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ABSTRACT

We initiate the study of direct generation of adversarial examples for trained neu-
ral networks via the analytical tools afforded by Neural Tangent Kernel (NTK)
theory. In particular, these advances in Deep Learning theory allow us to de-
rive expressions for optimal adversarial perturbations, together with the output of
the model on them. This leads to a simple, but powerful strategy for attacking
models, which, crucially, does not require any access to the model under attack,
nor training of a substitute model. Instead, we solely exploit information that is
available prior to initialization, namely model structure and training data. We ex-
perimentally verify the efficacy of our approach, first on models that lie close to
the theoretical assumptions (large width, proper initialization, etc.) and, further,
on more practical scenarios, with those assumptions relaxed. In addition, we show
that our perturbations exhibit strong transferability between models. We provide
evidence that, in several cases, there is a close match between our methods and the
strongest-to-date adversarial attack, projected gradient ascent, in terms of efficacy
and transferability.

1 INTRODUCTION

Adversarial examples, a term coined by Szegedy et al. (2014), are inputs of a machine learning
model that are carefully crafted so that the model is mistaken on them. Their existence, together
with the empirically verified susceptibility of many classifiers to them (Szegedy et al., 2014; Carlini
& Wagner, 2017), imply an important security headache for modern machine learning. The ultimate
pursuit for robust and immune models calls for an extensive understanding of the different versions
of adversarial examples that a model may encounter. In most cases, an adversarial perturbation (an
instance of small non random noise) is added to training or test data to form an adversarial example.
This procedure is called an adversarial attack.

There has been a large body of work on designing such attacks. The most successful attacks exploit
model information through its gradient with respect to the input. By perturbing the data in directions
of the largest change in loss function, they are able to drop the performance of naive classifiers
to almost zero (Goodfellow et al., 2015; Moosavi-Dezfooli et al., 2016; Carlini & Wagner, 2017;
Kurakin et al., 2017; Madry et al., 2018). While successful, these gradient-derived attacks require
access to the parameters of the trained model - which might be unrealistic for practical applications.
To relax this requirement, so called black-box attacks only query the model. Observation of the
model outputs allows to estimate the aforementioned gradients either by training substitute models
(Papernot et al., 2016; 2017; Liu et al., 2017) or by finite-difference methods (Chen et al., 2017;
Ilyas et al., 2018). Nonetheless, to some extent even these strategies require access to the model.

Our contribution: In this work, we leverage recent advances in the theoretical understanding of
trained neural networks to devise adversarial data perturbations that, surprisingly, require neither
access to the model nor training of a substitute model, and do not use any model information what-
soever, apart from the model architecture. We thus reveal an interesting phenomenon: the suscepti-
bility of trained neural networks to adversarial examples does not depend on their specific weights;
instead these blind spots may be calculated a-priori, prior to initialization, even before the train-
ing starts. Although this is already known to some extent from prior work that trains substitute
models, we demonstrate that this notion holds from first principles that only require the a-priori
description of the model. Our powerful, highly agnostic attack is derived from Neural Tangent Ker-
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nel theory (Jacot et al., 2018; Lee et al., 2019; Arora et al., 2019b), which allows to describe the
dynamics of the gradient-descent based training procedure of a neural net as a kernel regression,
with an architecture- and data-dependent (but parameter-agnostic) kernel (NTK). At a high-level of
abstraction, our approach exploits the NTK description of the function the model has learned at the
end of training, and proceeds to maximally perturb this function. To illustrate more precisely, let
(x, y) ∈ Rd × {−1,+1} be an input sample, η ∈ Rd a small perturbation, and f : Rd → R denote
the model after training has converged. Then, as we show, in the NTK regime:

f(x+ η) ≈ f(x) + ηT z, (1)
for some z ∈ Rd that depends on the training data and the NTK kernel only. Although the above
is derived for regression models, we show that this simple expression naturally leads to a family
of adversarial attacks on classifiers, depending on the choice of constraints1 imposed on η. We
also cover the general case of multiclass classifiers, which is similar in spirit to Eq. (1). As our
experiments on MNIST and CIFAR suggest, we are able to confuse classifiers with a rate that in
some cases approaches current benchmarks that require model access.

In summary, in this work we initiate the study of “NTK-derived” adversarial perturbations and make
the following contributions:

1. We derive expressions for the output of a converged model on adversarial inputs, based on
the theory of the Neural Tangent Kernel (Sec. 3).

2. We propose a family of simple attacks that exploit the aforementioned description. These
attacks either depend on analytical expressions afforded by the NTK or on finite approx-
imations of the true quantities (“empirical” NTK), obtained by initialized replicas of the
attacked models (Sec. 3).

3. We experimentally verify the efficacy of our approaches on a simple wide single hidden
layer model that operates in the NTK regime (Arora et al., 2019a) (Sec. 4.1) and show
that it favorably compares to the strongest benchmark (PGD attack), without any access to
model weights.

4. Further, we demonstrate that our attack works in practical settings: fully connected and
convolutional, undefended, networks, trained in standard ways (cross entropy minimiza-
tion, stochastic gradient descent, default initialization, etc) are quite susceptible to NTK
noise. We show this both in the case where the noise is generated from the NTK of the
model itself, even though the assumptions of NTK theory do not necessarily hold (Sec. 4.2),
as well as for transfer attacks with adversarial perturbations generated by models within
the NTK regime (Sec. 4.3).

2 BACKGROUND AND RELATED WORK

Our work bridges two as yet disparate areas: generation of adversarial examples for trained neural
networks at inference time and the description of the dynamics of neural network training in the
infinite width limit, with the Neural Tangent Kernel.

Adversarial Examples. Let f be a classifier, x be an input (e.g. a natural image) and y its true
label (e.g. the image class). Then, given that f is an accurate classifier on x, we define x̃ to be an
adversarial example (Szegedy et al., 2014) for f if the following two hold:

1. d(x, x̃) is small for some distance function d. Common choices in computer vision appli-
cations are the ℓp norms.

2. f(x̃) ̸= y. That is, the perturbed input is being misclassified.

There are many approaches on how to generate such examples and they are often classified into two
large areas: white-box and black-box attacks2. White-box attacks assume perfect knowledge of the

1While we focus on ℓ∞-attacks in this work, we remark that the introduced framework is much more general
and the adoption of other similarity measures is equivalent to optimizing Eq. (1) (a linear objective) with the
desired constraint on η.

