − 1) and ϵ′ > 0; both will be specified
further at the end of the proof. Choose an index N so that
∥Lwn

− Lw∥opr < ϵ′ for all n ≥ N . This then entails for
every f ∈ L2[0, 1] and n ≥ N , that∣∣∣∥L 1

2
wnf∥2 − ∥L

1
2
wf∥2

∣∣∣ = |⟨Lwn
f, f⟩ − ⟨Lwf, f⟩| ≤ ϵ′∥f∥2 .

Now assume that n ≥ N and f ∈ PWγ(wn). Using Corollary
5 together with ∥L

1
2
wf∥2 ≤ ∥L

1
2
wnf∥2 + ϵ′∥f∥2 then provides

the estimate

∥f∥2 ≤ (1 + ϵ)θ

δ2
γ∥f∥2 + 1 + ϵ

ϵ
θ

k∑
j=1

|⟨ψj , f⟩|2

+ ϵ′
(1 + ϵ)θ

δ2
∥f∥2 .

Now fix ϵ = δ√
θγ

− 1, as in the proof of Corollary 9. We then
obtain the estimate

(δ −
√
θγ)2

θδ2
∥f∥2 ≤

k∑
j=1

|⟨f, ψj⟩|2 + ϵ′
ϵ

δ2
∥f∥2 .

Picking ϵ′ ≤ (δ−
√
θγ)2

2ϵθ provides the desired conclusion.
Remark 13: Theorem 12 can be understood as a sampling

theorem that is consistent in the sense discussed in the
introduction: Both the sampling functionals and the constants
are determined from the limit object w, but they give rise to
sampling estimates that are uniform for all approximants wn
which are sufficiently close to the limit object.

While these aspects of the theorem are rather satisfactory,
there is reason to believe that it can be improved substantially.
Most importantly, the assumption that the degree functions
converge uniformly is rather strong. Note that this property
does not generally follow from cut-norm convergence.

That said, there are some easily-identified settings in which
uniform convergence actually holds. As a class of examples,
consider a sequence {wn}n∈N of step graphons, where wn is
obtained by averaging a fixed graphon w over squares of size
1
n×

1
n . Then wn converge to w in cut-norm, and the associated

degree functions dwn
can be obtained directly from the degree

function dw, by averaging over intervals of length 1
n . It is easy

to check that Theorem 12 applies to this sequence of graphons
as soon as dw is the uniform limit of such averages. The
class of functions for which this convergence statement holds
is fairly large, containing (for example) piecewise continuous
functions possessing one-sided limits at each point.

The question of extending the theorem to allow weaker
convergence assumptions is the subject of ongoing research.
Another interesting and currently open question concerns the
systematic construction of the partitions {S1, . . . , Sk} that are
needed for the approach, ideally with some control over the
associated constants entering the sampling estimate.
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