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ABSTRACT

Causal inference in genomics is inherently challenging due to high dimensional-
ity, hidden confounders, and the intricate task of distinguishing direct regulatory
interactions from indirect ones. We introduce GENESIS (Gene Network Infer-
ence from Expression Signals and SNPs), a novel algorithm that fuses genotype
(SNP) data with transcriptomic profiles to reconstruct directed gene regulatory
networks. Our algorithm adopts a robust two-stage hypothesis testing strategy:
(1)it conducts marginal testing of SNP-gene associations within defined genomic
windows; (2)it applies conditional independence tests to eliminate indirect regu-
latory effects. We run our method on a real-world dataset and compare the results.
This parametrically rigorous framework offers a powerful avenue for uncovering
causal pathways in complex traits, with promising applications in functional ge-
nomics, therapeutic interventions, and precision medicine.

1 INTRODUCTION

In recent years, high-throughput sequencing and advanced microarray technologies have gener-
ated vast volumes of multi-omic data across different layers such as transcriptomics, proteomics,
metabolomics, and genomics Mohammadi-Shemirani et al. (2023); Qiao et al. (2024); Reuter et al.
(2015). While this wealth of information holds immense potential for advancing our understanding
of biological systems, it simultaneously poses formidable analytical challenges, particularly in the
realm of causal inference from complex, high-dimensional data. Although considerable progress
has been made in applying causal discovery methods within individual omics layers, particularly
genomics these approaches often fall short of capturing the intricate interplay between the different
molecular layers. Integrating information across multiple omics layers promises to reveal more de-
tailed explanations that would remain obscured if we solely rely on single-omics analyses. Adopting
a multi-omic causal discovery approach is very essential for meaningful biological interpretation,
clinical translations, and accurate therapeutic interventions.

At the heart of modern genomics is the quest to unravel gene regulatory networks (GRNs) that
dictate cellular behaviours. A clear and precise understanding of these networks can illuminate the
pathways that lead to complex traits and diseases. However, the complexities of the underlying data,
characterized by thousands of gene (nodes) and millions of single nucleotide polymorphism (SNPs)
demands innovative methods that are robust against the pitfalls of high-dimensionality, unobserved
confounders, and the statistical challenges posed by multiple testing. One promising strategy, which
we employ, is the usage of the analysis of cis-expression quantitative trait loci (cis-eQTL) which
leverages the spatial proximity between SNPs and their target genes. By confining the analysis to a
defined genomic window, we concentrate on genetic variants most likely to exert a direct regulatory
influence. This targeted approach boosts statistical power by reducing the search space.

In this context, we introduce GENESIS (Gene Network Inference from Expression Signals and
SNPs), a novel algorithm to integrate genotype and transcriptomic data to reconstruct directed gene
regulatory networks. It harnesses the natural variability of SNPs to distinguish between direct and in-
direct gene regulatory effects by following the inference rules proposed by Magliacane et al. (2016).
We implement a two-step hypothesis testing framework to identify marginal SNP-gene associations
within cis-windows and then conditional independence tests to filter out indirect effects. Our algo-
rithm is uniquely positioned to deliver a statistically robust and biologically interpretable network
model.
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2 DEFINITIONS AND NOTATION

We use upper case italics X to denote random variables and lower case x to denote their values.
Calligraphic X denotes the support of the random variable X . Let X ∈ X and Y ∈ Y be two
random variables with joint distribution PX,Y . Consider a graph G = ⟨V, E⟩ with nodes V that
represent variables and edges E : V × V that denote the relationships between the variables. If all
edges do not encode an ordering on nodes, we say the graph is undirected; otherwise, the graph is
directed. In the context of this study, the nodes represent our genes. At the same time, the edges may
represent SNP-gene or gene-gene interactions. The acyclic directed mixed graph (ADMG) shown
in figure (1) tells us the encoded family relationship of our nodes. We use kinship terms to describe
the relationship between nodes. We say {X,Z} are the parents of Y (denoted {X,Z} ∈ Pa(Y ) )
and Y is a child of its parents. We also call {X,Z,W} as the ancestral set of Y (Anc(Y )). Y has no
descendants (Des(Y ) = {}) Spirtes et al. (2001); Pearl (2009). The dotted curved bidirectional edge
between Z and X represent the presence of an unknown common cause or confounder. Ancestry
graphs have the following properties as proposed by Claassen & Heskes (2012). (1) irreflexive: A
node can not be the ancestor of itself (2) acyclic: No cycles are permitted amongst variables and (3)
transitive: If X is an ancestor of Y , and Y is an ancestor of Z, then X must also be an ancestor of
Z.

W

X

Y

Z

Figure 1: A mixed graph containing directed and bidirected edges.

We say that X and Y are independent if and only if their joint distribution factorizes as follows:
∀x, y : P (x, y) = P (x)P (y). We denote this via the shorthand X ⊥⊥ Y . We can informally
describe this as a case where X contains no information about the value of Y and vice versa. Let
Z ∈ Z be a third random variable. We say that X and Y are conditionally independent given Z if
and only if the joint distribution factorizes as follows: ∀x, y, z : P (x, y, z) = P (x | z)P (y | z).
We denote this via the shorthand X ⊥⊥ Y | Z. Informally, this describes a case where X contains
no information about the value of Y (and vice versa) once we have processed the information in
Z. Following the definitions of minimal (de)activators as stated by Claassen & Heskes (2012), we
define the following.