2While we use the word “attack” multiple times, it must be emphasized that the existence of adversarial
examples and the search for robust models are not security-only concerns. They align very well with concepts,
such as interpretability and human-like perception (Tsipras et al., 2019; Ilyas et al., 2019).
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model under-attack and they mainly rely on optimization procedures to maximize the “confusion”
of the model (Szegedy et al., 2014; Goodfellow et al., 2015; Moosavi-Dezfooli et al., 2016; Kurakin
et al., 2017; Carlini & Wagner, 2017; Madry et al., 2018). The most widely adopted method is
called Projected Gradient Descent (Kurakin et al., 2017; Madry et al., 2018) and performs multiple
gradient steps on the input space to discover adversarial examples. Formally, if L(f(x), y) denotes
a loss function, then, in the context of ℓ∞ adversaries, setting x0 = x the update formula for PGD is:

xt+1 = Πx+S

(
xt + α · sgn(∇xtL(f(xt), y)

)
, t = 0, . . . , N − 1, (2)

where Πx+S(·) projects the input inside the allowed ℓ∞ ball, and α is a gradient step - hyperparam-
eter. xN is the final adversarial example. Such attacks are the most powerful to date. Black-box
attacks, on the other hand, are not allowed to estimate the aforementioned gradient directly, but
rather are restricted to querying the model without accessing the parameters. A lot of these attacks
proceed by collecting pairs of inputs and predictions from the model, then train another classifier
f̂ on them, attack f̂ with white-box attacks and finally use those generated adversarial samples to
attack f (Papernot et al., 2016; 2017; Liu et al., 2017). The empirical success of such strategies
relies on the phenomenon of transferability of adversarial examples (Szegedy et al., 2014; Papernot
et al., 2016; Tramèr et al., 2017; Liu et al., 2017): it has been observed that adversarial inputs de-
signed for successfully fooling one classifier, manage to also fool others. A related line of research
abandons the need for creating substitute models, at the cost of allowing multiple curated queries to
the model to infer the loss function (Chen et al., 2017; Ilyas et al., 2018). Finally, hard-label black
box attacks have been considered in the literature, in which an attacker observes only the prediction
of f (Brendel et al., 2018; Cheng et al., 2019). The adversarial attack we propose does not fall into
any of these categories, since it does not query the target model at all. More related to the scope
of this work is the so-called “no-box” setting (Chen et al., 2017; Bose et al., 2020; Li et al., 2020),
where an adversary is prohibited from querying the model under-attack. However, to the best of
our knowledge, practical attacks under this threat model do train substitute neural networks, making
them incomparable to our work.

Neural Tangent Kernel (NTK). NTK theory plays an increasing role in the quest to theoreti-
cally understand deep learning and the elusive concepts of optimization and generalization in over-
parametrized networks. It connects deep learning to Gaussian Processes and kernels. The seminal
work of Neal (1996) considered the infinite width limit of neural networks with one hidden layer and
showed that at initialization the network is a function drawn from a Gaussian Process with an associ-
ated kernel that depends on the activation function. Recently, this limit (and non asymptotic versions
of it) has been revisited either for deep random networks where only the last layer is being trained
(Lee et al. (2018); de G. Matthews et al. (2018); Novak et al. (2019)) or fully trained networks with
gradient descent (Jacot et al., 2018; Lee et al., 2019; Arora et al., 2019b). In the latter case, Jacot
et al. (2018) identified a particular quantity that governs the dynamics of the training procedure of
a neural network with randomly initialized parameters θ computing an output f(x;θ) : Rd → R,
which they called Neural Tangent Kernel.

The NTK is defined as the expectation of the inner product between the gradients of the function
with respect to the random initialization of its parameters θ evaluated on all inputs xi,xj , i.e.,

h(xi,xj) = Eθ∇θf(xi;θ)
T∇θf(xj ;θ). (3)

While first studied in fully connected networks, it is possible to define neural tangent kernels for any
sane architecture (Yang (2020)).

In the infinite width limit3 (and under appropriate initialization), the training dynamics of the net-
work with infinitesimal learning rate can be described by a differential equation with a constant
NTK. Moreover, crucially, in the case of squared loss this gives rise to a closed-form description
of the training dynamics with the NTK. For ease of presentation we restrict to the case where the
expected network output at initialization is zero; then the expected output of the network at conver-
gence of training becomes (Lee et al., 2018):

f∞(X̃ ) = H(X̃ ,X )H(X ,X )−1Y, (4)

where X ∈ Rn×d is a collection of n d-dimensional training data, X̃ ∈ Rn′×d is a test set and
H : Rn1×d × Rn2×d → Rn1×n2 is the NTK (for fixed input datasets, H is a matrix). For some

3for non asymptotic statements see Arora et al. (2019b).

3



Under review as a conference paper at ICLR 2022

models, this kernel can be computed in closed form analytically by computing the expectation over
the initializations. It can also be approximated by an empirical kernel via averaging over a few
initialized instances (Jacot et al., 2018; Lee et al., 2019).

Finally, there has also been work on the intersection of the two areas, though with very distinct
emphasis to ours. Recent work (Bubeck et al. (2021); Bartlett et al. (2021)) studies the existence of
adversarial examples in overparametrized random neural networks, exploiting some local linearity
of the functions computed by such networks. The only prior work that leverages NTK theory to
derive perturbations (published almost concurrently with the preparation of our work) is due to
(Yuan & Wu, 2021), yet with different focus and without our modification to the standard approach
to the optimization problem, that generates the perturbations (see at the end of Sec. 3). That work
is concerned with what is coined as generalization attacks: the process of altering the training data
distribution to prevent models to generalise on clean data. In contrast, our work analyses trained
models to analytically derive their weakness to adversarial perturbations at inference time. Besides
that, our work introduces analytical expressions for the perturbed data and the output of the network
on them, something that does not follow from the methods of Yuan & Wu (2021) (even if extended
to the problem we consider).

3 ADVERSARIAL PERTURBATIONS ON WIDE NEURAL NETWORKS

Here we present the main methods introduced in this work, assuming the asymptotic conditions
on the parameters required for Eq. (4) to hold, and showcasing its implications for adversarially
perturbed inputs.

3.1 SCALAR OUTPUT

First, we treat the simpler case of networks with scalar output, which allows us to illustrate the
various scenarios we examine. We assume the training dataset consists of n d-dimensional samples,
X ∈ Rn×d, with labels Y ∈ {−1,+1}n.

