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Abstract001

We study the Kolmogorov-Arnold Network (KAN),002

recently proposed as an alternative to the classical003

Multilayer Perceptron (MLP), in the application for004

differentially private model training. Using the DP-005

SGD algorithm, we demonstrate that KAN can be006

made private in a straightforward manner and eval-007

uated its performance across several datasets. Our008

results indicate that the accuracy of KAN is not only009

comparable with MLP but also experiences similar010

deterioration due to privacy constraints, making it011

suitable for differentially private model training.012

1 Introduction013

The Kolmogorov-Arnold Network (KAN) [1] has014

recently emerged as a new approach to symbolic015

regression and general prediction problems. This016

new architecture already saw remarkable attention017

in very recent papers [2–6]. Given its promising018

capabilities, we find it important to test the ability019

of KAN to be trained in a privacy-preserving man-020

ner without compromising sensitive information. In021

this work, we chose differential privacy as a way to022

protect privacy.023

As data analysis, and particularly machine learn-024

ing, continues to expand, the demand for more data025

increases. However, there is a growing concern about026

the potential misuse or exploitation of personal in-027

formation. Differential Privacy [7] is a time-tested028

notion of formally defined privacy of algorithms029

concerning sensitive data. Over the past nearly two030

decades, it has attracted considerable attention from031

both theoretical and practical perspectives.032

The primary result of this work is that we pro-033

vide the first integration of KANs with dif-034

ferentially private training algorithms, specif-035

ically with DP-SGD. Our study shows that non-036

private KANs and MLPs exhibit comparable accu-037

racy. Moreover, when trained with differential pri-038

vacy, KANs experience similar accuracy degradation039

compared to MLPs. This makes KANs a promis-040

ing option for maintaining model performance while041

ensuring differential privacy in training.042

1.1 Related Works043

Kolmogorov Arnold Networks (KANs) have recently044

gained significant attention, with various studies045

building upon the original framework introduced by046

Ziming et al. [1]. Zavareh and Chen [6] introduced 047

Wav-KAN, enhancing interpretability and perfor- 048

mance by integrating wavelet functions to efficiently 049

capture both high-frequency and low-frequency com- 050

ponents of input data. For time series forecasting, 051

Genet and Inzirillo [2] proposed Temporal KAN 052

(TKAN), combining the strengths of Long Short- 053

Term Memory (LSTM) networks and KANs, while 054

Vaca-Rubio et al. [4] demonstrated that KANs out- 055

perform conventional MLPs in satellite traffic fore- 056

casting with fewer parameters. Xu et al. [5] intro- 057

duced FourierKAN-GCF, a graph-based recommen- 058

dation model that utilizes a Fourier KAN to improve 059

feature transformation during message passing in 060

graph convolution networks (GCNs), achieving su- 061

perior performance in recommendation tasks. A 062

benchmarking study by Poeta et al. [8] on real- 063

world tabular datasets shows that KANs achieve 064

superior or comparable accuracy and F1 scores com- 065

pared to MLPs, especially on larger datasets, though 066

with higher computational costs. Other notable ad- 067

vancements include Shukla et al. [3], which com- 068

pared KANs with traditional Multi-Layer Percep- 069

trons (MLPs), and Basim and Naveed [9], which 070

developed Convolutional KAN (ConvKAN) for en- 071

hanced image processing. 072

Differentially private stochastic gradient descent 073

(DP-SGD) has become a standard in private ma- 074

chine learning, being applied in both convex and 075

non-convex optimization. Bassily et al. [10] demon- 076

strated its effectiveness in convex optimization, while 077

Abadi et al. [11] extended its application to deep 078

learning, ensuring privacy in training deep neural 079

networks. In our study, we use DP-Adam, a specific 080

member of the DP-SGD family of algorithms, to 081

leverage its adaptive learning rate capabilities for 082

improved performance. The DP-Adam method has 083

been studied in various works, including Gylberth 084

et al. [12], who demonstrated improved accuracy 085

and faster convergence, and Tang et al. [13], who 086

proposed DP-AdamBC to correct bias in the second 087

moment estimation. In differentially private regres- 088

sion, our tabular data experiments build on the work 089

by Amin et al. [14], who introduced a method using 090

the exponential mechanism to select a model with 091

high Tukey depth, eliminating the need for data 092

bounds or hyperparameter selection. Other signif- 093

icant contribution includes Alabi et al. [15], who 094

designed differentially private algorithms for simple 095

linear regression in small datasets. 096
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2 Background097

