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ABSTRACT

Causal discovery in multi-omic datasets is crucial for understanding the big-
ger picture of gene regulatory mechanisms but remains challenging due to high
dimensionality, differentiation of direct from indirect relationships, and hidden
confounders. We introduce GENESIS (GEne Network inference from Expres-
sion SIgnals and SNPs), a constraint-based algorithm that leverages the natural
causal precedence of genotypes to infer ancestral relationships in transcriptomic
data. Unlike traditional causal discovery methods that start with a fully connected
graph, GENESIS initializes an empty ancestrality matrix and iteratively populates
it with direct, indirect or non-causal relationships using a series of provably sound
marginal and conditional independence tests. By integrating genotypes as fixed
causal anchors, GENESIS provides a principled “head start” to classical causal
discovery algorithms, restricting the search space to biologically plausible edges.
We test GENESIS on synthetic and real-world genomic datasets. This frame-
work offers a powerful avenue for uncovering causal pathways in complex traits,
with promising applications to functional genomics, drug discovery, and precision
medicine.

1 INTRODUCTION

In recent years, high-throughput technologies have generated vast volumes of multi-omic data across
different layers such as transcriptomics, proteomics, and metabolomics (Qiao et al., 2024; Reuter
et al., 2015; Manel et al., 2016). While this wealth of information holds immense potential for ad-
vancing our understanding of biological systems (Abu-Elmagd et al., 2022; Bourne et al., 2015), it
simultaneously poses formidable analytical challenges, particularly in the realm of complexity and
high-dimensionality (Hu et al., 2018). Although considerable progress has been made in apply-
ing causal discovery methods within individual omics layers, these approaches fail to capture the
intricate interplay between the different molecular networks. Integrating information across multi-
ple omics layers promises to reveal more detailed explanations that would remain obscured if we
solely rely on single-omics analyses (Danchin et al., 2007; Veenstra, 2012; Neale & Wheeler, 2019).
Adopting a multi-omic causal discovery approach is essential to advance our biological understand-
ing and design more targeted therapeutic interventions (He et al., 2017; Mohammadi-Shemirani
et al., 2023).

A major challenge in modern genomics is to infer the gene regulatory networks (GRNs) that dictate
cellular behavior (Karlebach & Shamir, 2008). A clear and precise understanding of GRNs can
illuminate the pathways that lead to complex traits and diseases. However, the underlying data is
inherently high-dimensional, posing major statistical and computational challenges. One promising
strategy, which we build on below, is the usage of cis-expression quantitative trait loci (cis-eQTLs)
(Michaelson et al., 2009), which leverage two key biological facts: (1) that genetic variation precedes
transcriptomic variation; and (2) that the influence of a genetic variant on a target gene decreases as
a function of spatial proximity. This targeted approach boosts statistical power by exploiting prior
knowledge and reducing the search space.
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In this context, we introduce GEne NEtwork inference from expression SIgnals and Single nu-
cleotide polymorphisms (GENESIS), an algorithm to integrate genotype and transcriptomic data to
reconstruct directed GRNs. Our method harnesses the natural variability of SNPs to distinguish be-
tween direct and indirect gene regulatory effects by following the inference rules proposed by Magli-
acane et al. (2016). We implement a two-step hypothesis testing framework to identify marginal
SNP-gene associations within cis-windows and filter out indirect effects via conditional indepen-
dence tests. We use parametric plug-ins based on linear modeling assumptions that are widely used
in bioinformatics (Smyth, 2004; Love et al., 2014), ensuring the efficiency of our method. GENE-
SIS is provably sound, delivering a partially oriented ancestrality matrix in polynomial time that can
lead to major speedups when used as a preprocessing step for classical causal discovery methods
like the PC algorithm (Spirtes et al., 2001). We illustrate our method on simulated and real-world
data, where it compares favorably to the state of the art.

2 BACKGROUND

We use upper case italics X to denote random variables or sets thereof. Let G = ⟨V, E⟩ be a graph
with nodes V that represent variables and directed edges E : V × V that denote causal relationships
between them. We focus in particular on directed acyclic graphs (DAGs), as is common in causal
discovery (Spirtes et al., 2001; Peters et al., 2017). In the context of this study, nodes may represent
SNPs (background variables Z) or genes (foreground variables X). We aim to draw inferences about
the relationships between the latter by exploiting signals from the former. Specifically, our goal is
to infer as much as possible about the subgraph GX = ⟨X, EX⟩, with edge set EX : {Z ∪X} ×X
including all directed arrows into foreground variables.