Suppose we would like to evaluate a model described by Eq. (4) on slightly perturbed variations of
the original training data. Then, slightly abusing notation, we set, X̃ = X+ϵ, that is x̃i = xi+ηi for
all xi ∈ X for small, but unknown, perturbations ηi. By Taylor expanding around xi and neglecting
second order terms in the perturbation ηi, we can write the ij-th element of H(X̃ ,X ) as follows:

h(x̃i,xj) = h(xi + ηi,xj) ≈ h(xi,xj) +∇xi
h(xi,xj)

Tηi. (5)

For each row Hi,:(X̃ ,X )︸ ︷︷ ︸
∈R1×n

we obtain:

Hi,:(X̃ ,X )T = Hi,:(X ,X )T +


∇xi

h(xi,x1)
T

∇xih(xi,x2)
T

...
∇xih(xi,xn)

T


︸ ︷︷ ︸

Ai∈Rn×d

ηi. (6)

Hence, H(X̃ ,X ) can be written as H(X ,X )+∆ for a perturbation matrix ∆, with i-th row ∆i,: =
ηT
i A

T
i . Substituting into Eq. (4), we get:

f(X̃ ) = (H(X ,X ) +∆)H(X ,X )−1Y = Y +∆H(X ,X )−1Y. (7)

Thus, the output of the model on x̃i is:

f(x̃i) = yi +∆iH(X ,X )−1Y
= yi + ηT

i A
T
i H(X ,X )−1Y =: yi + ηT

i zi,
(8)

leading to the linear expression advertised in Eq. (1). The adversarial perturbation ηi changes the
output by ηT

i zi = ηT
i A

T
i H(X ,X )−1Y , an expression which allows us to compute the adversarial

perturbation to maximally change the output within the desired constraints on ηi. We call such
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adversarial perturbations derived from Eq. (8) NTK-perturbations. Notice that here we essentially
compute a first-order approximation of the function of the model on perturbed data.

Regression versus classification Eq. (4) gives an exact description for regression models with LSE
(L2-loss), while adversarial examples typically are studied for classification models. As is stan-
dard, we view such regression models as classifiers by thresholding the predictions (i.e. taking the
sign of the output in the case of binary {−1, 1} classification tasks) or by outputting the maximum
prediction (in the case of multiclass problems).

Inspecting Eq. (8), maximal “confusion” of the classification model is achieved by aligning ηi with
−yizi (directed towards the decision boundary). In case of the commonly used ℓ∞ restriction, i.e.
∥ηi∥∞ ≤ ϵ, the optimal adversarial perturbation is given by:

ηi = −ϵyi · sgn(AT
i H(X ,X )−1Y). (9)

We remark that the above derivation allows us to exactly compute an optimal adversarial attack
for very wide models trained with gradient descent under certain asymptotic conditions necessary
for Eq. (4), without any knowledge of its weights. The computation requires an expression for the
NTK and its gradient with respect to the training data. For models where an analytical expression
of the NTK is available, only access to the labeled training data is necessary (see Sec. 4.1). In
more complicated models or those that deviate from the assumptions for Eq. (4) one can compute
an empirical kernel by sampling over kernels at initialization over a few instances and obtain the
matrices Ai with autodifferentiation tools.

Adversarial perturbations of unseen (test) data Eq. (8) has been derived for perturbations of the
training data. Consider now the case when we evaluate Eq. (4) on perturbations of unseen test data,
that is on X̃ + ϵ. Then, Eq. (7) becomes:

f(X̃ + ϵ) = (H(X̃ ,X ) +∆)H(X ,X )−1Y = f(X̃ ) +∆H(X ,X )−1Y. (10)

Again, solely the second term depends on the perturbation, so we proceed by choosing a maximally
perturbing direction as before. The only difference lies in the matrix ∆ that now depends on the
test set X̃ (see App. A.1.1). In practice, an adversary can calculate the NTK H(X ,X ) offline (even
a small batch of it, as the experiments suggest) and calculate the optimal perturbation on a new test
input x̃i by computing the corresponding row of the matrix ∆. We will use NTK-perturbations
derived in this fashion by default when perturbing test data, unless otherwise stated.

No access to training data In cases when the adversary has no access to training data (inputs and
labels), they can make the assumption that the test data comes from the same distribution, which
implies that the model would have learned a similar mapping had it been “trained” on test data
instead. They then can directly compute the perturbations via the techniques above, provided they
have access to the test set labels (this also holds for multiclass classifiers of Sec. 3.2). We will refer
to this method as training-agnostic test method.

Absence of labels We note that all our methods require access to training (or test) labels, but want
to stress that they work even in the setting where the adversary has no access to either labels. To
evaluate Eq. (4) and derived expressions, the adversary can “estimate” the labels by observing the
output of the attacked model and substituting it instead of the required label vector Y . Such oracular
access to the trained model is in contrast to the main point of our work and we don’t examine this
method in our experiments, but want to point out its existence.

3.2 MULTIPLE OUTPUTS

We adapt the derivations of Sec. 3.1 to the setting where the output dimension is larger than one in
the underlying regression setting, leading to a multiclass classifier. The derivations can be found in
App. A.1.2 and lead to the multi-dimensional analogue of the linear Eq. (1) for f(x) ∈ Rk, y ∈ Rk:

f(xi + ηi) = yi +


ηT
i z1

ηT
i z2
...

ηT
i zk

 . (11)
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Again, the z ∈ Rd can be computed from the NTK and its derivative as well as the training data
labels. Exactly analogous considerations as in the binary case allow to adapt this expression to
perturbations of the test data, or to substitute access to labeled test data instead of training data.

At this point we have a choice of how to adversarially perturb the classifier to achieve the largest
effect on the network output. We present the two most obvious methods, with details in App. A.1.2.

Max-of-ℓ1 perturbation: Similar in spirit to traditional approaches in adversarial attacks (Carlini
& Wagner (2017)) we choose ηi such as to most efficiently decrease the correct response r∗ while
maximally increasing one of the false responses r ̸= r∗. The solution is given by:

ηi = ϵsgn(arg
k

max
r=1,r ̸=r⋆

∥zr − zr⋆∥1). (12)

Sum-of-∆z perturbation: For one-hot vectors yi we could, instead, maximize the cross-entropy
between the labels and the new outputs, thus choosing to produce a maximally mixed output. If r∗
is the correct label, this yields

ηi = ϵsgn(

n∑
r ̸=r∗

(zr − zr⋆)). (13)

To summarize, we have shown how the NTK based approach allows us to approximate the model
output on perturbed data to first order and then analytically design the optimal perturbation. Note
how this contrasts with common approaches, which numerically (and often iteratively) optimize a
first order approximation of the loss with respect to the perturbation (PGD procedure).