2.1 Kolmogorov-Arnold Networks098

Kolmogorov-Arnold Networks (KAN) [1] are a099

novel neural network architecture inspired by the100

Kolmogorov-Arnold representation theorem [16],101

which states that any multivariate continuous func-102

tion f : [0, 1]n → R can be decomposed into a sum103

of compositions of univariate functions:104

f(x(1), . . . , x(n)) =

2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p(x
(p))

)
. (1)105

KANs replace fixed activation functions with106

learnable univariate functions parameterized as B-107

splines. This enhances flexibility and interpretabil-108

ity compared to traditional Multi-Layer Perceptrons109

(MLPs), where activations occur at the nodes and110

weights are linear.111

In KANs, B-splines serve as the building blocks112

for learnable univariate functions ϕq,p, expressed as:113

spline(x) =
∑
i

ciBi(x), (2)114

where ci are coefficients learned during training and115

Bi(x) are B-spline basis functions. KANs use resid-116

ual activation functions, combining a basis function117

b(x) with the B-spline:118

ϕ(x) = wbb(x) + wsspline(x), (3)119

where b(x) is a sigmoid linear unit (SiLU), and120

wb and ws are trainable weights.121

KANs are trained using backpropagation, com-122

patible with standard optimization techniques such123

as Differentially Private SGD (DP-SGD 1). They124

have shown superior performance to MLPs in spe-125

cific tasks, such as formula recovery and symbolic126

regression [1].127

2.2 Differential Privacy128

Differential privacy guarantees that a (random-129

ized) algorithm is stable with respect to single data130

point changes of the input dataset. In particular,131

we say that two datasets D and D′ are adjacent if132

they differ only in one sample. Then, we have the133

following134

Definition 2.1 ((ε, δ)-differential privacy [7])135

A randomized algorithm A : D → S satisfies136

(ε, δ)-differential privacy if for any two adjacent137

inputs D,D′ ∈ D, and for any subset of the output138

space S ⊆ S, we have139

P (A(D) ∈ S) ≤ eεP (A(D′) ∈ S) + δ. (4)140

Here, D represents the space of all datasets, and S, in141

the case of deep learning models, is the space of the142

Algorithm 1 Differentially private gradient descent
with Adam Optimizer

Input: Number of iterations T , learning rate η,
clipping constant C, noise multiplier σ, batch
size B, initialization θ0.

1: for t ∈ [T ] do
2: Randomly sample a batch of B samples
3: Compute the gradients

g(xi, yi, θt−1)← ∇θℓ(xi, yi, θt−1)
4: Clip the gradients

g̃(xi, yi, θt−1)← g(xi, yi, θt−1)/ζ,

where ζ = max
(
1, ∥g(xi,yi,θt−1)∥2

C

)
5: Aggregate the noisy gradients

gt ← 1
B

∑
i g̃(xi, yi, θt−1) +

σC
B N (0, I)

6: Update the model parameters
θt = Adam(θt−1, gt)