We use kinship terms to describe relationships between nodes, with Pa(·), Ch(·), An(·), De(·) rep-
resenting the parents, children, ancestors, and descendants (respectively) of a given node set. If
X ∈ An(Y ) (or, equivalently, Y ∈ De(X)), we write X ≺ Y (equivalently, Y ≻ X). If
X ̸∈ De(Y ), we write X ⪯ Y . We write X ∼ Y when neither variable is an ancestor of the
other. Ancestry graphs impose a strict partial order on nodes, characterized by the following prop-
erties: (1) irreflexive: X ≺ X ⇒ FALSE; (2) asymmetric: X ≺ Y ⇒ Y ̸≺ X; and (3) transitive:
X ≺ Y & Y ≺ Z ⇒ X ≺ Z.

We use standard probabilistic definitions of independence, writing X ⊥⊥ Y | Z to indicate that
variable sets X and Y have no mutual information after conditioning on the (potentially empty)
variable set Z. We assume that distributions are Markov and faithful to the underlying graph G, in
which case conditional independence claims are equivalent to d-separation statements (Pearl, 2009).

Building on the work of Claassen & Heskes (2012) and Watson & Silva (2022), we introduce the
concept of (de)activators.

Definition 1 (Deactivator). A variable W is a deactivator of the relationship between X and Y
given Z if (a) X ̸⊥⊥ Y | Z; and (b) X ⊥⊥ Y | Z ∪W . In this case, we write X ⊥⊥ Y | Z ∪ [W ].

A deactivator is a single variable that, when added to the conditioning set Z, is sufficient to block
all otherwise open paths linking X and Y .

Definition 2 (Activator). A variable W is an activator of the relationship between X and Y given
Z if (a) X ⊥⊥ Y | Z; and (b) X ̸⊥⊥ Y | Z ∪W . In this case, we write X ̸⊥⊥ Y | Z ∪ [W ].

An activator is a single variable that, when added to the conditioning set Z, is sufficient to open an
otherwise blocked path between X and Y .

3 METHOD AND ALGORITHM

In this section, we present the oracle version of GENESIS, which is designed to infer causal rela-
tionships among a set of variables through a careful series of conditional independence (CI) queries.
Unlike traditional methods that begin with a fully connected graph and progressively remove edges
(e.g., the PC algorithm), GENESIS-ORACLE is initialized with an empty ancestrality matrix M
and incrementally adds causal information based on the results of calls to the oracle. Inputs include
a background set Z (e.g., SNPs or other exogenous data) and a foreground set X (e.g., gene expres-
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sion data), while the output is the ancestrality matrix M in which each element Mij encodes the
causal relationship (if decidable) between pairs of foreground variables Xi, Xj .

GENESIS relies on three simple inference rules, variants of which have appeared in several causal
discovery methods (Claassen & Heskes, 2012; Entner et al., 2013; Watson & Silva, 2022). Let A
and {X,Y } be two sets of nodes in the graph G where A ⪯ {X,Y }, and let A\W := A\{W} for
some node W ∈ A. Our first rule detects causal pathways via deactivation patterns:

(R1) If ∃W ∈ A : W ⊥⊥ Y | A\W ∪ [X], then X ≺ Y .

This is only possible when W is a mediator on the path from X to Y . Our second rule rejects causal
pathways via activation patterns:

(R2) If ∃W ∈ A : W ̸⊥⊥ X | A\W ∪ [Y ], then X ⪯ Y .

This is only possible when Y is a (descendant of a) collider on the path from W to X and is
not a non-collider on any other path active under A\W . Finally, our third rule establishes causal
independence via d-separation:

(R3) If X ⊥⊥ Y | A, then X ∼ Y .

See Alg. 1 for a summary of the oracle procedure. We use the grow-shrink algorithm to infer
the Markov blanket of each X , as this method is efficient and sound (Margaritis & Thrun, 1999).
Alternatives are possible in practice, e.g. IAMB (Tsamardinos et al., 2003). Keeping a running tab
of each variable’s Markov blanket can lead to major speedups over alternative procedures such as
the confounder blanket learner (Watson & Silva, 2022), which must cycle through vast conditioning
sets for each pair of foreground variables.