4 EXPERIMENTS

In this section, we present experimental evidence on the efficacy of our method. First, we test the
performance of NTK-perturbed data on a simple wide single-layer model, that is known to perform
very close to what the theory predicts. We present results on binary classification tasks extracted
from MNIST and CIFAR10. We also test our multiclass attack on the full MNIST dataset and
demonstrate what effect hyperparameters such as batch size, magnitude and method of attack have
on the final accuracy. We further provide benchmark comparisons with PGD attacks.

Then, we shift our attention to models encountered more frequently in practice. We try our method
on fully connected neural networks initialized with standard techniques and trained by minimizing
the cross entropy loss with stochastic gradient descent. Although we violate many of the NTK
assumptions, we find that our attacks still yield strong results. Finally, we provide evidence on
the transferability of our method: noise crafted from one-hidden-layer networks substantially fools
networks commonly used in practice, such as LeNet 300-100 and LeNet 5. Unless stated otherwise,
we set the ℓ∞-magnitude of the attack ϵ equal to 0.3 for MNIST and 8/255 for CIFAR, as is common
practice. All experimental details, hyperparameters and infrastructure can be found in App. A.3.1.

In order to benchmark adversarially generated noise, we compare it to random noise of the same
magnitude. When we refer to the random noise baseline, we mean impulse noise which with equal
probability perturbs each pixel of the image by ±ϵ (clipped appropriately to remain inside the al-
lowed input domain; such clipping is applied to all implemented attacks). We report the average and
the standard deviation of the random baseline across 5 different random seeds.

4.1 RANDOM COMBINATION OF FEATURES MODEL

In the first set of experiments, we test our approach on a simple gradient-trained one-hidden-layer
model with an easily computed (analytical) expression for its Neural Tangent Kernel and where
experimental evidence confirms that for a sufficiently wide hidden layer the model closely follows
theoretical predictions (Arora et al., 2019a). This model of width m computes the following function
f : Rd → R:

f(x) =
1√
m

m∑
r=1

ar max(wT
r x, 0), (14)

where ar ∼ Unif({−1,+1}) are frozen, and weights wr are initialized from an independent Gaus-
sian distribution N (0, κ2I) for appropriately chosen κ. We train this model in a regression fashion,
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by minimizing the ℓ2 loss, and turn it into a classifier by assigning +1 to positive outputs and -1 to
non-positive ones. We refer to this model as the Random Combination of Features (RCF) model.

The neural tangent kernel H ∈ Rn×n for this model is given by (Cho & Saul, 2009; Arora et al.,
2019a) (see App. A.2 for its gradient in order to compute the adversarial perturbation):

Hij = h(xi,xj) = (
1

2
−

arccos (
xT
i xj

∥xi∥∥xj∥ )

2π
)xT

i xj , ∀i, j ∈ [n]. (15)

This model generalizes to a function with multiple outputs in the obvious way. To view the regres-
sion model with ℓ2-loss as a k-way classifier, we embed the labels ∈ [k] as k-dimensional one-hot
vectors and output the prediction with largest value. Based on NTK theory, the kernel in this multi-
class case decomposes; with a copy of the scalar kernel corresponding to each of the outputs.

4.1.1 BINARY CLASSIFICATION

We evaluate wide models in Eq. (14) on binary classification tasks extracted from MNIST and
CIFAR. On MNIST, we train 45 different models, one for every pair of distinct digits. On CIFAR,
we use data from the first two classes (“car” vs. “plane”). We train until convergence. All models on
MNIST record almost perfect training and testing performance, while train/test accuracy on CIFAR
is 99.35%/ 90.3%. See App. A.3.1 for details and hyperparameters and App. A.3.5 for scalability.

Analytical NTK First, we calculate the optimal adversarial perturbation from the analytical expres-
sion of the NTK (Eq. (15)), and its gradient with respect to the first input (Eq. (23) in App. A.2)).
Table 1 shows the performance for perturbation of the training and the unseen (test) data. The per-
turbed data are misclassified with a rate that approaches 100% on CIFAR, and 85% on MNIST. We
verify that our models are robust on the random baseline of same magnitude.

Empirical NTK We now attack the same model with an empirical approximation of the NTK,
estimating the analytical expressions in Eqs. (15) and (23) by initializing replicas of the model
under attack using Eq. (3) (with different initialization for each batch - to minimize variance due to
choice of the random initialization). See Table 1 for the results. Restricted by hardware limitations,
we estimate the kernels using mini-batches of 256 for MNIST and 1500 for CIFAR (see App. A.3.3
for details). The results are similar to the analytical case for MNIST, but not on CIFAR; we find that
absence of full data is devastating for the adversary (61% vs 0%), given the higher dimension of this
dataset (see, also, App. A.3.4 for more details on the effect of batch size on the success of the attack).
Note, however, that this mini-batch approach relaxes our initial assumption that the adversary has
access to the whole training distribution; even minimal knowledge suffices to yield strong attacks in
some cases!

Training Dataset NTK (analytical) NTK (empirical) Random noise
binary CIFAR 0.03 60.94 99.27 ± 0.06

binary MNIST - all pairs 14.74 ± 16.42 21.77 ± 14.29 88.43 ± 15.74
Test Dataset NTK (analytical) NTK (empirical) Random noise

binary CIFAR10 0.45 46.05 90.24 ± 0.06
binary MNIST - all pairs 15.25 ± 16.63 17.81 ± 16.18 88.37 ± 15.68

Table 1: RCF model accuracy on NTK-perturbed binary MNIST & CIFAR data. We consider attacks
that use the analytical kernel, an empirical approximation and the random baseline. The batch size
for empirical kernels is 1500 for CIFAR and 256 (500) for training (test) MNIST, while for the
analytical method we use full-batch (the entire dataset). MNIST accuracy is averaged over the 45
different classification tasks.

NTK versus PGD To compare our results against a strong benchmark, we include comparisons with
PGD attacks across a range of magnitudes (details on the PGD setup can be found in App. A.3.1).
Recall that PGD is a strictly more knowledgeable attack with access to the model parameters (see
App. A.4 for a comparison of the two attacks). In Fig. 1 (left), we compare the performance of the
RCF model against NTK and PGD attacks of varying ℓ∞ magnitude ϵ on the binary CIFAR test
data. It testifies to the strength of our NTK attack, showing that it essentially matches the strongest
benchmark attack (PGD) even though it is completely model-parameter agnostic.
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Figure 1: Comparison of our NTK method with PGD attack and random baseline on test data for
varying ℓ∞ magnitude of noise ϵ. Left: Binary setting on CIFAR with analytical kernel. ϵ is given
in multiples of 1/255. Right: Multiclass setting on MNIST with analytical kernel.