7: end for
Output: Model parameters θT

trainable parameters. Differential privacy ensures 143

that from the resulting model, one cannot extract 144

the training data with high probability, nor can one 145

determine with confidence which specific data points 146

were used during training. This property is crucial 147

for protecting individual privacy in machine learning 148

applications, particularly in contexts where sensitive 149

data may be involved. 150

In machine learning, a well-established family of 151

algorithms allows us to train models with differen- 152

tial privacy (DP) guarantees: differentially private 153

stochastic gradient descent (DP-SGD). These algo- 154

rithms [11] involve an iterative process where gradi- 155

ents are clipped to have a bounded maximum norm 156

and then summed up with Gaussian noise scaled by 157

a noise multiplier to ensure given privacy guaran- 158

tees. The algorithm described in 1 builds on the 159

Adam optimizer, illustrating one specific example 160

within this family. 161

3 Results 162

We conducted two sets of experiments: regression on 163

tabular data and classification on the MNIST and 164

USPS image datasets. For the regression task, we 165

used various tabular datasets 1 from Amin et al. [14] 166

and trained differentially private and non-private 167

models. Specifically, we used mean squared error 168

and a one-layer neural network model for linear re- 169

gression and one layer KAN in our experiments. We 170

used the datasets and training settings from Amin 171

et al. [14]. On each of the datasets and each of 172

the models, we computed the coefficient of deter- 173

mination (R2 score). The results can be found in 174

Table 1 and the hyperparameters in Table A.3. KAN 175

1We were unable to reproduce the results for the Beijing
dataset, so it has not been included in our analysis.
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Figure 1. Validation accuracy vs the number of parameters for FasterKAN, MLP, DP MLP, and DP FasterKAN
on MNIST and USPS datasets. The privacy garantees for the MNIST models are (0.87, 10−5) DP and (2.03, 10−5)
DP for USPS dataset. The error bars are based on three trials for each point.

model demonstrated lower quality degradation due176

to privacy across most datasets.177

We also trained differentially private and non-178

private models on the MNIST and USPS datasets179

using the fasterKAN [17]. This implementation has180

a superior computational speed compared to the181

official pykan implementation [1], which was found182

to be inefficient and impractical for large datasets.183

For differential privacy, we employed the DP Adam184

optimizer via the pyvacy library [18], an unofficial185

PyTorch adaptation of TensorFlow Privacy, which186

was more PyTorch compatible with fasterKAN [17].187

We compared the quality of fasterKAN against a188

Multi-Layer Perceptron (MLP) in a setting of two189

layers networks with varying hidden layer sizes, re-190

sulting in different numbers of parameters. We used191

CrossEntropyLoss as the loss function and the ac-192

curacy on the test dataset for evaluation, the hy-193

perparameters of those experiments can be found in194

the Table A.4. The results, shown in Figure A.1, in-195

dicate that fasterKAN consistently achieved higher196

accuracy for a relatively lower number of parameters197

compared to the MLP models. In the differentially198

private setting, fasterKAN suffered a similar quality199

degradation to the MLP models. This demonstrates200

the effectiveness of fasterKAN in balancing accuracy201

and privacy constraints, making it an appropriate202

choice for differentially private training scenarios.203

4 Conclusion204

In this study, we showed that the Kolmogorov-205

Arnold Network (KAN) is a possible alternative to206

the classical Multi-Layer Perceptron (MLP) for dif-207

ferentially private training scenarios. Through exper-208

iments on both tabular data and MNIST and USPS209

image classification tasks, KAN not only achieves 210

comparable accuracy with MLP but also shows sim- 211

ilar performance under privacy constraints. Future 212

work can explore further optimizations and applica- 213

tions of KAN in various privacy-preserving machine 214

learning contexts. 215
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Figure A.1. Validation accuracy versus the number of parameters on MNIST for FasterKAN, MLP, DP MLP,
and DP FasterKAN at different noise levels σ ∈ {0.5, 0.25}, which corresponds to ({7.5, 121}, 10−5) Differential
Privacy.

Model Width Parameters Test Accuracy DP Test Accuracy
σ = 1 σ = 0.5 σ = 0.25

KAN

2048 3, 257, 888 0.970 ± 0.008 0.754 ± 0.018 0.814 ± 0.005 0.840 ± 0.003
1024 1, 629, 728 0.970 ± 0.004 0.775 ± 0.007 0.826 ± 0.004 0.869 ± 0.002
512 815, 648 0.966 ± 0.005 0.775 ± 0.012 0.832 ± 0.001 0.876 ± 0.002
256 408, 608 0.967 ± 0.001 0.775 ± 0.017 0.833 ± 0.006 0.884 ± 0.007
128 205, 088 0.967 ± 0.004 0.777 ± 0.020 0.832 ± 0.005 0.880 ± 0.000
64 103, 328 0.958 ± 0.007 0.774 ± 0.007 0.829 ± 0.010 0.882 ± 0.006
32 52, 448 0.943 ± 0.002 0.783 ± 0.005 0.828 ± 0.012 0.881 ± 0.002
16 27, 008 0.907 ± 0.012 0.757 ± 0.007 0.827 ± 0.008 0.872 ± 0.008