Definition 1: A variable W is called a minimal deactivator of the relationship between X and Y
given Z if X ⊥⊥ Y | Z ∪W (i.e., X and Y become independent when conditioning on Z and W ),
and X ̸⊥⊥ Y | Z (i.e., X and Y are dependent when conditioning only on Z). In this case, we write
X ⊥⊥ Y | Z ∪ [W ].

Definition 2: A variable W is called a minimal activator of the relationship between X and Y
given Z if X ̸⊥⊥ Y | Z ∪W (i.e., X and Y are dependent when conditioning on Z and W ), and
X ⊥⊥ Y | Z (i.e., X and Y are independent when conditioning only on Z). In this case, we write
X ̸⊥⊥ Y | Z ∪ [W ].

Definition 3: Two variables X and Y are a causally unrelated pair given a set of variables Z if their
statistical dependence can be fully explained by Z. That is, X and Y are conditionally independent
given Z, meaning: X ⊥⊥ Y | Z. This implies that no additional variable W outside of Z alters the
conditional dependence between X and Y .
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3 ALGORITHM

Our algorithm as shown in Algorithm 1 infers gene regulatory networks from SNP genotype and
gene expression data by employing a combination of marginal and conditional statistical tests. It
operates under the assumption that SNPs can influence the expression levels of nearby genes (cis-
eQTLs). For each SNP, the algorithm first identifies candidate target genes within a defined genomic
window. Then it performs marginal linear regression tests to assess the association between each
SNP and the expression level of each candidate gene. Conditional linear regression tests are con-
ducted to investigate the dependence of a gene’s expression on a given SNP while accounting for
the expression levels of other genes within the same genomic window. This was based on the infer-
ences from Magliacane et al. (2016). This conditional testing aims to disentangle direct regulatory
effects from indirect associations mediated by other genes. Additionally, the algorithm evaluates
the correlation between gene pairs. Finally, based on the p-values from these tests and pre-defined
significance thresholds, it constructs a binary adjacency matrix representing the inferred gene regu-
latory network. Specifically, an edge is drawn from a SNP to a gene if the marginal test is significant
and the conditional test (conditioning on other genes) is not, suggesting a direct regulatory effect.
Similarly, an edge is drawn between two genes if the conditional test (conditioning on the SNP) is
significant, indicating that their expression relationship is not fully explained by the SNP. Correlated
gene pairs, above our defined significance threshold, are excluded from the inferred network to po-
tentially remove spurious edges due to co-expression. This multi-stage statistical approach allows to
identify both direct and indirect regulatory relationships while attempting to control for confounding
effects.

Algorithm 1 Multiomic Causal Discovery
1: Inputs: Z: Genotype matrix, X: Expression matrix
2: α← 0.05: Significance threshold, bp ← 5000: Genomic window size
3: Output: A: Binary adjacency matrix
4:
5: Align matrix dimensions: nZ ← nX

6: for each SNP zi ∈ Z do
7: chr, pos← Zpos[zi]
8: Gi ← {gj ∈ X | Xpos[gj ].chr = chr ∧ pos ∈ [lo− bp, hi + bp]}
9: end for

10: for each SNP zi ∈ Z do
11: for each gene gj ∈ Gi do
12: βm

ij , p
m
ij ← lm(X[gj ] ∼ Z[zi])

13: end for
14: end for
15: for each SNP zi ∈ Z do
16: for each pair (gj , gk) ∈ G2i , j ̸= k do
17: βc

ijk, p
c
ijk ← lm(X[gj ] ∼ Z[zi] +X[gk])

18: pr3ajk ← cor.test(X[gj ],X[gk])
19: end for
20: end for
21: R1 ← {(zi, gj) | pmij ≤ α ∧ pcijk ≥ α}
22: R2 ← {(gk, gj) | pmik ≥ α ∧ pcijk ≤ α}
23: R3 ← {(gj , gk) | pr3ajk ≥ α ∨ pr3bjk ≥ α}
24: A← 0n×n

25: for (u, v) ∈ R1 ∪R2 \ R3 do
26: A[u, v]← 1
27: end for
28: return A
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4 RESULTS

Our analysis of the yeast dataset using TRIGGER by Chen et al. (2007) reveals distinct p-value dis-
tributions corresponding to the three defined relationship types. It contained 3244 SNPs and 6216
genes. In Figure 4, the histogram for minimal deactivation (Definition 1) shows that when an addi-
tional variable W is conditioned upon, the relationship between X and Y becomes independent (i.e
X ⊥⊥ Y | Z ∪ [W ]). Our method returned 235 genes that show this relationship. Conversely, the
histogram for minimal activation (Definition 2) displays a broader distribution of p-values, indicat-
ing that introducing W induces a dependency between X and Y . 97 genes showed this relationship.
Finally, the histogram for causally unrelated pairs (Definition 3)—where conditioning on Z com-
pletely accounts for the statistical association between X and Y exhibit a distribution consistent
with the absence of additional causal influence from any external variable

In a separate multivariate simulation comparison (Figure 2), we evaluated the performance of GEN-
ESIS, GES, and RFCI on simulated data. Our results indicate that while GENESIS outperforms the
other methods in terms of average accuracy, it also exhibits large variability in its estimates, suggest-
ing that its performance could benefit from further refinement. In contrast, RFCI not only required
substantially longer computation times but also produced less reliable estimates on our simulated
dataset.

Figure 2: Multivariate comparison of network inference methods on simulated data. The figure
compares GENESIS, GES, and RFCI in terms of accuracy across different simulation parameters.
GES shows superior average performance, though with large variability (whiskers), while RFCI
required substantially more time and produced less reliable estimates.
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