4.1.2 MULTICLASS CLASSIFICATION

We now train and attack the multiclass version of the RCF model on MNIST. Train and test accuracy
for this model are 97.01% and 96.74%. See App. A.3.1 for details and hyperparameters. We provide
results using the analytical kernel, and refer the interested reader to App. A.3.3 for results with the
empirical kernel. While we implement both max-of-ℓ1 and sum-of-∆z perturbations as derived in
Sec. 3.2, we adopt sum-of-∆z given that experimental evidence suggests it performs at least as well
or better than max-of-ℓ1 (see App. A.3.2 for details). Full kernel experiments (batch size 60K) are
presented in Table 2 (see App. A.3.4 and Fig. 2 (right) for the effect of batch size on the success of
the attack). We observe that the model is fooled with a rate approaching 95%! Moreover, this high
success rate only degrades minimally in the case where we do not have access to the training data,
but only to labeled test data (training-agnostic case, with batch size 10K, see Sec. 3).

Training Dataset Test Dataset
NTK Random noise NTK NTK (train-agnostic) Random noise
4.95 77.92 ± 0.03 5.05 8.19 77.6 ± 0.08

Table 2: RCF multiclass attacks with MNIST, using the analytical kernel.

We have also performed the comparison to PGD attacks in the multiclass setting for noise with
varying ℓ∞ magnitude ϵ in Fig. 1 (right), together with the random baseline. As previously observed
on binary CIFAR, the proposed attack with the analytical kernels almost matches the performance
of PGD, despite the fact that our method never queries the actual model.

4.2 FULLY CONNECTED NETWORKS

After a strong validation of our proposed method in the regime where the NTK assumptions hold,
we now depart to more practical models, trained with standard techniques (stochastic gradient de-
scent, standard initialization of parameters) directly as classifiers (cross-entropy loss rather than ℓ2
regression). To explore how our attack holds up under these relaxed assumptions, we train a fam-
ily of fully connected networks of varying depth and width on multiclass MNIST. To compute the
model-specific NTK perturbation, we approximate the empirical kernel of Eq. (3) by resampling
initial parameters and using batches of data. All details can be found in App. A.3.1.

We present results on training data in Table 3. Our NTK-attack is surprisingly successful, despite
the fact that the models are outside the asymptotic regime where they can be shown to obey Eq.
(4), not to mention that even if the dynamics was close to one described by the NTK there is now
no guarantee that the NTK estimated with initialized replicas is close to the actual one. These fully
converged networks are fooled to below 25% accuracy in almost all models. We observe for deeper
models (depth = 4 or 6) that with increasing width the gap to the random baseline widens, matching
our expectation since the model is anticipated to operate closer to its tangent kernel with increasing
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width (although, as mentioned, there are no theoretical guarantees for this experiment). We leave
analytical kernel experiments for these networks (which will allow full batch sizes) for future work.

depth = 2 depth = 4 depth = 6
width NTK Random NTK Random NTK Random
100 17.91 58.35 ± 0.14 21.91 55.87 ± 0.12 33.36 52.91 ± 0.09

1000 23.37 69.04 ± 0.24 18.79 54.99 ± 0.30 27.69 58.98 ± 0.08
10000 25.55 71.71 ± 0.14 19.78 64.58 ± 0.21 22.19 60.04 ± 0.23

Table 3: Accuracy of fully connected nets on NTK-perturbed (ϵ = 0.3) multiclass MNIST training
data (generated with the sum-of-∆z).

4.3 TRANSFERABILITY OF NTK NOISE

Finally, we evaluate how well NTK noise derived from one model “generalizes” into fooling other,
well-established models. We train a LeNet 300-100, a LeNet 5 and a wide Residual network on
(multiclass) MNIST with standard techniques (see App. A.3.1 for details), and then attack them
with NTK-noise generated from the analytical kernel of the RCF model of Sec. 4.1 (see App. A.3.3
for results using the empirical kernel). To compare transferability we also test how well PGD noise
coming from the trained RCF performs on those architectures, and display accuracy of the random
baseline to quantify robustness. Table 4 presents results on training and test data. Surprisingly,
we find that adversarial examples crafted from the kernel of the simple RCF model successfully
fool models not believed to be captured by NTK theory. We also observe that our attacks carry
transferability characteristics comparable to those of the most powerful white-box attack.

noise (train) RCF LeNet 300-100 LeNet 5 WideResNet
RCF 4.95 3.7 24.94 60.96
PGD 0.15 0.59 18.51 62.75

Random 77.92 ± 0.03 58.48 ± 0.11 80.29 ± 0.09 96.04 ± 0.09
Clean 97.01 99.96 99.82 99.78

noise (test) RCF LeNet 300-100 LeNet 5 WideResNet
RCF 5.05 3.74 25.65 64.5

RCF (train-agnostic) 8.19 8.63 27.44 66.38
PGD 0.12 0.61 18.76 63.45

Random 77.6 ± 0.08 59.38 ± 0.17 80.52 ± 0.25 95.87 ± 0.15
Clean 96.74 98.02 98.62 98.29

Table 4: Transfer results on MNIST (train & test) with NTK-noise generated from the analytical
kernel of the RCF model with the sum-of-∆z attack. We compare with PGD perturbed data pro-
duced by a trained RCF with cross-entropy loss and we, also, report accuracy on clean data.

5 DISCUSSION

In this work, we initiate the study of adversarial examples for trained networks through the lens
of Neural Tangent Kernel theory, by deriving analytical expressions for optimal perturbations, and,
subsequently, proposing attacks based on them. Our experiments demonstrate the efficacy of the
approach in a variety of settings and yield results comparable to the most powerful “white-box”
attack (PGD), without model access nor training of a substitute model. All these findings suggest
that the methods we introduce provide us with a remarkable, almost off-the-shelf, resource of high-
quality adversarial examples.

By connecting NTK and adversarial perturbations, our work demonstrates that it is possible to ar-
gue analytically about properties of adversarial examples on deep neural networks. We expect these
tools, together with additional insights from NTK theory, to shed some light on the puzzling trans-
ferability phenomenon of adversarial examples (by studying the properties of kernels of different
architectures) and to facilitate the training of robust neural networks with much less compute (by
solving, for example, the robust optimization problem analytically).