MLP

4096 3, 256, 330 0.968 ± 0.004 0.798 ± 0.006 0.832 ± 0.005 0.873 ± 0.005
2048 1, 628, 170 0.967 ± 0.007 0.798 ± 0.013 0.798 ± 0.012 0.829 ± 0.023
1024 814, 090 0.965 ± 0.005 0.791 ± 0.010 0.817 ± 0.005 0.846 ± 0.010
512 407, 050 0.961 ± 0.004 0.801 ± 0.016 0.837 ± 0.005 0.882 ± 0.008
256 203, 530 0.960 ± 0.002 0.785 ± 0.018 0.837 ± 0.011 0.896 ± 0.002
128 101, 770 0.948 ± 0.004 0.784 ± 0.012 0.848 ± 0.006 0.906 ± 0.003
64 50, 890 0.930 ± 0.004 0.790 ± 0.006 0.840 ± 0.002 0.907 ± 0.005
32 25, 450 0.881 ± 0.009 0.783 ± 0.005 0.833 ± 0.010 0.900 ± 0.005
16 12, 730 0.810 ± 0.032 0.767 ± 0.007 0.810 ± 0.003 0.899 ± 0.001

Table A.1. Test Accuracy for FasterKAN, MLP, DP MLP, and DP FasterKAN on MNIST based on 3 trials.
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Model Width Parameters Test Accuracy DP Test Accuracy

MLP

16 4, 282 0.837 ± 0.019 0.661 ± 0.023
32 8, 554 0.860 ± 0.005 0.689 ± 0.009
64 17, 098 0.877 ± 0.005 0.703 ± 0.001
128 34, 186 0.897 ± 0.006 0.702 ± 0.004
256 68, 362 0.909 ± 0.007 0.715 ± 0.008
512 136, 714 0.920 ± 0.005 0.721 ± 0.017

1024 273, 418 0.928 ± 0.003 0.740 ± 0.005
2048 546, 826 0.928 ± 0.008 0.747 ± 0.011
4096 1, 093, 642 0.934 ± 0.006 0.766 ± 0.005

KAN

16 9, 056 0.894 ± 0.005 0.684 ± 0.012
32 17, 600 0.917 ± 0.007 0.699 ± 0.022
64 34, 688 0.929 ± 0.005 0.729 ± 0.013
128 68, 864 0.944 ± 0.004 0.737 ± 0.008
256 137, 216 0.942 ± 0.001 0.747 ± 0.011
512 273, 920 0.949 ± 0.004 0.757 ± 0.011

1024 547, 328 0.945 ± 0.002 0.764 ± 0.011
2048 1, 094, 144 0.936 ± 0.013 0.757 ± 0.004

Table A.2. Test Accuracy for FasterKAN, MLP, DP MLP, and DP FasterKAN on USPS dataset based on 3
trials.

Dataset Noise mult. DP KAN DP Linear Reg
Epochs C. N. Lr Bs Epochs C. N. Lr Bs

Synthetic 1.472 20 1 1 128 20 1 1 128
California 1.178 20 100 1 64 20 100 1 64
Diamonds 1.089 20 106 1 128 20 106 1 128
Traffic 2.016 1 106 1 1024 1 106 1 1024
NBA 2.468 20 100 1 512 20 100 1 512

Garbage 0.998 20 1 1 32 20 1 1 32
MLB 1.066 10 100 0.01 512 10 100 0.01 512

Table A.3. The table presents the hyperparameters for tabular data experiments, including the Noise multiplier,
number of epochs, the Clipping Norm (C. N.), the learning rate (Lr), and the batch size (Bs), for both Adam and DP
Adam optimizers. For KAN, we use a grid size of 2 and a value of k equal to 2. We ensure (log(3), 10−5)-differential
privacy in the same manner as described in [14].

Method Epochs Batch Size Noise Multiplier Clipping Norm Learning Rate
FasterKAN 15 64 0 - 0.001

MLP 15 64 0 - 0.001
DP FasterKAN 15 64 {1, 0.5, 0.25} 10−3 0.001

DP MLP 15 64 {1, 0.5, 0.25} 10−3 0.001

Table A.4. Hyperparameters for MNIST and USPS experiments. Number of epochs, batch size, noise mul-
tiplier, max grad norm, learning rate. Trained with AdamW and DP Adam. FasterKAN with parameters
grid min =-1.2, grid max = 0.2, num grids = 2, exponent = 2, inv denominator = 0.5, train grid =False,
train inv denominator=False. We used batch clipping for non-private training to ensure the stability of the
optimization.
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