Once Markov blankets are initialized, the basic procedure is to cycle through all variable pairs. By
(R3), we conclude that any foreground variables that are d-separated by their combined Markov
blanket S must be causally unconnected. Next, we loop through the elements of S, applying (R2)
and (R3) to test for patterns of (de)activation that can help orient causal relations within X . Once
we have done this for all pairs, we use a set of closure rules (see Alg. 2 in Appx. A) that exploits
the strict partial order on GX to potentially draw some extra inferences about M. Finally, we update
the Markov blanket for each foreground variable in case any newly inferred non-descendants might
enter in. The algorithm converges either when the ancestral graph is fully oriented or a complete
pass fails to draw any new inferences.

We establish some basic properties of this algorithm. (For proofs, see Appx. B.)

Theorem 1 (Soundness). All inferences returned by GENESIS-ORACLE hold in the true GX .
Moreover, if Mij = i ≺ j, then the set of combined Markov blankets S = MB(Xi) ∪MB(Xj) is
a valid adjustment set for (Xi, Xj).

This result follows from the soundness of the inference rules themselves, which has been previously
established by numerous authors.

Theorem 2 (Complexity). Let dZ , dX be the dimensionality of the background variables Z and
foreground variables X , respectively. Then the complexity of GENESIS-ORACLE is O(dZd2X).

This result holds regardless of graph density. In sparse settings, runtime can be highly efficient due
to the relatively low cardinality of S.

In summary, our method builds its causal structure from the ground up by gradually adding evidence-
based edges. This forward-construction approach not only avoids the exhaustive edge assignment
typical of fully connected initializations but also supplies a robust starting point for downstream
causal discovery algorithms, such as FCI or the PC algorithm. By constraining further searches to
only those edges consistent with the inferred ancestry matrix, our method significantly improves
both speed and reliability, particularly in high-dimensional genomic settings where disentangling
direct and indirect regulatory effects is critical.
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Algorithm 1 GENESIS-ORACLE

Input: Background variables Z, foreground variables X
Output: Ancestrality matrix M

Initialize: converged← FALSE, M← [NA]
for all Xi ∈ X do

MB(Xi)← GrowShrink(Xi, Z)
end for
while not converged do

converged← TRUE
for all (Xi, Xj) ∈ X s.t. i < j,Mij = NA do

S ←MB(Xi) ∪MB(Xj)
if Xi ⊥⊥ Xj | S then

Mij ← i ∼ j, converged← FALSE
else

for W ∈ S do
if W ⊥⊥ Xj | S\W ∪ [Xi] then

Mij ← i ≺ j, converged← FALSE
else if W ⊥⊥ Xi | S\W ∪ [Xj ] then

Mij ← j ≺ i, converged← FALSE
else if W ̸⊥⊥ Xj | S\W ∪ [Xi] then

Mij ←Mij ∧ j ⪯ i, converged← FALSE
else if W ̸⊥⊥ Xi | S\W ∪ [Xj ] then

Mij ←Mij ∧ i ⪯ j, converged← FALSE
end if

end for
end if

end for
M← Closure(M)
for all Xi ∈ X do

Ai ←MB(Xi) ∪ {W : W ⪯M Xi}
MB(Xi)← GrowShrink(Xi, Ai)

end for
end while
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Figure 1: Results on real world and simulated data

4 RESULTS AND CONCLUSION

We analyzed the yeast dataset provided by the TRIGGER package (Chen et al., 2007), which com-
prises 112 recombinant haploid segregant strains derived from a cross between two haploid parental
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strains of Saccharomyces cerevisiae (BY and RM) (Brem & Kruglyak, 2005). This dataset includes
genome-wide expression profiles for 6,216 genes and genotypic information from 3,244 single-
nucleotide polymorphism (SNP) markers. One key strategy we employed was the analysis of cis-
expression quantitative trait loci (cis-eQTLs), which exploits the physical proximity between SNPs
and their associated genes. By limiting our search to a 5 kilobase genomic window, which is a stan-
dard practice in cis-eQTL mapping, we prioritized genetic variants most likely to exert direct regu-
latory effects. Our investigation focused exclusively on genes previously identified in the literature
as components of the phosphocholine subnetwork, which governs the biosynthesis of phosphatidyl-
choline through the Kennedy pathway. This pathway is essential for maintaining membrane integrity
and supporting critical cellular processes in yeast (Henneberry et al., 2001). To assist in identifying
our iterative proximal ancestor sets, we utilized partial correlation tests within the GENESIS frame-
work. The resulting regulatory network, shown in Figure 1a, adheres to an acyclicity constraint and
captures ancestral relationships that are consistent with those reported in previous work on the yeast
phosphocholine network (Chen et al., 2019).