9
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REPRODUCIBILITY

In keeping with conference guidelines, we have tried to ensure that our experimental results were
free of any bias that would misconstrue the results. As specified in the paper, all experiments were
run over multiple random seeds, on a variety of benchmarks using publicly available software and
hardware. We have implemented the methods using auto-differentiation tools from Pytorch au-
tograd. The code for the experiments is self contained and references appropriate instructions to
install the relevant software dependencies. A copy of the experimental code will be made publicly
available.
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Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pp. 2142–
2151. PMLR, 2018.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),
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and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Qizhang Li, Yiwen Guo, and Hao Chen. Practical no-box adversarial attacks against dnns. CoRR,
abs/2012.02525, 2020. URL https://arxiv.org/abs/2012.02525.

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial exam-
ples and black-box attacks. In 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards Deep Learning Models Resistant to Adversarial Attacks. In International Conference on
Learning Representations, 2018.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A simple and
accurate method to fool deep neural networks. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 2574–2582. IEEE
Computer Society, 2016.

11

https://arxiv.org/abs/2012.02525


Under review as a conference paper at ICLR 2022

Radford M. Neal. Priors for Infinite Networks, pp. 29–53. Springer New York, New York, NY,
1996.

Roman Novak, Lechao Xiao, Yasaman Bahri, Jaehoon Lee, Greg Yang, Jiri Hron, Daniel A. Abo-
lafia, Jeffrey Pennington, and Jascha Sohl-Dickstein. Bayesian deep convolutional networks with
many channels are gaussian processes. In 7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein,
and Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural networks in python. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020.

Nicolas Papernot, Patrick D. McDaniel, and Ian J. Goodfellow. Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples. CoRR, abs/1605.07277, 2016.

Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay Celik, and Anan-
thram Swami. Practical black-box attacks against machine learning. In Ramesh Karri, Ozgur
Sinanoglu, Ahmad-Reza Sadeghi, and Xun Yi (eds.), Proceedings of the 2017 ACM on Asia Con-
ference on Computer and Communications Security, AsiaCCS 2017, Abu Dhabi, United Arab
Emirates, April 2-6, 2017, pp. 506–519. ACM, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks, 2014.
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A APPENDIX

A.1 DERIVATION OF ADVERSARIAL PERTURBATIONS

A.1.1 PERTURBATIONS OF UNSEEN TEST DATA

Here give the explicit expression of the matrix ∆ in the case of unseen test data:

∆i,: = ηT
i


∇x̃i

h(x̃i,x1)
T

∇x̃ih(x̃i,x2)
T

...
∇x̃ih(x̃i,xn)

T


T

(16)

A.1.2 MULTICLASS DERIVATIONS

Here we derive the expressions for Eq. (11).

While we remain with X ∈ Rn×d, the other quantities change as Y ∈ Rnk, f(X ) ∈ Rnk and
H(X ,X ) ∈ Rnk×nk, i.e. for each data pair (xi,xj) we have H(xi,xj) ∈ Rk×k. Let Hlm(xi,xj)
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denote the entry of H(xi,xj) that corresponds to the l-th and the m-th output of the model (evaluated
at xi and xj). Then, with similar reasoning that led to Eq. (5) we now obtain:

Hlm(xi + η,xj) ≈ Hlm(xi,xj) +∇xi
HT

lm(xi,xj)η. (17)

For the prediction of the model on the whole dataset, we have:

f(X̃) = Y + ∆︸︷︷︸
∈Rnk×nk

(H(X,X))−1Y, (18)

which for a given sample xi gives:

f(xi + ηi) = yi︸︷︷︸
∈Rk

+∆ik:(i+1)k,: (H(X,X))
−1 Y, (19)

where ∆(i−1)k:ik,: is equal to

∈Rnk×d︷ ︸︸ ︷
(∇xi

H11(xi,x1) . . . ∇xi
H1k(xi,x1) ∇xi

H11(xi,x2) . . . ∇xi
H1k(xi,xn))

T
ηi

(∇xiH21(xi,x1) . . . ∇xiH2k(xi,x1) ∇xiH21(xi,x2) . . . ∇xiH2k(xi,xn))
T
ηi

...
(∇xiHk1(xi,x1) . . . ∇xiHkk(xi,x1) ∇xiHk1(xi,x2) . . . ∇xiHkk(xi,xn))

T
ηi


︸ ︷︷ ︸

∈Rk×nk

.

(20)

Derivation of Max-of-ℓ1 perturbation: Similar in spirit to traditional approaches in adversarial
attacks (see e.g. Carlini & Wagner (2017)), we solve:

ηi = arg max
∥ηi∥∞≤ϵ

k
max

r=1,r ̸=r⋆
fr(xi + ηi)− fr⋆(xi + ηi),

where r⋆ = argmaxyi, i.e. we chose ηi such as to most efficiently decrease the correct response
while maximally increasing one of the false responses. The solution is given by:

ηi = arg max
∥ηi∥∞≤ϵ

k
max

r=1,r ̸=r⋆
ηT
i zr − ηT

i zr⋆

= arg max
∥ηi∥∞≤ϵ

k
max

r=1,r ̸=r⋆
ηT
i (zr − zr⋆)

= ϵsgn(arg
k

max
r=1,r ̸=r⋆

∥zr − zr⋆∥1).

(21)

Derivation of Sum-of-∆z perturbation: For one-hot vectors yi we could, instead, maximize the
cross-entropy between the labels and the new outputs, thus choosing to produce a maximally mixed
output:

Lce(f(xi + η),yi) = −
k∑

r=1

y
(r)
i log

(
ey

(r)
i +ηT

i zr∑k
r′=1 e

y
(r′)
i +ηT

i z′
r

)

= − log

(
e1+ηT

i zr⋆∑k
r=1,r ̸=r⋆ e

ηT
i zr + e1+ηT

i zr⋆

)

= log

∑
r ̸=r⋆

eη
T
i (zr−zr⋆ )−1 + 1


(22)

which amount to maximizing ∑
r ̸=r⋆

eη
T
i (zr−zr⋆ ).
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For small perturbations we can develop the exponential to first order4, which leads to finding the
maximum of

ηT
i

∑
r ̸=r⋆

(zr − zr⋆)

This yields ηi equal to ϵsgn(
∑n

r ̸=r∗(zr − zr⋆)).

A.2 ANALYTICAL RCF KERNEL

We give the formula for the gradients of the different elements of the NTK for the RCF model
considered in the experiments.

∇xih(xi,xj) = (
1

2
−

arccos (
xT
i xj

∥xi∥∥xj∥ )

2π
)xj +∇xi

1

2
−

arccos (
xT
i xj

∥xi∥∥xj∥ )

2π

xT
i xj

= (
1

2
−

arccos (
xT
i xj

∥xi∥∥xj∥ )

2π
)xj +

1

2π
√
1− (

xT
i xj

∥xi∥∥xj∥ )
2

∇xi

(
xT
i xj

∥xi∥∥xj∥

)
xT
i xj

= (
1

2
−

arccos (
xT
i xj

∥xi∥∥xj∥ )

2π
)xj +

1

2π
√
1− (

xT
i xj

∥xi∥∥xj∥ )
2

xj∥xi∥∥xj∥ − xT
i xj

xi∥xj∥
∥xi∥

∥xi∥2∥xj∥2
xT
i xj .

(23)

Note that one must pay attention when evaluating the diagonal entries (or any entry whose corre-
sponding vectors are aligned), because the arccos function is not differentiable at 1. To proceed,
one has the option to do an analytic expansion over 1, and treat this case separately. In practice, we
truncate all inner products between −1 + δ and 1− δ for some small δ > 0 (e.g. δ = 1e− 5), since
we found this makes the method numerically stable.

A.3 EXPERIMENTAL DETAILS

A.3.1 SETUP

For all models, we used GPU enabled hardware to expedite computational time. Our experiments
were performed on a SLURM cluster enabled with NVIDIA V100 Tesla and RTX 8000 GPUs, using
the PyTorch package.

In all data sets and all experiments, we drop the last batch if its length is smaller than the others.

RCF Models In all experiments, we set the width m of the models equal to 10000 and the variance
of the random initialization, κ2, to 0.012. To train the models, we use (full-batch) gradient descent
optimizing the quadratic loss with learning rate equal to 0.01. On MNIST, all models are trained
for at least 5000 epochs, and then we stop training when training accuracy crosses 99.8%. They
record test accuracy between 99.17% and 99.91%. On CIFAR, we train the model for 200k epochs.
For the multiclass experiment on MNIST, we train a model with the same hyperparameters for 200k
epochs. It recorded 97.01% and 96.74% accuracy on train and test data, respectively. The empirical
kernels were approximated using solely one replica of the models per batch. Given that defining a
network is essentially cost-free (a few lines of code without any/much computational cost), we make
the decision to draw a new random seed at each batch in order to alleviate the randomness factor.

Fully Connected Nets We initialize the parameters of the linear layers of the FC networks using
the default PyTorch method, i.e. a uniform distribution U(−

√
k,
√
k), k = 1

in features . The models
are trained with stochastic gradient descent using mini-batches of 256, optimizing the cross entropy
loss. All models are trained to convergence (see Table 5 for accuracies). We estimate the NTKs

4The resulting expression for the maximum also holds when developing to second order.
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empirically, by defining exact replicas of the models to approximate equation 3. In the smaller nets,
we use 3 models initialized with different random seeds for each batch for the approximation, and
just one replica per batch on the largest ones (width = 10000 and depth equal to 4 or 6). Limited by
the heavy computations of the autodifferentiaton tool to estimate the NTK related quantities, we set
batch size equal to 64. The ℓ∞-magnitude of the perturbations is set to ϵ = 0.3. Due to limitations
in compute we restrict ourselves to produce results on 20% of the training set.

model Train Test
(2, 100) 99.02 97.69

(2, 1000) 99.03 97.94
(2, 10000) 99.01 97.83

(4, 100) 99.05 97.36
(4, 1000) 99.06 97.67

(4, 10000) 99.09 97.73
(6, 100) 99.21 96.52

(6, 1000) 99.51 97.1
(6, 10000) 99.34 97.42

Table 5: Train and test accuracy on fully connected nets (MNIST).

Transferability To generate the NTK-noise we use the sum-of-∆z method using mini-batches of
size 256 and ϵ = 0.3. All models were trained with stochastic gradient descent on the ℓ2 loss with
batch size set to 256. Learning rate was set to 0.01. LeNet 300-100 was trained for 500 epochs,
recording at the end of training 99.96% train accuracy and 98.02% on test. LeNet 5 was trained for
250 epochs, recording at the end of training 99.82% train and 98.62% test accuracy. ResNet belongs
in the family of wide ResNets 50-2, and it was trained for 100 epochs recording at the end of training
99.78% training and 98.29% test accuracy.

PGD attack details PGD attacks as in Eq. (2) optimize the cross-entropy loss for 40 iterations
with step size α = 0.01 on MNIST and α = 2/255 on CIFAR.

A.3.2 COMPARISON OF DIFFERENT MULTICLASS ATTACKS

Here we compare the max-of-ℓ1 and sum-of-∆z methods for attacking multiple output models as
derived in Sec. 3.2, in the setting of the RCF model on MNIST to illustrate our adoption of sum-of-
∆. First, we evaluate both methods on test data using the analytical kernel with batch size 64 (i.e.
using only the first 64 training images), and we obtain 56.47% accuracy for max-of-ℓ1 and 42.08%
for sum-of-∆z. Then, we compare them on training data with empirical kernels with batch size 64,
obtaining 37.57% and 28.37%5, respectively. Sum-of-∆z is clearly a better choice for both types of
kernel. We performed the comparison in the small batch regime, since this the case of interest in
Sec. 4.2 where empirical kernels are estimated using little data. For larger batch sizes, we found that
the two methods perform similarly (see Fig. 2 (right) in App. A.3.4).

A.3.3 EMPIRICAL KERNEL RESULTS OF SEC. 4.1.2 AND SEC. 4.3

Here we provide the results for the experiments on the multitask classification task of MNIST using
empirical kernels to compute the adversarial perturbations.

First, it must be noted that we attack the model in batches. If, for example, the batch size is set to
256 then we first calculate the optimal perturbations for the first 256 images using only these images
for the kernel expressions H(X ,X ) and Ai in Eq. (9), then repeat for the next 256 and so on. In the
case of training data, we progressively use all the training dataset, but in the case of test set attacks
we solely use the first 256 images of the training dataset. This is equivalent to assuming that the
model was only trained on this batch of data.