To evaluate the performance of GENESIS in a controlled multivariate setting, we conducted a series
of simulations using randomly generated directed acyclic graphs (DAGs) with both background Z
and foreground X variables with the goal of inferring ancestral relationships X . The DAGs were
randomly generated with varying sample size ranging between 100 and 1000 with edge densities
chosen to maintain moderate sparsity. Our data were simulated from these structures using a lin-
ear Gaussian model with mixed noise. For each sample size, we compared the structural recovery
accuracy of GENESIS against two well-established causal discovery methods: the Fast Causal In-
ference (FCI) (Spirtes et al., 2001) algorithm and Greedy Equivalence Search (GES) (Chickering,
2002). GENESIS was run with a conditional independence threshold of α = 0.05 while FCI and
GES were configured using default parameters. Performance was quantified as the mean adjacency
matrix accuracy over 20 replicates, computed as the element-wise match between the inferred and
true adjacency matrices among target variables. Across the sample sizes, GENESIS consistently
performed better than the benchmark methods.

While GENESIS demonstrates strong empirical performance in both simulated and biological set-
tings, its reliance on iterative heuristics and sensitivity to initialization highlight the need for further
theoretical analysis and optimization. Future work may explore extensions to nonlinear models and
formal guarantees for convergence, completeness, and identifiability under broader conditions.
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A CLOSURE

Below is the pseudocode for the closure described in Algorithm 1.

Algorithm 2 CLOSURE

Input: Ancestrality matrix M
Output: Updated ancestrality matrix M

for i, j ∈ {1, . . . , dX} such that i > j do
if i ⪯M j ∧ i ⪰M j ∨ i ∼M j then

Mij ← i ∼ j
else if i ≺M j then

Mij ← i ≺ j
else if j ≺M i then

Mij ← j ≺ i
end if

end for
converged← FALSE
while not converged do

converged← TRUE
for i, j, k ∈ {1, . . . , dX} such that i ̸= j ̸= k, i > k do

if i ≺M j ≺M k ∧Mik ̸= i ≺ k then
Mik ← i ≺ k,converged← FALSE

else if k ≺M j ≺M i ∧Mik ̸= k ≺ i then
Mik ← k ≺ i,converged← FALSE

end if
end for

end while

B PROOFS

Theorem 1 (Soundness)

Proof. By construction, GENESIS-ORACLE only applies the three sound rules (R1), (R2) and (R3)
to the union of the Markov blankets of Xi and Xj . However, we feed the GrowShrink algorithm
with only known non-descendants and hence the guarantee that the union of Markov blankets will
be non-descendants themselves. We then apply closure under transitivity and asymmetry as seen in
Alg 2. This means the soundness of our oracle depends on the soundness of the rules themselves.
(R1) and (R2) follows from a direct application of Lemma 1 from Magliacane et al. (2016) while
(R3) is the direct application of faithfulness since we are limited to non-descendants.

For us to arrive at Mij = i ≺ j, we must use (R1) with some S = MB(Xi) ∪MB(Xj) to detect
a minimal deactivation of the form W ⊥⊥ Xj | S\W ∪ [Xi] for some W ∈ S as proved by Entner
et al. (2013) (where S is limited to a set of non-descendants). As stated earlier, the union of Markov
blankets S of (Xi, Xj) will solely contain non-descendants as we start with Z which is biologically
a well establish non-descendant of Xi ∈ X and W ∈ S. Since this satisfies the assumption of
Entner et al. (2013), we conclude, using the same argument, that S = MB(Xi) ∪MB(Xj) is a
valid adjustment set for (Xi, Xj).

Theorem 2 (Complexity)

Proof. From the GENESIS-ORACLE 1, the initialization of the Markov blanket will costO(dXdZ)
as each foreground variables requires a pass through the background variables. Each unordered pair
(Xi, Xj), with i < j, is resolved at most once per execution of the while loop. There are

(
dX

2

)
=

O(d2X) such pairs in total for the pairwise inference loop. Initially since S will contain at most dZ
elements, it will cost O(dZ) and O(dZ + dX) in subsequent iterations. We assume that dZ ≫ dX ,
in which case this reduces to O(dZ). In the oracle setting, the CI queries execute in constant time,
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O(1), although practical implementations tend to scale with the size of the conditioning set. Thus
the pairwise inference loop will cost O(dZ)×O(d2X) = O(dZd2X).
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