5A note to the careful reader: these results are better than the corresponding ones with the analytical kernel,
although that is not the case elsewhere (analytical results are always superior). This is attributed to the different
approach we take regarding the batch size in train vs test data, which is important with small batch sizes. See
the second paragraph of A.3.3
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In Table 6, we present results for batch size 256 (column 3) and compare to the random baseline
(column 4) on training data. These two results are then presented for the test set (columns 5 and 6).

sum ∆z (256) random train sum ∆z test (256) random test
24.31 77.92 ± 0.03 24.81 77.6 ± 0.08

Table 6: RCF multiclass empirical attacks with MNIST.

Table 7 contains the results on the transferability experiment of Sec. 4.3 using an empirical kernel
estimated with batch size set to 256. The results are inferior to those of Table 4, which is due to the
small batch size (see Sec. A.3.4 for an ablation study).

noise (train) RCF LeNet 300-100 LeNet 5 WideResNet
RCF 24.31 14.65 39.83 74.47

noise (test) RCF LeNet 300-100 LeNet 5 WideResNet
RCF (train-agnostic) 24.81 14.74 40.54 74.04

RCF 32.25 19.7 48.85 77.38

Table 7: Transfer results on MNIST (train & test) with NTK-noise (empirical kernel with batch size
256) generated from the RCF model with the sum-of-∆z attack.

A.3.4 BATCH SIZE EFFECT

Section 4 contains experiments that employ both empirical and analytical kernels. However, current
computational limitations do not allow a fair comparison between the two approaches, as the em-
pirical kernel is being calculated from relatively small batch sizes comprising only a subset of the
entire dataset. In order to study the effect of batch size on the quality of adversarial examples, we
hence turn here to the analytical kernel with a variety of batch sizes.

First, Table 8 presents the trendline for the binary task of CIFAR with the RCF model considered in
Sec. 4.1.1, using test data. We observe a significant effect of batch size on the success of the attack.
For batch size 1500, we see accuracy of 39.05% (which is close to the 46.05% obtained from the
empirical kernel using the same batch size, Table 1), but as the batch size increases, the success rate
of the NTK attack quickly approaches 100%.

batch size Accuracy
1500 39.05
4000 5.95
7000 1.05

10000 0.45

Table 8: Test accuracy vs batch size. Binary CIFAR with analytical kernel of RCF.

The above study was performed with ϵ = 8/255. To better understand how the batch size affects
the success of our method for a variety of ϵ, in Fig. 2 we reproduce Fig. 1 enriched with curves
that correspond to different batch sizes. In Fig. 2 (right) solid lines correspond to sum-of-∆z,
dashed lines to max-of-ℓ1, and all attacks use analytical kernels (with the exception of the black
line). Notice that in the small batch regimes the sum-of-∆z is clearly a better strategy for crafting
adversarial examples (which is why we adopt it in the experiments of Sec. 4.2 and Sec. 4.3, see also
App. A.3.2), but, given more data, the two approaches seem to perform equally well.

A.3.5 SCALABILITY

Our experiments with analytical kernels, which are computable for a wide variety of models, are
fast, since they require only a few tensor multiplications, even for very large batch sizes (though
with growing memory requirements). This is, in fact, an additional advantage of our NTK approach.

Most of our experiments with empirical kernels where run as proofs-of-principle on our own non-
optimized auto-differentiation tools of PyTorch. The resulting framework is computationally slow
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Figure 2: Role of batch size on the test accuracy for varying ℓ∞ magnitude of noise ϵ. Left: Binary
setting on CIFAR with analytical kernel. ϵ is given in multiples of 1/255. Right: Multiclass setting
on MNIST with analytical/empirical kernel. Solid lines correspond to sum-of-∆z, dashed lines to
max-of-ℓ1.

(even when GPUs are employed), hence not allowing for full experimentation with very large batch
sizes. However, going forward, utilization of the JAX library (Bradbury et al., 2018) together with
the recent Neural Tangents one (Novak et al., 2020) (as employed for example in the work of Yuan
& Wu (2021)) will allow the assessment of our attacks with empirical kernels on larger models and
datasets, thus opening our methods to any architecture without the need for deriving the analytical
expressions.

A.4 WHY PGD PERTURBATIONS USE STRICTLY MORE KNOWLEDGE THAN NTK
PERTURBATIONS

Comparing PGD attacks with our methods and arguing that the former require more knowledge
might be confusing, since the assumed threat models are different. Indeed, PGD attacking a network
necessitates access to the model and its weights, while in our methods we assume access to the
training data (and some information about the model architecture), but not to the model. Hence, the
two threat models might seem incomparable. Here, we argue why, for the purposes of this work,
this is not the case.

Current research on adversarial machine learning focuses on a security paradigm, where a threat
model is assumed, an attack is proposed, and subsequently a defense is created to mitigate the
problem. In order to try to understand the origin of the existence of adversarial examples, it may be
useful to abandon the distinction between an attacker and a defender and view their generation as
a one way process. Viewed through this lens, for a PGD “attack” (or any “white-box attack”), we
train a model, the model learns from the data, and then by calculating the gradients of the model, we
craft adversarial examples. Notice that this process uses all the information about the data that the
model has stored in its weights: it does use the data. One contribution of our work is the observation
that the final weights of the model do not contribute to the generation of these examples (at least for
the experiments conducted and those models in the NTK regime). The above elaborates our claim
in the main text that a “white-box attack” is a strictly more knowledgeable procedure than the ones
introduced in this work.

A.5 ADVERSARIAL IMAGES

Here we provide some sample images from CIFAR and MNIST, perturbed with our methods. The
perturbation is computed from the analytical kernel of the RCF model.
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Figure 3: CIFAR images. Perturbed images (left) and clean counterparts (right). ϵ = 8/255
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Figure 4: MNIST images. Perturbed images (left) and clean counterparts (right) from multiclass
analytical kernel. ϵ = 0.3

19


	Introduction
	Background and Related work
	Adversarial Perturbations on Wide Neural Networks
	Scalar output
	Multiple outputs

	Experiments
	Random combination of features model
	Binary classification
	Multiclass classification

	Fully Connected Networks
	Transferability of NTK noise

	Discussion
	Appendix
	Derivation of Adversarial Perturbations
	Perturbations of unseen test data
	Multiclass Derivations

	Analytical RCF Kernel
	Experimental Details
	Setup
	Comparison of different multiclass attacks
	Empirical Kernel Results of Sec. 4.1.2 and Sec. 4.3
	Batch size effect
	Scalability

	Why PGD perturbations use strictly more knowledge than NTK perturbations
	Adversarial Images


